1
|
Zhang L, Huang FY, Dai SZ, Wang L, Zhou X, Zheng ZY, Li Q, Tan GH, Wang CC. Rosuvastatin attenuates airway inflammation and remodeling in a chronic allergic asthma model through modulation of the AMPKα signaling pathway. PLoS One 2024; 19:e0305863. [PMID: 38913666 PMCID: PMC11195969 DOI: 10.1371/journal.pone.0305863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/05/2024] [Indexed: 06/26/2024] Open
Abstract
The efficacy of rosuvastatin in reducing allergic inflammation has been established. However, its potential to reduce airway remodeling has yet to be explored. This study aimed to evaluate the efficacy of rosuvastatin in reducing airway inflammation and remodeling in a mouse model of chronic allergic asthma induced by sensitization and challenge with OVA. Histology of the lung tissue and the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) showed a marked decrease in airway inflammation and remodeling in mice treated with rosuvastatin, as evidenced by a decrease in goblet cell hyperplasia, collagen deposition, and smooth muscle hypertrophy. Furthermore, levels of inflammatory cytokines, angiogenesis-related factors, and OVA-specific IgE in BALF, plasma, and serum were all reduced upon treatment with rosuvastatin. Western blotting was employed to detect AMPK expression, while immunohistochemistry staining was used to observe the expression of remodeling signaling proteins such as α-SMA, TGF-β, MMP-9, and p-AMPKα in the lungs. It was found that the activity of 5'-adenosine monophosphate-activated protein kinase alpha (AMPKα) was significantly lower in the lungs of OVA-induced asthmatic mice compared to Control mice. However, the administration of rosuvastatin increased the ratio of phosphorylated AMPK to total AMPKα, thus inhibiting the formation of new blood vessels, as indicated by CD31-positive staining mainly in the sub-epithelial region. These results indicate that rosuvastatin can effectively reduce airway inflammation and remodeling in mice with chronic allergic asthma caused by OVA, likely due to the reactivation of AMPKα and a decrease in angiogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, China
| | - Feng-Ying Huang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shu-Zhen Dai
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Lin Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, China
| | - Zhen-You Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, China
| | - Guang-Hong Tan
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Cai-Chun Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University & Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, China
| |
Collapse
|
2
|
Saheb Sharif-Askari N, Alabed M, Selvakumar B, Mdkhana B, Salam Bayram O, Kalaji Z, Hafezi S, Elemam NM, Saheb Sharif-Askari F, Halwani R. Simvastatin reduced infiltration of memory subsets of T lymphocytes in the lung tissue during Th2 allergic inflammation. Int Immunopharmacol 2022; 113:109347. [DOI: 10.1016/j.intimp.2022.109347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
3
|
Interactions of Nanoparticles with Macrophages and Feasibility of Drug Delivery for Asthma. Int J Mol Sci 2022; 23:ijms23031622. [PMID: 35163544 PMCID: PMC8835984 DOI: 10.3390/ijms23031622] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Understanding the interaction between nanoparticles and immune cells is essential for the evaluation of nanotoxicity and development of nanomedicines. However, to date, there is little data on the membrane microstructure and biochemical changes in nanoparticle-loaded immune cells. In this study, we observed the microstructure of nanoparticle-loaded macrophages and changes in lipid droplets using holotomography analysis. Quantitatively analyzing the refractive index distribution of nanoparticle-loaded macrophages, we identified the interactions between nanoparticles and macrophages. The results showed that, when nanoparticles were phagocytized by macrophages, the number of lipid droplets and cell volume increased. The volume and mass of the lipid droplets slightly increased, owing to the absorption of nanoparticles. Meanwhile, the number of lipid droplets increased more conspicuously than the other factors. Furthermore, alveolar macrophages are involved in the development and progression of asthma. Studies have shown that macrophages play an essential role in the maintenance of asthma-related inflammation and tissue damage, suggesting that macrophage cells may be applied to asthma target delivery strategies. Therefore, we investigated the target delivery efficiency of gold nanoparticle-loaded macrophages at the biodistribution level, using an ovalbumin-induced asthma mouse model. Normal and severe asthma models were selected to determine the difference in the level of inflammation in the lung. Consequently, macrophages had increased mobility in models of severe asthma, compared to those of normal asthma disease. In this regard, the detection of observable differences in nanoparticle-loaded macrophages may be of primary interest, as an essential endpoint analysis for investigating nanomedical applications and immunotheragnostic strategies.
Collapse
|
4
|
Adikusuma W, Chou WH, Lin MR, Ting J, Irham LM, Perwitasari DA, Chang WP, Chang WC. Identification of Druggable Genes for Asthma by Integrated Genomic Network Analysis. Biomedicines 2022; 10:biomedicines10010113. [PMID: 35052792 PMCID: PMC8773254 DOI: 10.3390/biomedicines10010113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 02/01/2023] Open
Abstract
Asthma is a common and heterogeneous disease characterized by chronic airway inflammation. Currently, the two main types of asthma medicines are inhaled corticosteroids and long-acting β2-adrenoceptor agonists (LABAs). In addition, biological drugs provide another therapeutic option, especially for patients with severe asthma. However, these drugs were less effective in preventing severe asthma exacerbation, and other drug options are still limited. Herein, we extracted asthma-associated single nucleotide polymorphisms (SNPs) from the genome-wide association studies (GWAS) and phenome-wide association studies (PheWAS) catalog and prioritized candidate genes through five functional annotations. Genes enriched in more than two categories were defined as “biological asthma risk genes.” Then, DrugBank was used to match target genes with FDA-approved medications and identify candidate drugs for asthma. We discovered 139 biological asthma risk genes and identified 64 drugs targeting 22 of these genes. Seven of them were approved for asthma, including reslizumab, mepolizumab, theophylline, dyphylline, aminophylline, oxtriphylline, and enprofylline. We also found 17 drugs with clinical or preclinical evidence in treating asthma. In addition, eleven of the 40 candidate drugs were further identified as promising asthma therapy. Noteworthy, IL6R is considered a target for asthma drug repurposing based on its high target scores. Through in silico drug repurposing approach, we identified sarilumab and satralizumab as the most promising drug for asthma treatment.
Collapse
Affiliation(s)
- Wirawan Adikusuma
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (W.A.); (W.-H.C.); (M.-R.L.); (J.T.)
- Department of Pharmacy, Faculty of Health Science, University of Muhammadiyah Mataram, Mataram 83127, Indonesia
| | - Wan-Hsuan Chou
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (W.A.); (W.-H.C.); (M.-R.L.); (J.T.)
| | - Min-Rou Lin
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (W.A.); (W.-H.C.); (M.-R.L.); (J.T.)
| | - Jafit Ting
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (W.A.); (W.-H.C.); (M.-R.L.); (J.T.)
| | - Lalu Muhammad Irham
- Faculty of Pharmacy, University of Ahmad Dahlan, Yogyakarta 55164, Indonesia; (L.M.I.); (D.A.P.)
| | - Dyah Aryani Perwitasari
- Faculty of Pharmacy, University of Ahmad Dahlan, Yogyakarta 55164, Indonesia; (L.M.I.); (D.A.P.)
| | - Wei-Pin Chang
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (W.-P.C.); (W.-C.C.)
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; (W.A.); (W.-H.C.); (M.-R.L.); (J.T.)
- TMU Research Center of Cancer Translational Medicine, Taipei 11031, Taiwan
- Department of Pharmacy, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of Pharmacology, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (W.-P.C.); (W.-C.C.)
| |
Collapse
|
5
|
Taruselli MT, Kolawole EM, Qayum AA, Haque TT, Caslin HL, Abebayehu D, Kee SA, Dailey JM, Jackson KG, Burchett JR, Spence AJ, Pondicherry N, Barnstein BO, Gomez G, Straus DB, Ryan JJ. Fluvastatin enhances IL-33-mediated mast cell IL-6 and TNF production. Cell Immunol 2022; 371:104457. [PMID: 34883342 PMCID: PMC8782378 DOI: 10.1016/j.cellimm.2021.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
Statins are HMG-CoA reductase inhibitors prescribed for lowering cholesterol. They can also inhibit inflammatory responses by suppressing isoprenylation of small G proteins. Consistent with this, we previously found that fluvastatin suppresses IgE-mediated mast cell function. However, some studies have found that statins induced pro-inflammatory cytokines in macrophages and NK cells. In contrast to IgE signaling, we show that fluvastatin augments IL-33-induced TNF and IL-6 production by mast cells. This effect required the key mast cell growth factor, stem cell factor (SCF). Treatment of IL-33-activated mast cells with mevalonic acid or isoprenoids reduced fluvastatin effects, suggesting fluvastatin acts at least partly by reducing isoprenoid production. Fluvastatin also enhanced IL-33-induced NF-κB transcriptional activity and promoted neutrophilic peritonitis in vivo, a response requiring mast cell activation. Other statins tested did not enhance IL-33 responsiveness. Therefore, this work supports observations of unexpected pro-inflammatory effects of some statins and suggests mechanisms by which this may occur. Because statins are candidates for repurposing in inflammatory disorders, our work emphasizes the importance of understanding the pleiotropic and possible unexpected effects of these drugs.
Collapse
Affiliation(s)
- Marcela T Taruselli
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | | | - Amina Abdul Qayum
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Tamara T Haque
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Heather L Caslin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Daniel Abebayehu
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Sydney A Kee
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Jordan M Dailey
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Kaitlyn G Jackson
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Jason R Burchett
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Andrew J Spence
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Neha Pondicherry
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Brian O Barnstein
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Gregorio Gomez
- University of Houston College of Medicine, Department of Biomedical Sciences, Houston, TX 77204, United States
| | - David B Straus
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - John J Ryan
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
6
|
Alabed M, Elemam NM, Ramakrishnan RK, Sharif-Askari NS, Kashour T, Hamid Q, Halwani R. Therapeutic effect of statins on airway remodeling during asthma. Expert Rev Respir Med 2021; 16:17-24. [PMID: 34663161 DOI: 10.1080/17476348.2021.1987890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Asthma is a chronic inflammatory disease of the airways, which is usually characterized by remodeling, hyperresponsiveness and episodic obstruction of the airways. The underlying chronic airway inflammation leads to pathological restructuring of both the large and small airways. Since the effects of current asthma medications on airway remodeling have been met with contradictions, many therapeutic agents have been redirected from their primary use for the treatment of asthma. Such treatments, which could target several signaling molecules implicated in the inflammatory and airway remodeling processes of asthma, would be an ideal choice. AREAS COVERED Statins are effective serum cholesterol-lowering agents that were found to have potential anti-inflammatory and anti-remodeling properties. Literature search was done for the past 10 years to include research and review articles in the field of statins and asthma complications. In this review, we discuss the role of statins in airway tissue remodeling and their potential therapeutic modalities in asthma. EXPERT OPINION With improved understanding of the role of statins in airway remodeling and inflammation, statins represent a potential therapeutic option for various asthma phenotypes. Further research is warranted to optimize statins for asthma therapy through inhalation as a possible route of administration.
Collapse
Affiliation(s)
- Mashael Alabed
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Noha Mousaad Elemam
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Narjes Saheb Sharif-Askari
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Tarek Kashour
- Department of Cardiology, King Fahad Cardiac Center, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Qutayba Hamid
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center, McGill University, Montreal, Quebec, Canada.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rabih Halwani
- Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
7
|
Mo Y, Bae B, Kim J, Kim RL, Son K, Kang MJ, Lee CG, Cho SH, Kang HR. Therapeutic effect of atorvastatin on interleukin-13-induced lung pathology. ALLERGY ASTHMA & RESPIRATORY DISEASE 2021. [DOI: 10.4168/aard.2021.9.2.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yosep Mo
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Boram Bae
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Junghyun Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Ruth Lee Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Kyunghee Son
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Min-Jong Kang
- Pulmonary, Critical Care and Sleep Medicine, Yale University, School of Medicine, New Haven, CT, USA
| | - Chun-Gen Lee
- Department of Molecular Microbiology and Immunology, Division of Biology and Medical Sciences, Brown University, Providence, RI, USA
| | - Sang-Heon Cho
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hye-Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Sabogal Piñeros YS, Dekker T, Smids B, Majoor CJ, Ravanetti L, Villetti G, Civelli M, Facchinetti F, Lutter R. Phosphodiesterase 4 inhibitors attenuate virus-induced activation of eosinophils from asthmatics without affecting virus binding. Pharmacol Res Perspect 2020; 8:e00557. [PMID: 32447834 PMCID: PMC7245579 DOI: 10.1002/prp2.557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 11/11/2022] Open
Abstract
Acute respiratory virus infections, such as influenza and RSV, are predominant causes of asthma exacerbations. Eosinophils act as a double-edged sword in exacerbations in that they are activated by viral infections but also can capture and inactivate respiratory viruses. Phosphodiesterase type 4 (PDE4) is abundantly expressed by eosinophils and has been implicated in their activation. This exploratory study aims to determine whether these opposing roles of eosinophils activation of eosinophils upon interaction with virus can be modulated by selective PDE4 inhibitors and whether eosinophils from healthy, moderate and severe asthmatic subjects respond differently. Eosinophils were purified by negative selection from blood and subsequently exposed to RSV or influenza. Prior to exposure to virus, eosinophils were treated with vehicle or selective PDE4 inhibitors CHF6001 and GSK256066. After 18 hours of exposure, influenza, but not RSV, increased CD69 and CD63 expression by eosinophils from each group, which were inhibited by PDE4 inhibitors. ECP release, although not stimulated by virus, was also attenuated by PDE4 inhibitors. Eosinophils showed an increased Nox2 activity upon virus exposure, which was less pronounced in eosinophils derived from mild and severe asthmatics and was counteracted by PDE4 inhibitors. PDE4 inhibitors had no effect on binding of virus by eosinophils from each group. Our data indicate that PDE4 inhibitors can attenuate eosinophil activation, without affecting virus binding. By attenuating virus-induced responses, PDE4 inhibitors may mitigate virus-induced asthma exacerbations.
Collapse
Affiliation(s)
- Yanaika Shari Sabogal Piñeros
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdamThe Netherlands
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tamara Dekker
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdamThe Netherlands
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Barbara Smids
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdamThe Netherlands
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Christof J. Majoor
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Lara Ravanetti
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdamThe Netherlands
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Gino Villetti
- Corporate Pre‐Clinical R&DChiesi Farmaceutici S.p.A.ParmaItaly
| | | | | | - René Lutter
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdamThe Netherlands
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
9
|
Prakash AV, Park JW, Seong JW, Kang TJ. Repositioned Drugs for Inflammatory Diseases such as Sepsis, Asthma, and Atopic Dermatitis. Biomol Ther (Seoul) 2020; 28:222-229. [PMID: 32133828 PMCID: PMC7216745 DOI: 10.4062/biomolther.2020.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
The process of drug discovery and drug development consumes billions of dollars to bring a new drug to the market. Drug development is time consuming and sometimes, the failure rates are high. Thus, the pharmaceutical industry is looking for a better option for new drug discovery. Drug repositioning is a good alternative technology that has demonstrated many advantages over de novo drug development, the most important one being shorter drug development timelines. In the last two decades, drug repositioning has made tremendous impact on drug development technologies. In this review, we focus on the recent advances in drug repositioning technologies and discuss the repositioned drugs used for inflammatory diseases such as sepsis, asthma, and atopic dermatitis.
Collapse
Affiliation(s)
- Annamneedi Venkata Prakash
- Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jun Woo Park
- Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University, Seoul 01795, Republic of Korea
| | - Ju-Won Seong
- Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University, Seoul 01795, Republic of Korea
| | - Tae Jin Kang
- Convergence Research Center, Department of Pharmacy and Institute of Chronic Disease, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
10
|
Systemic Transplantation of Mesenchymal Stem Cells Modulates Endothelial Cell Adhesion Molecules Induced by Ovalbumin in Rat Model of Asthma. Inflammation 2019; 41:2236-2245. [PMID: 30088169 DOI: 10.1007/s10753-018-0866-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Achieving the optimal clinical outcome of mesenchymal stem cells (MSCs) is particularly dependent on fundamental understanding of therapeutic mechanisms. The current study was focused on the possible mechanisms by which rat bone marrow-derived mesenchymal stem cells (rBMMSCs) and/or conditioned media (CM) display broad immunomodulatory properties for ameliorating of asthma-related pathological changes. Male rats were divided equally into four experimental groups (n = 6): healthy rats received 50 μl PBS intravenously (group C), sensitized rats received 50 μl PBS intravenously (group OVA), sensitized rats received 50 μl CM intravenously (group OVA + CM), and sensitized rats received 50 μl PBS intravenously containing 2 × 106 rBMMSCs (group OVA + MSCs). After 2 weeks, the expression of interleukin (IL)-5, IL-12 and INF-γ, ICAM-1, and VCAM-1; pathological injuries; and the homing of MSCs into the lung tissues were assessed. Our results showed that systemic delivery of rBMMSCs, but not CM, returned the expression of IL-5, IL-12 and INF-γ, ICAM-1, and VCAM-1 and pathological injuries in the lung tissues of asthmatic groups to the near level of control group (p < 0.001 to p < 0.05). Moreover, rBMMSCs had potential to successfully recall to asthmatic niche in cell-administrated rats. However, no regulatory function was observed by MSC-CM. Collectively, our data notified the potency of MSCs in ameliorating OVA-mediated airway inflammation in a rat model of asthma presumably by regulating endothelial expression of leukocyte-selective cell adhesion molecules in lung tissue.
Collapse
|
11
|
Trinh HKT, Suh DH, Nguyen TVT, Choi Y, Park HS, Shin YS. Characterization of cysteinyl leukotriene-related receptors and their interactions in a mouse model of asthma. Prostaglandins Leukot Essent Fatty Acids 2019; 141:17-23. [PMID: 30661601 DOI: 10.1016/j.plefa.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/01/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022]
Abstract
Identification of the characterization of cysteinyl leukotrienes receptor (CysLTRs) could facilitate our understanding of these receptors' role in asthma. We aimed to investigate the localization and interactions of CysLTRs using a mouse model of asthma. BALB/c mice were administered ovalbumin (OVA) to induce allergic asthma. Some mice were administered the antagonists of CysLTR1, CysLTR2, and purinergic receptor P2Y12 (P2Y12R) (montelukast, HAMI 3379 and clopidogrel, respectively). The expression levels of CysLTR1, CysLTR2, and P2Y12R on lung tissues and inflammatory cells were evaluated by western blot, flow cytometry, and immunochemistry. CysLTR1 and P2Y12R were significantly up-regulated in lung tissues (P < 0.05 for each) from mouse after being sensitized and challenged with OVA (OVA/OVA). The ratio of CysLTR1: CysLTR2: P2Y12R in lungs of negative control (NC) mice was shifted from 1:0.43:0.35 to 1:0.65:1.34 in OVA/OVA mice. Montelukast significantly diminished the up-regulation of CysLTR1, CysLTR2, and P2Y12R (P < 0.05 for each), while the effects of HAMI 3379 and clopidogrel were predominant on the expression of CysLTR2 and P2Y12R, respectively. Montelukast predominantly diminished the cell count, while clopidogrel potently inhibited the release of interleukin (IL)-4, IL-5, and IL-13. Our study demonstrated the interactions between CysLTRs, thereby highlighting the potential synergistic effects of CysLTR antagonists in asthma treatment.
Collapse
Affiliation(s)
- Hoang Kim Tu Trinh
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Dong-Hyeon Suh
- Department of Pharmacology, CKD Research institute, Yong-in, South Korea
| | - Thuy Van Thao Nguyen
- Pediatric Department, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh city, Vietnam
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Science, Ajou University School of Medicine, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
12
|
Yangyin Qingre Huoxue Method in Traditional Chinese Medicine Ameliorates Atherosclerosis in ApoE -/- Mice Suffering from High-Fat Diet and HSP65 Aggression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2531979. [PMID: 30713570 PMCID: PMC6332951 DOI: 10.1155/2019/2531979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/06/2018] [Indexed: 02/08/2023]
Abstract
Atherosclerosis (AS) is a complicated arterial disease resulting from abnormal lipid deposition and inflammatory injury, which is attributed to Yin deficiency, accumulation of heat materials, and stasis of blood flow in Traditional Chinese Medicine (TCM) theory. Thus, according to TCM theory, the method of nourishing Yin (Yangyin), clearing away heat (Qingre), and promoting blood circulation (Huoxue) is a reasonable strategy, which has achieved remarkable clinical efficacy in the treatment of AS, but the mechanisms remain to be known. In this study, we evaluated the effects of Yangyin Qingre Huoxue Prescription (YQHP) on AS in ApoE-/- mice suffering from a high-fat diet and heat shock protein (HSP65) attack. YQHP regulated levels of blood lipids and inflammation-linked cytokines as well as Th17/Treg ratio in peripheral blood. Suppressed IL-6-p-STAT3 signaling and restored IL-2-p-STAT5 signaling in the presence of YQHP may partake in the regulation of Th17 and Treg differentiation. Moreover, YQHP modulated transcriptional levels of costimulator CD80 in aortas as well corresponding to the downregulation of GM-CSF in serum and CD3 expression in CD4+ T cells, which might indicate the potential of YQHP to regulate antigen presenting cells. All these effects eventually promoted the improvement of atherosclerotic lesions. In addition, YQHP promoted less monocyte infiltration in the liver and lower levels of AST, ALT, and AKP production than simvastatin. Conclusively, lipid-regulating and anti-inflammatory functions mediated by YQHP with lower hepatotoxicity than simvastatin hindered the progression of HSP65 aggravated AS in ApoE-/- mice, indicating the effectiveness of Yangyin Qingre Huoxue Method in the treatment of AS.
Collapse
|
13
|
Chakraborty A, Boer JC, Selomulya C, Plebanski M, Royce SG. Insights into endotoxin-mediated lung inflammation and future treatment strategies. Expert Rev Respir Med 2018; 12:941-955. [PMID: 30221563 DOI: 10.1080/17476348.2018.1523009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Airway inflammatory disorders are prevalent diseases in need of better management and new therapeutics. Immunotherapies offer a solution to the problem of corticosteroid resistance. Areas covered: The current review focuses on lipopolysaccharide (Gram-negative bacterial endotoxin)-mediated inflammation in the lung and the animal models used to study related diseases. Endotoxin-induced lung pathology is usually initiated by antigen presenting cells (APC). We will discuss different subsets of APC including lung dendritic cells and macrophages, and their role in responding to endotoxin and environmental challenges. Expert commentary: The pharmacotherapeutic considerations to combat airway inflammation should cost-effectively improve quality of life with sustainable and safe strategies. Selectively targeting APCs in the lung offer the potential for a promising new strategy for the better management and treatment of inflammatory lung disease.
Collapse
Affiliation(s)
- Amlan Chakraborty
- a Department of Chemical Engineering , Monash University , Clayton , Australia.,b Department of Immunology and Pathology , Central Clinical School, Monash University , Melbourne , Australia
| | - Jennifer C Boer
- b Department of Immunology and Pathology , Central Clinical School, Monash University , Melbourne , Australia
| | - Cordelia Selomulya
- a Department of Chemical Engineering , Monash University , Clayton , Australia
| | - Magdalena Plebanski
- b Department of Immunology and Pathology , Central Clinical School, Monash University , Melbourne , Australia.,c School of Health and Biomedical Sciences and Enabling Capability platforms, Biomedical and Health Innovation , RMIT University , Melbourne , Australia
| | - Simon G Royce
- d Central Clinical School , Monash University , Clayton , Victoria , Australia.,e Department of Pharmacology , Monash University , Clayton , Australia
| |
Collapse
|
14
|
Bradbury P, Traini D, Ammit AJ, Young PM, Ong HX. Repurposing of statins via inhalation to treat lung inflammatory conditions. Adv Drug Deliv Rev 2018; 133:93-106. [PMID: 29890243 DOI: 10.1016/j.addr.2018.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/14/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022]
Abstract
Despite many therapeutic advancements over the past decade, the continued rise in chronic inflammatory lung diseases incidence has driven the need to identify and develop new therapeutic strategies, with superior efficacy to treat these diseases. Statins are one class of drug that could potentially be repurposed as an alternative treatment for chronic lung diseases. They are currently used to treat hypercholesterolemia by inhibiting the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, that catalyses the rate limiting step in the mevalonate biosynthesis pathway, a key intermediate in cholesterol metabolism. Recent research has identified statins to have other protective pleiotropic properties including anti-inflammatory, anti-oxidant, muco-inhibitory effects that may be beneficial for the treatment of chronic inflammatory lung diseases. However, clinical studies have yielded conflicting results. This review will summarise some of the current evidences for statins pleiotropic effects that could be applied for the treatment of chronic inflammatory lung diseases, their mechanisms of actions, and the potential to repurpose statins as an inhaled therapy, including a detailed discussion on their different physical-chemical properties and how these characteristics could ultimately affect treatment efficacies. The repurposing of statins from conventional anti-cholesterol oral therapy to inhaled anti-inflammatory formulation is promising, as it provides direct delivery to the airways, reduced risk of side effects, increased bioavailability and tailored physical-chemical properties for enhanced efficacy.
Collapse
|
15
|
Mohammadian M, Sadeghipour HR, Jahromi GP, Jafari M, Nejad AK, Khamse S, Boskabady MH. Simvastatin and bone marrow-derived mesenchymal stem cells (BMSCs) affects serum IgE and lung cytokines levels in sensitized mice. Cytokine 2018; 113:83-88. [PMID: 29914792 DOI: 10.1016/j.cyto.2018.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/31/2018] [Accepted: 06/11/2018] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The effects of bone marrow-derived mesenchymal stem cells (BMSCs) and simvastatin combination therapy on serum total and specific IgE levels and lung IL-13 and TGF-β levels in sensitized mouse were examined. MATERIAL AND METHODS Control (n = 5), Sensitized (S), (n = 5), S + BMSC (n = 6), S + simvastatin (n = 6) and S + BMSC + simvastatin (n = 4) groups of BALB/c mice were studied. Mice were sensitized by ovalbumin. Sensitized mice were treated with a single intravenous injection of BMSCs (1 × 106) or daily intraperitoneal injection of simvastatin (40 mg/kg) or both BMSCs and simvastatin on the last week of challenge. Serum total and ovalbumin specific IgE levels as well as IL-13 and TGF-β levels in broncho-alveolar lavage (BAL) fluid were evaluated. RESULTS Serum total and specific IgE levels as well as lung IL-13 and TGF-β levels were significantly increased in S group compared to control group (P < 0.001 for all cases). Treatment with BMSCs, simvastatin and their combination significantly decreased serum total and specific IgE levels (P < 0.05 to P < 0.01). However, IL-13 and TGF-β levels were significantly decreased by BMSCs and BMSC + simvastatin combination therapy (P < 0.05 for all cases). The effect of simvastatin and BMSCs combination therapy on serum specific IgE levels as well as lung IL-13 and TGF-β levels were significantly higher than the effect of BMSCs and simvastatin alone (P < 0.001 for IL-13 and P < 0.01 for other cases). CONCLUSIONS Simvastatin and BMSCs combination therapy affects serum IgE as well as lung IL-13 and TGFβ levels more than BMSC therapy and simvastatin therapy alone which may be due to increased BMSCs migration into the lung tissue.
Collapse
Affiliation(s)
- Maryam Mohammadian
- Department of Physiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid Reza Sadeghipour
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Gila Pirzad Jahromi
- Neuroscience Research Centre, Baqiyatallah University of Medical Sciences, Tehran
| | - Mahvash Jafari
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Kavian Nejad
- Department of Emergency Medical Services, Faculty of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safoura Khamse
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Karlsson EA, Schultz-Cherry S, Rosch JW. Protective Capacity of Statins during Pneumonia Is Dependent on Etiological Agent and Obesity. Front Cell Infect Microbiol 2018; 8:41. [PMID: 29497602 PMCID: PMC5819214 DOI: 10.3389/fcimb.2018.00041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/31/2018] [Indexed: 01/14/2023] Open
Abstract
Acute respiratory infections are a leading cause of death worldwide. Clinical data is conflicted regarding whether statins improve outcomes for pneumonia. Potential confounding factors including specific etiology of pneumonia as well as obesity could potentially mask protective benefit. Obesity is a risk factor for high cholesterol, the main target for statin therapy. We demonstrate that statin intervention conferred no protective benefit in the context of wild-type mice regardless of infectious agent. Statin intervention conferred either a protective benefit, during influenza infection, or detrimental effect, in the case of pneumococcal infection, in obese animals. These data suggest etiology of pneumonia in the context of obesity could be dramatically altered by the protective effects of statin therapy during bacterial and viral pneumonia.
Collapse
Affiliation(s)
- Erik A Karlsson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
17
|
So JY, Dhungana S, Beros JJ, Criner GJ. Statins in the treatment of COPD and asthma-where do we stand? Curr Opin Pharmacol 2018; 40:26-33. [PMID: 29334676 DOI: 10.1016/j.coph.2018.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/01/2018] [Indexed: 01/26/2023]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are the two most prevalent obstructive lung diseases that account for tremendous morbidity and mortality throughout the world. These diseases have strong inflammatory components, with multiple prior studies showing elevated levels of various inflammatory markers and cells in those with COPD and asthma. Therefore, efforts to target inflammation in management of these diseases are of great interest. Statins, which define a class of drugs that are HMG-CoA inhibitors, are used to decrease cholesterol levels and have also been described to have many pleotropic effects that include anti-inflammatory and anti-oxidative properties. These properties have led to multiple studies looking at the potential use of statins in decreasing inflammation in many diseases, including COPD and asthma. This review aims to address the current evidence behind the potential use of statins in the treatment of asthma and COPD.
Collapse
Affiliation(s)
- Jennifer Y So
- Department of Thoracic Medicine and Surgery at the Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| | - Santosh Dhungana
- Department of Thoracic Medicine and Surgery at the Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Joanna J Beros
- Department of Thoracic Medicine and Surgery at the Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery at the Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
18
|
Sahid MNA, Liu S, Kiyoi T, Maeyama K. Inhibition of the mevalonate pathway by simvastatin interferes with mast cell degranulation by disrupting the interaction between Rab27a and double C2 alpha proteins. Eur J Pharmacol 2017; 814:255-263. [DOI: 10.1016/j.ejphar.2017.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
|
19
|
Movassagh H, Shan L, Mohammed A, Halayko AJ, Gounni AS. Semaphorin 3E Deficiency Exacerbates Airway Inflammation, Hyperresponsiveness, and Remodeling in a Mouse Model of Allergic Asthma. THE JOURNAL OF IMMUNOLOGY 2017; 198:1805-1814. [PMID: 28108561 DOI: 10.4049/jimmunol.1601514] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/19/2016] [Indexed: 01/17/2023]
Abstract
Semaphorin 3E (Sema3E) plays a crucial role in axon guidance, vascular patterning, and immune regulation. Nevertheless, the role of Sema3E in asthma is still elusive. In this study, we show that genetic ablation of Sema3E in mice results in increased lung granulocytosis, airway hyperresponsiveness, mucus overproduction, collagen deposition, and Th2/Th17 inflammation. Transfer of Sema3e-/- bone marrow progenitor cells to irradiated wild-type (WT) recipients exacerbates airway hyperresponsiveness and inflammation, whereas transfer of WT bone marrow progenitor cells ameliorates asthma pathology in Sema3e-/- recipients. Sema3e-/- mice display a higher frequency of CD11b+ pulmonary dendritic cells than their WT controls at the baseline and after sensitization with house dust mite. Adoptive transfer of CD11b+ pulmonary dendritic cells from Sema3e-/- mice into WT recipients increases house dust mite-induced Th2/Th17 inflammation in the airway. Together, these findings identify Sema3E as a novel regulatory molecule in allergic asthma that acts upstream of proallergic events and suggest that targeting this molecule could be a novel approach to treat allergic asthma.
Collapse
Affiliation(s)
- Hesam Movassagh
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| | - Lianyu Shan
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| | - Ashfaque Mohammed
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| | - Andrew J Halayko
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and.,Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5 Canada
| | - Abdelilah S Gounni
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada; and
| |
Collapse
|
20
|
Lee EJ, Song KJ, Hwang HJ, Kim KS. Effectiveness of atorvastatin in suppressingMUC5ACgene expression in human airway epithelial cells. Int Forum Allergy Rhinol 2016; 6:1159-1166. [DOI: 10.1002/alr.21811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/12/2016] [Accepted: 05/22/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Eun Jung Lee
- Department of Otorhinolaryngology; Yonsei University College of Medicine; Seoul Korea
| | - Kee Jae Song
- Department of Otorhinolaryngology; Catholic Kwandong University; International St. Mary's Hospital Incheon Korea
| | - Hye Jin Hwang
- Department of Otorhinolaryngology; Yonsei University College of Medicine; Seoul Korea
| | - Kyung-Su Kim
- Department of Otorhinolaryngology; Yonsei University College of Medicine; Seoul Korea
| |
Collapse
|
21
|
Fu CH, Tsai WC, Lee TJ, Huang CC, Chang PH, Su Pang JH. Simvastatin Inhibits IL-5-Induced Chemotaxis and CCR3 Expression of HL-60-Derived and Human Primary Eosinophils. PLoS One 2016; 11:e0157186. [PMID: 27275740 PMCID: PMC4898827 DOI: 10.1371/journal.pone.0157186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/25/2016] [Indexed: 12/27/2022] Open
Abstract
IL-5-induced chemotaxis of eosinophils is an important feature of allergic airway inflammatory diseases. Simvastatin, a lipid lowering agent, has been shown to exhibit anti-inflammatory and anti-allergic effects. Our aim was to investigate the effect of simvastatin on IL-5-induced eosinophil chemotaxis and its regulatory mechanisms. Eosinophils were derived by treating HL-60 clone 15 (HC15) cells with butyric acid (BA) in an alkaline condition or through direct isolation from human peripheral blood. The expressions of CC chemokine receptor 3 (CCR3) and interleukin (IL)-5 receptors (IL5Rα and β) were analyzed using RT/real-time PCR. The granular proteins were stained using fast green. Eotaxin-induced chemotaxis was measured using a transwell migration assay. CCR3 protein expression was revealed by immunocytochemistry. An animal model of allergic rhinitis was established by challenging Sprague-Dawley® rats repeatedly with ovalbumin. Butyric acid significantly increased the expression of IL5Rα and IL5Rβ, CCR3 and granular proteins in HC15 cells, indicating the maturation of eosinophils (BA-E cells). IL-5 further enhanced the CCR3 expression at both the mRNA and protein levels and the eotaxin-induced chemotaxis of BA-E cells. Simvastatin inhibited the effects of IL-5 on BA-E cells, but not in the presence of mevalonate. Similar results were also exhibited in human primary eosinophils. In vivo animal studies further confirmed that oral simvastatin could significantly suppress the infiltration of eosinophils into turbinate tissues of allergic rats. Therefore, simvastatin was demonstrated to inhibit IL-5-induced CCR3 expression and chemotaxis of eosinophils mediated via the mevalonate pathway. We confirmed that simvastatin also reduced eosinophilic infiltration in allergic rhinitis.
Collapse
Affiliation(s)
- Chia-Hsiang Fu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan City, Taiwan, ROC
- Department of Otolaryngology, Chang Gung Memorial Hospital, Tao-Yuan City, Taiwan, ROC
| | - Wan-Chun Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan City, Taiwan, ROC
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, Tao-Yuan City, Taiwan, ROC
| | - Ta-Jen Lee
- Department of Otolaryngology, Chang Gung Memorial Hospital, Tao-Yuan City, Taiwan, ROC
| | - Chi-Che Huang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan City, Taiwan, ROC
- Department of Otolaryngology, Chang Gung Memorial Hospital, Tao-Yuan City, Taiwan, ROC
| | - Po-Hung Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan City, Taiwan, ROC
- Department of Otolaryngology, Chang Gung Memorial Hospital, Tao-Yuan City, Taiwan, ROC
| | - Jong-Hwei Su Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan City, Taiwan, ROC
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan, ROC
- * E-mail:
| |
Collapse
|
22
|
Tulbah AS, Ong HX, Colombo P, Young PM, Traini D. Could simvastatin be considered as a potential therapy for chronic lung diseases? A debate on the pros and cons. Expert Opin Drug Deliv 2016; 13:1407-20. [PMID: 27212150 DOI: 10.1080/17425247.2016.1193150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Simvastatin (SV) is a drug from the statin class, currently used orally as an anti-cholesterolemic drug. It inhibits the 3-hydroxy-3-methyl-glutaryl-Coenzyme A (HMG-CoA) reductase to reduce cholesterol synthesis. Recently, it has been found that SV also has several other protective pharmacological actions unrelated to its anti-cholesterol effects that might be beneficial in the treatment of chronic airway diseases. AREAS COVERED This review summarizes the evidence relating to SV as a potential anti-inflammatory, anti-oxidant and muco-inhibitory agent, administered both orally and via pulmonary inhalation, and discusses its pro and cons. Evidence could potentially be used to support the delivery of SV as inhaled formulation for the treatment of chronic respiratory diseases. EXPERT OPINION The use of SV as anti-inflammatory, anti-oxidant and muco-inhibitory agent for drug delivery to the lung is promising. Inhaled SV formulations could allow the delivery profile to be customized and optimized to take advantage of the rapid onset of action, low systemic side effect and improved physico-chemical stability. This treatment could potentially to be used clinically for the localized treatment of lung diseases where inflammation and oxidative stress production is present.
Collapse
Affiliation(s)
- Alaa S Tulbah
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Australia.,b Faculty of Pharmacy , Umm Al Qura University , Makkah , Saudi Arabia
| | - Hui Xin Ong
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Australia
| | - Paolo Colombo
- c Department of Pharmacy , University of Parma , Parma , Italy
| | - Paul M Young
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Australia
| | - Daniela Traini
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Australia
| |
Collapse
|
23
|
Jiang R, Wang D, Poon WS, Lu YC, Li XG, Zhao SG, Wang RZ, You C, Yuan XR, Zhang JM, Feng H, Fei Z, Yu XG, Zhao YL, Hu J, Kang DZ, Yu RT, Gao GD, Zhu XD, Sun T, Hao JH, Liu XZ, Su N, Yue SY, Zhang JN. Effect of ATorvastatin On Chronic subdural Hematoma (ATOCH): a study protocol for a randomized controlled trial. Trials 2015; 16:528. [PMID: 26581842 PMCID: PMC4652431 DOI: 10.1186/s13063-015-1045-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 11/04/2015] [Indexed: 02/05/2023] Open
Abstract
Background Chronic subdural hematoma (CSDH) is a common disease that is more prevalent in older people. Surgical intervention is a safe treatment of choice. However, the recurrence rate is relatively high and the outcome is not always satisfactory among surgically treated patients. It is believed that aberrant angiogenesis and intracapsular inflammation contribute to the development of CSDH. Atorvastatin is reported to promote angiogenesis and suppress inflammation. We have recently shown that atorvastatin is effective to non-surgically reduce and eliminate CSDH with minimal side effects. Here, we report a clinical research trial protocol that is designed to evaluate the therapeutic effects of atorvastatin on CSDH. Methods/Design We have designed a multi-center, randomized, placebo-controlled, double blind clinical trial for evaluating the efficacy of oral atorvastatin in reducing CSDH. We have so far recruited 96 patients with CT-confirmed or MRI-confirmed CSDHs from 16 medical centers in China. These patients were originally recruited for the Oriental Neurosurgical Evidence-based Study Team (ONET) study. After informed consent is provided, patients are randomized to receive either atorvastatin (oral 20 mg/night for 8 weeks) or placebo (dextrin for 8 weeks); and followed for 16 weeks after the treatment. The primary outcome is the change in hematoma volume at the end of 8-week treatment. Secondary outcomes include: changes in 1) the hematoma volume at the 4th, 12th, and 24th weeks; 2) Markwalder’s Grading Scale and Glasgow Coma Scale (MGS-GCS); 3) Glasgow Outcome Score (GOS) and 4) Activities of Daily Life – the Barthel Index scale (ADL-BI). Safety will be assessed during the study by monitoring adverse events, laboratory tests, electrocardiography (ECG), measurements of vital signs (temperature, pulse, and blood pressure) and body weight. Discussion Results of this trial will provide critical information regarding whether atorvastatin is an effective and safe alternative to surgical treatment of CSDH. Trial registration ClinicalTrials.gov Identifier – NCT02024373 The date of trial registration: 7 August 2013 Electronic supplementary material The online version of this article (doi:10.1186/s13063-015-1045-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, People's Republic of China. .,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 154 Anshan Road, Tianjin, 300052, People's Republic of China. .,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Tianjin, 300052, People's Republic of China. .,Tianjin Neurological Institute, 154 Anshan Road, Tianjin, 300052, People's Republic of China. .,Oriental Neurosurgical Evidence-based Study Team (ONET) of People's Republic of China, 154 Anshan Road, Tianjin, 300052, People's Republic of China.
| | - Dong Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, People's Republic of China. .,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 154 Anshan Road, Tianjin, 300052, People's Republic of China. .,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Tianjin, 300052, People's Republic of China. .,Tianjin Neurological Institute, 154 Anshan Road, Tianjin, 300052, People's Republic of China. .,Oriental Neurosurgical Evidence-based Study Team (ONET) of People's Republic of China, 154 Anshan Road, Tianjin, 300052, People's Republic of China.
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, Chinese University of Hong Kong, Shatin, New Territories East, Hong Kong.
| | - Yi Cheng Lu
- Department of Neurosurgery, Shanghai Changzheng Hospital, 415 Fengyang Street, Shanghai, 200003, People's Republic of China.
| | - Xin Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhuaxi Street, Jinan, Shandong Province, 250012, People's Republic of China.
| | - Shi Guang Zhao
- Department of Neurosurgery, The First Affiliated hospital of Harbin Medical University, 23 Youzheng Street, Nangang district, Harbin, Heilongjiang Province, 150001, People's Republic of China.
| | - Ren Zhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, 41 Damucang Street, Xicheng district, Beijing, 100032, People's Republic of China.
| | - Chao You
- Department of Neurosurgery, West China Hospital Sichuan University, 37 Guoxuegang Street, Wuhou district, Chengdu, Sichuan Province, 610041, People's Republic of China.
| | - Xian Rui Yuan
- Department of Neurosurgery, Xiangya Hospital Central South University, 87 Xiangya Street, Changsha, Hunan Province, 410008, People's Republic of China.
| | - Jian Min Zhang
- Department of Neurosurgery, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang Province, 310009, People's Republic of China.
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, 30 Gaotanyanzheng Road, Shapingba district, Chongqing, Sichuan Province, 400038, People's Republic of China.
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, 15 Changlexi Road, Xian, Shanxi Province, 710032, People's Republic of China.
| | - Xin Guang Yu
- Department of Neurosurgery, The General Hospital of Chinese People's Liberation Army, 28 Fuxing Road, Beijing, 100853, People's Republic of China.
| | - Yuan Li Zhao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, 6 Tiantan Xili, Dongcheng district, Beijing, 100050, People's Republic of China.
| | - Jin Hu
- Department of Neurosurgery, Huashan Hospital Fudan University, 12 Wulumuqizhong Street, Shanghai, 200040, People's Republic of China.
| | - De Zhi Kang
- Department of Neurosurgery, First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian Province, 350005, People's Republic of China.
| | - Ru Tong Yu
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical College, 99 Huaihaixi Road, Xuzhou, Huhehot, Jiangsu Province, 221006, People's Republic of China.
| | - Guo Dong Gao
- Department of Neurosurgery, Tangdu Hospital, The Second Affiliated hospital of the Fourth Military Medical University, 1 Xinsi Road, Xian, Shanxi Province, 710038, People's Republic of China.
| | - Xi De Zhu
- Department of Neurosurgery, Linyi People's Hospital, 27 Jiefang Road, Linyi, Shandong Province, 276003, People's Republic of China.
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, 804 Shenglinan Road, Xingqing district, Yinchuan, Ningxia Province, 750004, People's Republic of China.
| | - Jie He Hao
- Department of Neurosurgery, First Affiliated Hospital of Shanxi Medical University, 85 Jiefangnan Road, Taiyuan, Shanxi Province, 030001, People's Republic of China.
| | - Xian Zhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Road, Zhengzhou, Henan Province, 450052, People's Republic of China.
| | - Ning Su
- Department of Neurosurgery, Inner Mongolia people's Hospital, 26 Zhaowuda Road, Saihan district, Huhehot, Inner Mongolia Province, 010017, People's Republic of China.
| | - Shu Yuan Yue
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, People's Republic of China. .,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 154 Anshan Road, Tianjin, 300052, People's Republic of China. .,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Tianjin, 300052, People's Republic of China. .,Tianjin Neurological Institute, 154 Anshan Road, Tianjin, 300052, People's Republic of China. .,Oriental Neurosurgical Evidence-based Study Team (ONET) of People's Republic of China, 154 Anshan Road, Tianjin, 300052, People's Republic of China.
| | - Jian Ning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, People's Republic of China. .,Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 154 Anshan Road, Tianjin, 300052, People's Republic of China. .,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, 154 Anshan Road, Tianjin, 300052, People's Republic of China. .,Tianjin Neurological Institute, 154 Anshan Road, Tianjin, 300052, People's Republic of China. .,Oriental Neurosurgical Evidence-based Study Team (ONET) of People's Republic of China, 154 Anshan Road, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
24
|
Bhattacharjee D, Chogtu B, Magazine R. Statins in Asthma: Potential Beneficial Effects and Limitations. Pulm Med 2015; 2015:835204. [PMID: 26618001 PMCID: PMC4651730 DOI: 10.1155/2015/835204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/02/2015] [Accepted: 10/18/2015] [Indexed: 01/02/2023] Open
Abstract
Asthma's sustenance as a global pandemic, across centuries, can be attributed to the lack of an understanding of its workings and the inability of the existing treatment modalities to provide a long lasting cure without major adverse effects. The discovery of statins boosted by a better comprehension of the pathophysiology of asthma in the past few decades has opened up a potentially alternative line of treatment that promises to be a big boon for the asthmatics globally. However, the initial excellent results from the preclinical and animal studies have not borne the results in clinical trials that the scientific world was hoping for. In light of this, this review analyzes the ways by which statins could benefit in asthma via their pleiotropic anti-inflammatory properties and explain some of the queries raised in the previous studies and provide recommendations for future studies in this field.
Collapse
Affiliation(s)
- Dipanjan Bhattacharjee
- Department of Pharmacology, Kasturba Medical College, Manipal University, Manipal 576104, India
| | - Bharti Chogtu
- Department of Pharmacology, Kasturba Medical College, Manipal University, Manipal 576104, India
| | - Rahul Magazine
- Department of Pulmonary Medicine, Kasturba Medical College, Manipal University, Manipal 576104, India
| |
Collapse
|
25
|
Hsu CK, Lin CC, Hsiao LD, Yang CM. Mevastatin ameliorates sphingosine 1-phosphate-induced COX-2/PGE2-dependent cell migration via FoxO1 and CREB phosphorylation and translocation. Br J Pharmacol 2015; 172:5360-76. [PMID: 26359950 DOI: 10.1111/bph.13326] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 08/19/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Sphingosine 1-phosphate (S1P), an important inflammatory mediator, has been shown to regulate COX-2 production and promote various cellular responses such as cell migration. Mevastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA), effectively inhibits inflammatory responses. However, the mechanisms underlying S1P-evoked COX-2-dependent cell migration, which is modulated by mevastatin in human tracheal smooth muscle cells (HTSMCs) remain unclear. EXPERIMENTAL APPROACH The expression of COX-2 was determined by Western blotting, real time-PCR and promoter analyses. The signalling molecules were investigated by pretreatment with respective pharmacological inhibitors or transfection with siRNAs. The interaction between COX-2 promoter and transcription factors was determined by chromatin immunoprecipitation assay. Finally, the effect of mevastatin on HTSMC migration and leukocyte counts in BAL fluid and COX-2 expression induced by S1P was determined by a cell migration assay, cell counting and Western blot. KEY RESULTS S1P stimulated mTOR activation through the Nox2/ROS and PI3K/Akt pathways, which can further stimulate FoxO1 phosphorylation and translocation to the cytosol. We also found that S1P induced CREB activation and translocation via an mTOR-independent signalling pathway. Finally, we showed that pretreatment with mevastatin markedly reduced S1P-induced cell migration and COX-2/PGE2 production via a PPARγ-dependent signalling pathway. CONCLUSIONS AND IMPLICATIONS Mevastatin attenuates the S1P-induced increased expression of COX-2 and cell migration via the regulation of FoxO1 and CREB phosphorylation and translocation by PPARγ in HTSMCs. Mevastatin could be beneficial for prevention of airway inflammation in the future.
Collapse
Affiliation(s)
- Chih-Kai Hsu
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chung Lin
- Department of Anaesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Anaesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan.,Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| |
Collapse
|