1
|
Candelas A, Vianay B, Gelin M, Faivre L, Larghero J, Blanchoin L, Théry M, Brunet S. Heterotypic interaction promotes asymmetric division of human hematopoietic progenitors. Development 2024; 151:dev203088. [PMID: 39136544 DOI: 10.1242/dev.203088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) give rise to all cell types of the hematopoietic system through various processes, including asymmetric divisions. However, the contribution of stromal cells of the hematopoietic niches in the control of HSPC asymmetric divisions remains unknown. Using polyacrylamide microwells as minimalist niches, we show that specific heterotypic interactions with osteoblast and endothelial cells promote asymmetric divisions of human HSPCs. Upon interaction, HSPCs polarize in interphase with the centrosome, the Golgi apparatus, and lysosomes positioned close to the site of contact. Subsequently, during mitosis, HSPCs orient their spindle perpendicular to the plane of contact. This division mode gives rise to siblings with unequal amounts of lysosomes and of the differentiation marker CD34. Such asymmetric inheritance generates heterogeneity in the progeny, which is likely to contribute to the plasticity of the early steps of hematopoiesis.
Collapse
Affiliation(s)
- Adrian Candelas
- Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, Institut de Recherche St Louis, AP-HP, Hôpital Saint-Louis, Université Paris Cité, F-75010 Paris, France
| | - Benoit Vianay
- Cytomorpholab, University Grenoble-Alpes, CEA, CNRS, INRA, Laboratoire de Phyiologie Cellulaire & Végétale, F-38054 Grenoble, France
| | - Matthieu Gelin
- Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, Institut de Recherche St Louis, AP-HP, Hôpital Saint-Louis, Université Paris Cité, F-75010 Paris, France
| | - Lionel Faivre
- Unité de Thérapie Cellulaire, Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, AP-HP, Hôpital Saint-Louis, Center of Clinical Investigations in Biotherapies of Cancer CBT501, Université Paris Cité, F-75010 Paris, France
| | - Jerome Larghero
- Unité de Thérapie Cellulaire, Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, AP-HP, Hôpital Saint-Louis, Center of Clinical Investigations in Biotherapies of Cancer CBT501, Université Paris Cité, F-75010 Paris, France
| | - Laurent Blanchoin
- Cytomorpholab, University Grenoble-Alpes, CEA, CNRS, INRA, Laboratoire de Phyiologie Cellulaire & Végétale, F-38054 Grenoble, France
| | - Manuel Théry
- Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, Institut de Recherche St Louis, AP-HP, Hôpital Saint-Louis, Université Paris Cité, F-75010 Paris, France
- Cytomorpholab, University Grenoble-Alpes, CEA, CNRS, INRA, Laboratoire de Phyiologie Cellulaire & Végétale, F-38054 Grenoble, France
| | - Stéphane Brunet
- Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, Institut de Recherche St Louis, AP-HP, Hôpital Saint-Louis, Université Paris Cité, F-75010 Paris, France
| |
Collapse
|
2
|
Jeon H, Amarasekara DS, Lee N, Park HW, Yu J, Rho J. TDAG51 deficiency attenuates dextran sulfate sodium-induced colitis in mice. Sci Rep 2022; 12:20619. [PMID: 36450854 PMCID: PMC9712416 DOI: 10.1038/s41598-022-24873-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a group of chronic inflammatory diseases of the gastrointestinal tract. Although the multifactorial etiology of IBD pathogenesis is relatively well documented, the regulatory factors that confer a risk of IBD pathogenesis remain less explored. In this study, we report that T-cell death-associated gene 51 (TDAG51/PHLDA1) is a novel regulator of the development of dextran sulfate sodium (DSS)-induced colitis in mice. TDAG51 expression was elevated in the colon tissues of DSS-induced experimental colitis mice. TDAG51 deficiency protected mice against acute DSS-induced lethality and body weight changes and disease severity. DSS-induced structural damage and mucus secretion in colon tissues were significantly reduced in TDAG51-deficient mice compared with wild-type mice. We observed similar results in a DSS-induced chronic colitis mouse model. Finally, we showed that the production of inflammatory mediators, including proinflammatory enzymes, molecules and cytokines, was decreased in DSS-treated TDAG51-deficient mice compared with DSS-treated wild-type mice. Thus, we demonstrated that TDAG51 deficiency plays a protective role against DSS-induced colitis by decreasing the production of inflammatory mediators in mice. These findings suggest that TDAG51 is a novel regulator of the development of DSS-induced colitis and is a potential therapeutic target for IBD.
Collapse
Affiliation(s)
- Hyoeun Jeon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Dulshara Sachini Amarasekara
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Nari Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Hye-Won Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Jiyeon Yu
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea.
| |
Collapse
|
3
|
Wang M, Xia F, Wei Y, Wei X. Molecular mechanisms and clinical management of cancer bone metastasis. Bone Res 2020; 8:30. [PMID: 32793401 PMCID: PMC7391760 DOI: 10.1038/s41413-020-00105-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
As one of the most common metastatic sites of malignancies, bone has a unique microenvironment that allows metastatic tumor cells to grow and flourish. The fenestrated capillaries in the bone, bone matrix, and bone cells, including osteoblasts and osteoclasts, together maintain the homeostasis of the bone microenvironment. In contrast, tumor-derived factors act on bone components, leading to subsequent bone resorption or excessive bone formation. The various pathways involved also provide multiple targets for therapeutic strategies against bone metastases. In this review, we summarize the current understanding of the mechanism of bone metastases. Based on the general process of bone metastases, we specifically highlight the complex crosstalk between tumor cells and the bone microenvironment and the current management of cancer bone metastases.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| |
Collapse
|
4
|
Amarasekara DS, Yun H, Kim S, Lee N, Kim H, Rho J. Regulation of Osteoclast Differentiation by Cytokine Networks. Immune Netw 2018; 18:e8. [PMID: 29503739 PMCID: PMC5833125 DOI: 10.4110/in.2018.18.e8] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 12/20/2022] Open
Abstract
Cytokines play a pivotal role in maintaining bone homeostasis. Osteoclasts (OCs), the sole bone resorbing cells, are regulated by numerous cytokines. Macrophage colony-stimulating factor and receptor activator of NF-κB ligand play a central role in OC differentiation, which is also termed osteoclastogenesis. Osteoclastogenic cytokines, including tumor necrosis factor-α, IL-1, IL-6, IL-7, IL-8, IL-11, IL-15, IL-17, IL-23, and IL-34, promote OC differentiation, whereas anti-osteoclastogenic cytokines, including interferon (IFN)-α, IFN-β, IFN-γ, IL-3, IL-4, IL-10, IL-12, IL-27, and IL-33, downregulate OC differentiation. Therefore, dynamic regulation of osteoclastogenic and anti-osteoclastogenic cytokines is important in maintaining the balance between bone-resorbing OCs and bone-forming osteoblasts (OBs), which eventually affects bone integrity. This review outlines the osteoclastogenic and anti-osteoclastogenic properties of cytokines with regard to osteoimmunology, and summarizes our current understanding of the roles these cytokines play in osteoclastogenesis.
Collapse
Affiliation(s)
| | - Hyeongseok Yun
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Sumi Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Nari Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Hyunjong Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|