1
|
Girkin CA, Strickland RG, Somerville MM, Anne Garner M, Grossman GH, Blake A, Kumar N, Ianov L, Fazio MA, Clark ME, Gross AK. Acute ocular hypertension in the living human eye: Model description and initial cellular responses to elevated intraocular pressure. Vision Res 2024; 223:108465. [PMID: 39173459 PMCID: PMC11444249 DOI: 10.1016/j.visres.2024.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024]
Abstract
This initial methods study presents the initial immunohistochemical and transcriptomic changes in the optic nerve head and retina from three research-consented brain-dead organ donors following prolonged and transient intraocular pressure (IOP) elevation. In this initial study, research-consented brain-dead organ donors were exposed to unilateral elevation of IOP for 7.5 h (Donor 1), 30 h (Donor 2), and 1 h (Donor 3) prior to organ procurement. Optic nerve tissue and retinal tissue was obtained following organ procurement for immunohistological and transcriptomic analysis. Optic nerve sections in Donor 1 exposed to 7.5-hours of unilateral sub-ischemic IOP elevation demonstrated higher levels of protein expression of the astrocytic marker, glial fibrillary acidic protein (GFAP), within the lamina cribrosa with greatest expression inferior temporally in the treated eye compared to control. Spatial transcriptomic analysis performed on optic nerve head tissues from Donor 2 exposed to 30 h of unilateral IOP elevation demonstrated differential transcription of mRNA across laminar and scleral regions. Immunohistochemistry of retinal sections from Donor 2 exhibited higher GFAP and IBA1 expression in the treated eye compared with control, but this was not observed in Donor 3, which was exposed to only 1-hour of IOP elevation. While there were no differences in GFAP protein expression in the retina following the 1-hour IOP elevation in Donor 3, there were higher levels of transcription of GFAP in the inner nuclear layer, and CD44 in the retinal ganglion cell layer, indicative of astrocytic and Müller glial reactivity as well as an early inflammatory response, respectively. We found that transcriptomic differences can be observed across treated and control eyes following unilateral elevation of IOP in brain dead organ donors. The continued development of this model affords the unique opportunity to define the acute mechanotranscriptomic response of the optic nerve head, evaluate the injury and repair mechanisms in the retina in response to IOP elevation, and enable correlation of in vivo imaging and functional testing with ex vivo cellular responses for the first time in the living human eye.
Collapse
Affiliation(s)
- Christopher A Girkin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ryan G Strickland
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - McKenna M Somerville
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary Anne Garner
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Alan Blake
- Advancing Sight Network, Birmingham, AL, USA
| | - Nilesh Kumar
- IRCP-Biological Data Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lara Ianov
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; IRCP-Biological Data Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Massimo A Fazio
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark E Clark
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alecia K Gross
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Waxman S, Schilpp H, Linton A, Jakobs TC, Sigal IA. Morphological comparison of astrocytes in the lamina cribrosa and glial lamina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.610493. [PMID: 39314351 PMCID: PMC11418941 DOI: 10.1101/2024.09.07.610493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Purpose Although the mechanisms underlying glaucomatous neurodegeneration are not yet well understood, cellular and small animal models suggest that LC astrocytes undergo early morphologic and functional changes, indicating their role as early responders to glaucomatous stress. These models, however, lack the LC found in larger animals and humans, leaving the in situ morphology of LC astrocytes and their role in glaucoma initiation underexplored. In this work, we aimed to characterize the morphology of LC astrocytes in situ and determine differences and similarities with astrocytes in the mouse glial lamina (GL), the analogous structure in a prominent glaucoma model. Methods Astrocytes in the LCs of twenty-two eyes from goats, sheep, and pigs were stochastically labeled via Multicolor DiOlistics and imaged in situ using confocal microscopy. 3D models of DiOlistically-labeled LC astrocytes and hGFAPpr-GFP mouse GL astrocytes were constructed to quantify morphological features related to astrocyte functions. LC and GL astrocyte cross-pore contacts, branching complexity, branch tortuosity, and cell and branch span were compared. Results LC astrocytes displayed distinct spatial relationships with collagen, greater branching complexity, and higher branch tortuosity compared to GL astrocytes. Despite substantial differences in their anatomical environments, LC and GL astrocytes had similar cell and branch spans. Conclusions Astrocyte morphology in the LC was characterized through Multicolor DiOlistic labeling. LC and GL astrocytes have both distinct and shared morphological features. Further research is needed to understand the potentially unique roles of LC astrocytes in glaucoma initiation and progression.
Collapse
Affiliation(s)
- Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA
| | - Hannah Schilpp
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA
| | - Ashley Linton
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA
| | - Tatjana C. Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, MA, USA
| | - Ian A. Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|
3
|
Ahmad SS. The mechanical theory of glaucoma in terms of prelaminar, laminar, and postlaminar factors. Taiwan J Ophthalmol 2024; 14:376-386. [PMID: 39430347 PMCID: PMC11488796 DOI: 10.4103/tjo.tjo-d-23-00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/22/2024] Open
Abstract
The mechanical theory is one of the oldest concepts regarding the development of glaucomatous neural degeneration. However, after a prolonged period of relative monopoly among the various theories explaining the pathogenesis of glaucoma, this concept gradually faded away from discourse. Several developments in the recent past have rekindled interest in the mechanical theory of glaucoma. Now we know a lot more about the biomechanics of the eye, prelaminar changes, mechanisms of retinal ganglion cell death, biomechanical features of the optic nerve head and sclera, extracellular matrix composition and its role, astrocytic changes, axoplasmic flow, and postlaminar factors such as translaminar pressure difference. These factors and others can be categorized into prelaminar, laminar, and postlaminar elements. The objective of this review was to present a concise analysis of these recent developments. The literature search for this narrative review was performed through databases, such as PubMed, Google Scholar, and Clinical Key.
Collapse
Affiliation(s)
- Syed Shoeb Ahmad
- Department of Ophthalmology, Ibn Sina Academy, Aligarh, Uttar Pradesh, India
| |
Collapse
|
4
|
Wareham LK, Baratta RO, Del Buono BJ, Schlumpf E, Calkins DJ. Collagen in the central nervous system: contributions to neurodegeneration and promise as a therapeutic target. Mol Neurodegener 2024; 19:11. [PMID: 38273335 PMCID: PMC10809576 DOI: 10.1186/s13024-024-00704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
The extracellular matrix is a richly bioactive composition of substrates that provides biophysical stability, facilitates intercellular signaling, and both reflects and governs the physiological status of the local microenvironment. The matrix in the central nervous system (CNS) is far from simply an inert scaffold for mechanical support, instead conducting an active role in homeostasis and providing broad capacity for adaptation and remodeling in response to stress that otherwise would challenge equilibrium between neuronal, glial, and vascular elements. A major constituent is collagen, whose characteristic triple helical structure renders mechanical and biochemical stability to enable bidirectional crosstalk between matrix and resident cells. Multiple members of the collagen superfamily are critical to neuronal maturation and circuit formation, axon guidance, and synaptogenesis in the brain. In mature tissue, collagen interacts with other fibrous proteins and glycoproteins to sustain a three-dimensional medium through which complex networks of cells can communicate. While critical for matrix scaffolding, collagen in the CNS is also highly dynamic, with multiple binding sites for partnering matrix proteins, cell-surface receptors, and other ligands. These interactions are emerging as critical mediators of CNS disease and injury, particularly regarding changes in matrix stiffness, astrocyte recruitment and reactivity, and pro-inflammatory signaling in local microenvironments. Changes in the structure and/or deposition of collagen impact cellular signaling and tissue biomechanics in the brain, which in turn can alter cellular responses including antigenicity, angiogenesis, gliosis, and recruitment of immune-related cells. These factors, each involving matrix collagen, contribute to the limited capacity for regeneration of CNS tissue. Emerging therapeutics that attempt to rebuild the matrix using peptide fragments, including collagen-enriched scaffolds and mimetics, hold great potential to promote neural repair and regeneration. Recent evidence from our group and others indicates that repairing protease-degraded collagen helices with mimetic peptides helps restore CNS tissue and promote neuronal survival in a broad spectrum of degenerative conditions. Restoration likely involves bolstering matrix stiffness to reduce the potential for astrocyte reactivity and local inflammation as well as repairing inhibitory binding sites for immune-signaling ligands. Facilitating repair rather than endogenous replacement of collagen degraded by disease or injury may represent the next frontier in developing therapies based on protection, repair, and regeneration of neurons in the central nervous system.
Collapse
Affiliation(s)
- Lauren K Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute , Vanderbilt University Medical Center, 1161 21st Avenue S, 37232, Nashville, TN, USA
| | - Robert O Baratta
- Stuart Therapeutics, Inc., 411 SE Osceola St, 34994, Stuart, FL, USA
| | - Brian J Del Buono
- Stuart Therapeutics, Inc., 411 SE Osceola St, 34994, Stuart, FL, USA
| | - Eric Schlumpf
- Stuart Therapeutics, Inc., 411 SE Osceola St, 34994, Stuart, FL, USA
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute , Vanderbilt University Medical Center, 1161 21st Avenue S, 37232, Nashville, TN, USA
| |
Collapse
|
5
|
Luis J, Eastlake K, Lamb WDB, Limb GA, Jayaram H, Khaw PT. Cell-Based Therapies for Glaucoma. Transl Vis Sci Technol 2023; 12:23. [PMID: 37494052 PMCID: PMC10383000 DOI: 10.1167/tvst.12.7.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Glaucomatous optic neuropathy (GON) is the major cause of irreversible visual loss worldwide and can result from a range of disease etiologies. The defining features of GON are retinal ganglion cell (RGC) degeneration and characteristic cupping of the optic nerve head (ONH) due to tissue remodeling, while intraocular pressure remains the only modifiable GON risk factor currently targeted by approved clinical treatment strategies. Efforts to understand the mechanisms that allow species such as the zebrafish to regenerate their retinal cells have greatly increased our understanding of regenerative signaling pathways. However, proper integration within the retina and projection to the brain by the newly regenerated neuronal cells remain major hurdles. Meanwhile, a range of methods for in vitro differentiation have been developed to derive retinal cells from a variety of cell sources, including embryonic and induced pluripotent stem cells. More recently, there has been growing interest in the implantation of glial cells as well as cell-derived products, including neurotrophins, microRNA, and extracellular vesicles, to provide functional support to vulnerable structures such as RGC axons and the ONH. These approaches offer the advantage of not relying upon the replacement of degenerated cells and potentially targeting earlier stages of disease pathogenesis. In order to translate these techniques into clinical practice, appropriate cell sourcing, robust differentiation protocols, and accurate implantation methods are crucial to the success of cell-based therapy in glaucoma. Translational Relevance: Cell-based therapies for glaucoma currently under active development include the induction of endogenous regeneration, implantation of exogenously derived retinal cells, and utilization of cell-derived products to provide functional support.
Collapse
Affiliation(s)
- Joshua Luis
- NIHR Biomedical Research Centre for Ophthalmology, UCL Institute of Ophthalmology & Moorfields Eye Hospital, London, UK
| | - Karen Eastlake
- NIHR Biomedical Research Centre for Ophthalmology, UCL Institute of Ophthalmology & Moorfields Eye Hospital, London, UK
| | - William D. B. Lamb
- NIHR Biomedical Research Centre for Ophthalmology, UCL Institute of Ophthalmology & Moorfields Eye Hospital, London, UK
| | - G. Astrid Limb
- NIHR Biomedical Research Centre for Ophthalmology, UCL Institute of Ophthalmology & Moorfields Eye Hospital, London, UK
| | - Hari Jayaram
- NIHR Biomedical Research Centre for Ophthalmology, UCL Institute of Ophthalmology & Moorfields Eye Hospital, London, UK
| | - Peng T. Khaw
- NIHR Biomedical Research Centre for Ophthalmology, UCL Institute of Ophthalmology & Moorfields Eye Hospital, London, UK
| |
Collapse
|
6
|
Chan ASY, Tun SBB, Lynn MN, Ho C, Tun TA, Girard MJA, Sultana R, Barathi VA, Aung T, Aihara M. Intravitreal Neuroglobin Mitigates Primate Experimental Glaucomatous Structural Damage in Association with Reduced Optic Nerve Microglial and Complement 3-Astrocyte Activation. Biomolecules 2023; 13:961. [PMID: 37371541 DOI: 10.3390/biom13060961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Current management of glaucomatous optic neuropathy is limited to intraocular pressure control. Neuroglobin (Ngb) is an endogenous neuroprotectant expressed in neurons and astrocytes. We recently showed that exogenous intravitreal Ngb reduced inflammatory cytokines and microglial activation in a rodent model of hypoxia. We thus hypothesised that IVT-Ngb may also be neuroprotective in experimental glaucoma (EG) by mitigating optic nerve (ON) astrogliosis and microgliosis as well as structural damage. In this study using a microbead-induced model of EG in six Cynomolgus primates, optical coherence imaging showed that Ngb-treated EG eyes had significantly less thinning of the peripapillary minimum rim width, retinal nerve fibre layer thickness, and ON head cupping than untreated EG eyes. Immunohistochemistry confirmed that ON astrocytes overexpressed Ngb following Ngb treatment. A reduction in complement 3 and cleaved-caspase 3 activated microglia and astrocytes was also noted. Our findings in higher-order primates recapitulate the effects of neuroprotection by Ngb treatment in rodent EG studies and suggest that Ngb may be a potential candidate for glaucoma neuroprotection in humans.
Collapse
Affiliation(s)
- Anita S Y Chan
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Singapore National Eye Centre, Singapore 168751, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Sai B B Tun
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Myoe N Lynn
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Candice Ho
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Tin A Tun
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Michaël J A Girard
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Singapore Eye Research Institute, Singapore 169856, Singapore
| | | | - Veluchamy A Barathi
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Tin Aung
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Singapore National Eye Centre, Singapore 168751, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Makoto Aihara
- Department of Ophthalmology, University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
7
|
Waxman S, Quinn M, Donahue C, Falo LD, Sun D, Jakobs TC, Sigal IA. Individual astrocyte morphology in the collagenous lamina cribrosa revealed by multicolor DiOlistic labeling. Exp Eye Res 2023; 230:109458. [PMID: 36965593 PMCID: PMC10152998 DOI: 10.1016/j.exer.2023.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Astrocytes in the lamina region of the optic nerve head play vital roles in supporting retinal ganglion cell axon health. In glaucoma, these astrocytes are implicated as early responders to stressors, undergoing characteristic changes in cell function as well as cell morphology. Much of what is currently known about individual lamina astrocyte morphology has been learned from rodent models which lack a defining feature of the human optic nerve head, the collagenous lamina cribrosa (LC). Current methods available for evaluation of collagenous LC astrocyte morphology have significant shortcomings. We aimed to evaluate Multicolor DiOlistic labeling (MuDi) as an approach to reveal individual astrocyte morphologies across the collagenous LC. Gold microcarriers were coated with all combinations of three fluorescent cell membrane dyes, DiI, DiD, and DiO, for a total of seven dye combinations. Microcarriers were delivered to 150 μm-thick coronal vibratome slices through the LC of pig, sheep, goat, and monkey eyes via MuDi. Labeled tissues were imaged with confocal and second harmonic generation microscopy to visualize dyed cells and LC collagenous beams, respectively. GFAP labeling of DiOlistically-labeled cells with astrocyte morphologies was used to investigate cell identity. 3D models of astrocytes were created from confocal image stacks for quantification of morphological features. DiOlistic labeling revealed fine details of LC astrocyte morphologies including somas, primary branches, higher-order branches, and end-feet. Labeled cells with astrocyte morphologies were GFAP+. Astrocytes were visible across seven distinct color channels, allowing high labeling density while still distinguishing individual cells from their neighbors. MuDi was capable of revealing tens to hundreds of collagenous LC astrocytes, in situ, with a single application. 3D astrocyte models allowed automated quantification of morphological features including branch number, length, thickness, hierarchy, and straightness as well as Sholl analysis. MuDi labeling provides an opportunity to investigate morphologies of collagenous LC astrocytes, providing both qualitative and quantitative detail, in healthy tissues. This approach may open doors for research of glaucoma, where astrocyte morphological alterations are thought to coincide with key functional changes related to disease progression.
Collapse
Affiliation(s)
- Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marissa Quinn
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cara Donahue
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Sun
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Tatjana C Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Shinozaki Y, Kashiwagi K, Koizumi S. Astrocyte Immune Functions and Glaucoma. Int J Mol Sci 2023; 24:2747. [PMID: 36769067 PMCID: PMC9916878 DOI: 10.3390/ijms24032747] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Astrocytes, a non-neuronal glial cell type in the nervous system, are essential for regulating physiological functions of the central nervous system. In various injuries and diseases of the central nervous system, astrocytes often change their phenotypes into neurotoxic ones that participate in pro-inflammatory responses (hereafter referred to as "immune functions"). Such astrocytic immune functions are not only limited to brain diseases but are also found in ocular neurodegenerative diseases such as glaucoma, a retinal neurodegenerative disease that is the leading cause of blindness worldwide. The eye has two astrocyte-lineage cells: astrocytes and Müller cells. They maintain the physiological environment of the retina and optic nerve, thereby controlling visual function. Dysfunction of astrocyte-lineage cells may be involved in the onset and progression of glaucoma. These cells become reactive in glaucoma patients, and animal studies have suggested that their immune responses may be linked to glaucoma-related events: tissue remodeling, neuronal death, and infiltration of peripheral immune cells. In this review, we discuss the role of the immune functions of astrocyte-lineage cells in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- Interdisciplinary Brain-Immune Research Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kenji Kashiwagi
- Department of Ophthalmology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- Interdisciplinary Brain-Immune Research Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
9
|
Chaudhary P, Stowell C, Reynaud J, Gardiner SK, Yang H, Williams G, Williams I, Marsh-Armstrong N, Burgoyne CF. Optic Nerve Head Myelin-Related Protein, GFAP, and Iba1 Alterations in Non-Human Primates With Early to Moderate Experimental Glaucoma. Invest Ophthalmol Vis Sci 2022; 63:9. [PMID: 36239974 PMCID: PMC9586137 DOI: 10.1167/iovs.63.11.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose The purpose of this study was to test if optic nerve head (ONH) myelin basic protein (MBP), 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase), glial fibrillary acidic protein (GFAP), and ionized calcium binding adaptor molecule 1 (Iba1) proteins are altered in non-human primate (NHP) early/moderate experimental glaucoma (EG). Methods Following paraformaldehyde perfusion, control and EG eye ONH tissues from four NHPs were paraffin embedded and serially (5 µm) vertically sectioned. Anti-MBP, CNPase, GFAP, Iba1, and nuclear dye-stained sections were imaged using sub-saturating light intensities. Whole-section images were segmented creating anatomically consistent laminar (L) and retrolaminar (RL) regions/sub-regions. EG versus control eye intensity/pixel-cluster density data within L and two RL regions (RL1 [1-250 µm]/RL2 [251-500 µm] from L) were compared using random effects models within the statistical program “R.” Results EG eye retinal nerve fiber loss ranged from 0% to 20%. EG eyes’ MBP and CNPase intensity were decreased within the RL1 (MBP = 31.4%, P < 0.001; CNPase =62.3%, P < 0.001) and RL2 (MBP = 19.6%, P < 0.001; CNPase = 56.1%, P = 0.0004) regions. EG eye GFAP intensity was decreased in the L (41.6%, P < 0.001) and RL regions (26.7% for RL1, and 28.4% for RL2, both P < 0.001). Iba1+ and NucBlue pixel-cluster density were increased in the laminar (28.2%, P = 0.03 and 16.6%, P = 0.008) and both RL regions (RL1 = 37.3%, P = 0.01 and 23.7%, P = 0.0002; RL2 = 53.7%, P = 0.002 and 33.2%, P < 0.001). Conclusions Retrolaminar myelin disruption occurs early in NHP EG and may be accompanied by laminar and retrolaminar decreases in astrocyte process labeling and increases in microglial/ macrophage density. The mechanistic and therapeutic implications of these findings warrant further study.
Collapse
Affiliation(s)
- Priya Chaudhary
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Cheri Stowell
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Juan Reynaud
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Stuart K Gardiner
- Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Hongli Yang
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Galen Williams
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | - Imee Williams
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| | | | - Claude F Burgoyne
- Optic Nerve Head Research Laboratory, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States.,Discoveries in Sight, Devers Eye Institute, Legacy Research Institute, Portland, Oregon, United States
| |
Collapse
|
10
|
Pappenhagen N, Yin E, Morgan AB, Kiehlbauch CC, Inman DM. Stretch stress propels glutamine dependency and glycolysis in optic nerve head astrocytes. Front Neurosci 2022; 16:957034. [PMID: 35992925 PMCID: PMC9389405 DOI: 10.3389/fnins.2022.957034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
Glaucoma is an optic neuropathy that leads to irreversible blindness, the most common subtype of which is typified by a chronic increase in intraocular pressure that promotes a stretch injury to the optic nerve head. In rodents, the predominant glial cell in this region is the optic nerve head astrocyte that provides axons with metabolic support, likely by releasing lactate produced through astrocytic glycolysis. Our primary hypothesis is that stretching of the optic nerve head astrocytes alters their metabolic activity, thereby advancing glaucoma-associated degeneration by compromising the metabolic support that the astrocytes provide to the axons in the optic nerve head. Metabolic changes in optic nerve head astrocytes were investigated by subjecting them to 24 h of 12% biaxial stretch at 1 Hz then measuring the cells’ bioenergetics using a Seahorse XFe24 Analyzer. We observed significant glycolytic and respiratory activity differences between control and stretched cells, including greater extracellular acidification and lower ATP-linked respiration, yet higher maximal respiration and spare capacity in stretched optic nerve head astrocytes. We also determined that both control and stretched optic nerve head astrocytes displayed a dependency for glutamine over pyruvate or long-chain fatty acids for fuel. The increased use of glycolysis as indicated by the extracellular acidification rate, concomitant with a dependency on glutamine, suggests the need to replenish NAD + for continued glycolysis and provision of carbon for TCA cycle intermediates. Stretch alters optic nerve astrocyte bioenergetics to support an increased demand for internal and external energy.
Collapse
Affiliation(s)
- Nathaniel Pappenhagen
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Eric Yin
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Autumn B. Morgan
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Charles C. Kiehlbauch
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Denise M. Inman
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
- *Correspondence: Denise M. Inman,
| |
Collapse
|
11
|
Garmabi B, Mohaddes R, Rezvani F, Mohseni F, Khastar H, Khaksari M. Erythropoietin improve spatial memory impairment following methamphetamine neurotoxicity by inhibition of apoptosis, oxidative stress and neuroinflammation in CA1 area of hippocampus. J Chem Neuroanat 2022; 124:102137. [PMID: 35842017 DOI: 10.1016/j.jchemneu.2022.102137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Methamphetamine (METH) is one of the most widely used addictive drugs, and addiction to it is on the rise all over the world. METH abuse has long-term damaging effects that reduce memory and impair cognitive functions. According to studies, the observed effects are strongly related to the nerve cell damage caused by METH, which leads to neurotoxicity. Some of these intra-neuronal events include dopamine oxidation, excitotoxicity, and oxidative stress. Erythropoietin (EPO) is a hormone produced primarily by the kidneys and, in small quantities, by the liver. Studies have shown that EPO exhibits considerable neuroprotective effects. This study aimed to investigate the protective effects of EPO on METH neurotoxicity. METHODS Initially, 48 male Wistar rats, weighing 250-300 g, were randomly assigned to four groups: control (n = 12), METH (n = 12), and METH+EPO (2500, 5000 IU/kg/IP- n = 12). METH was injected intraperitoneally at a dose of 40 mg per kg of body weight (four injections of 10 mg every two hours) to induce neurotoxicity. EPO was injected at doses of 2500 and 5000 IU/kg seven days after the last METH administration (ip). Morris water maze test was performed following EPO injection (1 day after the last dose) to assess spatial memory. The brains were removed after the behavioral test, biochemical evaluations and immunohistochemistry (caspase-3 and GFAP) was performed. RESULTS The results showed that EPO treatment significantly improved spatial memory impairment (P < 0.01), compared to the METH group, EPO was a significant reduction in malondialdehyde and TNF-α (P < 0.01), as well as an increase in superoxide dismutase (P < 0.05) and glutathione-PX (P < 0.01). Furthermore, EPO treatment significantly reduced the number of GFAP positive cells (P < 0.01) and caspase 3 (P < 0.001) in the hippocampus (CA1 region). CONCLUSIONS The study findings suggested that EPO may have great neuroprotective effects on METH neurotoxicity due to its anti-inflammatory, antioxidant, and antiapoptotic properties.
Collapse
Affiliation(s)
- Behzad Garmabi
- Neurosciences Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Reza Mohaddes
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Rezvani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fahimeh Mohseni
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hossein Khastar
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
12
|
Early-Onset Glaucoma in egl1 Mice Homozygous for Pitx2 Mutation. Biomedicines 2022; 10:biomedicines10030516. [PMID: 35327318 PMCID: PMC8945683 DOI: 10.3390/biomedicines10030516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
Mutations in PITX2 cause Axenfeld–Rieger syndrome, with congenital glaucoma as an ocular feature. The egl1 mouse strain carries a chemically induced Pitx2 mutation and develops early-onset glaucoma. In this study, we characterized the glaucomatous features in egl1 mice. The eyes of egl1 and C57BL/6J control mice were assessed by slit lamp examination, total aqueous humor outflow facility, intraocular pressure (IOP) measurement, pattern electroretinography (PERG) recording, and histologic and immunohistochemistry assessment beginning at 3 weeks and up to 12 months of age. The egl1 mice developed elevated IOP as early as 4 weeks old. The IOP elevation was variable and asymmetric within and between the animals. The aqueous humor outflow facility was significantly reduced in 12-month-old animals. PERG detected a decreased response at 2 weeks after the development of IOP elevation. Retinal ganglion cell (RGC) loss was detected after 8 weeks of IOP elevation. Slit lamp and histologic evaluation revealed corneal opacity, iridocorneal adhesions (anterior synechiae), and ciliary body atrophy in egl1 mice. Immunohistochemistry assessment demonstrated glial cell activation and RGC axonal injury in response to IOP elevation. These results show that the eyes of egl1 mice exhibit anterior segment dysgenesis and early-onset glaucoma. The egl1 mouse strain may represent a useful model for the study of congenital glaucoma.
Collapse
|
13
|
Kumar S, Benavente-Perez A, Ablordeppey R, Lin C, Viswanathan S, Akopian A, Bloomfield SA. A Robust Microbead Occlusion Model of Glaucoma for the Common Marmoset. Transl Vis Sci Technol 2022; 11:14. [PMID: 35019964 PMCID: PMC8762714 DOI: 10.1167/tvst.11.1.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To establish a robust experimental model of glaucoma in the common marmoset (Callithrix jacchus), a New World primate, using an intracameral microbead injection technique. Methods Elevated intraocular pressure (IOP) was induced by an injection of polystyrene microbeads. Morphologic changes in the retina and optic nerve of glaucomatous eyes were assessed and electroretinogram (ERG) recordings were performed to evaluate functional changes. Results Microbead injections induced a sustained IOP elevation for at least 10 weeks in a reproducible manner. At the end of the 10-week experimental period, there was significant loss of retinal ganglion cells (RGCs) in all quadrants and eccentricities, although it was more prominent in the mid-peripheral and peripheral regions. This was consistent with a thinning of the Retinal nerve fiber layer (RNFL) seen in spectral domain optical coherence tomography scans. Surviving RGCs showed marked changes in morphology, including somatic shrinkage and dendritic atrophy. Retinas also showed significant gliosis. The amplitude of the ERG photopic negative response, with subsequent a- and b-wave changes, was reduced in glaucomatous eyes. The optic nerve of glaucomatous eyes showed expanded cupping, disorganization of the astrocytic matrix, axonal loss, and gliosis. Conclusions We developed a robust and reproducible model of glaucoma in the marmoset. The model exhibits both structural and functional alterations of retina and optic nerve characteristic of glaucoma in humans and animal models. Translational Relevance The glaucoma model in the marmoset described here forms a robust method to study the disease etiology, progression, and potential therapies in a nonhuman primate, allowing for more effective translation of animal data to humans.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Alexandra Benavente-Perez
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Reynolds Ablordeppey
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Carol Lin
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Suresh Viswanathan
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Abram Akopian
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| | - Stewart A Bloomfield
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY, USA
| |
Collapse
|
14
|
Motz CT, Kabat V, Saxena T, Bellamkonda RV, Zhu C. Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Adv Healthc Mater 2021; 10:e2100102. [PMID: 34342167 PMCID: PMC8497434 DOI: 10.1002/adhm.202100102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The brain processes information by transmitting signals through highly connected and dynamic networks of neurons. Neurons use specific cellular structures, including axons, dendrites and synapses, and specific molecules, including cell adhesion molecules, ion channels and chemical receptors to form, maintain and communicate among cells in the networks. These cellular and molecular processes take place in environments rich of mechanical cues, thus offering ample opportunities for mechanical regulation of neural development and function. Recent studies have suggested the importance of mechanical cues and their potential regulatory roles in the development and maintenance of these neuronal structures. Also suggested are the importance of mechanical cues and their potential regulatory roles in the interaction and function of molecules mediating the interneuronal communications. In this review, the current understanding is integrated and promising future directions of neuromechanobiology are suggested at the cellular and molecular levels. Several neuronal processes where mechanics likely plays a role are examined and how forces affect ligand binding, conformational change, and signal induction of molecules key to these neuronal processes are indicated, especially at the synapse. The disease relevance of neuromechanobiology as well as therapies and engineering solutions to neurological disorders stemmed from this emergent field of study are also discussed.
Collapse
Affiliation(s)
- Cara T Motz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Victoria Kabat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC, 27709, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| |
Collapse
|
15
|
Neuroprotection in Glaucoma: NAD +/NADH Redox State as a Potential Biomarker and Therapeutic Target. Cells 2021; 10:cells10061402. [PMID: 34198948 PMCID: PMC8226607 DOI: 10.3390/cells10061402] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. Its prevalence and incidence increase exponentially with age and the level of intraocular pressure (IOP). IOP reduction is currently the only therapeutic modality shown to slow glaucoma progression. However, patients still lose vision despite best treatment, suggesting that other factors confer susceptibility. Several studies indicate that mitochondrial function may underlie both susceptibility and resistance to developing glaucoma. Mitochondria meet high energy demand, in the form of ATP, that is required for the maintenance of optimum retinal ganglion cell (RGC) function. Reduced nicotinamide adenine dinucleotide (NAD+) levels have been closely correlated to mitochondrial dysfunction and have been implicated in several neurodegenerative diseases including glaucoma. NAD+ is at the centre of various metabolic reactions culminating in ATP production—essential for RGC function. In this review we present various pathways that influence the NAD+(H) redox state, affecting mitochondrial function and making RGCs susceptible to degeneration. Such disruptions of the NAD+(H) redox state are generalised and not solely induced in RGCs because of high IOP. This places the NAD+(H) redox state as a potential systemic biomarker for glaucoma susceptibility and progression; a hypothesis which may be tested in clinical trials and then translated to clinical practice.
Collapse
|
16
|
Boal AM, Risner ML, Cooper ML, Wareham LK, Calkins DJ. Astrocyte Networks as Therapeutic Targets in Glaucomatous Neurodegeneration. Cells 2021; 10:1368. [PMID: 34199470 PMCID: PMC8228804 DOI: 10.3390/cells10061368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/22/2022] Open
Abstract
Astrocytes are intimately involved in the response to neurodegenerative stress and have become an attractive target for the development of neuroprotective therapies. However, studies often focus on astrocytes as single-cell units. Astrocytes are densely interconnected by gap junctions that are composed primarily of the protein connexin-43 (Cx43) and can function as a broader network of cells. Such networks contribute to a number of important processes, including metabolite distribution and extracellular ionic buffering, and are likely to play an important role in the progression of neurodegenerative disease. This review will focus on the pro-degenerative and pro-survival influence of astrocyte Cx43 in disease progression, with a focus on the roles of gap junctions and hemichannels in the spread of degenerative stress. Finally, we will highlight the specific evidence for targeting these networks in the treatment of glaucomatous neurodegeneration and other optic neuropathies.
Collapse
Affiliation(s)
- Andrew M. Boal
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| | - Michael L. Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| | - Melissa L. Cooper
- Skirball Institute for Biomolecular Medicine, NYU Langone Medical Center, New York, NY 10016, USA;
- Neuroscience Institute, NYU Langone Medical Center, New York, NY 10016, USA
| | - Lauren K. Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| | - David J. Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, 1161 21st Ave S, AA7103D Medical Center North, Nashville, TN 37232-0654, USA; (A.M.B.); (M.L.R.); (L.K.W.)
| |
Collapse
|
17
|
Zaidi SAH, Thakore N, Singh S, Guzman W, Mehrotra S, Gangaraju V, Husain S. Histone Deacetylases Regulation by δ-Opioids in Human Optic Nerve Head Astrocytes. Invest Ophthalmol Vis Sci 2021; 61:17. [PMID: 32915982 PMCID: PMC7488628 DOI: 10.1167/iovs.61.11.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose We determined whether δ-opioid receptor agonist (SNC-121) regulates acetylation homeostasis via controlling histone deacetylases (HDACs) activity and expression in optic nerve head (ONH) astrocytes. Methods ONH astrocytes were treated with SNC-121 (1 µM) for 24 hours. The HDAC activity was measured using HDAC-specific fluorophore-conjugated synthetic substrates, Boc-Lys(Ac)-AMC and (Boc-Lys(Tfa)-AMC). Protein and mRNA expression of each HDAC was determined by Western blotting and quantitative real-time PCR. IOP in rats was elevated by injecting 2.0 M hypertonic saline into the limbal veins. Results Delta opioid receptor agonist, SNC-121 (1 µM), treatment increased acetylation of histone H3, H2B, and H4 by 128 ± 3%, 45 ± 1%, and 68 ± 2%, respectively. The addition of Garcinol, a histone-acetyltransferase inhibitor, fully blocked SNC-121–induced histone H3 acetylation. SNC-121 reduced the activities of class I and IIb HDACs activities significantly (17 ± 3%) and this decrease in HDACs activities was fully blocked by a selective δ-opioid receptors antagonist, naltrindole. SNC-121 also decrease the mRNA expression of HDAC-3 and HDAC-6 by 19% and 18%, respectively. Furthermore, protein expression of HDAC 1, 2, 3, and 6 was significantly (P < 0.05) decreased by SNC-121 treatment. SNC-121 treatment also reduced lipopolysaccharide-induced TNF-α production from ONH astrocytes and glial fibrillary acidic protein immunostaining in the optic nerve of ocular hypertensive animals. Conclusions We provided evidence that δ-opioid receptor agonist activation increased histone acetylation, decrease HDACs class I and class IIb activities, mRNA, and protein expression, lipopolysaccharide-induced TNF-α production in ONH astrocytes. Our data also demonstrate that SNC-121 treatment decrease glial fibrillary acidic protein immunostaining in the optic nerves of animals with ocular hypertension.
Collapse
Affiliation(s)
- Syed A H Zaidi
- Hewitt Laboratory of the Ola B. Williams Glaucoma Centre, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Nakul Thakore
- Hewitt Laboratory of the Ola B. Williams Glaucoma Centre, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Sudha Singh
- Hewitt Laboratory of the Ola B. Williams Glaucoma Centre, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Wendy Guzman
- Hewitt Laboratory of the Ola B. Williams Glaucoma Centre, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Vamsi Gangaraju
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Shahid Husain
- Hewitt Laboratory of the Ola B. Williams Glaucoma Centre, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
18
|
Cimaglia G, Votruba M, Morgan JE, André H, Williams PA. Potential Therapeutic Benefit of NAD + Supplementation for Glaucoma and Age-Related Macular Degeneration. Nutrients 2020; 12:nu12092871. [PMID: 32961812 PMCID: PMC7551676 DOI: 10.3390/nu12092871] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Glaucoma and age-related macular degeneration are leading causes of irreversible blindness worldwide with significant health and societal burdens. To date, no clinical cures are available and treatments target only the manageable symptoms and risk factors (but do not remediate the underlying pathology of the disease). Both diseases are neurodegenerative in their pathology of the retina and as such many of the events that trigger cell dysfunction, degeneration, and eventual loss are due to mitochondrial dysfunction, inflammation, and oxidative stress. Here, we critically review how a decreased bioavailability of nicotinamide adenine dinucleotide (NAD; a crucial metabolite in healthy and disease states) may underpin many of these aberrant mechanisms. We propose how exogenous sources of NAD may become a therapeutic standard for the treatment of these conditions.
Collapse
Affiliation(s)
- Gloria Cimaglia
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden;
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK; (M.V.); (J.E.M.)
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK; (M.V.); (J.E.M.)
- Cardiff Eye Unit, University Hospital Wales, Cardiff CF14 4XW, Wales, UK
| | - James E. Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK; (M.V.); (J.E.M.)
- School of Medicine, Cardiff University, Cardiff CF14 4YS, Wales, UK
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden;
- Correspondence: (H.A.); (P.A.W.)
| | - Pete A. Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 112 82 Stockholm, Sweden;
- Correspondence: (H.A.); (P.A.W.)
| |
Collapse
|
19
|
Lee EJ, Kee HJ, Han JC, Kee C. Evidence-based understanding of disc hemorrhage in glaucoma. Surv Ophthalmol 2020; 66:412-422. [PMID: 32949554 DOI: 10.1016/j.survophthal.2020.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
Abstract
Disc hemorrhage is a characteristic finding that is highly associated with glaucoma development or progression. Consequently, the literature commonly designates disc hemorrhage as a "risk factor" for glaucoma progression; however, the exact cause-and-effect relationship or mechanism remains unclear. In this review, we discuss the emerging evidence that disc hemorrhage is a secondary development that follows glaucomatous damage. As our understanding of disc hemorrhage has progressed in recent decades, we suggest the terminology be changed from "risk factor" to "indicator" of ongoing glaucomatous development or progression for a more accurate description, better indication of the clinical implications and, ultimately, a better guide for future research.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Joo Kee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Chul Han
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Changwon Kee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
20
|
Mysona BA, Segar S, Hernandez C, Kim C, Zhao J, Mysona D, Bollinger KE. QuPath Automated Analysis of Optic Nerve Degeneration in Brown Norway Rats. Transl Vis Sci Technol 2020; 9:22. [PMID: 32714648 PMCID: PMC7353320 DOI: 10.1167/tvst.9.3.22] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/11/2019] [Indexed: 01/03/2023] Open
Abstract
Purpose A novel application of QuPath open-source digital analysis software is used to provide in-depth morphological analysis of progressive optic nerve (ON) degeneration in rats. Methods QuPath software was adapted to assess axon and gliotic morphology in toluidine blue-stained, Brown Norway rat ON light micrographs. QuPath axon numbers, density, size distributions, and gliotic areas were obtained from test images and ON cross-sections separated by damage grade. QuPath results were compared with manual counting, AxonJ, and electron microscopy axon estimates. Results QuPath-derived axon number, density, and diameter decreased with increasing ON damage. Axon density negatively correlated with gliotic areas in test images (R2 = 0.759; P < 0.0001; N = 40) and in ON cross-sections (R2 = 0.803; P < 0.0004; N = 10). Although axon losses occurred across most axon diameters, large axons were more susceptible to degeneration. The exception was swollen axons > 2 µm, which increased in moderately but not severely damaged images. QuPath axon counts correlated strongly with manual counts of test images (R2 = 0.956; P < 0.0001). QuPath outperformed AxonJ on test images and total ON axon counts. Compared to electron microscopy analysis, QuPath undercounted ON axons; however, correlation between the methods was robust (R2 = 0.797; P < 0.001; N = 10). Conclusions QuPath analysis reliably identified axon loss, axon morphology changes, and gliotic expansion that occurred in degenerating ONs. Translational Relevance QuPath is a valuable tool for rapid, automated, analysis of healthy and degenerating ONs. Reproducible preclinical studies for new glaucoma treatments depend on unbiased in-depth analysis of ON pathology. This was provided by the QuPath approach.
Collapse
Affiliation(s)
- Barbara A. Mysona
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Sharmila Segar
- Medical College of Georgia at Augusta University, Augusta, GA, USA
| | | | - Christian Kim
- Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Jing Zhao
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - David Mysona
- Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Kathryn E. Bollinger
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia at Augusta University, Augusta, GA, USA
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| |
Collapse
|
21
|
Lee EJ, Han JC, Park DY, Kee C. A neuroglia-based interpretation of glaucomatous neuroretinal rim thinning in the optic nerve head. Prog Retin Eye Res 2020; 77:100840. [PMID: 31982595 DOI: 10.1016/j.preteyeres.2020.100840] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Neuroretinal rim thinning (NRR) is a characteristic glaucomatous optic disc change. However, the precise mechanism of the rim thinning has not been completely elucidated. This review focuses on the structural role of the glioarchitecture in the formation of the glaucomatous NRR thinning. The NRR is a glia-framed structure, with honeycomb geometry and mechanically reinforced astrocyte processes along the transverse plane. When neural damage selectively involves the neuron and spares the glia, the gross structure of the tissue is preserved. The disorganization and loss of the glioarchitecture are the two hallmarks of optic nerve head (ONH) remodeling in glaucoma that leads to the thinning of NRR tissue upon axonal loss. This is in contrast to most non-glaucomatous optic neuropathies with optic disc pallor where hypertrophy of the glioarchitecture is associated with the seemingly absent optic disc cupping. Arteritic anterior ischemic optic neuropathy is an exception where pan-necrosis of ONH tissue leads to NRR thinning. Milder ischemia indicates selective neuronal loss that spares glia in non-arteritic anterior ischemic optic neuropathy. The biological reason is the heterogeneous glial response determined by the site, type, and severity of the injury. The neuroglial interpretation explains how the cellular changes underlie the clinical findings. Updated understandings on glial responses illustrate the mechanical, microenvironmental, and microglial modulation of activated astrocytes in glaucoma. Findings relevant to the possible mechanism of the astrocyte death in advanced glaucoma are also emerging. Ultimately, a better understanding of glaucomatous glial response may lead to glia-targeting neuroprotection in the future.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Jong Chul Han
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Do Young Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Changwon Kee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
22
|
Ling YTT, Shi R, Midgett DE, Jefferys JL, Quigley HA, Nguyen TD. Characterizing the Collagen Network Structure and Pressure-Induced Strains of the Human Lamina Cribrosa. Invest Ophthalmol Vis Sci 2019; 60:2406-2422. [PMID: 31157833 PMCID: PMC6545820 DOI: 10.1167/iovs.18-25863] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose The purpose of this study was to measure the 2D collagen network structure of the human lamina cribrosa (LC), analyze for the correlations with age, region, and LC size, as well as the correlations with pressure-induced strains. Methods The posterior scleral cups of 10 enucleated human eyes with no known ocular disease were subjected to ex vivo inflation testing from 5 to 45 mm Hg. The optic nerve head was imaged by using second harmonic generation imaging (SHG) to identify the LC collagen structure at both pressures. Displacements and strains were calculated by using digital volume correlation of the SHG volumes. Nine structural features were measured by using a custom Matlab image analysis program, including the pore area fraction, node density, and beam connectivity, tortuosity, and anisotropy. Results All strain measures increased significantly with higher pore area fraction, and all but the radial-circumferential shear strain (Erθ) decreased with higher node density. The maximum principal strain (Emax) and maximum shear strain (Γmax) also increased with larger beam aspect ratio and tortuosity, respectively, and decreased with higher connectivity. The peripheral regions had lower node density and connectivity, and higher pore area fraction, tortuosity, and strains (except for Erθ) than the central regions. The peripheral nasal region had the lowest Emax, Γmax, radial strain, and pore area fraction. Conclusions Features of LC beam network microstructure that are indicative of greater collagen density and connectivity are associated with lower pressure-induced LC strain, potentially contributing to resistance to glaucomatous damage.
Collapse
Affiliation(s)
- Yik Tung Tracy Ling
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Ran Shi
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States.,Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Dan E Midgett
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Joan L Jefferys
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Harry A Quigley
- Wilmer Ophthalmological Institute, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, United States
| | - Thao D Nguyen
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
23
|
PENG FAN, MA LIPING, LIU LIU, LI LIN, QIAN XIUQING. PRELIMINARY STUDY ON THE BLOCKADE OF AXONAL TRANSPORT BY ACTIVATED ASTROCYTES IN OPTIC NERVE HEAD UNDER CHRONIC OCULAR HYPERTENSION. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glaucoma is considered a group of neurodegenerative diseases that damage the optic disc and result in a reduction of the field of vision. High intraocular pressure-induced deformation of optic nerve head (ONH) may compress the optic nerve and affect axonal transport. This study aims to show experimental observations: the activated astrocytes under high intraocular pressure play an important role in compression of optic nerve and block of axonal transport. Four-week duration of ocular hypertension (more than 20[Formula: see text]mm Hg) rats induced by cauterizing of three episcleral vessels and administering a fluorouracil subconjunctival injection in the right eye were enrolled and the left eyes of all the rats were used as a self-control. The axonal transport of the optic nerve was examined by a confocal laser scanning microscope after intravitreally injecting rhodamine-[Formula: see text]-isothiocyanate. The morphology of the optic nerve head was examined by hematoxylin–eosin (HE) staining, immunofluorescence staining and transmission electron microscopy (TEM). The results showed transport of rhodamine-[Formula: see text]-isothiocyanate was blocked in the experimental group, and fluorescent dye accumulated around the ONH. The nucleus counts of the coronal section kidney-shaped area showed that the number of cell nucleus in experimental eye was more than that of the control according to the results of HE staining. The increased collagen fibers in ONH were observed. The density of the glial fibrillary acidic protein in experimental eyes was a little bit higher than that in the control group by quantify analysis of the expression. The obvious changes of microstructure of the ONH also were found according to the images of TEM. It can be concluded that the activated astrocytes might squeeze the optic nerve, likely leading to optic nerve distortion and axonal flow blockage.
Collapse
Affiliation(s)
- FAN PENG
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, Beijing 100069, P. R. China
| | - LIPING MA
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, Beijing 100069, P. R. China
| | - LIU LIU
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, Beijing 100069, P. R. China
| | - LIN LI
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, Beijing 100069, P. R. China
| | - XIUQING QIAN
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, Beijing 100069, P. R. China
| |
Collapse
|
24
|
Abstract
PURPOSE Glaucomatous optic disc (GOD) might represent various subclinical processes. However, whether the presence of GOD is related to vascular processes is less clear. This study aimed to assess the retinal vessel diameter, as surrogate markers of vascular regulation, in healthy young adults with GOD compared with normal. MATERIALS AND METHODS This was a clinic-based case-control study of 54 participants, aged between 18 and 30 years. We included patients with GOD (confirmed with slit-lamp and optical coherence tomography examination having cup-to-disc ratio ≥0.5), intraocular pressure ≤21 mm Hg, no history of hypertension, cardiovascular and kidney disease, anemia, diabetes mellitus, and spherical correction of ≤-1.5 D. Controls were healthy subjects with similar criteria but no sign of GOD. Retinal vessel diameters were measured using semiautomated program [Singapore I Vessel Assessment (SIVA) version 4.0] and expressed as central retinal arteriolar equivalent (CRAE) and central retinal venular equivalent. RESULTS The mean CRAE was significantly narrower in patients with GOD than controls (110.6±12.16 vs. 118.6±12.17; P=0.019). Central retinal venular equivalent was not significantly different. A CRAE narrower than 107.1 μm was significantly associated with GOD (odds ratio, 8.59; 95% confidence interval, 1.68-43.9; P<0.001) compared with controls. CONCLUSIONS Retinal arterioles were narrower in young adults with GOD compared with normal, suggesting that the presence of GOD might be associated with subclinical changes in retinal vascularization even in the absence of increased intraocular pressure. However, the clinical significance of these findings deserves further studies.
Collapse
|
25
|
Abstract
Since ancient times, opioids have been used clinically and abused recreationally. In the early stages (about 1,000 AD) of opium history, an Arab physician, Avicenna, administered opioids to control diarrhea and eye diseases. 1 Opioids have very strong pain relieving properties and they also regulate numerous cellular responses. Opioid receptors are expressed throughout the body, including the nervous system, heart, lungs, liver, gastrointestinal tract, and retina. 2-6 Delta opioid receptors (DORs) are a very attractive target from the perspective of both receptor function and their therapeutic potential. Due to a rapid progress in mouse mutagenesis and development of small molecules as DOR agonist, novel functions and roles of DORs have emerged in recent years. This review article focuses on the recent advances in the neuroprotective roles of DOR agonists in general and retina neuroprotection in particular. Rather than being exhaustive, this review highlights the selected studies of DOR function in neuroprotection. We also highlight our preclinical studies using rodent models to demonstrate the potentials of DOR agonists for retinal neuroprotection. Based on existing literature and our recently published data on the eye, DOR agonists possess therapeutic abilities that protect the retina and optic nerve injury against glaucoma and perhaps other retinopathies as well. This review also highlights the signaling events associated with DOR for neuroprotection in the eye. There is a need for translational research on DORs to recognize their potential for clinical application such as in glaucoma.
Collapse
Affiliation(s)
- Shahid Husain
- Hewitt Laboratory of the Ola B. Williams Glaucoma Center, Department of Ophthalmology, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
26
|
Klemm P, Hurst J, Dias Blak M, Herrmann T, Melchinger M, Bartz-Schmidt KU, Zeck G, Schultheiss M, Spitzer MS, Schnichels S. Hypothermia protects retinal ganglion cells against hypoxia-induced cell death in a retina organ culture model. Clin Exp Ophthalmol 2019; 47:1043-1054. [PMID: 31152487 DOI: 10.1111/ceo.13565] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND Hypoxia contributes to retinal damage in several retinal diseases, including central retinal artery occlusion, with detrimental consequences like painless, monocular loss of vision. Currently, the treatment options are severely limited due to the short therapy window, as the neuronal cells, especially the retinal ganglion cells (RGCs), are irreversibly damaged within the first few hours. Hypothermia might be a possible treatment option or at least might increase the therapy window. METHODS To investigate the neuroprotective effect of hypothermia after retinal hypoxia, an easy-to-use ex vivo retinal hypoxia organ culture model developed in our laboratory was used that reliably induced retinal damage on a structural, molecular and functional level. The neuroprotective effect of hypothermia after retinal hypoxia was analysed using optical coherence tomography scans, histological stainings, quantitative real-time polymerase chain reaction, western blotting and microelectrode array recordings. RESULTS Two different hypothermic temperatures (30°C and 20°C) were evaluated, both exhibited strong neuroprotective effects. Most importantly, hypothermia increased RGC survival after retinal hypoxia. Furthermore, hypothermia counteracted the hypoxia-induced RGC death, reduced macroglia activation, attenuated retinal thinning and protected from loss of spontaneous RGC activity. CONCLUSIONS These results indicate that already a mild reduction in temperature protects the RGCs against damage and could function as a promising therapeutic option for hypoxic diseases.
Collapse
Affiliation(s)
- Patricia Klemm
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Tübingen, Germany
| | - José Hurst
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Tübingen, Germany
| | - Matthias Dias Blak
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Tübingen, Germany.,Department of Ophthalmology, Klinikum Stuttgart, Stuttgart, Germany
| | - Thoralf Herrmann
- Department of Neurophysics, NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Marion Melchinger
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Tübingen, Germany
| | - Karl U Bartz-Schmidt
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Tübingen, Germany
| | - Günther Zeck
- Department of Neurophysics, NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Maximilian Schultheiss
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Tübingen, Germany.,Clinic for Ophthalmology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin S Spitzer
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Tübingen, Germany.,Clinic for Ophthalmology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sven Schnichels
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Mistry V, An D, Barry CJ, House PH, Morgan WH. Association between focal lamina cribrosa defects and optic disc haemorrhage in glaucoma. Br J Ophthalmol 2019; 104:98-103. [PMID: 31023711 DOI: 10.1136/bjophthalmol-2018-313775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS To explore the relationship between focal lamina defect (LD) size and optic disc haemorrhages (DH) in glaucomatous eyes. METHODS Radial B-scan images at 15° intervals obtained using enhanced depth imaging (EDI) spectral-domain optical coherence tomography (OCT) were performed on a group of subjects previously assessed for DH every 3 months over a period of 5 years. EDI-OCT scans were assessed for the presence of focal lamina cribrosa defects by a single observer. RESULTS 119 eyes from 62 subjects (44 females, 18 males) were analysed. 44 eyes (37%) were noted to have at least 1 LD, and of those, eight eyes had more than one defect. 68 eyes (57%) were observed to have at least one DH occur over the course of monitoring. 48 eyes (40%) had recurrent DH, with a mean of 5.17 haemorrhages over the 5-year period. Type 1 focal LD (p=0.0000, OR 7.17), glaucoma progression (p=0.0024, OR 0.32) and ArtDiff (p=0.0466, OR 1.04) were significantly associated as predictors of DH. No correlation between the size of the LD and DH occurrence (p=0.6449, Spearman rank correlation) was found. CONCLUSION Focal lamina cribrosa hole-type defects were significantly associated with an increase in DH occurrence over the preceding 5 years. The lack of association between defect size and DH suggests that DH and lamina defects may have separate links to the glaucomatous process.
Collapse
Affiliation(s)
- Vijay Mistry
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia .,Center for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Dong An
- Center for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Christopher J Barry
- Center for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Philip H House
- Center for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - William H Morgan
- Center for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
28
|
Ghanbari F, Khaksari M, Vaezi G, Hojati V, Shiravi A. Hydrogen Sulfide Protects Hippocampal Neurons Against Methamphetamine Neurotoxicity Via Inhibition of Apoptosis and Neuroinflammation. J Mol Neurosci 2018; 67:133-141. [DOI: 10.1007/s12031-018-1218-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/11/2018] [Indexed: 12/28/2022]
|
29
|
Shafahi M, Vaezi G, Shajiee H, Sharafi S, Khaksari M. Crocin Inhibits Apoptosis and Astrogliosis of Hippocampus Neurons Against Methamphetamine Neurotoxicity via Antioxidant and Anti-inflammatory Mechanisms. Neurochem Res 2018; 43:2252-2259. [PMID: 30259275 DOI: 10.1007/s11064-018-2644-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 01/19/2023]
Abstract
Methamphetamine (METH) is a stimulant drug, which can cause neurotoxicity and increase the risk of neurodegenerative disorders. The mechanisms of acute METH intoxication comprise intra-neuronal events including oxidative stress, dopamine oxidation, and excitotoxicity. According to recent studies, crocin protects neurons by functioning as an anti-oxidant, anti-inflammatory, and anti-apoptotic compound. Accordingly, this study aimed to determine if crocin can protect against METH-induced neurotoxicity. Seventy-two male Wistar rats that weighed 260-300 g were randomly allocated to six groups of control (n = 12), crocin 90 mg/kg group (n = 12), METH (n = 12), METH + crocin 30 mg/kg (n = 12), METH + crocin 60 mg/kg (n = 12), and METH + crocin 90 mg/kg (n = 12). METH neurotoxicity was induced by 40 mg/kg of METH in four injections (e.g., 4 × 10 mg/kg q. 2 h, IP). Crocin was intraperitoneally (IP) injected at 30 min, 24 h, and 48 h after the final injection of METH. Seven days after METH injection, the rats' brains were removed for biochemical assessment using the ELISA technique, and immunohistochemistry staining was used for caspase-3 and glial fibrillary acidic protein (GFAP) detection. Crocin treatment could significantly increase superoxide dismutase (P < 0.05) and glutathione (P < 0.01) levels and reduce malondialdehyde and TNF-α in comparison with the METH group (P < 0.05). Moreover, crocin could significantly decline the level of caspase-3 and GFAP-positive cells in the CA1 region (P < 0.01). According to the results, crocin exerts neuroprotective effects on METH neurotoxicity via the inhibition of apoptosis and neuroinflammation.
Collapse
Affiliation(s)
- Monire Shafahi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Golamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Hooman Shajiee
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Shahram Sharafi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
30
|
Schwaner SA, Kight AM, Perry RN, Pazos M, Yang H, Johnson EC, Morrison JC, Burgoyne CF, Ross Ethier C. A Methodology for Individual-Specific Modeling of Rat Optic Nerve Head Biomechanics in Glaucoma. J Biomech Eng 2018; 140:2679249. [PMID: 30003249 PMCID: PMC6056184 DOI: 10.1115/1.4039998] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Indexed: 12/20/2022]
Abstract
Glaucoma is the leading cause of irreversible blindness and involves the death of retinal ganglion cells (RGCs). Although biomechanics likely contributes to axonal injury within the optic nerve head (ONH), leading to RGC death, the pathways by which this occurs are not well understood. While rat models of glaucoma are well-suited for mechanistic studies, the anatomy of the rat ONH is different from the human, and the resulting differences in biomechanics have not been characterized. The aim of this study is to describe a methodology for building individual-specific finite element (FE) models of rat ONHs. This method was used to build three rat ONH FE models and compute the biomechanical environment within these ONHs. Initial results show that rat ONH strains are larger and more asymmetric than those seen in human ONH modeling studies. This method provides a framework for building additional models of normotensive and glaucomatous rat ONHs. Comparing model strain patterns with patterns of cellular response seen in studies using rat glaucoma models will help us to learn more about the link between biomechanics and glaucomatous cell death, which in turn may drive the development of novel therapies for glaucoma.
Collapse
Affiliation(s)
- Stephen A. Schwaner
- George W. Woodruff School of Mechanical Engineering,
Georgia Institute of Technology,
315 Ferst Drive,
2306 IBB,
Atlanta, GA 30332
e-mail:
| | - Alison M. Kight
- Coulter Department of Biomedical Engineering,
Georgia Institute of Technology/Emory University,
Atlanta, GA 30332
e-mail:
| | - Robert N. Perry
- Coulter Department of Biomedical Engineering,
Georgia Institute of Technology/Emory University,
Atlanta, GA 30332
e-mail:
| | - Marta Pazos
- Institut Clínic d'Oftalmologia,
Hospital Clínic de Barcelona,
Barcelona 08036, Spain
e-mail:
| | - Hongli Yang
- Optic Nerve Head Research Laboratory,
Discoveries in Sight Research Laboratories,
Devers Eye Institute, Legacy Health System,
Portland, OR 97210
e-mail:
| | - Elaine C. Johnson
- The Kenneth C. Swan Ocular Neurobiology Laboratory,
Casey Eye Institute,
Oregon Health and Science University,
Portland, OR 97239
e-mail:
| | - John C. Morrison
- The Kenneth C. Swan Ocular Neurobiology Laboratory,
Casey Eye Institute,
Oregon Health and Science University,
Portland, OR 97239
e-mail:
| | - Claude F. Burgoyne
- Optic Nerve Head Research Laboratory,
Discoveries in Sight Research Laboratories,
Devers Eye Institute,
Legacy Health System,
Portland, OR 97210
e-mail:
| | - C. Ross Ethier
- Coulter Department of Biomedical Engineering,
Georgia Institute of Technology/Emory University,
Atlanta, GA 30332
e-mail:
| |
Collapse
|
31
|
Mammone T, Chidlow G, Casson RJ, Wood JPM. Expression and activation of mitogen-activated protein kinases in the optic nerve head in a rat model of ocular hypertension. Mol Cell Neurosci 2018; 88:270-291. [PMID: 29408550 DOI: 10.1016/j.mcn.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Glaucoma is a leading cause of irreversible blindness manifesting as an age-related, progressive optic neuropathy with associated retinal ganglion cell (RGC) loss. Mitogen-activated protein kinases (MAPKs: p42/44 MAPK, SAPK/JNK, p38 MAPK) are activated in various retinal disease models and likely contribute to the mechanisms of RGC death. Although MAPKs play roles in the development of retinal pathology, their action in the optic nerve head (ONH), where the initial insult to RGC axons likely resides in glaucoma, remains unexplored. METHODS An experimental paradigm representing glaucoma was established by induction of chronic ocular hypertension (OHT) via laser-induced coagulation of the trabecular meshwork in Sprague-Dawley rats. MAPKs were subsequently investigated over the following days for expression and activity alterations, using RT-PCR, immunohistochemistry and Western immunoblot. RESULTS p42/44 MAPK expression was unaltered after intraocular pressure (IOP) elevation, but there was a significant activation of this enzyme in ONH astrocytes after 6-24 h. Activated SAPK/JNK isoforms were present throughout healthy RGC axons but after IOP elevation or optic nerve crush, they both accumulated at the ONH, likely due to RGC axon transport disruption, and were subject to additional activation. p38 MAPK was expressed by a population of microglia which were significantly more populous following IOP elevation. However it was only significantly activated in microglia after 3 days, and then only in the ONH and optic nerve; in the retina it was solely activated in RGC perikarya. CONCLUSIONS In conclusion, each of the MAPKs showed a specific spatio-temporal expression and activation pattern in the retina, ONH and optic nerve as a result of IOP elevation. These findings likely reflect the roles of the individual enzymes, and the cells in which they reside, in the developing pathology following IOP elevation. These data have implications for understanding the mechanisms of ocular pathology in diseases such as glaucoma.
Collapse
Affiliation(s)
- Teresa Mammone
- Ophthalmic Research Laboratories, Central Adelaide Local Health Network, Level 7 Adelaide Health & Medical Sciences Building, University of Adelaide, Adelaide, South Australia, Australia; Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Glyn Chidlow
- Ophthalmic Research Laboratories, Central Adelaide Local Health Network, Level 7 Adelaide Health & Medical Sciences Building, University of Adelaide, Adelaide, South Australia, Australia; Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Robert J Casson
- Ophthalmic Research Laboratories, Central Adelaide Local Health Network, Level 7 Adelaide Health & Medical Sciences Building, University of Adelaide, Adelaide, South Australia, Australia; Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - John P M Wood
- Ophthalmic Research Laboratories, Central Adelaide Local Health Network, Level 7 Adelaide Health & Medical Sciences Building, University of Adelaide, Adelaide, South Australia, Australia; Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
32
|
Development of a Platform for Studying 3D Astrocyte Mechanobiology: Compression of Astrocytes in Collagen Gels. Ann Biomed Eng 2017; 46:365-374. [DOI: 10.1007/s10439-017-1967-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022]
|
33
|
Tao C, Zhang X. Retinal Proteoglycans Act as Cellular Receptors for Basement Membrane Assembly to Control Astrocyte Migration and Angiogenesis. Cell Rep 2017; 17:1832-1844. [PMID: 27829154 DOI: 10.1016/j.celrep.2016.10.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/16/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022] Open
Abstract
The basement membrane is crucial for cell polarity, adhesion, and motility, but how it is assembled on the cell surface remains unclear. Here, we find that ablation of glycosaminoglycan (GAG) side chains of proteoglycans in the neuroretina disrupts the retinal basement membrane, leading to arrested astrocyte migration and reduced angiogenesis. Using genetic deletion and time-lapse imaging, we show that retinal astrocytes require neuronal-derived PDGF as a chemoattractive cue and the retinal basement membrane as a migratory substrate. Genetic ablation of heparan sulfates does not produce the same defects as GAG null mutants. In contrast, enzymatic removal of heparan sulfates and chondroitin sulfates together inhibits de novo laminin network assembly. These results indicate that both heparan and chondroitin sulfate proteoglycans participate in retinal basement membrane assembly, thus promoting astrocyte migration and angiogenesis.
Collapse
Affiliation(s)
- Chenqi Tao
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Xin Zhang
- Departments of Ophthalmology, Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
34
|
Lee EJ, Han JC, Kee C. A novel hypothesis for the pathogenesis of glaucomatous disc hemorrhage. Prog Retin Eye Res 2017; 60:20-43. [DOI: 10.1016/j.preteyeres.2017.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/08/2017] [Accepted: 08/28/2017] [Indexed: 01/16/2023]
|
35
|
Albalawi F, Lu W, Beckel JM, Lim JC, McCaughey SA, Mitchell CH. The P2X7 Receptor Primes IL-1β and the NLRP3 Inflammasome in Astrocytes Exposed to Mechanical Strain. Front Cell Neurosci 2017; 11:227. [PMID: 28848393 PMCID: PMC5550720 DOI: 10.3389/fncel.2017.00227] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/19/2017] [Indexed: 11/13/2022] Open
Abstract
Inflammatory responses play a key role in many neural pathologies, with localized signaling from the non-immune cells making critical contributions. The NLRP3 inflammasome is an important component of innate immune signaling and can link neural insult to chronic inflammation. The NLRP3 inflammasome requires two stages to contribute: priming and activation. The priming stage involves upregulation of inflammasome components while the activation stage results in the assembly and activation of the inflammasome complex. The priming step can be rate limiting and can connect insult to chronic inflammation, but our knowledge of the signals that regulate NLRP3 inflammasome priming in sterile inflammation is limited. This study examined the link between mechanical strain and inflammasome priming in neural systems. Transient non-ischemic elevation of intraocular pressure increased mRNA for inflammasome components IL-1β, NLRP3, ASC, and CASP1 in rat and mouse retinas. The elevation was greater 1 day after the insult, with the rise in IL-1β most pronounced. The P2X7 receptor was implicated in the mechanosensitive priming of IL-1β mRNA in vivo, as the antagonist Brilliant Blue G (BBG) blocked the increased expression, the agonist BzATP mimicked the pressure-dependent rise in IL-1β, and the rise was absent in P2X7 knockout mice. In vitro measurements from optic nerve head astrocytes demonstrated an increased expression of IL-1β following stretch or swelling. This increase in IL-1β was eliminated by degradation of extracellular ATP with apyrase, or by the block of pannexin hemichannels with carbenoxolone, probenecid, or 10panx1 peptide. The rise in IL-1β expression was also blocked by P2X7 receptor antagonists BBG, A839977 or A740003. The rise in IL-1β was prevented by blocking transcription factor NFκB with Bay 11-7082, while the swelling-dependent fall in NFκB inhibitor IκB-α was reduced by A839977 and in P2X7 knockout mice. In summary, mechanical trauma to the retina primed NLRP3 inflammasome components, but only if there was ATP release through pannexin hemichannels, and autostimulation of the P2X7 receptor. As the P2X7 receptor can also trigger stage two of inflammasome assembly and activation, the P2X7 receptor may have a central role in linking mechanical strain to neuroinflammation.
Collapse
Affiliation(s)
- Farraj Albalawi
- Department of Anatomy and Cell Biology, University of Pennsylvania, PhiladelphiaPA, United States.,Department of Orthodontics, University of Pennsylvania, PhiladelphiaPA, United States
| | - Wennan Lu
- Department of Anatomy and Cell Biology, University of Pennsylvania, PhiladelphiaPA, United States
| | - Jonathan M Beckel
- Department of Anatomy and Cell Biology, University of Pennsylvania, PhiladelphiaPA, United States.,Department of Pharmacology and Chemical Biology, Pittsburgh University, PittsburghPA, United States
| | - Jason C Lim
- Department of Anatomy and Cell Biology, University of Pennsylvania, PhiladelphiaPA, United States
| | - Stuart A McCaughey
- Department of Anatomy and Cell Biology, University of Pennsylvania, PhiladelphiaPA, United States
| | - Claire H Mitchell
- Department of Anatomy and Cell Biology, University of Pennsylvania, PhiladelphiaPA, United States.,Department of Ophthalmology, University of Pennsylvania, PhiladelphiaPA, United States.,Department of Physiology, University of Pennsylvania, PhiladelphiaPA, United States
| |
Collapse
|
36
|
Kuehn S, Hurst J, Jashari A, Ahrens K, Tsai T, Wunderlich IM, Dick HB, Joachim SC, Schnichels S. The novel induction of retinal ganglion cell apoptosis in porcine organ culture by NMDA - an opportunity for the replacement of animals in experiments. Altern Lab Anim 2017; 44:557-568. [PMID: 28094536 DOI: 10.1177/026119291604400608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Some of the advantages of retina organ culture models include their efficient and easy handling and the ability to standardise relevant parameters. Additionally, when porcine eyes are obtained from the food industry, no animals are killed solely for research purposes. To induce retinal degeneration, a commonly used toxic substance, N-methyl-D-aspartate (NMDA), was applied to the cultures. To this end, organotypic cultures of porcine retinas were cultured and treated with different doses of NMDA (0 [control], 50, 100 and 200μM) on day 2 for 48 hours. On day 7, the retinas were cryo-conserved for histological, Western blot and quantitative rt-PCR (qrt-PCR) analyses. NMDA treatment was found to significantly increase retinal ganglion cell (RGC) apoptosis in all the treated groups, without a profound RGC loss. In addition, the intrinsic apoptotic pathway was activated in the 50μM and 100μM NMDA groups, whereas induced nitric oxide synthase (iNOS) expression was increased in the 200μM group. A slight microglial response was detectable, especially in the 100μM group. NMDA treatment induced apoptosis, oxidative stress and a slight microglia activation. All these effects mimic a chronic slow progressive disease that especially affects RGCs, such as glaucoma. A particular advantage of this model is that mediators that can interact in the very early stages of the onset of RGC death, can be easily detected and potential therapies can be tested.
Collapse
Affiliation(s)
- Sandra Kuehn
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Jose Hurst
- University Eye Hospital Tübingen, Centre for Ophthalmology, Tübingen, Germany
| | - Adelina Jashari
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Kathrin Ahrens
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Teresa Tsai
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Ilan M Wunderlich
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Sven Schnichels
- University Eye Hospital Tübingen, Centre for Ophthalmology, Tübingen, Germany
| |
Collapse
|
37
|
Kuehn S, Hurst J, Rensinghoff F, Tsai T, Grauthoff S, Satgunarajah Y, Dick HB, Schnichels S, Joachim SC. Degenerative effects of cobalt-chloride treatment on neurons and microglia in a porcine retina organ culture model. Exp Eye Res 2017; 155:107-120. [PMID: 28089775 DOI: 10.1016/j.exer.2017.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/20/2016] [Accepted: 01/11/2017] [Indexed: 01/08/2023]
Abstract
In order to understand the pathological processes of retinal diseases, experimental models are necessary. Cobalt, as part of the vitamin B12 complex, is important for neuronal integrity. However, it is known that high quantities of cobalt induce cytotoxic mechanisms via hypoxia mimicry. Therefore, we tested the degenerative effect of cobalt chloride (CoCl2) on neurons and microglia in a porcine retina organ culture model. Organotypic cultures of porcine retinas were cultured and treated with different concentrations of CoCl2 (0, 100, 300 and 500 μM) for 48 h. After four and eight days, CoCl2 induced a strong degeneration of the porcine retina, starting at 300 μM. A loss of retinal ganglion cells (RGCs, Brn-3a), amacrine cells (calretinin) and bipolar cells (PKCα) was observed. Additionally, a high expression of hypoxia induced factor-1a (HIF-1a) and heat shock protein 70 (HSP70) was noted at both points in time. Also, the Caspase 3 protein was activated and P21 expression was induced. However, only at day four, the Bax/Bcl-2 ratio was increased. The effect of CoCl2 was not restricted to neurons. CoCl2 concentrations reduced the microglia amount (Iba1) and activity (Iba1 + Fcγ-Receptor) at both points in time. These damaging effects on microglia were surprising, since CoCl2 causes hypoxia and a pro-inflammatory environment. However, high concentrations of CoCl2 also seem to be toxic to these cells. Similar degenerative mechanisms as in comparison to retinal ischemia animal models were observed. In summary, an effective and reproducible hypoxia-mimicking organotypic model for retinal degeneration was established, which is easy to handle and ready for drug studies.
Collapse
Affiliation(s)
- S Kuehn
- Experimental Eye Research, Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - J Hurst
- University Eye Hospital Tübingen, Centre for Ophthalmology, Elfriede-Aulhorn-Str. 7, 72076, Tübingen, Germany
| | - F Rensinghoff
- Experimental Eye Research, Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - T Tsai
- Experimental Eye Research, Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - S Grauthoff
- Experimental Eye Research, Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Y Satgunarajah
- Experimental Eye Research, Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - H B Dick
- Experimental Eye Research, Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - S Schnichels
- University Eye Hospital Tübingen, Centre for Ophthalmology, Elfriede-Aulhorn-Str. 7, 72076, Tübingen, Germany.
| | - S C Joachim
- Experimental Eye Research, Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany.
| |
Collapse
|
38
|
Abstract
Diabetes mellitus represents a growing international public health issue with a near quadrupling in its worldwide prevalence since 1980. Though it has many known microvascular complications, vision loss from diabetic retinopathy is one of the most devastating for affected individuals. In addition, there is increasing evidence to suggest that diabetic patients have a greater risk for glaucoma as well. Though the pathophysiology of glaucoma is not completely understood, both diabetes and glaucoma appear to share some common risk factors and pathophysiologic similarities with studies also reporting that the presence of diabetes and elevated fasting glucose levels are associated with elevated intraocular pressure-the primary risk factor for glaucomatous optic neuropathy. While no study has completely addressed the possibility of detection bias, most recent epidemiologic evidence suggests that diabetic populations are likely enriched with glaucoma patients. As the association between diabetes and glaucoma becomes better defined, routine evaluation for glaucoma in diabetic patients, particularly in the telemedicine setting, may become a reasonable consideration to reduce the risk of vision loss in these patients.
Collapse
Affiliation(s)
- Brian J Song
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA.
| | - Lloyd Paul Aiello
- Beetham Eye Institute, Joslin Diabetes Center, Harvard Medical School, 1 Joslin Place, Boston, MA, 02115, USA
| | - Louis R Pasquale
- Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, MA, 02114, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02215, USA
| |
Collapse
|
39
|
Laughter MR, Ammar DA, Bardill JR, Pena B, Kahook MY, Lee DJ, Park D. A Self-Assembling Injectable Biomimetic Microenvironment Encourages Retinal Ganglion Cell Axon Extension in Vitro. ACS APPLIED MATERIALS & INTERFACES 2016; 8:20540-8. [PMID: 27434231 PMCID: PMC5752433 DOI: 10.1021/acsami.6b04679] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sensory-somatic nervous system neurons, such as retinal ganglion cells (RGCs), are typically thought to be incapable of regenerating. However, it is now known that these cells may be stimulated to regenerate by providing them with a growth permissive environment. We have engineered an injectable microenvironment designed to provide growth-stimulating cues for RGC culture. Upon gelation, this injectable material not only self-assembles into laminar sheets, similar to retinal organization, but also possesses a storage modulus comparable to that of retinal tissue. Primary rat RGCs were grown, stained, and imaged in this three-dimensional scaffold. We were able to show that RGCs grown in this retina-like structure exhibited characteristic long, prominent axons. In addition, RGCs showed a consistent increase in average axon length and neurite-bearing ratio over the 7 day culture period, indicating this scaffold is capable of supporting substantial RGC axon extension.
Collapse
Affiliation(s)
- Melissa R. Laughter
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - David A. Ammar
- Department of Ophthalmology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - James R. Bardill
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Brisa Pena
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Malik Y. Kahook
- Department of Ophthalmology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - David J. Lee
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
40
|
Pizzirani S. Definition, Classification, and Pathophysiology of Canine Glaucoma. Vet Clin North Am Small Anim Pract 2016; 45:1127-57, v. [PMID: 26456751 DOI: 10.1016/j.cvsm.2015.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glaucoma is a common ocular condition in humans and dogs leading to optic nerve degeneration and irreversible blindness. Primary glaucoma is a group of spontaneous heterogeneous diseases. Multiple factors are involved in its pathogenesis and these factors vary across human ethnic groups and canine breeds, so the clinical phenotypes are numerous and their classification can be challenging and remain superficial. Aging and oxidative stress are major triggers for the manifestation of disease. Multiple, intertwined inflammatory and biochemical cascades eventually alter cellular and extracellular physiology in the optic nerve and trabecular meshwork and lead to vision loss.
Collapse
Affiliation(s)
- Stefano Pizzirani
- Ophthalmology, Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA.
| |
Collapse
|
41
|
Yang H, Ren R, Lockwood H, Williams G, Libertiaux V, Downs C, Gardiner SK, Burgoyne CF. The Connective Tissue Components of Optic Nerve Head Cupping in Monkey Experimental Glaucoma Part 1: Global Change. Invest Ophthalmol Vis Sci 2016; 56:7661-78. [PMID: 26641545 DOI: 10.1167/iovs.15-17624] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To characterize optic nerve head (ONH) connective tissue change within 21 monkey experimental glaucoma (EG) eyes, so as to identify its principal components. METHODS Animals were imaged three to five times at baseline then every 2 weeks following chronic unilateral IOP elevation, and euthanized early through end-stage confocal scanning laser tomographic change. Optic nerve heads were serial-sectioned, three-dimensionally (3D) reconstructed, delineated, and quantified. Overall EG versus control eye differences were assessed by general estimating equations (GEE). Significant, animal-specific, EG eye change was required to exceed the maximum physiologic intereye differences in six healthy animals. RESULTS Overall EG eye change was significant (P < 0.0026) and animal-specific EG eye change most frequent, for five phenomena (number of EG eyes and range of animal-specific change): posterior laminar deformation (21, -29 to -437 μm), laminar thickening (11, 20-73 μm) and thinning (3, -23 to -31 μm), scleral canal expansion (17, 20-139 μm), outward anterior (16, -16 to -124 μm) and posterior (17, -22 to -279 μm) laminar insertion migration, and peripapillary scleral bowing (11, 21-77 μm). Experimental glaucoma versus control eye laminar thickness differences were bimodal in behavior, being thickened in most EG eyes demonstrating the least deformation and less thickened or thinned in most EG eyes demonstrating the greatest deformation. CONCLUSIONS Our postmortem studies retrospectively identify five connective tissue components of ONH "cupping" in monkey EG which serve as targets for longitudinally staging and phenotyping ONH connective tissue alteration within all forms of monkey and human optic neuropathy.
Collapse
Affiliation(s)
- Hongli Yang
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, Oregon, United States 2Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, Oregon, United States
| | - Ruojin Ren
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, Oregon, United States 2Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, Oregon, United States
| | - Howard Lockwood
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, Oregon, United States 2Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, Oregon, United States
| | - Galen Williams
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, Oregon, United States 2Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, Oregon, United States
| | - Vincent Libertiaux
- Department of Ophthalmology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Crawford Downs
- Department of Ophthalmology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Stuart K Gardiner
- Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, Oregon, United States
| | - Claude F Burgoyne
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, Oregon, United States 2Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, Oregon, United States
| |
Collapse
|
42
|
Nguyen TD, Ethier CR. Biomechanical assessment in models of glaucomatous optic neuropathy. Exp Eye Res 2015; 141:125-38. [PMID: 26115620 PMCID: PMC4628840 DOI: 10.1016/j.exer.2015.05.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/20/2015] [Accepted: 05/31/2015] [Indexed: 01/26/2023]
Abstract
The biomechanical environment within the eye is of interest in both the regulation of intraocular pressure and the loss of retinal ganglion cell axons in glaucomatous optic neuropathy. Unfortunately, this environment is complex and difficult to determine. Here we provide a brief introduction to basic concepts of mechanics (stress, strain, constitutive relationships) as applied to the eye, and then describe a variety of experimental and computational approaches used to study ocular biomechanics. These include finite element modeling, direct experimental measurements of tissue displacements using optical and other techniques, direct experimental measurement of tissue microstructure, and combinations thereof. Thanks to notable technical and conceptual advances in all of these areas, we are slowly gaining a better understanding of how tissue biomechanical properties in both the anterior and posterior segments may influence the development of, and risk for, glaucomatous optic neuropathy. Although many challenging research questions remain unanswered, the potential of this body of work is exciting; projects underway include the coupling of clinical imaging with biomechanical modeling to create new diagnostic tools, development of IOP control strategies based on improved understanding the mechanobiology of the outflow tract, and attempts to develop novel biomechanically-based therapeutic strategies for preservation of vision in glaucoma.
Collapse
Affiliation(s)
- Thao D Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - C Ross Ethier
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA; Department of Mechanical Engineering, Georgia Institute of Technology, USA; Institute of Biosciences and Bioengineering, Georgia Institute of Technology, USA; Department of Ophthalmology, Emory University, USA.
| |
Collapse
|
43
|
Zhao L, Sendek C, Davoodnia V, Lashgari R, Dul MW, Zaidi Q, Alonso JM. Effect of Age and Glaucoma on the Detection of Darks and Lights. Invest Ophthalmol Vis Sci 2015; 56:7000-6. [PMID: 26513506 DOI: 10.1167/iovs.15-16753] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We have shown previously that normal observers detect dark targets faster and more accurately than light targets, when presented in noisy backgrounds. We investigated how these differences in detection time and accuracy are affected by age and ganglion cell pathology associated with glaucoma. METHODS We asked 21 glaucoma patients, 21 age-similar controls, and 5 young control observers to report as fast as possible the number of 1 to 3 light or dark targets. The targets were positioned at random in a binary noise background, within the central 30° of the visual field. RESULTS We replicate previous findings that darks are detected faster and more accurately than lights. We extend these findings by demonstrating that differences in detection of darks and lights are found reliably across different ages and in observers with glaucoma. We show that differences in detection time increase at a rate of approximately 55 msec/dB at early stages of glaucoma and then remain constant at later stages at approximately 800 msec. In normal subjects, differences in detection time increase with age at a rate of approximately 8 msec/y. We also demonstrate that the accuracy to detect lights and darks is significantly correlated with the severity of glaucoma and that the mean detection time is significantly longer for subjects with glaucoma than age-similar controls. CONCLUSIONS We conclude that differences in detection of darks and lights can be demonstrated over a wide range of ages, and asymmetries in dark/light detection increase with age and early stages of glaucoma.
Collapse
Affiliation(s)
- Linxi Zhao
- Department of Biological and Visual Sciences State University of New York, College of Optometry, New York, New York, United States
| | - Caroline Sendek
- Department of Biological and Visual Sciences State University of New York, College of Optometry, New York, New York, United States
| | - Vandad Davoodnia
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| | - Reza Lashgari
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| | - Mitchell W Dul
- Department of Biological and Visual Sciences State University of New York, College of Optometry, New York, New York, United States
| | - Qasim Zaidi
- Department of Biological and Visual Sciences State University of New York, College of Optometry, New York, New York, United States
| | - Jose-Manuel Alonso
- Department of Biological and Visual Sciences State University of New York, College of Optometry, New York, New York, United States
| |
Collapse
|
44
|
The non-human primate experimental glaucoma model. Exp Eye Res 2015; 141:57-73. [PMID: 26070984 DOI: 10.1016/j.exer.2015.06.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 01/05/2023]
Abstract
The purpose of this report is to summarize the current strengths and weaknesses of the non-human primate (NHP) experimental glaucoma (EG) model through sections devoted to its history, methods, important findings, alternative optic neuropathy models and future directions. NHP EG has become well established for studying human glaucoma in part because the NHP optic nerve head (ONH) shares a close anatomic association with the human ONH and because it provides the only means of systematically studying the very earliest visual system responses to chronic intraocular pressure (IOP) elevation, i.e. the conversion from ocular hypertension to glaucomatous damage. However, NHPs are impractical for studies that require large animal numbers, demonstrate spontaneous glaucoma only rarely, do not currently provide a model of the neuropathy at normal levels of IOP, and cannot easily be genetically manipulated, except through tissue-specific, viral vectors. The goal of this summary is to direct NHP EG and non-NHP EG investigators to the previous, current and future accomplishment of clinically relevant knowledge in this model.
Collapse
|
45
|
Ju WK, Kim KY, Noh YH, Hoshijima M, Lukas TJ, Ellisman MH, Weinreb RN, Perkins GA. Increased mitochondrial fission and volume density by blocking glutamate excitotoxicity protect glaucomatous optic nerve head astrocytes. Glia 2015; 63:736-53. [PMID: 25557093 PMCID: PMC4373968 DOI: 10.1002/glia.22781] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/03/2014] [Indexed: 12/31/2022]
Abstract
Abnormal structure and function of astrocytes have been observed within the lamina cribrosa region of the optic nerve head (ONH) in glaucomatous neurodegeneration. Glutamate excitotoxicity-mediated mitochondrial alteration has been implicated in experimental glaucoma. However, the relationships among glutamate excitotoxicity, mitochondrial alteration and ONH astrocytes in the pathogenesis of glaucoma remain unknown. We found that functional N-methyl-d-aspartate (NMDA) receptors (NRs) are present in human ONH astrocytes and that glaucomatous human ONH astrocytes have increased expression levels of NRs and the glutamate aspartate transporter. Glaucomatous human ONH astrocytes exhibit mitochondrial fission that is linked to increased expression of dynamin-related protein 1 and its phosphorylation at Serine 616. In BAC ALDH1L1 eGFP or Thy1-CFP transgenic mice, NMDA treatment induced axon loss as well as hypertrophic morphology and mitochondrial fission in astrocytes of the glial lamina. In human ONH astrocytes, NMDA treatment in vitro triggered mitochondrial fission by decreasing mitochondrial length and number, thereby reducing mitochondrial volume density. However, blocking excitotoxicity by memantine (MEM) prevented these alterations by increasing mitochondrial length, number and volume density. In glaucomatous DBA/2J (D2) mice, blocking excitotoxicity by MEM inhibited the morphological alteration as well as increased mitochondrial number and volume density in astrocytes of the glial lamina. However, blocking excitotoxicity decreased autophagosome/autolysosome volume density in both astrocytes and axons in the glial lamina of glaucomatous D2 mice. These findings provide evidence that blocking excitotoxicity prevents ONH astrocyte dysfunction in glaucomatous neurodegeneration by increasing mitochondrial fission, increasing mitochondrial volume density and length, and decreasing autophagosome/autolysosome formation. GLIA 2015;63:736-753.
Collapse
Affiliation(s)
- Won-Kyu Ju
- Department of Ophthalmology, Laboratory for Optic Nerve Biology, Hamilton Glaucoma Center, University of California San DiegoLa Jolla, California
| | - Keun-Young Kim
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San DiegoLa Jolla, California
| | - You Hyun Noh
- Department of Ophthalmology, Laboratory for Optic Nerve Biology, Hamilton Glaucoma Center, University of California San DiegoLa Jolla, California
| | - Masahiko Hoshijima
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San DiegoLa Jolla, California
- Department of Medicine, University of California San DiegoLa Jolla, California
| | - Thomas J Lukas
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern UniversityChicago, Illinois
| | - Mark H Ellisman
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San DiegoLa Jolla, California
| | - Robert N Weinreb
- Department of Ophthalmology, Laboratory for Optic Nerve Biology, Hamilton Glaucoma Center, University of California San DiegoLa Jolla, California
| | - Guy A Perkins
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San DiegoLa Jolla, California
| |
Collapse
|
46
|
Li Y, Li D, Ying X, Khaw PT, Raisman G. An energy theory of glaucoma. Glia 2015; 63:1537-52. [PMID: 25808326 DOI: 10.1002/glia.22825] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 11/11/2022]
Abstract
A radial array of fortified astrocytes (FASTs) is the load bearing structure of the rat optic nerve head (ONH). At the retinal end the ONH is suspended on a fluid filled extracellular space occupied by modified pigment cells which generate a glomerular-like formation of villi. We propose that regulation of fluid in and out of this space may contribute to buffering the normal fluctuations of intraocular pressure. The energy requirement for the fluid transfer process is provided by the dense vascularity of the ONH and is reflected in the giant mitochondria of the FASTs. We propose that glaucoma occurs when a maintained rise in pressure overwhelms the capacity of this regulatory system. Under these circumstances the FAST array becomes detached from its anchorage in the surrounding ONH sheath. Progressively driven backwards by the pressure, the FASTs degenerate. We propose that the degeneration of the FASTs is associated with ischemic damage caused by the backward stretching of their blood supply. Retraction of the FAST processes deprives the retinal ganglion cell axons of their energy support, resulting in axotomy. We consider that our previously observed rescue of axons and FASTs by transplantation of olfactory ensheathing cells is due to replacement of this lost energy source.
Collapse
Affiliation(s)
- Ying Li
- Department of Brain Repair and Rehabilitation, Spinal Research Unit, UCL Institute of Neurology, London, United Kingdom
| | - Daqing Li
- Department of Brain Repair and Rehabilitation, Spinal Research Unit, UCL Institute of Neurology, London, United Kingdom
| | - Xi Ying
- Department of Ophthalmology, Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China
| | - Peng T Khaw
- NIHR Biomedical Research Centre Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | - Geoffrey Raisman
- Department of Brain Repair and Rehabilitation, Spinal Research Unit, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
47
|
[Structural alterations during the course of glaucoma disease]. Ophthalmologe 2015; 112:410-7. [PMID: 25701239 DOI: 10.1007/s00347-014-3152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Structural changes in the course of glaucoma disease affect the trabecular meshwork and ciliary body in addition to the optic disc as the primary site of glaucoma damage. OBJECTIVES Latest results from experimental studies, animal models and measurements in human eyes are presented and discussed. RESULTS The presenting scenario is complex with age, biochemical and mechanical stress factors leading to subsequent, irreversible tissue change in the trabecular meshwork and cribriform plate of the optic nerve, resulting in neuronal tissue loss. CONCLUSION Knowledge of these changes will be the key for future glaucoma therapies.
Collapse
|
48
|
Doucette LP, Rasnitsyn A, Seifi M, Walter MA. The interactions of genes, age, and environment in glaucoma pathogenesis. Surv Ophthalmol 2015; 60:310-26. [PMID: 25907525 DOI: 10.1016/j.survophthal.2015.01.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 12/30/2022]
Abstract
Glaucoma, a progressive degenerative condition that results in the death of retinal ganglion cells, is one of the leading causes of blindness, affecting millions worldwide. The mechanisms underlying glaucoma are not well understood, although years of studies have shown that the largest risk factors are elevated intraocular pressure, age, and genetics. Eleven genes and multiple loci have been identified as contributing factors. These genes act by a number of mechanisms, including mechanical stress, ischemic/oxidative stress, and neurodegeneration. We summarize the recent advances in the understanding of glaucoma and propose a unified hypothesis for glaucoma pathogenesis. Glaucoma does not result from a single pathological mechanism, but rather a combination of pathways that are influenced by genes, age, and environment. In particular, we hypothesize that, in the presence of genetic risk factors, exposure to environment stresses results in an earlier age of onset for glaucoma. This hypothesis is based upon the overlap of the molecular pathways in which glaucoma genes are involved. Because of the interactions between these processes, it is likely that there are common therapies that may be effective for different subtypes of glaucoma.
Collapse
Affiliation(s)
- Lance P Doucette
- Faculty of Medicine and Dentistry, Department of Medical Genetics, Edmonton, Alberta T6G 2H7, Canada
| | - Alexandra Rasnitsyn
- Faculty of Medicine and Dentistry, Department of Medical Genetics, Edmonton, Alberta T6G 2H7, Canada
| | - Morteza Seifi
- Faculty of Medicine and Dentistry, Department of Medical Genetics, Edmonton, Alberta T6G 2H7, Canada
| | - Michael A Walter
- Faculty of Medicine and Dentistry, Department of Medical Genetics, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
49
|
Yasuda M, Tanaka Y, Nishiguchi KM, Ryu M, Tsuda S, Maruyama K, Nakazawa T. Retinal transcriptome profiling at transcription start sites: a cap analysis of gene expression early after axonal injury. BMC Genomics 2014; 15:982. [PMID: 25407019 PMCID: PMC4246558 DOI: 10.1186/1471-2164-15-982] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/23/2014] [Indexed: 12/01/2022] Open
Abstract
Background Glaucoma is characterized by progressive loss of the visual field and death of retinal ganglion cells (RGCs), a process that is mediated, in part, by axonal injury. However, the molecular pathomechanisms linking RGC death and axonal injury remain largely unknown. Here, we examined these mechanisms with a cap analysis of gene expression (CAGE), which allows the comprehensive quantification of transcription initiation across the entire genome. We aimed to identify changes in gene expression patterns and to predict the resulting alterations in the protein network in the early phases of axonal injury in mice. Results We performed optic nerve crush (ONC) in mice to model axonal injury. Two days after ONC, the retinas were isolated, RNA was extracted, and a CAGE library was constructed and sequenced. CAGE data for ONC eyes and sham-treated eyes was compared, revealing 180 differentially expressed genes. Among them, the Bcat1 gene, involved in the catabolism of branched-chain amino acid transaminase, showed the largest change in expression (log2 fold-change = 6.70). In some differentially expressed genes, alternative transcription start sites were observed in the ONC eyes, highlighting the dynamism of transcription initiation in a state of disease. In silico pathway analysis predicted that ATF4 was the most significant upstream regulator orchestrating pathological processes after ONC. Its downstream candidate targets included Ddit3, which is known to induce cell death under endoplasmic reticulum stress. In addition, a regulatory network comprising IFNG, P38 MAPK, and TP53 was predicted to be involved in the induction of cell death. Conclusion Through CAGE, we have identified differentially expressed genes that may account for the link between axonal injury and RGC death. Furthermore, an in silico pathway analysis provided a global view of alterations in the networks of key regulators of biological pathways that presumably take place in ONC. We thus believe that our study serves as a valuable resource to understand the molecular processes that define axonal injury-driven RGC death. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-982) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan.
| |
Collapse
|
50
|
Wong M, Li Y, Li S, Zhang S, Li W, Zhang P, Chen C, Barnstable CJ, Zhang SS, Zhang C, Huang P. Therapeutic Retrobulbar Inhibition of STAT3 Protects Ischemic Retina Ganglion Cells. Mol Neurobiol 2014; 52:1364-1377. [DOI: 10.1007/s12035-014-8945-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/16/2014] [Indexed: 12/14/2022]
|