1
|
Wilson L, Lewis KE, Evans LS, Dillon SR, Pepple KL. Systemic Administration of Acazicolcept, a Dual CD28 and Inducible T cell Costimulator Inhibitor, Ameliorates Experimental Autoimmune Uveitis. Transl Vis Sci Technol 2023; 12:27. [PMID: 36976157 PMCID: PMC10064916 DOI: 10.1167/tvst.12.3.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Purpose Combined inhibition of CD28 and inducible T cell costimulator (ICOS) pathways with acazicolcept (ALPN-101) represents a potential new treatment for uveitis. Here, we evaluate preclinical efficacy using experimental autoimmune uveitis (EAU) in Lewis rats. Methods Efficacy was tested in 57 Lewis rats treated with either systemic (subcutaneous) or local (intravitreal) administration of acazicolcept and compared to treatment with a matched Fc-only control or corticosteroid. Impact of treatment on uveitis was assessed using clinical scoring, optical coherence tomography (OCT), and histology. Ocular effector T cell populations were determined using flow cytometry, and multiplex ELISA used to measure aqueous cytokine concentrations. Results When compared to Fc control treatment, systemic acazicolcept led to statistically significant decreases in clinical score (P < 0.01), histologic score (P < 0.05), and number of ocular CD45+ cells (P < 0.01). Number of ocular CD4+ and CD8+ T cells expressing IL-17A+ and IFNγ+ were also decreased with statistical significance (P < 0.01). Similar results were achieved with corticosteroids. Intravitreal acazicolcept decreased inflammation scores when compared to untreated fellow eyes and to Fc control treated eyes, although not statistically significant. Systemic toxicity, measured by weight loss, occurred in the corticosteroid-treated, but not in the acazicolcept-treated animals. Conclusions Systemic treatment with acazicolcept statistically significantly suppressed EAU. Acazicolcept was well-tolerated without the weight loss associated with corticosteroids. Acazicolcept may be an effective alternative to corticosteroids for use in treating autoimmune uveitis. Additional studies are needed to clarify the optimal dose and route for use in humans. Translational Relevance We show that T cell costimulatory blockade could be an effective mechanism for treating uveitis.
Collapse
Affiliation(s)
- Leslie Wilson
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Roger and Angie Karalis Johnson Retina Center, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | - Stacey R. Dillon
- Translational Medicine, Alpine Immune Sciences, Seattle, WA, USA
| | - Kathryn L. Pepple
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
- Roger and Angie Karalis Johnson Retina Center, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
2
|
Stonex T, Salmon JH, Adler KB, Gilger BC. Peptide Inhibitors of MARCKS Suppress Endotoxin Induced Uveitis in Rats. J Ocul Pharmacol Ther 2022; 38:223-231. [PMID: 35385320 PMCID: PMC9048183 DOI: 10.1089/jop.2021.0114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/28/2022] [Indexed: 11/12/2022] Open
Abstract
Purpose: To determine if inhibition of Myristoylated Alanine Rich C Kinase Substrate (MARCKS) protein, using novel MARCKS inhibitor peptides, will reduce the severity of endotoxin-induced uveitis (EIU) in rats. Methods: EIU was induced in Lewis rats using subcutaneous administration of lipopolysaccharide. In the first phase of the study, 3 different novel MARCKS inhibitor peptides that mimic the N-terminal region of MARCKS (BIO-11006, or lower molecular weight analogs BIO-91201 or BIO-91202; Biomarck Pharmaceuticals, Ltd., Newtown, PA) were administered intravitreally (IVT) at 50 and 100 μM. In the second phase, BIO-91201 was administered IVT at 10, 50, and 100 μM and topically at the 100 μM concentration. The efficacy of MARCKS inhibitor peptides was assessed by clinical examination using slit lamp biomicroscopy, optical coherence tomography (OCT) anterior chamber cell counts, histopathology, and aqueous humor cytokine analysis. Results: Clinical scores were significantly reduced 24 h following uveitis induction in the first phase of the study in the following treatment groups: BIO-11006 50 μM IVT and 100 μM IVT, BIO-91201 50 μM IVT, and BIO-91202 100 μM IVT (P < 0.05). OCT anterior chamber cell counts were significantly reduced in the first phase of the study in all treatment groups (P < 0.001). OCT anterior chamber cell counts and histopathology scores were significantly reduced in the second phase of the study in the BIO-91201 50 μM IVT group (P < 0.05). No effect was seen with topical administration. Conclusion: MARCKS inhibitor peptides were effective in reducing the severity of ocular inflammation and cellular influx in EIU.
Collapse
Affiliation(s)
- Tara Stonex
- Department of Clinical Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Jacklyn H. Salmon
- Department of Clinical Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Kenneth B. Adler
- Department of Molecular Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Brian C. Gilger
- Department of Clinical Science, North Carolina State University, Raleigh, North Carolina, USA
- Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Kim J, Chun J, Ahn M, Jung K, Moon C, Shin T. Blood-retina barrier dysfunction in experimental autoimmune uveitis: the pathogenesis and therapeutic targets. Anat Cell Biol 2022; 55:20-27. [PMID: 35354673 PMCID: PMC8968224 DOI: 10.5115/acb.21.227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/27/2022] Open
Abstract
Experimental autoimmune uveitis (EAU), an animal model of human uveitis, is characterized by infiltration of autoimmune T cells in the uvea as well as in the retina of susceptible animals. EAU is induced by the immunization of uveitogenic antigens, including either retinal soluble-antigen or interphotoreceptor retinoid-binding proteins, in Lewis rats. The pathogenesis of EAU in rats involves the proliferation of autoimmune T cells in peripheral lymphoid tissues and breakdown of the blood-retinal barrier, primarily in the uvea and retina, finally inducing visual dysfunction. In this review, we describe recent EAU studies to facilitate the design of a therapeutic strategy through the interruption of uveitogenic factors during the course of EAU, which will be helpful for controlling human uveitis.
Collapse
Affiliation(s)
- Jeongtae Kim
- Department of Anatomy, Kosin University College of Medicine, Busan, Korea
| | - Jiyoon Chun
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju, Korea
| | - Kyungsook Jung
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Korea
| | - Changjong Moon
- Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Korea
| | - Taekyun Shin
- Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Korea
| |
Collapse
|
4
|
Chen YH, Eskandarpour M, Zhang X, Galatowicz G, Greenwood J, Lightman S, Calder V. Small-molecule antagonist of VLA-4 (GW559090) attenuated neuro-inflammation by targeting Th17 cell trafficking across the blood-retinal barrier in experimental autoimmune uveitis. J Neuroinflammation 2021; 18:49. [PMID: 33602234 PMCID: PMC7893745 DOI: 10.1186/s12974-021-02080-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background The integrin VLA-4 (α4β1) plays an important role in leukocyte trafficking. This study investigated the efficacy of a novel topical α4β1 integrin inhibitor (GW559090, GW) in a mouse model for non-infectious posterior uveitis (experimental autoimmune uveitis; EAU) and its effect on intraocular leukocyte subsets. Methods Mice (female; B10.RIII or C57Bl/6; aged 6–8 weeks) were immunized with specific interphotoreceptor retinoid-binding protein (IRBP) peptides to induce EAU. Topically administered GW (3, 10, and 30 mg/ml) were given twice daily either therapeutically once disease was evident, or prophylactically, and compared with vehicle-treated (Veh) and 0.1% dexamethasone-treated (Dex) controls. Mice were sacrificed at peak disease. The retinal T cell subsets were investigated by immunohistochemistry and immunofluorescence staining. The immune cells within the retina, blood, and draining lymph nodes (dLNs) were phenotyped by flow cytometry. The effect of GW559090 on non-adherent, adherent, and migrated CD4+ T cell subsets across a central nervous system (CNS) endothelium was further assayed in vitro and quantitated by flow cytometry. Results There was a significant reduction in clinical and histological scores in GW10- and Dex-treated groups as compared to controls either administered therapeutically or prophylactically. There were fewer CD45+ leukocytes infiltrating the retinae and vitreous fluids in the treated GW10 group (P < 0.05). Immunofluorescence staining and flow cytometry data identified decreased levels of retinal Th17 cells (P ≤ 0.001) in the GW10-treated eyes, leaving systemic T cell subsets unaffected. In addition, fewer Ly6C+ inflammatory monocyte/macrophages (P = 0.002) and dendritic cells (P = 0.017) crossed the BRB following GW10 treatment. In vitro migration assays confirmed that Th17 cells were selectively suppressed by GW559090 in adhering to endothelial monolayers. Conclusions This α4β1 integrin inhibitor may exert a modulatory effect in EAU progression by selectively blocking Th17 cell migration across the blood-retinal barrier without affecting systemic CD4+ T cell subsets. Local α4β1 integrin-directed inhibition could be clinically relevant in treating a Th17-dominant form of uveitis. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02080-8.
Collapse
Affiliation(s)
- Yi Hsing Chen
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.,Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Malihe Eskandarpour
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Xiaozhe Zhang
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Grazyna Galatowicz
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - John Greenwood
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.,Moorfields Eye Hospital and UCL Biomedical Research Centre, London, UK
| | - Sue Lightman
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.,Moorfields Eye Hospital, London, UK
| | - Virginia Calder
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK. .,Moorfields Eye Hospital and UCL Biomedical Research Centre, London, UK.
| |
Collapse
|
5
|
Crabtree E, Song L, Llanga T, Bower JJ, Cullen M, Salmon JH, Hirsch ML, Gilger BC. AAV-mediated expression of HLA-G1/5 reduces severity of experimental autoimmune uveitis. Sci Rep 2019; 9:19864. [PMID: 31882729 PMCID: PMC6934797 DOI: 10.1038/s41598-019-56462-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022] Open
Abstract
Non-infectious uveitis (NIU) is an intractable, recurrent, and painful disease that is a common cause of vision loss. Available treatments of NIU, such as the use of topical corticosteroids, are non-specific and have serious side effects which limits them to short-term use; however, NIU requires long-term treatment to prevent vision loss. Therefore, a single dose therapeutic that mediates long-term immunosuppression with minimal side effects is desirable. In order to develop an effective long-term therapy for NIU, an adeno-associated virus (AAV) gene therapy approach was used to exploit a natural immune tolerance mechanism induced by the human leukocyte antigen G (HLA-G). To mimic the prevention of NIU, naïve Lewis rats received a single intravitreal injection of AAV particles harboring codon-optimized cDNAs encoding HLA-G1 and HLA-G5 isoforms one week prior to the induction of experimental autoimmune uveitis (EAU). AAV-mediated expression of the HLA-G-1 and -5 transgenes in the targeted ocular tissues following a single intravitreal injection of AAV-HLA-G1/5 significantly decreased clinical and histopathological inflammation scores compared to untreated EAU eyes (p < 0.04). Thus, localized ocular gene delivery of AAV-HLA-G1/5 may reduce the off-target risks and establish a long-term immunosuppressive effect that would serve as an effective and novel therapeutic strategy for NIU, with the potential for applications to additional ocular immune-mediated diseases.
Collapse
Affiliation(s)
- Elizabeth Crabtree
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Liujiang Song
- Department of Pediatrics, Hunan Normal University Medical College, Changsha, Hunan, China
- Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA
| | - Telmo Llanga
- Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA
| | - Jacquelyn J Bower
- Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Megan Cullen
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jacklyn H Salmon
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Matthew L Hirsch
- Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA
| | - Brian C Gilger
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
6
|
The Microbiota Determines Susceptibility to Experimental Autoimmune Uveoretinitis. J Immunol Res 2016; 2016:5065703. [PMID: 27294159 PMCID: PMC4886056 DOI: 10.1155/2016/5065703] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/08/2016] [Accepted: 04/11/2016] [Indexed: 02/07/2023] Open
Abstract
The microbiota is a crucial modulator of the immune system. Here, we evaluated how its absence or reduction modifies the inflammatory response in the murine model of experimental autoimmune uveoretinitis (EAU). We induced EAU in germ-free (GF) or conventionally housed (CV) mice and in CV mice treated with a combination of broad-spectrum antibiotics either from the day of EAU induction or from one week prior to induction of disease. The severity of the inflammation was assessed by fundus biomicroscopy or by histology, including immunohistology. The immunophenotyping of T cells in local and distant lymph nodes was performed by flow cytometry. We found that GF mice and mice where the microbiota was reduced one week before EAU induction were protected from severe autoimmune inflammation. GF mice had lower numbers of infiltrating macrophages and significantly less T cell infiltration in the retina than CV mice with EAU. GF mice also had reduced numbers of IFN-γ and IL-17-producing T cells and increased numbers of regulatory T cells in the eye-draining lymph nodes. These data suggest that the presence of microbiota during autoantigen recognition regulates the inflammatory response by influencing the adaptive immune response.
Collapse
|
7
|
Goldberg GL, Cornish AL, Murphy J, Pang ES, Lim LL, Campbell IK, Scalzo-Inguanti K, Chen X, McMenamin PG, Maraskovsky E, McKenzie BS, Wicks IP. G-CSF and Neutrophils Are Nonredundant Mediators of Murine Experimental Autoimmune Uveoretinitis. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:172-84. [DOI: 10.1016/j.ajpath.2015.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 09/11/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022]
|
8
|
Chen X, Kezic JM, Forrester JV, Goldberg GL, Wicks IP, Bernard CC, McMenamin PG. In vivo multi-modal imaging of experimental autoimmune uveoretinitis in transgenic reporter mice reveals the dynamic nature of inflammatory changes during disease progression. J Neuroinflammation 2015; 12:17. [PMID: 25623142 PMCID: PMC4336748 DOI: 10.1186/s12974-015-0235-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/05/2015] [Indexed: 12/22/2022] Open
Abstract
Background Experimental autoimmune uveoretinitis (EAU) is a widely used experimental animal model of human endogenous posterior uveoretinitis. In the present study, we performed in vivo imaging of the retina in transgenic reporter mice to investigate dynamic changes in exogenous inflammatory cells and endogenous immune cells during the disease process. Methods Transgenic mice (C57Bl/6 J Cx3cr1GFP/+, C57Bl/6 N CD11c-eYFP, and C57Bl/6 J LysM-eGFP) were used to visualize the dynamic changes of myeloid-derived cells, putative dendritic cells and neutrophils during EAU. Transgenic mice were monitored with multi-modal fundus imaging camera over five time points following disease induction with the retinal auto-antigen, interphotoreceptor retinoid binding protein (IRBP1–20). Disease severity was quantified with both clinical and histopathological grading. Results In the normal C57Bl/6 J Cx3cr1GFP/+ mouse Cx3cr1-expressing microglia were evenly distributed in the retina. In C57Bl/6 N CD11c-eYFP mice clusters of CD11c-expressing cells were noted in the retina and in C57Bl/6 J LysM-eGFP mice very low numbers of LysM-expressing neutrophils were observed in the fundus. Following immunization with IRBP1–20, fundus examination revealed accumulations of Cx3cr1-GFP+ myeloid cells, CD11c-eYFP+ cells and LysM-eGFP+ myelomonocytic cells around the optic nerve head and along retinal vessels as early as day 14 post-immunization. CD11c-eYFP+ cells appear to resolve marginally earlier (day 21 post-immunization) than Cx3cr1-GFP+ and LysM-eGFP+ cells. The clinical grading of EAU in transgenic mice correlated closely with histopathological grading. Conclusions These results illustrate that in vivo fundus imaging of transgenic reporter mice allows direct visualization of various exogenously and endogenously derived leukocyte types during EAU progression. This approach acts as a valuable adjunct to other methods of studying the clinical course of EAU. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0235-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiangting Chen
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
| | - Jelena M Kezic
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
| | - John V Forrester
- Section of Immunology and Infection, Division of Applied Medicine, School of Medicine and Dentistry, Institute of Medical Science, Foresterhill, University of Aberdeen, Scotland, UK. .,Ocular Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia. .,Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Crawley, Western Australia, Australia.
| | - Gabrielle L Goldberg
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | - Ian P Wicks
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| | - Claude C Bernard
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
| | - Paul G McMenamin
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
9
|
Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T. Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res 2014; 45:30-57. [PMID: 25476242 DOI: 10.1016/j.preteyeres.2014.11.004] [Citation(s) in RCA: 385] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
Abstract
Resident microglial cells can be regarded as the immunological watchdogs of the brain and the retina. They are active sensors of their neuronal microenvironment and rapidly respond to various insults with a morphological and functional transformation into reactive phagocytes. There is strong evidence from animal models and in situ analyses of human tissue that microglial reactivity is a common hallmark of various retinal degenerative and inflammatory diseases. These include rare hereditary retinopathies such as retinitis pigmentosa and X-linked juvenile retinoschisis but also comprise more common multifactorial retinal diseases such as age-related macular degeneration, diabetic retinopathy, glaucoma, and uveitis as well as neurological disorders with ocular manifestation. In this review, we describe how microglial function is kept in balance under normal conditions by cross-talk with other retinal cells and summarize how microglia respond to different forms of retinal injury. In addition, we present the concept that microglia play a key role in local regulation of complement in the retina and specify aspects of microglial aging relevant for chronic inflammatory processes in the retina. We conclude that this resident immune cell of the retina cannot be simply regarded as bystander of disease but may instead be a potential therapeutic target to be modulated in the treatment of degenerative and inflammatory diseases of the retina.
Collapse
Affiliation(s)
- Marcus Karlstetter
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Rebecca Scholz
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Matt Rutar
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jan M Provis
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany.
| |
Collapse
|
10
|
Chu CJ, Herrmann P, Carvalho LS, Liyanage SE, Bainbridge JWB, Ali RR, Dick AD, Luhmann UFO. Assessment and in vivo scoring of murine experimental autoimmune uveoretinitis using optical coherence tomography. PLoS One 2013; 8:e63002. [PMID: 23690973 PMCID: PMC3653962 DOI: 10.1371/journal.pone.0063002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/27/2013] [Indexed: 12/02/2022] Open
Abstract
Despite advances in clinical imaging and grading our understanding of retinal immune responses and their morphological correlates in experimental autoimmune uveoretinitis (EAU), has been hindered by the requirement for post-mortem histology. To date, monitoring changes occurring during EAU disease progression and evaluating the effect of therapeutic intervention in real time has not been possible. We wanted to establish whether optical coherence tomography (OCT) could detect intraretinal changes during inflammation and to determine its utility as a tool for accurate scoring of EAU. EAU was induced in C57BL/6J mice and animals evaluated after 15, 26, 36 and 60 days. At each time-point, contemporaneous Spectralis-OCT scanning, topical endoscopic fundal imaging (TEFI), fundus fluorescein angiography (FFA) and CD45-immunolabelled histology were performed. OCT features were further characterised on retinal flat-mounts using immunohistochemistry and 3D reconstruction. Optic disc swelling and vitreous opacities detected by OCT corresponded to CD45+ cell infiltration on histology. Vasculitis identified by FFA and OCT matched perivascular myeloid and T-cell infiltrates and could be differentiated from unaffected vessels. Evolution of these changes could be followed over time in the same eye. Retinal folds were visible and found to encapsulate mixed populations of activated myeloid cells, T-cells and microglia. Using these features, an OCT-based EAU scoring system was developed, with significant correlation to validated histological (Pearson r2 = 0.6392, P<0.0001, n = 31 eyes) and TEFI based scoring systems (r2 = 0.6784, P<0.0001). OCT distinguishes the fundamental features of murine EAU in vivo, permits dynamic assessment of intraretinal changes and can be used to score disease severity. As a result, it allows tissue synchronisation with subsequent cellular and functional assessment and greater efficiency of animal usage. By relating OCT signals with immunohistochemistry in EAU, our findings offer the opportunity to inform the interpretation of OCT changes in human uveitis.
Collapse
Affiliation(s)
- Colin J. Chu
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Philipp Herrmann
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Livia S. Carvalho
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Sidath E. Liyanage
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - James W. B. Bainbridge
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital, London, United Kingdom
| | - Robin R. Ali
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital, London, United Kingdom
| | - Andrew D. Dick
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital, London, United Kingdom
- Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail: (UFL); (ADD)
| | - Ulrich F. O. Luhmann
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
- * E-mail: (UFL); (ADD)
| |
Collapse
|
11
|
Bharadwaj AS, Appukuttan B, Wilmarth PA, Pan Y, Stempel AJ, Chipps TJ, Benedetti EE, Zamora DO, Choi D, David LL, Smith JR. Role of the retinal vascular endothelial cell in ocular disease. Prog Retin Eye Res 2013; 32:102-80. [PMID: 22982179 PMCID: PMC3679193 DOI: 10.1016/j.preteyeres.2012.08.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 12/14/2022]
Abstract
Retinal endothelial cells line the arborizing microvasculature that supplies and drains the neural retina. The anatomical and physiological characteristics of these endothelial cells are consistent with nutritional requirements and protection of a tissue critical to vision. On the one hand, the endothelium must ensure the supply of oxygen and other nutrients to the metabolically active retina, and allow access to circulating cells that maintain the vasculature or survey the retina for the presence of potential pathogens. On the other hand, the endothelium contributes to the blood-retinal barrier that protects the retina by excluding circulating molecular toxins, microorganisms, and pro-inflammatory leukocytes. Features required to fulfill these functions may also predispose to disease processes, such as retinal vascular leakage and neovascularization, and trafficking of microbes and inflammatory cells. Thus, the retinal endothelial cell is a key participant in retinal ischemic vasculopathies that include diabetic retinopathy and retinopathy of prematurity, and retinal inflammation or infection, as occurs in posterior uveitis. Using gene expression and proteomic profiling, it has been possible to explore the molecular phenotype of the human retinal endothelial cell and contribute to understanding of the pathogenesis of these diseases. In addition to providing support for the involvement of well-characterized endothelial molecules, profiling has the power to identify new players in retinal pathologies. Findings may have implications for the design of new biological therapies. Additional progress in this field is anticipated as other technologies, including epigenetic profiling methods, whole transcriptome shotgun sequencing, and metabolomics, are used to study the human retinal endothelial cell.
Collapse
Affiliation(s)
| | | | - Phillip A. Wilmarth
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University
| | - Yuzhen Pan
- Casey Eye Institute, Oregon Health & Science University
| | | | | | | | | | - Dongseok Choi
- Department of Public Health and Preventive Medicine, Oregon Health & Science University
| | - Larry L. David
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University
| | - Justine R. Smith
- Casey Eye Institute, Oregon Health & Science University
- Department of Cell & Developmental Biology, Oregon Health & Science University
| |
Collapse
|
12
|
Kezic JM, Davey MP, Glant TT, Rosenbaum JT, Rosenzweig HL. Interferon-γ regulates discordant mechanisms of uveitis versus joint and axial disease in a murine model resembling spondylarthritis. ACTA ACUST UNITED AC 2012; 64:762-71. [PMID: 21987263 DOI: 10.1002/art.33404] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The spondylarthritides (such as ankylosing spondylitis) are multisystem inflammatory diseases that frequently result in uveitis. Despite the common co-occurrence of uveitis with arthritis, there has been no explanation for the susceptibility of the eye to inflammation. Using an innovative intravital videomicroscopic approach, we discovered the coexistence of uveitis with axial and peripheral joint inflammation in mice immunized with cartilage proteoglycan (PG). The aim of this study was to elucidate the characteristics of uveitis and test the impact of interferon-γ (IFNγ) deficiency on the eye versus the joint and spine. METHODS Female T cell receptor (TCR)-transgenic mice or IFNγ-knockout mice crossed to TCR-transgenic mice were immunized with PG. Uveitis was assessed by intravital videomicroscopy and histology. The clinical and histopathologic severity of arthritis and spondylitis were evaluated. The bone remodeling process within the spine was assessed by whole-body near-infrared imaging. Immunoblotting and immunofluorescence staining were used to examine the expression of PG and ADAMTS-5 and to examine the cellular composition of eyes with uveitis. RESULTS PG neoepitopes along with the aggrecanase ADAMTS-5 were present in the eye, as they were the joint. Anterior uveitis developed in response to PG immunization. The cellular infiltrate consisted mainly of neutrophils and eosinophils. Unexpectedly, IFNγ deficiency markedly exacerbated uveitis while ameliorating joint and spine disease, indicating divergent mechanisms that drive diseases in the eye versus the joints and spine. CONCLUSION This study provides the first detailed description of a murine disease model in which uveitis coincides with arthritis and spondylitis. Our observations provide a great opportunity for understanding the pathogenesis of a relatively common but poorly understood disease.
Collapse
Affiliation(s)
- Jelena M Kezic
- Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
13
|
Chen M, Copland DA, Zhao J, Liu J, Forrester JV, Dick AD, Xu H. Persistent inflammation subverts thrombospondin-1-induced regulation of retinal angiogenesis and is driven by CCR2 ligation. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:235-45. [PMID: 22067906 DOI: 10.1016/j.ajpath.2011.09.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/23/2011] [Accepted: 09/14/2011] [Indexed: 12/14/2022]
Abstract
Neovascular retinal disease is a leading cause of blindness orchestrated by inflammatory responses. Although noninfectious uveoretinitis is mediated by CD4(+) T cells, in the persistent phase of disease, angiogenic responses are observed, along with degeneration of the retina. Full clinical manifestation relies on myeloid-derived cells, which are phenotypically distinct from, but potentially sharing common effector responses to age-related macular degeneration. To interrogate inflammation-mediated angiogenesis, we investigated experimental autoimmune uveoretinitis, an animal model for human uveitis. After the initial acute phase of severe inflammation, the retina sustains a persistent low-grade inflammation with tissue-infiltrating leukocytes for over 4 months. During this persistent phase, angiogenesis is observed as retinal neovascular membranes that arise from inflamed venules and postcapillary venules, increase in size as the disease progresses, and are associated with infiltrating arginase-1(+) macrophages. In the absence of thrombospondin-1, retinal neovascular membranes are markedly increased and are associated with arginase-1(-) CD68(+) macrophages, whereas deletion of the chemokine receptor CCR2 resulted in reduced retinal neovascular membranes in association with a predominant neutrophil infiltrate. CCR2 is important for macrophage recruitment to the retina in experimental autoimmune uveoretinitis and promotes chronicity in the form of a persistent angiogenesis response, which in turn is regulated by constitutive expression of angiogenic inhibitors like thrombospondin-1. This model offers a new platform to dissect the molecular and cellular pathology of inflammation-induced ocular angiogenesis.
Collapse
Affiliation(s)
- Mei Chen
- Centre for Vision and Vascular Science, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
14
|
Wu X, Rosenbaum JT, Adamus G, Zhang GL, Duan J, Weinberg A, Zhang Z. Activation of OX40 prolongs and exacerbates autoimmune experimental uveitis. Invest Ophthalmol Vis Sci 2011; 52:8520-6. [PMID: 21948545 DOI: 10.1167/iovs.11-7664] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE T cells are essential for the development of autoimmune uveitis. Although the costimulatory molecule OX40 promotes T-cell function and expansion, it is unclear whether OX40 is implicated in ocular inflammation. The purpose of this study was to examine the role of OX40 in uveitis. METHODS Experimental autoimmune uveitis (EAU) was induced in B10.RIII mice by subcutaneous injection of interphotoreceptor retinoid-binding protein peptide 161-180 (IRBP(161-180)). Some mice received an intravenous administration of OX40-activating antibody on days 0 and 4 after IRBP(161-180) sensitization or on days 10 and 14 of uveitis onset. The severity of EAU was evaluated by histology at different time points. In addition, ocular inflammatory cytokine expression was determined by real time-PCR, and peripheral activated CD4(+)CD44(+)CD62L(-) T cells and IL-7Rα expression were analyzed by flow cytometry. The activated CD4(+)CD44(+) lymphocytes were rechallenged with IRBP(161-180) in vitro to assess their antigen recall response. RESULTS The authors demonstrated a marked OX40 expression by infiltrating lymphocytes in enucleated human eyes with end-stage inflammation. In addition, the administration of OX40-activating antibody prolonged and exacerbated the disease course of EAU. Moreover, activation of OX40 not only increased CD4(+)CD44(+)CD62L(-) lymphocyte number, it upregulated IL-7Rα expression in the activated T-cell population. Lastly, these cells exhibited a stronger interferon-γ response to IRBP(161-180) restimulation in vitro. CONCLUSIONS The results reveal a pathogenic role of OX40 in uveitis. Furthermore, the upregulation of IL-7R in CD4(+)CD44(+) lymphocytes suggests that the activation of OX40 promotes the generation or expansion of uveitogenic memory T cells.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Yu CR, Mahdi RR, Oh HM, Amadi-Obi A, Levy-Clarke G, Burton J, Eseonu A, Lee Y, Chan CC, Egwuagu CE. Suppressor of cytokine signaling-1 (SOCS1) inhibits lymphocyte recruitment into the retina and protects SOCS1 transgenic rats and mice from ocular inflammation. Invest Ophthalmol Vis Sci 2011; 52:6978-86. [PMID: 21778271 DOI: 10.1167/iovs.11-7688] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Suppressors of cytokine signaling (SOCS) proteins regulate the intensity and duration of cytokine signals and defective expression of SOCS1 and SOCS3 has been reported in a number of human diseases. The purpose of this study was to investigate the role of SOCS1 in intraocular inflammatory diseases (uveitis) and whether SOCS1 expression is defective in patients with ocular inflammatory diseases. METHODS Blood from patients with scleritis or healthy human volunteers was analyzed for SOCS expression by RNase protection assay and RT-PCR. The authors generated SOCS1 transgenic rats and mice (SOCS1-Tg), induced experimental autoimmune uveoretinitis (EAU) by active immunization with interphotoreceptor retinal binding protein or adoptive transfer of uveitogenic T cells, and investigated effects of SOCS1 overexpression on EAU. SOCS1-mediated protection of retinal cells from apoptosis was assessed by annexin V staining. RESULTS Induction of cytokine-induced SH2 protein was comparable between patients and volunteers, whereas 80% of lymphocytes from patients with scleritis failed to induce SOCS1 in response to IL-2. Compared with wild-type littermates, SOCS1-Tg rats/mice developed less severe EAU. Constitutive overexpression of SOCS1 in retina inhibited expression of chemokines (CCL17, CCL20, CXCL9, CXCL10), reduced Th17/Th1 expansion, and inhibited recruitment of inflammatory cells into the retina. The authors also show that SOCS1 protected retinal cells from staurosporine as well as H₂O₂-induced apoptosis. CONCLUSIONS Defective expression of SOCS1 in patients with scleritis, taken together with SOCS1-mediated protection of neuroretinal cells from apoptosis, suggest that SOCS1 has neuroprotective function in the retina, implying that administration of SOCS1 mimetic peptides may be useful in treating uveitis or scleritis.
Collapse
Affiliation(s)
- Cheng-Rong Yu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Copland DA, Hussain K, Baalasubramanian S, Hughes TR, Morgan BP, Xu H, Dick AD, Nicholson LB. Systemic and local anti-C5 therapy reduces the disease severity in experimental autoimmune uveoretinitis. Clin Exp Immunol 2009; 159:303-14. [PMID: 20002447 DOI: 10.1111/j.1365-2249.2009.04070.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of complement occurs during autoimmune retinal and intraocular inflammatory disease as well as neuroretinal degenerative disorders. The cleavage of C5 into fragments C5a and C5b is a critical event during the complement cascade. C5a is a potent proinflammatory anaphylatoxin capable of inducing cell migration, adhesion and cytokine release, while membrane attack complex C5b-9 causes cell lysis. Therapeutic approaches to prevent complement-induced inflammation include the use of blocking monoclonal antibodies (mAb) to prevent C5 cleavage. In these current experiments, the rat anti-mouse C5 mAb (BB5.1) was utilized to investigate the effects of inhibition of C5 cleavage on disease progression and severity in experimental autoimmune uveoretinitis (EAU), a model of organ-specific autoimmunity in the eye characterized by structural retinal damage mediated by infiltrating macrophages. Systemic treatment with BB5.1 results in significantly reduced disease scores compared with control groups, while local administration results in an earlier resolution of disease. In vitro, contemporaneous C5a and interferon-gamma signalling enhanced nitric oxide production, accompanied by down-regulation of the inhibitory myeloid CD200 receptor, contributing to cell activation. These experiments demonstrate that C5 cleavage contributes to the full expression of EAU, and that selective C5 blockade via systemic and local routes of administration can suppress disease. This presents great therapeutic potential to protect against tissue damage during autoimmune responses in the retina or inflammation-induced degenerative disease.
Collapse
Affiliation(s)
- D A Copland
- Academic Unit of Ophthalmology, Department of Clinical Sciences South Bristol, Bristol, UK
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dick AD. Retinal antigen-specific T cells mediate experimental autoimmune uveoretinitis (EAU) in PVG rat a model for tracking antigen-specific CD4+T cells in the inflamed eye. Ocul Immunol Inflamm 2009; 3:261-70. [DOI: 10.3109/09273949509069120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Identification of an Expressed Truncated Form of CD200, CD200tr, which is a Physiologic Antagonist of CD200-Induced Suppression. Transplantation 2008; 86:1116-24. [DOI: 10.1097/tp.0b013e318186fec2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
|
20
|
Gorczynski R, Boudakov I, Khatri I. Peptides of CD200 Modulate LPS-Induced TNF-α Induction and Mortality In Vivo. J Surg Res 2008; 145:87-96. [DOI: 10.1016/j.jss.2007.04.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 04/19/2007] [Accepted: 04/25/2007] [Indexed: 10/22/2022]
|
21
|
Copland DA, Calder CJ, Raveney BJE, Nicholson LB, Phillips J, Cherwinski H, Jenmalm M, Sedgwick JD, Dick AD. Monoclonal antibody-mediated CD200 receptor signaling suppresses macrophage activation and tissue damage in experimental autoimmune uveoretinitis. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:580-8. [PMID: 17600119 PMCID: PMC1934542 DOI: 10.2353/ajpath.2007.070272] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Macrophage responses are regulated by multiple secreted factors as well as by cell surface receptors, including the inhibitory signals resulting from ligation of myeloid CD200 receptors (CD200R) by the widely distributed CD200. In the absence of CD200, animals display increased susceptibility to autoimmunity and earlier onset aggressive autoimmune disease. In these current experiments, an agonist monoclonal rat anti-mouse CD200R (DX109) antibody delivered a negative signal to bone marrow-derived macrophages, which suppressed interferon (IFN)gamma-mediated nitric oxide (NO) and interleukin-6 production. Experimental autoimmune uveoretinitis (EAU) was used as a model of organ-specific autoimmunity in the eye, a tissue with extensive neuronal and endothelial CD200 expression. In mice lacking CD200 (CD200(-/-)), increased numbers of retina-infiltrating macrophages displaying heightened NO responses were observed during EAU. In addition, we aimed to suppress disease by maintaining tonic suppression of macrophage activation via CD200R. Systemically administered DX109 monoclonal antibody suppressed EAU despite maintained T-cell proliferation and IFNgamma production. Furthermore, locally administered DX109 monoclonal antibody resulted in an earlier resolution of disease. These experiments demonstrate that promoting CD200R-mediated signaling can successfully prevent full expression of IFNgamma-mediated macrophage activation and protect against tissue damage during autoimmune responses.
Collapse
Affiliation(s)
- David A Copland
- Division of Infection and Immunity, Department of Clinical Science at South Bristol, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Calder CJ, Nicholson LB, Dick AD. Mechanisms for inducing nasal mucosal tolerance in experimental autoimmune uveoretinitis. Methods 2006; 38:69-76. [PMID: 16414268 DOI: 10.1016/j.ymeth.2005.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 09/14/2005] [Indexed: 11/18/2022] Open
Abstract
Delivering soluble (auto) antigenic peptides via the naso-respiratory route induces tolerance to that peptide and suppression of experimental models of autoimmune disease. In the normal lung, respiratory tract dendritic cells (RTDCs) efficiently endocytose soluble antigens, migrate to regional lymph nodes and present peptide to T cells that subsequently become tolerant. This article describes protocols for inducing tolerance via the naso-respiratory tract in experimental autoimmune uveoretinitis (EAU); for the isolation of RTDCs to facilitate definition of, and conditions for, maturation and activation of cells; and to test RTDC ability to induce tolerance in murine EAU when adoptively transferred.
Collapse
Affiliation(s)
- Claudia J Calder
- Department of Pathology and Microbiology, University of Bristol, UK
| | | | | |
Collapse
|
23
|
Calder CJ, Nicholson LB, Dick AD. A selective role for the TNF p55 receptor in autocrine signaling following IFN-gamma stimulation in experimental autoimmune uveoretinitis. THE JOURNAL OF IMMUNOLOGY 2006; 175:6286-93. [PMID: 16272279 DOI: 10.4049/jimmunol.175.10.6286] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IFN-gamma stimulates macrophage activation and NO production, which leads to destruction of the retina in experimental autoimmune uveoretinitis. In this study, we investigate the mechanism of disease resistance in TNF p55 receptor-deficient animals. We show that although T cell priming is relatively unaffected, macrophages lacking the TNF p55 receptor fail to produce NO following IFN-gamma stimulation because of a requirement for autocrine TNF-alpha signaling through the TNF p55 receptor. In contrast to the impaired activation of NO synthesis, MHC class II up-regulation was indistinguishable in wild-type and TNFRp55-/- mice stimulated with IFN-gamma. These defects could be overcome by stimulating macrophages with LPS. Together, these results show that selected aspects of IFN-gamma activation are controlled by autocrine secretion of TNF-alpha, but that this control is lost in the presence of signals generated by pathogen-associated molecular patterns recognizing receptors.
Collapse
MESH Headings
- Animals
- Autocrine Communication
- Autoimmune Diseases/immunology
- CD40 Antigens/metabolism
- Female
- Histocompatibility Antigens Class II/metabolism
- Immunity, Innate
- Interferon-gamma/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Immunological
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type II/immunology
- Recombinant Proteins
- Retinitis/immunology
- T-Lymphocytes/immunology
- Uveitis/immunology
Collapse
Affiliation(s)
- Claudia J Calder
- Department of Pathology and Microbiology, University of Bristol, Bristol, United Kingdom
| | | | | |
Collapse
|
24
|
Crane IJ, Xu H, Wallace C, Manivannan A, Mack M, Liversidge J, Marquez G, Sharp PF, Forrester JV. Involvement of CCR5 in the passage of Th1-type cells across the blood-retina barrier in experimental autoimmune uveitis. J Leukoc Biol 2005; 79:435-43. [PMID: 16365158 DOI: 10.1189/jlb.0305130] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although the recruitment of T helper cell type 1 (Th1)/Th2 cells into peripheral tissues is essential for inflammation and the host response to infection, the traffic signals that enable the distinct positioning of Th1/Th2 cells are unclear. We have determined the role of CC chemokine receptor 5 (CCR5) in this using experimental autoimmune uveitis (EAU) as a model system. In EAU, Th1-like cells are preferentially recruited into the retina across the blood-retina barrier, partly as a result of expression of the adhesion molecules P-selectin glycoprotein ligand 1 and lymphocyte function-associated antigen-1 on these cells. CD3+ T cells, infiltrating the retina, also expressed the chemokine receptor CCR5, and CCR5 ligands, macrophage-inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, and regulated on activation, normal T expressed and secreted (RANTES), were strongly expressed in the retina at peak EAU. Th1-like cells, polarized in vitro, expressed high levels of CCR5. The trafficking of these CCR5+ cells was examined by tracking them after adoptive transfer in real time in vivo at an early disease stage using scanning laser ophthalmoscopy. Treatment of the cells with antibody against CCR5 prior to transfer resulted in a reduction in their infiltration into the retina. However, rolling velocity, rolling efficiency, and adherence of the cells to retinal endothelium were not reduced. CCR5 is clearly important for Th1 cell recruitment, and this study demonstrates for the first time in vivo that CCR5 may act at the level of transendothelial migration rather than at the earlier stage of rolling on the endothelium.
Collapse
Affiliation(s)
- Isabel J Crane
- Department of Ophthalmology, University of Aberdeen Medical School, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
McPherson SW, Roberts JP, Gregerson DS. Peripheral expression of rod photoreceptor arrestin induces an epitope-specific, protective response against experimental autoimmune uveoretinitis. Curr Eye Res 2005; 30:491-502. [PMID: 16020282 DOI: 10.1080/02713680590956270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To examine the immunological basis for reduced susceptibility to experimental autoimmune uveoretinitis (EAU) in rats expressing retinal photoreceptor cell arrestin in the periphery. METHODS Peripheral expression of arrestin in Lewis rats was achieved by engraftment of syngeneic bone marrow (BM) transduced with retroviruses encoding wild-type arrestin or a mutant arrestin lacking the immunodominant epitope Arr(273 - 289) (Delta273-Arr). EAU was induced by immunization with arrestin peptides Arr(273-289) or Arr(343-362). Cultured splenocytes and/or lymphocytes from immunized rats were assayed for antigen-induced proliferation, antibody production, and cytokines. RESULTS Rats expressing Delta273-Arr were not protected from Arr(273 - 289)-induced EAU, showing that protection was epitope specific. Proliferation assays found little difference in the ability of draining lymph node cells from arrestin-transduced rats to proliferate in response to the antigen, indicating that antigen-responsive T cells were not deleted in BM recipients. Only rats immunized with Arr(343 - 362) elicited antibodies, but no difference in titer was found between transduced and control animals. Higher levels of IFN-gamma mRNA were made by Arr(273 - 289)-immunized rats than Arr(343 - 366)-immunized rats, but in either case, the levels did not correlate with chimeric status or EAU susceptibility. Arr(273 - 289)-immunized rats had higher levels of IL-10 mRNA than Arr(343 - 362)-immunized rats, and those levels were decreased in arrestin chimeric rats. Overall, immunization with the more potently uveitogenic Arr(343 - 362) induced lower levels of IL-10 and IFN-gamma than the less uveitogenic Arr(273 - 289). A strong correlation was found between the ability of lymphocytes to make IL-4 in the arrestin-chimeric animals and inhibition of EAU. CONCLUSIONS Peripheral expression of arrestin in a regenerating immune system induces an epitope-specific protective response to EAU induced by arrestin peptides. Although IL-4 and IL-10 levels were altered in arrestin-chimeric mice, the outcome was not consistently T(H)2-like. Only IL-4 production was clearly associated with reduced susceptibility to EAU.
Collapse
Affiliation(s)
- Scott W McPherson
- Department of Ophthalmology, University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455-3007, USA.
| | | | | |
Collapse
|
26
|
Pop-Fanea L, Vallespin SN, Hutchison JMS, Forrester JV, Seton HC, Foster MA, Liversidge J. Evaluation of MRI for in vivo monitoring of retinal damage and detachment in experimental ocular inflammation. Magn Reson Med 2005; 53:61-8. [PMID: 15690503 DOI: 10.1002/mrm.20326] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two quantitative methods were developed for investigation of the potential of MRI for in vivo monitoring of retinal damage and detachment in experimental autoimmune uveitis (EAU). Measurements of retinal thickness and detachment area were performed on matched MR and histologic (HIST) images of rat eyes at different stages of EAU. In vivo MR images of rat eyes were acquired at 4.7 T using a figure-of-eight surface coil and a spin echo pulse sequence. Ex vivo measurements were performed on HIST images acquired using a digital camera attached to a microscope. MR images mirrored the HIST appearance of inflamed eyes at each stage of disease. Retinal detachments as small as 0.1 mm(2) were measured in vivo by MRI and confirmed in the same eye ex vivo by histology. Measurements performed on corresponding MR and HIST images demonstrated a good agreement between the two techniques. The potential of MRI for in vivo visualization and for monitoring changes in the eye during development of EAU was demonstrated in this study.
Collapse
Affiliation(s)
- Laura Pop-Fanea
- Department of Biomedical Physics & Bioengineering, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Taylor N, McConnachie K, Calder C, Dawson R, Dick A, Sedgwick JD, Liversidge J. Enhanced tolerance to autoimmune uveitis in CD200-deficient mice correlates with a pronounced Th2 switch in response to antigen challenge. THE JOURNAL OF IMMUNOLOGY 2005; 174:143-54. [PMID: 15611236 PMCID: PMC2446433 DOI: 10.4049/jimmunol.174.1.143] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A single exposure to inhaled Ag 10 days before immunization leads to long term, Ag-specific tolerance. Respiratory tract myeloid APCs are implicated, but how regulation is invoked, and how tolerance is sustained are unclear. This study examines the in vivo function of the myeloid regulatory molecule CD200 in the process of tolerance induction. Despite earlier onset of experimental autoimmune uveitis in sham-tolerized, CD200-deficient mice, disease incidence and subsequent severity were actually reduced compared with those in wild-type mice. Protection was more effective and long term, lasting at least 28 days. Halting disease progression and tolerance in CD200(-/-) mice correlated with a marked increase in Th2-associated cytokine production by Ag-challenged splenocytes. Reduced overall disease and enhanced tolerance in the CD200-deficient mice in this model system were unexpected and may be related to altered populations of MHC class II(low) APC in the respiratory tract compared with wild-type mice together with associated activation of STAT6 in draining lymph nodes of tolerized mice. These data indicate that in the absence of default inhibitory CD200 receptor signaling, alternative, powerful regulatory mechanisms are invoked. This may represent either permissive dominant Th2 activation or an altered hierarchy of negative signaling by other myeloid cell-expressed regulatory molecules.
Collapse
Affiliation(s)
- Neil Taylor
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Karen McConnachie
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Claudia Calder
- Division of Ophthalmology, University of Bristol, Bristol, United Kingdom
| | - Rosemary Dawson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Andrew Dick
- Division of Ophthalmology, University of Bristol, Bristol, United Kingdom
| | | | - Janet Liversidge
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Address correspondence and reprint requests to Dr. Janet Liversidge, College of Medicine and Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, U.K. AB25 2ZD. E-mail address:
| |
Collapse
|
28
|
Xu H, Manivannan A, Goatman KA, Jiang HR, Liversidge J, Sharp PF, Forrester JV, Crane IJ. Reduction in shear stress, activation of the endothelium, and leukocyte priming are all required for leukocyte passage across the blood--retina barrier. J Leukoc Biol 2003; 75:224-32. [PMID: 14634055 DOI: 10.1189/jlb.1002479] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The passage of leukocytes across the blood-retina barrier at the early stages of an inflammatory reaction is influenced by a complex series of interactions about which little is known. In particular, the relationship between hydrodynamic factors, such as shear stress and leukocyte velocity, to the adherence and subsequent extravasation of leukocytes into the retina is unclear. We have used a physiological method, scanning laser ophthalmoscopy, to track labeled leukocytes circulating in the retina, followed by confocal microscopy of retinal flatmounts to detect infiltrating cells at the early stage of experimental autoimmune uveitis. This has shown that retinal vessels are subjected to high shear stress under normal circumstances. During the inflammatory reaction, shear stress in retinal veins is reduced 24 h before leukocyte infiltration. This reduction is negatively correlated with leukocyte rolling and sticking in veins and postcapillary venules, the sites of leukocyte extravasation. Activation of vascular endothelial cells is also a prerequisite for leukocyte rolling and infiltration. In addition, antigen priming of leukocytes is influential at the early stage of inflammation, and this is seen clearly in the reduction in rolling velocity and adherence of the primed leukocytes in activated retinal venules, 9 days postimmunization.
Collapse
Affiliation(s)
- Heping Xu
- Department of Ophthalmology, Aberdeen University Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Allergic conjunctivitis is common and may be the most prominent or the only feature of allergies. Immunotherapy has been used as a primary treatment for allergies since the early 1900s. Currently the use of immunotherapy for allergic rhinoconjunctivitis is well established and has been shown to decrease the development of bronchial hyperreactivity and asthma. However, the role of immunotherapy for primary treatment of allergic conjunctivitis is unclear. We reviewed the studies where immunotherapy was used with particular attention to the affects on ocular allergies. RECENT FINDINGS There are many schedules and methods of delivering immunotherapy. Recent studies have started to assess ocular symptoms as one of the parameters to monitor efficacy of therapy. They follow the affects of immunotherapy on conjunctival provocation tests, ocular symptoms, or the use of eye drops. The literature suggests that using the various immunotherapy modalities at different schedules, ocular symptoms improved even when immunotherapy was used on a rush schedule. SUMMARY The initiation of immunotherapy for allergic rhinoconjunctivitis has been shown to switch the immune response to T helper 1 and thus avoid the progression of other atopic conditions. Current literature shows that using many allergens with different forms of immunotherapy appear to have a significant improvement in ocular allergy symptoms and this can be achieved rapidly and safely in most patients. Whether using immunotherapy early in allergic conjunctivitis will alter the progression of other atopic conditions remains to be investigated.
Collapse
Affiliation(s)
- Leonard Bielory
- Division of Allergy, Immunology, and Rheumatology, UMDNJ--New Jersey Medical School, Newark, USA.
| | | |
Collapse
|
30
|
Abstract
The treatment of ocular allergy requires a better understanding of the spectrum of clinical disorders involving various components of the immune system, and of interactions at the conjunctival surface. The immune response focuses primarily on the different levels of activity of Th2 lymphocytes and various other immune cells associated with allergic disorders, including mast cells, eosinophils, fibroblasts, and epithelial and endothelial cells. Ocular allergic disorders include seasonal allergic conjunctivitis (SAC), perennial allergic conjunctivitis (PAC), vernal keratoconjunctivitis (VKC), giant papillary conjunctivitis (GPC) and atopic keratoconjunctivitis (AKC), which, through immunopathological and molecular immunological techniques, can all be better appreciated as being part of a larger spectrum of an atopic disease state. In SAC, pathological changes, such as increased mast-cell activation, the presence of migratory inflammatory cells, and early signs of cellular activation at the molecular level, are minimal. In PAC, these changes are more pronounced in line with the increased duration of allergenic stimulation. In more chronic forms of allergic conjunctivitis, such as VKC in children and AKC in adults, the following changes are evident: a persistent state of mast cell, eosinophil and lymphocyte activation; noted switching from connective-tissue to mucosal-type mast cells; increased involvement of corneal pathology; and follicular development and fibrosis. The treatment of acute and more chronic forms of allergic conjunctivitis has focused in the past on symptomatic relief of symptoms, but with a better understanding of the mechanisms involved we can now provide interventional therapeutic strategies and symptomatic relief. Our advances in the basic understanding of these conditions are providing the foundation for guidelines that improve the ocular health of patients with ocular allergies.
Collapse
Affiliation(s)
- Leonard Bielory
- UMDNJ, Asthma & Allergy Research Center, Immuno-Ophthalmology Service, New Jersey Medical School, Newark, New Jersey, USA.
| |
Collapse
|
31
|
Liversidge J, Dick A, Gordon S. Nitric oxide mediates apoptosis through formation of peroxynitrite and Fas/Fas-ligand interactions in experimental autoimmune uveitis. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:905-16. [PMID: 11891189 PMCID: PMC1867184 DOI: 10.1016/s0002-9440(10)64913-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Conflicting reports have led to the description of nitric oxide as a "double-edged sword" in animal models of autoimmunity. In this study we show that tissue damage within the eye during experimental autoimmune uveoretinitis correlates with peroxynitrite formation in infiltrating monocytes/macrophages within the outer retina together with extensive photoreceptor apoptosis and apoptosis of Fas(+) T cells within the retina. Inducible nitric oxide synthase (NOS2) expression was primarily restricted to infiltrating monocytes/macrophages in the outer retina and photoreceptor rod outer segments (target tissue), but despite showing evidence of lipid peroxidation, myeloid cells remained resistant to apoptosis. The protective effect of the NOS inhibitor N(G)-nitro-L-arginine methyl ester could be attributed to dramatically reduced photoreceptor apoptosis, absence of nitrotyrosine formation, and reduced NOS2 protein expression. However, inhibition of NOS by N(G)-nitro-L-arginine methyl ester was accompanied by a sparing of CD3(+) and CD2(+) T cells despite continued expression of Fas and Fas ligand, thus compromising functional inactivation of T cells in the target tissue. These data suggests that in addition to contributing to tissue damage in the retina through generation of reactive oxygen species, nitric oxide also seems to be required for activation-induced cell death and elimination of T cells in the retina.
Collapse
Affiliation(s)
- Janet Liversidge
- Department of Ophthalmology, University ofAberdeen Medical School, Foresterhill, Aberdeen, United Kingdom.
| | | | | |
Collapse
|
32
|
Boyd SR, Young S, Lightman S. Immunopathology of the noninfectious posterior and intermediate uveitides. Surv Ophthalmol 2001; 46:209-33. [PMID: 11738429 DOI: 10.1016/s0039-6257(01)00275-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The posterior and intermediate uveitides share an underlying immune etiology; however, they can be clinically and immunopathologically distinguished. Although the initiating stimuli for posterior and intermediate uveities are not known, it is believed that an exogenous agent (such as a bacterium or a virus) or an endogenous molecule may induce disease. In either case, T-helper lymphocytes in conjunction with human leukocyte antigens are likely to be involved. This review examines the epidemiology, histology, immunopathology, and theories of pathogenesis of several posterior and intermediate uveitides, including sympathetic ophthalmia, Vogt-Koyanagi-Harada syndrome, Behçet's disease, sarcoidosis, intermediate uveitis, white dot syndromes, and birdshot retinochoroidopathy.
Collapse
Affiliation(s)
- S R Boyd
- Department of Clinical Ophthalmology, Institute of Ophthalmology, Moorfields Eye Hospital, London, UK
| | | | | |
Collapse
|
33
|
Jiang HR, Taylor N, Duncan L, Dick AD, Forrester JV. Total dose and frequency of administration critically affect success of nasal mucosal tolerance induction. Br J Ophthalmol 2001; 85:739-44. [PMID: 11371497 PMCID: PMC1724018 DOI: 10.1136/bjo.85.6.739] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIMS Nasal tolerance induction with autoantigens can effectively protect against a variety of experimental models of autoimmune disease. The aims of this study were to characterise the dosage and kinetics of inhibition of experimental autoimmune uveoretinitis (EAU) via intranasal administration of the uveitogenic antigen interphotoreceptor retinal binding protein (IRBP) in the murine model of IRBP induced EAU. METHODS B10RIII mice were tolerised by intranasal administration of IRBP either with a long term multiple low dose or a short term/high dosing regimen before subcutaneous immunisation with IRBP in complete Freund's adjuvant (CFA). On day 15 post-immunisation, mice were killed and eyes were removed for histological examination and quantification of inflammatory cell infiltration and degree of target organ (rod outer segment, ROS) destruction. RESULTS Nasal administration of multiple low doses of IRBP (1 microg or 3 microg IRBP per mouse per day for 10 days) significantly protected mice from IRBP induced EAU. Short term/high dose regimens were only effective when given either as a single or, at most, as two consecutive doses (40 microg per dose). Multiple doses in the range of 45-120 microg over 3 days afforded no protection. CONCLUSIONS These results indicate that both dose and frequency of intranasal antigen administration are pivotal to tolerance induction and subsequent suppression of T cell mediated autoimmune disease.
Collapse
Affiliation(s)
- H R Jiang
- Department of Ophthalmology, University of Aberdeen Medical School Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | | | |
Collapse
|
34
|
Hankey DJ, Lightman SL, Baker D. Interphotoreceptor retinoid binding protein peptide-induced uveitis in B10.RIII mice: characterization of disease parameters and immunomodulation. Exp Eye Res 2001; 72:341-50. [PMID: 11180983 DOI: 10.1006/exer.2000.0957] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experimental autoimmune uveoretinitis (EAU) can be induced in the B10.RIII mice following immunization with bovine interphotoreceptor retinoid binding protein (IRBP) and human IRBP(161--180)peptide. This study examines the value of the human IRBP(161--180)peptide model in the B10.RIII mice, as a suitable model of EAU in order to examine immunotherapies. Having established a reliable and consistent immunization protocol of 25 micro g peptide and no PTX, the time course of histopathology was performed, which graded both cellular and structural scores individually. Disease was typically of an acute nature, characterized by rapid onset of a massive inflammatory response, resulting in extensive damage to the rod outer segments (ROS) and neuronal layers. Treatment with potent immunosuppressive agents, CD4-specific monoclonal antibodies resulted in the inhibition of disease and a reduction in disease incidence. Treatment with p55-tumor necrosis factor receptor-Ig (p55-TNFR-Ig) fusion protein reduced structural damage to the retina despite a high level of cellular infiltration in the eye, suggesting that target organ damage in an acute model of EAU can be modulated.
Collapse
Affiliation(s)
- D J Hankey
- Department of Clinical Ophthalmology, Institute of Ophthalmology, University College London, London, UK.
| | | | | |
Collapse
|
35
|
|
36
|
Abstract
Free radicals have been implicated in the pathogenesis of experimental autoimmune uveoretinitis (EAU). Nitroxides are stable radicals with a superoxide-dismutase-mimicking activity, which exert an anti-inflammatory effect in various animal models of oxidative damage and inflammation, such as experimental colitis and head trauma. We examined the use of the SOD mimic nitroxide 4-hydroxy-2,2,6,6,-tetramethylpiperidine-1-N-oxyl (TPL) to suppress EAU. Adult male Lewis rats were immunized with 125 microg/rat synthetic human retinal S-Ag, emulsified with Freund's adjuvant. Intravenous pertussis toxin was simultaneously injected. Beginning on Day 6, rats were injected with a daily intraperitoneal dose of 35, 175 or 350 micromol/rat of the nitroxide TPL. Control rats received intraperitoneal normal saline. The animals were examined daily, and on the 19th day the eyes were enucleated. Aqueous protein concentrations and retinal lipid peroxidation product levels (ketodienes and conjugated dienes) were determined. Histological sections were stained and examined microscopically. TPL was found to penetrate the aqueous humor readily. Beginning on day 12, rats developed a severe pan-uveitis. Rats in the treatment group had a lower mean clinical and histological score than that of controls. Levels of aqueous humor protein, retinal conjugated diens and ketodiens were all significantly lower in the treatment group. This effect was more pronounced with the lower TPL concentration. We conclude that TPL reduces clinical, biochemical and histopathological severity of S-Ag induced EAU in Lewis rats. This effect is probably mediated by removal of superoxide radicals, but other mechanisms may also be involved.
Collapse
Affiliation(s)
- E Zamir
- Department of Ophthalmology, Hadassah-Hebrew University Medical School, Jerusalem, Israel.
| | | | | | | | | |
Collapse
|
37
|
Laliotou B, Duncan L, Dick AD. Intranasal administration of retinal antigens induces transient T cell activation and apoptosis within drainage lymph nodes but not spleen. J Autoimmun 1999; 12:145-55. [PMID: 10222024 DOI: 10.1006/jaut.1998.0269] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanisms of mucosal tolerance induction, including anergy/deletion and active suppression are frequently described as mutually exclusive; dependent upon nature, dose and route of antigen administration. We have previously described induction of low-dose tolerance with administration of retinal autoantigens via the nasorespiratory tract which is antigen-specific, suppresses both cell mediated immunity and ultimately tissue destruction in experimental autoimmune uveoretinitis (EAU) and is mediated by splenic-derived regulatory cells. The present data further shows that splenocytes or fractionated splenic T cells, which secrete IL-4 and IL-10 when stimulated with retinal antigen in vitro, and not regional drainage lymph node cells transfer tolerance to naïve animals. Analysis of apparent mechanistic differences shows that during intranasal antigen administration, the proportion of CD4(+)T cells within drainage lymph nodes increases, concurrent with a burst of IFN-gamma. Following subsequent antigen challenge, T cells downregulate alphabetaTCR expression and undergo apoptosis in regional drainage lymph nodes. An increase in functional Th2 cytokine activity was noted in both Con-A and retinal antigen stimulated lymph node cultures in tolerized animals. T cells from tolerized animals secreted IL-4, whereas IL-10 was secreted predominantly by the non-T cell population present equally in control and tolerized animals. Therefore, spleen derived regulatory cells which suppress Th1 responses and T cell deletion/apoptosis in regional drainage lymph nodes are mechanisms which co-exist in tolerant rats. Th2 cytokine production after immunization appears consequential to tolerance-induced Th1 suppression.
Collapse
Affiliation(s)
- B Laliotou
- Department of Ophthalmology, University of Aberdeen Medical School, Aberdeen, Foresterhill, AB25 2ZD, UK
| | | | | |
Collapse
|
38
|
Laliotou B, Dick AD. Modulating phenotype and cytokine production of leucocytic retinal infiltrate in experimental autoimmune uveoretinitis following intranasal tolerance induction with retinal antigens. Br J Ophthalmol 1999; 83:478-85. [PMID: 10434874 PMCID: PMC1723017 DOI: 10.1136/bjo.83.4.478] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND/AIM Nasal administration of retinal antigens induces systemic tolerance which results in suppression of experimental autoimmune uveoretinitis (EAU) when subsequently exposed to antigen. The aim was to establish if tolerance induction alters retinal infiltrating leucocyte phenotype and cytokine profile in tolerised animals when there is significantly reduced tissue destruction despite immunisation with retinal antigen. METHODS Female Lewis rats were tolerised by intranasal administration with retinal extract (RE) before immunisation with RE to induce EAU. Control animals were administered phosphate buffered saline (PBS) intranasally. Post immunisation, daily clinical responses were recorded and at the height of disease, retinas were removed and either infiltrating leucocytes isolated for flow cytometric phenotype assessment and intracellular cytokine production, or chorioretina processed for immunohistochemistry. Fellow eyes were assessed for cytokine mRNA by semiquantitative RT-PCR. RESULTS Flow cytometric analysis showed that before clinical onset of EAU there is no evidence of macrophage infiltration and no significant difference in circulating T cell populations within the retina. By day 14 a reduced retinal infiltrate in tolerised animals was observed and in particular a reduction in numbers of "activated" (with respect to CD4 and MHC class II expression) macrophages. Immunohistochemistry confirmed these findings and additionally minimal rod outer segment destruction was observed histologically. Cytokine analysis revealed that both IL-10 mRNA and intracellular IL-10 production was increased in tolerised eyes 7 days post immunisation. Although by day 14 post immunisation, IL-10 production was equivalent in both groups, a reduced percentage of IFN-gamma + macrophages and IFN-gamma + CD4+ T cells with increased percentage of IL-4+ CD4+ T cells were observed in tolerised animals. CONCLUSIONS Leucocytic infiltrate is not only reduced in number but its distinct phenotype compared with controls implies a reduced activation status of infiltrating monocyts to accompany increased IL-10 and reduced IFN-gamma production in tolerised animals. This modulation may in turn contribute towards protection against target organ destruction in EAU.
Collapse
Affiliation(s)
- B Laliotou
- Department of Ophthalmology, University of Aberdeen Medical School
| | | |
Collapse
|
39
|
Liversidge J, Dawson R, Dick AD, Forrester JV. Uveitogenic epitopes of retinal S-antigen are generated in vivo via an alternative antigen-presentation pathway. Immunology 1998; 94:271-8. [PMID: 9741352 PMCID: PMC1364216 DOI: 10.1046/j.1365-2567.1998.00503.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have found that different antigen-processing pathways are involved in the induction of experimental autoimmune uveoretinitis (EAU) by the retinal autoantigens S-antigen and interphotoreceptor retinoid-binding protein (IRBP). Although in vitro T-cell proliferative responses to IRBP were completely inhibited in the presence of irreversible cysteine protease inhibitors, no significant reduction of S-antigen proliferative responses was found. Furthermore, acidic proteolysis of S-antigen by the cysteine protease cathepsin B prior to immunization radically reduced pathogenicity (disease severity). In addition, in vitro processing of S-antigen, but not IRBP, was also found to be resistant to the action of cycloheximide and lysosomotropic agents, inhibition of proliferation only occurring after extended exposure of antigen-presenting cells to methyl amine or high concentrations of chloroquine. These data indicate that an alternative pathway of antigen processing exists for S-antigen, which is independent of processing within the normal endolysosomal pathway and that uveitogenic peptides of naturally processed S-antigen bind to major histocompatibility complex class II antigens either at the cell surface or within very early endosomes where cathepsin B is inactive.
Collapse
Affiliation(s)
- J Liversidge
- Department of Ophthalmology, University of Aberdeen Medical School, Foresterhill, UK
| | | | | | | |
Collapse
|
40
|
Dick AD, Duncan L, Hale G, Waldmann H, Isaacs J. Neutralizing TNF-alpha activity modulates T-cell phenotype and function in experimental autoimmune uveoretinitis. J Autoimmun 1998; 11:255-64. [PMID: 9693974 DOI: 10.1006/jaut.1998.0197] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inhibiting TNF-alpha activity prevents tissue destruction without inhibiting retinal T cell infiltration in experimental autoimmune uveoretinitis (EAU) in Lewis rats. To further determine the role of TNF-alpha in autoimmune uveitis we characterized T cells isolated from retinae after treatment with a TNF-alpha antagonist. TNF-alpha activity was neutralized in vivo with a p55 TNF-alpha receptor-Ig fusion protein (sTNFr-Ig), administered 8 and 10 days after induction of EAU with heterologous retinal antigens. Retinal T-cell phenotype expression was examined by flow cytometry with respect to OX22 status (CD45RBlow or CD45RBhigh), activation (OX40 and CD25 expression) and rate of T-cell apoptosis (Annexin V+PI- expression). Lymphocyte reactivity was assessed by proliferation responses and cytokine production to retinal antigens. Despite greater than 40% of CD4+ T cells being activated at the height of disease, the proportion of OX22low expression was reduced and T cells exhibited reduced IFN-gamma and elevated IL-4 production. Retinal T cells maintained antigen-specific proliferation and demonstrated a low apoptotic rate. Although in both animal groups, comparable numbers of T cells were isolated, neutralizing TNF activity suppressed Th1 effector mechanisms protecting against target organ damage.
Collapse
Affiliation(s)
- A D Dick
- Department of Ophthalmology, University of Aberdeen, UK.
| | | | | | | | | |
Collapse
|
41
|
Forrester JV, Huitinga I, Lumsden L, Dijkstra CD. Marrow-derived activated macrophages are required during the effector phase of experimental autoimmune uveoretinitis in rats. Curr Eye Res 1998; 17:426-37. [PMID: 9561835 DOI: 10.1080/02713689808951224] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Experimental autoimmune uveoretinitis (EAU), an established model for human endogenous (autoimmune) posterior uveitis, is a CD4+ T cell-mediated disease inducible in Lewis rats by intradermal inoculation with retinal antigens. Immunohistochemical studies have previously documented the lymphocyte profiles during various stages of the disease process. The purpose of the present study was to investigate the role of macrophages in EAU. METHODS EAU was induced in Lewis rats, and the effect of macrophage depletion, using the drug dichlorodimethylene diphosphonate (Cl2MDP) encapsulated in liposomes and administered intravenously, was assessed based on the clinical and histological profile of the disease. RESULTS The results have shown that in control animals macrophages occur early, feature prominently throughout the course of the disease and display considerable heterogeneity: marrow-derived ED1+ cells and ED3+ cells are the major infiltrating cells, with many cells also expressing ED7 and ED8. In contrast, few cells expressed the ED2 antigen during EAU, even though ED2+ "resident" macrophages occur in the normal choroid. Macrophage depletion, using intravenously injected dichloromethylene diphosphonate (Cl2MDP) enclosed in liposomes, caused a delay in the onset and a reduction in the severity of EAU when administered during the "effector" stage of the disease, i.e. 9-11 days after inoculation with retinal antigen. The delay in disease onset was greater when liposomes were mannosylated and was accompanied by a reduction in the overall inflammatory cell infiltrate into the eye and reduced tissue damage. In addition, there was a reduction in the level of expression of MHC Class II antigen and CR3 (ED7) antigen, a marker of macrophage activation, in Cl2MDP-treated animals compared to controls. CONCLUSION These results suggest that blood-borne, activated macrophages are major effectors of tissue damage during EAU.
Collapse
Affiliation(s)
- J V Forrester
- Department of Ophthalmology, University of Aberdeen, Scotland.
| | | | | | | |
Collapse
|
42
|
Kreutzer B, Laliotou B, Cheng YF, Liversidge J, Forrester JV, Dick AD. Nasal administration of retinal antigens maintains immunosuppression of uveoretinitis in cyclosporin-A-treated Lewis rats: future treatment of endogenous posterior uveoretinitis? Eye (Lond) 1998; 11 ( Pt 4):445-52. [PMID: 9425406 DOI: 10.1038/eye.1997.125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Current treatment of autoimmune endogenous posterior uveoretinitis (EPU) is limited by drug toxicity, unpredictable relapses on dose reduction and resistance to therapy. Administration of autoantigens via gastrointestinal or respiratory mucosa prior to antigen exposure induces immune hyporesponsiveness (mucosal tolerance) to further antigen sensitisation. In this study we assessed whether mucosal tolerance induction was possible after immunisation with retinal antigens in experimental autoimmune uveoretinitis (EAU) in animals that were short-term immunosuppressed with cyclosporin A (CsA) to determine whether mucosal administration of retinal antigens can maintain immunosuppression in sensitised and immunosuppressed individuals. METHODS Female Lewis rats were immunised with retinal extract (RE) and then treated as follows. Group 1 received no specific therapy and served as control; group 2 were fed CsA from day 7 to day 20 post-immunisation; group 3 received inhalational tolerance therapy with RE in addition to CsA; tolerance therapy was continued after day 20 when CsA was stopped. Experiments varying the timing and dosage of both tolerising and immunising antigen were also performed, the details of which are described. Incidence, day of onset and clinical activity were recorded and histopathological assessment of intraocular inflammation, in particular the extent of autoimmune target-organ damage, was graded semiquantitatively. RESULTS Compared with controls and group 2, group 3 showed both a marked delay in disease onset and a reduction in disease severity. This effect was both dose and dose-timing dependent. Tissue damage assessed in terms of preservation of rod outer segments was significantly less in group 3. CONCLUSIONS The success of combination therapy, clinically, remains unknown at present but these results support continuing present clinical trials of mucosal tolerance therapy and in particular have future implications for either maintaining or inducing immunosuppression in autoimmune diseases in combination with present immunosuppressive therapies.
Collapse
Affiliation(s)
- B Kreutzer
- Department of Ophthalmology, Medical School, University of Aberdeen, Scotland, UK
| | | | | | | | | | | |
Collapse
|
43
|
Dick AD, Kreutzer B, Laliotou B, Forrester JV. Phenotypic analysis of retinal leukocyte infiltration during combined cyclosporin A and nasal antigen administration of retinal antigens: delay and inhibition of macrophage and granulocyte infiltration. Ocul Immunol Inflamm 1997; 5:129-40. [PMID: 9234377 DOI: 10.3109/09273949709085061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nasal antigen administration successfully suppresses a model of organ-specific autoimmune disease, experimental autoimmune uveoretinitis (EAU), when administered prior to immunisation. We have previously shown that nasal antigen therapy for active disease or in primed, sensitised animals does not reliably or consistently suppress histological disease. However, when nasal antigen administration is combined with cyclosporin A (CsA) therapy, rod outer segment destruction (target organ) is reduced despite the presence of clinical and histological leukocytic infiltration of the eye. In this study, two colour flow cytometric phenotypic analysis of retinal and choroidal leukocytic infiltration of animals treated with either CsA alone, combined therapy with CsA and inhalational tolerance therapy with retinal antigens or sham treated controls was performed. There was no clinical difference between the two treated groups. Flow cytometric phenotypic analysis was performed in all groups at both maximal clinical disease and during resolution of clinical signs. Although the cell number within the infiltrate was reduced in combined treated group, CD4+ IL-2R+ T cells were still present in large numbers, in contrast to the markedly reduced numbers of ED7+ (macrophages/granulocytes) cells infiltrating during height of disease. In the CsA-nasal antigen treated group, when clinical inflammation had subsided, an increase in both macrophages and granulocyte numbers in the chorioretina was observed. The cell numbers were always less than CsA-only treated animals. Despite the late cellular influx of monocytes/macrophages, rod outer segment (ROS) integrity as determined histologically, was maintained. Nasal antigen administration of retinal antigens in CsA-only treated animals (combined therapy group) protects against target organ damage without inhibiting activated T cell traffic to the eye. These results suggest that recruitment of macrophages to the target tissue is central to autoimmune target organ damage, the mechanisms of which are discussed.
Collapse
Affiliation(s)
- A D Dick
- Department of Ophthalmology, Medical School, Aberdeen, Scotland, UK.
| | | | | | | |
Collapse
|
44
|
Laliotou B, Liversidge J, Forrester JV, Dick AD. Interphotoreceptor retinoid binding protein is a potent tolerogen in Lewis rat: suppression of experimental autoimmune uveoretinitis is retinal antigen specific. Br J Ophthalmol 1997; 81:61-7. [PMID: 9135411 PMCID: PMC1722010 DOI: 10.1136/bjo.81.1.61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AIMS Administration of unfractionated retinal antigen(s) (retinal extract, RE) suppresses RE induced experimental autoimmune uveoretinitis (EAU) and offers a potential therapeutic alternative to non-specific immunosuppressive therapies for posterior uveitis and autoimmune diseases. S-Ag and interphotoreceptor retinoid binding protein (IRBP) are two major autoantigens within soluble RE. It was aimed to assess, firstly, as has previously been shown with S-Ag, if IRBP can induce intranasal tolerance and, secondly, the contribution of both these major autoantigens to tolerance induction by whole RE. METHODS Animals were tolerised by intranasal administration with S-Ag or IRBP, either alone or in combination, or RE before immunisation with either IRBP or RE. Control animals were administered nasally either PBS or MBP. Daily clinical responses were recorded biomicroscopically and histological grades were obtained using a semiquantitative scoring system. Weekly serum antibody levels to retinal antigens were measured by ELISA and delayed hypersensitivity responses (DTH) were assessed by skin reactivity to intradermal inoculation with retinal or non-specific antigens. RESULTS Microgram doses of IRBP successfully suppressed both clinically and histologically IRBP induced EAU. This suppression was accompanied by reduced antigen specific DTH reactivity but maintained T cell dependent (IgG2a) antibody responses. Furthermore, combined S-Ag and IRBP administration afforded equal suppression of RE induced EAU when compared with RE therapy alone. Suppression of RE induced EAU was not achieved with administration of a non-retinal specific autoantigen, MBP. Although individually, both S-Ag and IRBP suppressed RE induced EAU, whole RE was unable to protect against IRBP induced disease. CONCLUSIONS Intranasal administration of IRBP suppressed IRBP induced EAU in the Lewis rat. S-Ag and IRBP are the major contributors to the tolerogenicity within RE, despite the known uveogenicity of other retinal antigens within RE and induction of tolerance was retinal antigen specific. Furthermore, suppression induced by single antigen administration is antigen specific although concomitant bystander suppression may also play a role. RE was unable to protect against IRBP induced disease despite tolerogenic levels of antigen within RE. Although this may be due in part to a dose effect of either tolerising or immunising antigen, further investigation into the possible antigen dominance of IRBP or mucosal processing of combinations of antigens is necessary so that the full efficacy of mucosal tolerance therapy can be assessed.
Collapse
Affiliation(s)
- B Laliotou
- Department of Ophthalmology, Medical School, Foresterhill, Aberdeen
| | | | | | | |
Collapse
|
45
|
Dick AD, McMenamin PG, Körner H, Scallon BJ, Ghrayeb J, Forrester JV, Sedgwick JD. Inhibition of tumor necrosis factor activity minimizes target organ damage in experimental autoimmune uveoretinitis despite quantitatively normal activated T cell traffic to the retina. Eur J Immunol 1996; 26:1018-25. [PMID: 8647162 DOI: 10.1002/eji.1830260510] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent studies demonstrated that administration of a p55-tumor necrosis factor (TNF) receptor IgG-fusion protein (TNFR-IgG) prevented the clinical onset of experimental autoimmune encephalomyelitis but did not alter the number or tissue distribution of autoantigen-specific CD4+ effector T cells which trafficked into the central nervous system. To determine whether specific target tissues of autoimmune damage remain intact after TNFR-IgG treatment despite the presence of inflammatory cells within the tissues, we examined rats with experimental autoimmune uveoretinitis (EAU), as in this model, the main target of autoreactive CD4+ T cells, the retinal rod outer segments (ROS), can be examined readily by light microscopy. As judged by direct ophthalmoscopy, the onset of inflammation in the anterior chamber of the eye in EAU following administration of TNFR-IgG was delayed by 6 days compared to untreated controls, but the magnitude of the response was only slightly less than controls. Histological examination of the retinae and direct assessment of retinal inflammation revealed a disproportionate sparing of ROS in the TNFR-IgG-treated animals despite a level of retinal inflammation not substantially less than controls in which ROS damage was marked. Analysis of retinal leukocytes by immunofluorescence microscopy and flow cytometry indicated that approximately equal numbers of CD4+ alpha beta TCR+ lymphocytes were present in treated and control retinae, more than 30% of CD4+ cells in both experimental groups expressed the CD25 or MRC OX40 activation markers and most cells, which would include the CD4+ T lymphocytes, were activated as evidenced by MHC class II expression. Fewer activated macrophages and granulocytes were present in the treated retinae, possibly reflecting the lower level of tissue damage and subsequent accumulation of these inflammatory cells. The results demonstrate directly that a tissue specifically targeted for autoimmune destruction can be protected despite the influx of fully activated CD4+ T cells.
Collapse
Affiliation(s)
- A D Dick
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
46
|
Dick AD. Experimental approaches to specific immunotherapies in autoimmune disease: future treatment of endogenous posterior uveitis? Br J Ophthalmol 1995; 79:81-8. [PMID: 7880799 PMCID: PMC505026 DOI: 10.1136/bjo.79.1.81] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A D Dick
- Centenary Institute of Cancer Medicine and Cell Biology, Sydney, Australia
| |
Collapse
|