1
|
Park SC, Lee YS, Cho KA, Kim SY, Lee YI, Lee SR, Lim IK. What matters in aging is signaling for responsiveness. Pharmacol Ther 2023; 252:108560. [PMID: 37952903 DOI: 10.1016/j.pharmthera.2023.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Biological responsiveness refers to the capacity of living organisms to adapt to changes in both their internal and external environments through physiological and behavioral mechanisms. One of the prominent aspects of aging is the decline in this responsiveness, which can lead to a deterioration in the processes required for maintenance, survival, and growth. The vital link between physiological responsiveness and the essential life processes lies within the signaling systems. To devise effective strategies for controlling the aging process, a comprehensive reevaluation of this connecting loop is imperative. This review aims to explore the impact of aging on signaling systems responsible for responsiveness and introduce a novel perspective on intervening in the aging process by restoring the compromised responsiveness. These innovative mechanistic approaches for modulating altered responsiveness hold the potential to illuminate the development of action plans aimed at controlling the aging process and treating age-related disorders.
Collapse
Affiliation(s)
- Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea.
| | - Young-Sam Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea; Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea.
| | - Kyung A Cho
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Yun-Il Lee
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea; Interdisciplinary Engineering Major, Department of Interdisciplinary Studies, DGIST, Daegu 42988, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea; Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - In Kyoung Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
2
|
Ozcebe SG, Zorlutuna P. In need of age-appropriate cardiac models: Impact of cell age on extracellular matrix therapy outcomes. Aging Cell 2023; 22:e13966. [PMID: 37803909 PMCID: PMC10652343 DOI: 10.1111/acel.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 10/08/2023] Open
Abstract
Aging is the main risk factor for cardiovascular disease (CVD). As the world's population ages rapidly and CVD rates rise, there is a growing need for physiologically relevant models of aging hearts to better understand cardiac aging. Translational research relies heavily on young animal models; however, these models correspond to early ages in human life, therefore cannot fully capture the pathophysiology of age-related CVD. Here, we first investigated the transcriptomic and proteomic changes that occur with human cardiac aging. We then chronologically aged human induced pluripotent stem cell-derived cardiomyocytes (iCMs) and showed that 14-month-old iCMs exhibited a similar aging profile to the human CMs and recapitulated age-related disease hallmarks. Using aged iCMs, we studied the effect of cell age on the young extracellular matrix (ECM) therapy, an emerging approach for myocardial infarction (MI) treatment and prevention. Young ECM decreased oxidative stress, improved survival, and post-MI beating in aged iCMs. In the absence of stress, young ECM improved beating and reversed aging-associated expressions in 3-month-old iCMs while causing the opposite effect on 14-month-old iCMs. The same young ECM treatment surprisingly increased SASP and impaired beating in advanced aged iCMs. Overall, we showed that young ECM therapy had a positive effect on post-MI recovery; however, cell age was determinant in the treatment outcomes without any stress conditions. Therefore, "one-size-fits-all" approaches to ECM treatments fail, and cardiac tissue engineered models with age-matched human iCMs are valuable in translational basic research for determining the appropriate treatment, particularly for the elderly.
Collapse
Affiliation(s)
- S. Gulberk Ozcebe
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
| | - Pinar Zorlutuna
- Bioengineering Graduate ProgramUniversity of Notre DameNotre DameIndianaUSA
- Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Harper Cancer Research InstituteUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
3
|
Niyogi U, Jara CP, Carlson MA. Treatment of aged wound healing models with FGF2 and ABT-737 reduces the senescent cell population and increases wound closure rate. Wound Repair Regen 2023; 31:613-626. [PMID: 37462279 DOI: 10.1111/wrr.13106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 07/28/2023]
Abstract
Delayed tissue repair in the aged presents a major socio-economic and clinical problem. Age-associated delay in wound healing can be attributed to multiple factors, including an increased presence of senescent cells persisting in the wound. Although the transient presence of senescent cells is physiologic during the resolution phase of normal healing, increased senescent cell accumulation with age can negatively impact tissue repair. The objective of the study was to test interventional strategies that could mitigate the negative effect of senescent cell accumulation and possibly improve the age-associated delay in wound healing. We utilised a 3D in vitro senescent fibroblast populated collagen matrix (FPCM) to study cellular events associated with senescence and delayed healing. Senescent fibroblasts showed an increase in anti-apoptotic B-cell lymphoma 2 (BCL-2) family proteins. We hypothesized that reducing the senescent cell population and promoting non-senescent cell functionality would mitigate the negative effect of senescence and improve healing kinetics. BCL-2 inhibition and mitogen stimulation (FGF2) improved healing in the in vitro senescent models. These results were confirmed with an ex vivo human skin biopsy model. These data suggested that modulation of the senescent cell population with soluble factors improved the healing outcome in our in vitro and ex vivo healing models.
Collapse
Affiliation(s)
- Upasana Niyogi
- Department of Molecular Genetics and Cell Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Carlos Poblete Jara
- Department of Vascular Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mark A Carlson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Surgery Department, Omaha VA Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Kim Y, Lee J, Lee C, Lawler S. Role of senescent tumor cells in building a cytokine shield in the tumor microenvironment: mathematical modeling. J Math Biol 2022; 86:14. [PMID: 36512100 DOI: 10.1007/s00285-022-01850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/29/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Cellular senescence can induce dual effects (promotion or inhibition) on cancer progression. While immune cells naturally respond and migrate toward various chemotactic sources from the tumor mass, various factors including senescent tumor cells (STCs) in the tumor microenvironment may affect this chemotactic movement. In this work, we investigate the mutual interactions between the tumor cells and the immune cells that either inhibit or facilitate tumor growth by developing a mathematical model that consists of taxis-reaction-diffusion equations and receptor kinetics for the key players in the interaction network. We apply a mathematical model to a transwell Boyden chamber invasion assay used in the experiments to illustrate that STCs can play a pivotal role in negating immune attack through tight regulation of intra- and extra-cellular signaling molecules. In particular, we show that senescent tumor cells in cell cycle arrest can block intratumoral infiltration of CD8+ T cells by secreting a high level of CXCL12, which leads to significant reduction its receptors, CXCR4, on T cells, and thus impaired chemotaxis. The predictions of nonlinear responses to CXCL12 were in good agreement with experimental data. We tested several hypotheses on immune-tumor interactions under various biochemical conditions in the tumor microenvironment and developed new concepts for anti-tumor strategies targeting senescence induced immune impairment.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Junho Lee
- Department of Mathematics, Konkuk University, Seoul, 05029, Republic of Korea
| | - Chaeyoung Lee
- Department of Mathematics, Korea University, Seoul, Republic of Korea
| | - Sean Lawler
- Department of Pathology and Laboratory Medicine, Brown Cancer Center, Brown University, Providence, RI, USA
| |
Collapse
|
5
|
Huang CH, Zaenudin E, Tsai JJ, Kurubanjerdjit N, Ng KL. Network subgraph-based approach for analyzing and comparing molecular networks. PeerJ 2022; 10:e13137. [PMID: 35529499 PMCID: PMC9074881 DOI: 10.7717/peerj.13137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/28/2022] [Indexed: 01/12/2023] Open
Abstract
Molecular networks are built up from genetic elements that exhibit feedback interactions. Here, we studied the problem of measuring the similarity of directed networks by proposing a novel alignment-free approach: the network subgraph-based approach. Our approach does not make use of randomized networks to determine modular patterns embedded in a network, and this method differs from the network motif and graphlet methods. Network similarity was quantified by gauging the difference between the subgraph frequency distributions of two networks using Jensen-Shannon entropy. We applied the subgraph approach to study three types of molecular networks, i.e., cancer networks, signal transduction networks, and cellular process networks, which exhibit diverse molecular functions. We compared the performance of our subgraph detection algorithm with other algorithms, and the results were consistent, but other algorithms could not address the issue of subgraphs/motifs embedded within a subgraph/motif. To evaluate the effectiveness of the subgraph-based method, we applied the method along with the Jensen-Shannon entropy to classify six network models, and it achieves a 100% accuracy of classification. The proposed information-theoretic approach allows us to determine the structural similarity of two networks regardless of node identity and network size. We demonstrated the effectiveness of the subgraph approach to cluster molecular networks that exhibit similar regulatory interaction topologies. As an illustration, our method can identify (i) common subgraph-mediated signal transduction and/or cellular processes in AML and pancreatic cancer, and (ii) scaffold proteins in gastric cancer and hepatocellular carcinoma; thus, the results suggested that there are common regulation modules for cancer formation. We also found that the underlying substructures of the molecular networks are dominated by irreducible subgraphs; this feature is valid for the three classes of molecular networks we studied. The subgraph-based approach provides a systematic scenario for analyzing, compare and classifying molecular networks with diverse functionalities.
Collapse
Affiliation(s)
- Chien-Hung Huang
- Department of Computer Science and Information Engineering, National Formosa University, Yun-Lin, Taiwan
| | - Efendi Zaenudin
- National Research and Innovation Agency, Bandung, Jawa Barat, Republic of Indonesia,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Jeffrey J.P. Tsai
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | | | - Ka-Lok Ng
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan,Center for Artificial Intelligence and Precision Medicine Research, Asia University, Taichung, Taiwan,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Wu H, Ma H, Wang L, Zhang H, Lu L, Xiao T, Cheng C, Wang P, Yang Y, Wu M, Wang S, Zhang J, Liu Q. Regulation of lung epithelial cell senescence in smoking-induced COPD/emphysema by microR-125a-5p via Sp1 mediation of SIRT1/HIF-1a. Int J Biol Sci 2022; 18:661-674. [PMID: 35002516 PMCID: PMC8741857 DOI: 10.7150/ijbs.65861] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/27/2021] [Indexed: 01/10/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) affects the health of more than 300 million people worldwide; at present, there is no effective drug to treat COPD. Smoking is the most important risk factor, but the molecular mechanism by which smoking causes the disease is unclear. The senescence of lung epithelial cells is related to development of COPD. Regulation of miRNAs is the main epigenetic mechanism related to aging. β-Galactose staining showed that the lung tissues of smokers have a higher degree of cellular senescence, and the expression of miR-125a-5p is high. This effect is obvious for smokers with COPD/emphysema, and there is a negative correlation between miR-125a-5p levels and values for forced expiratory volume in one second (FEV1)/forced vital capacity (FVC). After Balb/c mice were chronically exposed to various concentrations of cigarette smoke (CS), plethysmography showed that lung function was impaired, lung tissue senescence was increased, and the senescence-associated secretory phenotype (SASP) in bronchoalveolar lavage fluid was increased. For mouse lung epithelial (MLE)-12 cells treated with cigarette smoke extract (CSE), Sp1 and SIRT1 levels were low, HIF-1α acetylation levels were high, and cell senescence and secretion of SASP factors were elevated. Down-regulation of miR-125a-5p or up-regulation of Sp1 reversed these effects. In addition, compared with mice exposed to CS, knockdown of miR-125a-5p reduced lung epithelial cell senescence and COPD/emphysema. Therefore, in smoking-induced COPD, elevated miR-125a-5p participates in the senescence of lung epithelial cells through Sp1/SIRT1/HIF-1α. These findings provide evidence related to the pathogenesis of COPD/emphysema caused by chronic smoking.
Collapse
Affiliation(s)
- Hao Wu
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.,Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Huimin Ma
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Lumin Wang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Huazhong Zhang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Lu Lu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yi Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Suhua Wang
- Department of Toxicology, School of Public Health, Baotou Medical College, Baotou, 014040, Inner Mongolia, People's Republic of China
| | - Jinsong Zhang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Schreyer L, Mittermeier C, Franz MJ, Meier MA, Martin DE, Maier KC, Huebner K, Schneider-Stock R, Singer S, Holzer K, Fischer D, Ribback S, Liebl B, Gudermann T, Aigner A, Muehlich S. Tetraspanin 5 (TSPAN5), a Novel Gatekeeper of the Tumor Suppressor DLC1 and Myocardin-Related Transcription Factors (MRTFs), Controls HCC Growth and Senescence. Cancers (Basel) 2021; 13:cancers13215373. [PMID: 34771537 PMCID: PMC8582588 DOI: 10.3390/cancers13215373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) ranks second among the leading causes of cancer-related death. Since current therapeutic options are very limited, a deeper understanding of the molecular mechanisms underlying the tumor onset and progression of HCC holds great potential for improved therapeutic options. Although it has been shown that deleted in liver cancer 1 (DLC1) acts as a tumor suppressor whose allele is lost in 50% of liver cancers, alterations in gene expression initiated by DLC1 loss have not yet been the primary focus of liver cancer research. To identify novel gene targets that allow for a personalized medicine approach for HCC therapy, we performed gene expression profiling for HepG2 cells stably expressing DLC1shRNA. We provide evidence that TSPAN5 is required for HCC growth, migration and invasion, and dissected the underlying molecular mechanisms involving myocardin-related transcription factors. Thus, TSPAN5 represents a novel therapeutic target for the treatment of HCC characterized by DLC1 loss. Abstract Human hepatocellular carcinoma (HCC) is among the most lethal and common cancers in the human population, and new molecular targets for therapeutic intervention are urgently needed. Deleted in liver cancer 1 (DLC1) was originally identified as a tumor suppressor gene in human HCC. DLC1 is a Rho-GTPase-activating protein (RhoGAP) which accelerates the return of RhoGTPases to an inactive state. We recently described that the restoration of DLC1 expression induces cellular senescence. However, this principle is not amenable to direct therapeutic targeting. We therefore performed gene expression profiling for HepG2 cells depleted of DLC1 to identify druggable gene targets mediating the effects of DLC1 on senescence induction. This approach revealed that versican (VCAN), tetraspanin 5 (TSPAN5) and N-cadherin (CDH2) were strongly upregulated upon DLC1 depletion in HCC cells, but only TSPAN5 affected the proliferation of HCC cells and human HCC. The depletion of TSPAN5 induced oncogene-induced senescence (OIS), mediated by the p16INK4a/pRb pathways. Mechanistically, silencing TSPAN5 reduced actin polymerization and thereby myocardin-related transcription factor A- filamin A (MRTF-A-FLNA) complex formation, resulting in decreased expression of MRTF/SRF-dependent target genes and senescence induction in vitro and in vivo. Our results identify TSPAN5 as a novel druggable target for HCC.
Collapse
Affiliation(s)
- Laura Schreyer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (L.S.); (M.J.F.); (M.A.M.); (D.F.)
| | - Constanze Mittermeier
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
| | - Miriam J. Franz
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (L.S.); (M.J.F.); (M.A.M.); (D.F.)
| | - Melanie A. Meier
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (L.S.); (M.J.F.); (M.A.M.); (D.F.)
| | - Dietmar E. Martin
- Gene Center, Department of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (D.E.M.); (K.C.M.)
| | - Kerstin C. Maier
- Gene Center, Department of Chemistry and Pharmacy, Ludwig-Maximilians-University Munich, 81377 Munich, Germany; (D.E.M.); (K.C.M.)
| | - Kerstin Huebner
- Experimental Tumor Pathology, Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.H.); (R.S.-S.)
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.H.); (R.S.-S.)
| | - Stephan Singer
- Department for Pathology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.S.); (K.H.)
| | - Kerstin Holzer
- Department for Pathology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.S.); (K.H.)
| | - Dagmar Fischer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (L.S.); (M.J.F.); (M.A.M.); (D.F.)
| | - Silvia Ribback
- Institute for Pathology, University of Greifswald, 17475 Greifswald, Germany;
| | - Bernhard Liebl
- LGL Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, 85764 Oberschleißheim, Germany;
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, 80336 Munich, Germany;
| | - Achim Aigner
- Rudolf Boehm Institute of Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, 04107 Leipzig, Germany;
| | - Susanne Muehlich
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; (L.S.); (M.J.F.); (M.A.M.); (D.F.)
- Correspondence: ; Tel.: +49-(0)9131-8565665
| |
Collapse
|
8
|
Fang Y, Chen B, Gong AY, Malhotra D, Gupta R, Dworkin LD, Gong R. The ketone body β-hydroxybutyrate mitigates the senescence response of glomerular podocytes to diabetic insults. Kidney Int 2021; 100:1037-1053. [PMID: 34246657 DOI: 10.1016/j.kint.2021.06.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 01/23/2023]
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes and clinically featured by progressive albuminuria, consequent to glomerular destruction that involves podocyte senescence. Burgeoning evidence suggests that ketosis, in particular β-hydroxybutyrate, exerts a beneficial effect on aging and on myriad metabolic or chronic diseases, including obesity, diabetes and chronic kidney diseases. Its effect on DKD is largely unknown. In vitro in podocytes exposed to a diabetic milieu, β-hydroxybutyrate treatment substantially mitigated cellular senescence and injury, as evidenced by reduced formation of γH2AX foci, reduced staining for senescence-associated-β-galactosidase activity, diminished expression of key mediators of senescence signaling like p16INK4A and p21, and preserved expression of synaptopodin. This beneficial action of β-hydroxybutyrate coincided with a reinforced transcription factor Nrf2 antioxidant response. Mechanistically, β-hydroxybutyrate inhibition of glycogen synthase kinase 3β (GSK3β), a convergent point for myriad signaling pathways regulating Nrf2 activity, seems to contribute. Indeed, trigonelline, a selective inhibitor of Nrf2, or ectopic expression of constitutively active mutant GSK3β abolished, whereas selective activation of Nrf2 was sufficient for the anti-senescent and podocyte protective effects of β-hydroxybutyrate. Moreover, molecular modeling and docking analysis revealed that β-hydroxybutyrate is able to directly target the ATP-binding pocket of GSK3β and thereby block its kinase activity. In murine models of streptozotocin-elicited DKD, β-hydroxybutyrate therapy inhibited GSK3β and reinforced Nrf2 activation in glomerular podocytes, resulting in lessened podocyte senescence and injury and improved diabetic glomerulopathy and albuminuria. Thus, our findings may pave the way for developing a β-hydroxybutyrate-based novel approach of therapeutic ketosis for treating DKD.
Collapse
Affiliation(s)
- Yudong Fang
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio
| | - Bohan Chen
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio;; Division of Kidney Disease and Hypertension, Rhode Island Hospital, Brown Medical School, Providence, Rhode Island
| | - Athena Y Gong
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio
| | - Deepak Malhotra
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio
| | - Rajesh Gupta
- Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio
| | - Lance D Dworkin
- Division of Kidney Disease and Hypertension, Rhode Island Hospital, Brown Medical School, Providence, Rhode Island;; Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio
| | - Rujun Gong
- Division of Nephrology, University of Toledo College of Medicine, Toledo, Ohio;; Division of Kidney Disease and Hypertension, Rhode Island Hospital, Brown Medical School, Providence, Rhode Island;; Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio; Deaprtment of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio.
| |
Collapse
|
9
|
Park JH, Ryu SJ, Kim BJ, Cho HJ, Park CH, Choi HJC, Jang EJ, Yang EJ, Hwang JA, Woo SH, Lee JH, Park JH, Choi KM, Kwon YY, Lee CK, Park JT, Cho SC, Lee YI, Lee SB, Han JA, Cho KA, Kim MS, Hwang D, Lee YS, Park SC. Disruption of nucleocytoplasmic trafficking as a cellular senescence driver. Exp Mol Med 2021; 53:1092-1108. [PMID: 34188179 PMCID: PMC8257587 DOI: 10.1038/s12276-021-00643-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Senescent cells exhibit a reduced response to intrinsic and extrinsic stimuli. This diminished reaction may be explained by the disrupted transmission of nuclear signals. However, this hypothesis requires more evidence before it can be accepted as a mechanism of cellular senescence. A proteomic analysis of the cytoplasmic and nuclear fractions obtained from young and senescent cells revealed disruption of nucleocytoplasmic trafficking (NCT) as an essential feature of replicative senescence (RS) at the global level. Blocking NCT either chemically or genetically induced the acquisition of an RS-like senescence phenotype, named nuclear barrier-induced senescence (NBIS). A transcriptome analysis revealed that, among various types of cellular senescence, NBIS exhibited a gene expression pattern most similar to that of RS. Core proteomic and transcriptomic patterns common to both RS and NBIS included upregulation of the endocytosis-lysosome network and downregulation of NCT in senescent cells, patterns also observed in an aging yeast model. These results imply coordinated aging-dependent reduction in the transmission of extrinsic signals to the nucleus and in the nucleus-to-cytoplasm supply of proteins/RNAs. We further showed that the aging-associated decrease in Sp1 transcription factor expression was critical for the downregulation of NCT. Our results suggest that NBIS is a modality of cellular senescence that may represent the nature of physiological aging in eukaryotes.
Collapse
Affiliation(s)
- Ji-Hwan Park
- grid.249967.70000 0004 0636 3099Korea Bioinformation Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141 Republic of Korea
| | - Sung Jin Ryu
- grid.419666.a0000 0001 1945 5898Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, 16677 Republic of Korea ,Present Address: UBLBio Corporation, Suwon, 16679 Republic of Korea
| | - Byung Ju Kim
- grid.417736.00000 0004 0438 6721Present Address: Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988 Republic of Korea ,Present Address: UBLBio Corporation, Suwon, 16679 Republic of Korea
| | - Hyun-Ji Cho
- grid.417736.00000 0004 0438 6721Present Address: Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988 Republic of Korea
| | - Chi Hyun Park
- grid.412010.60000 0001 0707 9039Department of Computer Science and Engineering, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Hyo Jei Claudia Choi
- grid.419666.a0000 0001 1945 5898Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., Suwon, 16677 Republic of Korea
| | - Eun-Jin Jang
- grid.417736.00000 0004 0438 6721Present Address: Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988 Republic of Korea
| | - Eun Jae Yang
- grid.417736.00000 0004 0438 6721Department of New Biology, DGIST, Daegu, 42988 Republic of Korea
| | - Jeong-A Hwang
- grid.417736.00000 0004 0438 6721Department of New Biology, DGIST, Daegu, 42988 Republic of Korea
| | - Seung-Hwa Woo
- grid.417736.00000 0004 0438 6721Department of New Biology, DGIST, Daegu, 42988 Republic of Korea
| | - Jun Hyung Lee
- grid.417736.00000 0004 0438 6721Department of New Biology, DGIST, Daegu, 42988 Republic of Korea
| | - Ji Hwan Park
- grid.417736.00000 0004 0438 6721Department of New Biology, DGIST, Daegu, 42988 Republic of Korea
| | - Kyung-Mi Choi
- grid.222754.40000 0001 0840 2678Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Young-Yon Kwon
- grid.222754.40000 0001 0840 2678Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Cheol-Koo Lee
- grid.222754.40000 0001 0840 2678Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea
| | - Joon Tae Park
- grid.412977.e0000 0004 0532 7395Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Sung Chun Cho
- grid.417736.00000 0004 0438 6721Present Address: Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988 Republic of Korea
| | - Yun-Il Lee
- grid.417736.00000 0004 0438 6721Present Address: Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988 Republic of Korea
| | - Sung Bae Lee
- grid.417736.00000 0004 0438 6721Department of Brain & Cognitive Science, DGIST, Daegu, 42988 Republic of Korea
| | - Jeong A. Han
- grid.412010.60000 0001 0707 9039Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Chuncheon, 24341 Republic of Korea
| | - Kyung A Cho
- grid.14005.300000 0001 0356 9399Department of Biochemistry, Chonnam National University, Medical School, Gwangju, 61469 Republic of Korea
| | - Min-Sik Kim
- grid.417736.00000 0004 0438 6721Department of New Biology, DGIST, Daegu, 42988 Republic of Korea
| | - Daehee Hwang
- grid.31501.360000 0004 0470 5905Department of Biological Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Young-Sam Lee
- grid.417736.00000 0004 0438 6721Present Address: Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988 Republic of Korea ,grid.417736.00000 0004 0438 6721Department of New Biology, DGIST, Daegu, 42988 Republic of Korea
| | - Sang Chul Park
- grid.417736.00000 0004 0438 6721Present Address: Well Aging Research Center, Division of Biotechnology, DGIST, Daegu, 42988 Republic of Korea ,grid.14005.300000 0001 0356 9399The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju, 61469 Republic of Korea
| |
Collapse
|
10
|
Ozcebe SG, Bahcecioglu G, Yue XS, Zorlutuna P. Effect of cellular and ECM aging on human iPSC-derived cardiomyocyte performance, maturity and senescence. Biomaterials 2020; 268:120554. [PMID: 33296796 DOI: 10.1016/j.biomaterials.2020.120554] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases are the leading cause of death worldwide and their occurrence is highly associated with age. However, lack of knowledge in cardiac tissue aging is a major roadblock in devising novel therapies. Here, we studied the effects of cell and cardiac extracellular matrix (ECM) aging on the induced pluripotent stem cell (iPSC)-derived cardiomyocyte cell state, function, as well as response to myocardial infarction (MI)-mimicking stress conditions in vitro. Within 3-weeks, young ECM promoted proliferation and drug responsiveness in young cells, and induced cell cycle re-entry, and protection against stress in the aged cells. Adult ECM improved cardiac function, while aged ECM accelerated the aging phenotype, and impaired cardiac function and stress defense machinery of the cells. In summary, we have gained a comprehensive understanding of cardiac aging and highlighted the importance of cell-ECM interactions. This study is the first to investigate the individual effects of cellular and environmental aging and identify the biochemical changes that occur upon cardiac aging.
Collapse
Affiliation(s)
- S Gulberk Ozcebe
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, 46556, IN, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, 46556, IN, USA
| | - Xiaoshan S Yue
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, 46556, IN, USA
| | - Pinar Zorlutuna
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, 46556, IN, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, 46556, IN, USA.
| |
Collapse
|
11
|
Global transcriptional downregulation of TREX and nuclear trafficking machinery as pan-senescence phenomena: evidence from human cells and tissues. Exp Mol Med 2020; 52:1351-1359. [PMID: 32859952 PMCID: PMC8080647 DOI: 10.1038/s12276-020-00490-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
Nucleocytoplasmic trafficking (NCT) of macromolecules is a fundamental process in eukaryotes that requires tight controls to maintain proper cell functions. Downregulation of the classical NCT pathway in senescent cells has been reported. However, whether this is a hallmark that exists across all types of cellular senescence remains unknown, and whether the mRNA export machinery is altered during senescence has not been demonstrated. Here, we show that the global transcriptomic downregulation of both the TREX (transcription-export) machinery and classical NLS-dependent protein transport machinery is a hallmark of varying types of senescence. A gene set-based approach using 25 different studies showed that the TREX-NCT gene set displays distinct common downregulated patterns in senescent cells versus its expression in their nonsenescent counterparts regardless of the senescence type, such as replicative senescence (RS), tumor cell senescence (TCS), oncogene-induced senescence (OIS), stem cell senescence (SCS), progeria and endothelial cell senescence (ECS). Similar patterns of TREX-NCT gene downregulation were also shown in two large human tissue genomic databases, the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases. We also found that early-stage cancer tissues show consistent age-related patterns of TREX-NCT enrichment, suggesting the potential significance of TREX-NCT genes in determining cell fate in the early stage of tumorigenesis. Moreover, human cancer tissues exhibit an opposite TREX-NCT enrichment pattern with aging, indicating that deviation from age-related changes in TREX-NCT genes may provide a novel but critical clue for the age-dependent pathogenesis of cancer and increase in cancer incidence with aging. Proteins that move genetic information out of the nucleus and into the rest of the cell may be important in aging, and serve as markers of early-stage cancer. DNA is stored in the cell’s nucleus, and the messages which it encodes must be exported from the nucleus for gene expression. Aging is thought to be linked to a decrease in this export, but the exact mechanism remains unclear. Sung Young Kim, Konkuk University School of Medicine, Seoul, South Korea, and co-workers investigated key nuclear export proteins in healthy, cancerous, and aging cells. They found that nuclear export is strongly decreased in aging cells and shows distinctive patterns in very-early-stage cancer cells. These results shed further light on the cellular basis of aging, and may provide novel biomarkers for early cancer detection.
Collapse
|
12
|
Dharmalingam P, Talakatta G, Mitra J, Wang H, Derry PJ, Nilewski LG, McHugh EA, Fabian RH, Mendoza K, Vasquez V, Hegde PM, Kakadiaris E, Roy T, Boldogh I, Hegde VL, Mitra S, Tour JM, Kent TA, Hegde ML. Pervasive Genomic Damage in Experimental Intracerebral Hemorrhage: Therapeutic Potential of a Mechanistic-Based Carbon Nanoparticle. ACS NANO 2020; 14:2827-2846. [PMID: 32049495 PMCID: PMC7850811 DOI: 10.1021/acsnano.9b05821] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Therapy for intracerebral hemorrhage (ICH) remains elusive, in part dependent on the severity of the hemorrhage itself as well as multiple deleterious effects of blood and its breakdown products such as hemin and free iron. While oxidative injury and genomic damage have been seen following ICH, the details of this injury and implications remain unclear. Here, we discovered that, while free iron produced mostly reactive oxygen species (ROS)-related single-strand DNA breaks, hemin unexpectedly induced rapid and persistent nuclear and mitochondrial double-strand breaks (DSBs) in neuronal and endothelial cell genomes and in mouse brains following experimental ICH comparable to that seen with γ radiation and DNA-complexing chemotherapies. Potentially as a result of persistent DSBs and the DNA damage response, hemin also resulted in senescence phenotype in cultured neurons and endothelial cells. Subsequent resistance to ferroptosis reported in other senescent cell types was also observed here in neurons. While antioxidant therapy prevented senescence, cells became sensitized to ferroptosis. To address both senescence and resistance to ferroptosis, we synthesized a modified, catalytic, and rapidly internalized carbon nanomaterial, poly(ethylene glycol)-conjugated hydrophilic carbon clusters (PEG-HCC) by covalently bonding the iron chelator, deferoxamine (DEF). This multifunctional nanoparticle, DEF-HCC-PEG, protected cells from both senescence and ferroptosis and restored nuclear and mitochondrial genome integrity in vitro and in vivo. We thus describe a potential molecular mechanism of hemin/iron-induced toxicity in ICH that involves a rapid induction of DSBs, senescence, and the consequent resistance to ferroptosis and provide a mechanistic-based combinatorial therapeutic strategy.
Collapse
Affiliation(s)
- Prakash Dharmalingam
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Girish Talakatta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Haibo Wang
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Paul J Derry
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, United States
| | | | - Emily A McHugh
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Roderic H Fabian
- Department of Neurology, Baylor College of Medicine, and Michael E. DeBakey VA Medical Center, Houston, Texas 77030, United States
| | - Kimberly Mendoza
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Velmarini Vasquez
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Pavana M Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Eugenia Kakadiaris
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Trenton Roy
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Venkatesh L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Sankar Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Weill Medical College of Cornell University, New York, New York 10065, United States
| | - James M Tour
- Departments of Chemistry, Computer Science, Materials Science and NanoEngineering, Smalley-Curl Institute and the NanoCarbon Center, Rice University, Houston, Texas 77005, United States
| | - Thomas A Kent
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, Houston, Texas 77030, United States
| | - Muralidhar L Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Weill Medical College of Cornell University, New York, New York 10065, United States
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Neurological Institute, Houston Methodist, Houston, Texas 77030, United States
| |
Collapse
|
13
|
Foroozandeh P, Aziz AA, Mahmoudi M. Effect of Cell Age on Uptake and Toxicity of Nanoparticles: The Overlooked Factor at the Nanobio Interface. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39672-39687. [PMID: 31633323 DOI: 10.1021/acsami.9b15533] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clinical translation of nanotechnologies has limited success, at least in part, due to the existence of several overlooked factors on the nature of the nanosystem (e.g., physicochemical properties of nanoparticles), nanobio interfaces (e.g., protein corona composition), and the cellular characteristics (e.g., cell type). In the past decade, several ignored factors including personalized and disease-specific protein corona (a layer of formed biomolecules at the surface of nanoparticles upon their entrance into a biological fluid), incubating temperature, local temperature gradient, cell shape, and cell sex has been introduced. Here, it was hypothesized and validated cell age as another overlooked factor in the field of nanomedicine. To test our hypothesis, cellular toxicity and uptake profiles of our model nanoparticles (i.e., PEGylated quantum dots, QDs) were probed in young and senescent cells (i.e., IMR90 fibroblast cells from human fetal lung and CCD841CoN epithelial cells from human fetal colon) and the outcomes revealed substantial dependency of cell-nanoparticles interactions to the cell age. For example, it was observed that the PEGylated QDs were acutely toxic to senescent IMR90 and CCD841CoN cells, leading to lysosomal membrane permeabilization which caused cell necrosis; in contrast, the young cells were resilient to the exact same amount of QDs and the same incubation time. It was also found that the formation of protein corona could delay the QDs' toxicity on senescent cells. These findings suggest that the cellular aging process have a capacity to cause deteriorative effects on their organelles and normal functions. The outcomes of this study suggest the proof-of-concept that cell age may have critical role in biosystem responses to nanoparticle technologies. Therefore, the effect of cell age should be carefully considered on the nanobio interactions and the information about cellular age (e.g., passage number and age of the cell donor) should be included in the nanomedicine papers to facilitate clinical translation of nanotechnologies and to help scientists to better design and produce safe and efficient diagnostic/therapeutic age-specific nanoparticles.
Collapse
Affiliation(s)
| | - Azlan Abdul Aziz
- School of Physics , Universiti Sains Malaysia , 11800 Penang , Malaysia
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM) , Universiti Sains Malaysia , 11800 Penang , Malaysia
| | - Morteza Mahmoudi
- Precision Health Program , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|
14
|
Chhunchha B, Kubo E, Singh P, Singh DP. Sumoylation-deficient Prdx6 repairs aberrant Sumoylation-mediated Sp1 dysregulation-dependent Prdx6 repression and cell injury in aging and oxidative stress. Aging (Albany NY) 2018; 10:2284-2315. [PMID: 30215601 PMCID: PMC6188488 DOI: 10.18632/aging.101547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Progressive deterioration of antioxidant response in aging is a major culprit in the initiation of age-related pathobiology induced by oxidative stress. We previously reported that oxidative stress leads to a marked reduction in transcription factor Sp1 and its mediated Prdx6 expression in lens epithelial cells (LECs) leading to cell death. Herein, we examined how Sp1 activity goes awry during oxidative stress/aging, and whether it is remediable. We found that Sp1 is hyper-Sumoylated at lysine (K) 16 residue in aging LECs. DNA binding and promoter assays revealed, in aging and oxidative stress, a significant reduction in Sp1 overall binding, and specifically to Prdx6 promoter. Expression/overexpression assay revealed that the observed reduction in Sp1-DNA binding activity was connected to its hyper-Sumoylation due to increased reactive oxygen species (ROS) and Sumo1 levels, and reduced levels of Senp1, Prdx6 and Sp1. Mutagenesis of Sp1 at K16R (arginine) residue restored steady-state, and improved Sp1-DNA binding activity and transactivation potential. Extrinsic expression of Sp1K16R increased cell survival and reduced ROS levels by upregulating Prdx6 expression in LECs under aging/oxidative stress, demonstrating that Sp1K16R escapes the aberrant Sumoylation processes. Intriguingly, the deleterious processes are reversible by the delivery of Sumoylation-deficient Prdx6, an antioxidant, which would be a candidate molecule to restrict aging pathobiology.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center,
Omaha, NE 68198, USA
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Prerna Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center,
Omaha, NE 68198, USA
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center,
Omaha, NE 68198, USA
| |
Collapse
|