1
|
Hsieh LE, Song J, Tremoulet AH, Burns JC, Franco A. Intravenous immunoglobulin induces IgG internalization by tolerogenic myeloid dendritic cells that secrete IL-10 and expand Fc-specific regulatory T cells. Clin Exp Immunol 2022; 208:361-371. [PMID: 35536993 PMCID: PMC9226148 DOI: 10.1093/cei/uxac046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is used as an immunomodulatory agent in many inflammatory conditions including Multisystem Inflammatory Syndrome-Children (MIS-C) and Kawasaki disease (KD). However, the exact mechanisms underlying its anti-inflammatory action are incompletely characterized. Here, we show that in KD, a pediatric acute vasculitis that affects the coronary arteries, IVIG induces a repertoire of natural Treg that recognize immunodominant peptides in the Fc heavy chain constant region. To address which antigen-presenting cell (APC) populations present Fc peptides to Treg, we studied the uptake of IgG by innate cells in subacute KD patients 2 weeks after IVIG and in children 1.6–14 years after KD. Healthy adults served as controls. IgG at high concentrations was internalized predominantly by two myeloid dendritic cell (DC) lineages, CD14+ cDC2 and ILT-4+ CD4+ tmDC mostly through Fcγ receptor (R) II and to a lesser extent FcγRIII. Following IgG internalization, these two DC lineages secreted IL-10 and presented processed Fc peptides to Treg. The validation of IVIG function in expanding Fc-specific Treg presented by CD14+ cDC2 and ILT-4+ CD4+ tmDC was addressed in a small cohort of patients with MIS-C. Taken together, these results suggest a novel immune regulatory function of IgG in activating tolerogenic innate cells and expanding Treg, which reveals an important anti-inflammatory mechanism of action of IVIG.
Collapse
Affiliation(s)
- Li-En Hsieh
- University of California San Diego, School of Medicine, Department of Pediatrics, La Jolla, CA 92093-0641, USA
| | - Jaeyoon Song
- University of California San Diego, School of Medicine, Department of Pediatrics, La Jolla, CA 92093-0641, USA
| | - Adriana H Tremoulet
- University of California San Diego, School of Medicine, Department of Pediatrics, La Jolla, CA 92093-0641, USA.,Rady Children's Hospital, San Diego, CA 92123, USA
| | - Jane C Burns
- University of California San Diego, School of Medicine, Department of Pediatrics, La Jolla, CA 92093-0641, USA.,Rady Children's Hospital, San Diego, CA 92123, USA
| | - Alessandra Franco
- University of California San Diego, School of Medicine, Department of Pediatrics, La Jolla, CA 92093-0641, USA
| |
Collapse
|
2
|
CCL21 and beta-cell antigen releasing hydrogels as tolerance-inducing therapy in Type I diabetes. J Control Release 2022; 348:499-517. [PMID: 35691500 DOI: 10.1016/j.jconrel.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022]
Abstract
Type-I Diabetes (T1D) is caused by defective immunotolerance mechanisms enabling autoreactive T cells to escape regulation in lymphoid organs and destroy insulin-producing β-cells in the pancreas, leading to insulin dependence. Strategies to promote β-cell tolerance could arrest T1D. We previously showed that secretion of secondary lymphoid chemokine CCL21 by CCL21 transgenic β-cells induced tolerance and protected non-obese diabetic (NOD) mice from T1D. T1D protection was associated with formation of lymph node-like stromal networks containing tolerogenic fibroblastic reticular cells (FRCs). Here, we developed a polyethylene glycol (PEG) hydrogel platform with hydrolytically degradable PEG-diester dithiol crosslinkers to provide controlled and sustained delivery of CCL21 and β-cell antigens for at least 28 days in vitro and recapitulate properties associated with the tolerogenic environment of CCL21 transgenic β-cells in our previous studies. CCL21 and MHC-II restricted antigens were tethered to gels via simple click-chemistry while MHC-I restricted antigens were loaded in PEG-based polymeric nanovesicles and incorporated in the gel networks. CCL21 and antigen release kinetics depended on the PEG gel tethering strategy and the linkers. Importantly, in vitro functionality, chemotaxis, and activation of antigen-specific T cells were preserved. Implantation of CCL21 and β-cell antigen gels under the kidney capsule of pre-diabetic NOD mice led to enrichment of adoptively transferred antigen-specific T cells, formation of gp38 + FRC-like stromal cell networks, and increased regulation of specific T cells with reduced accumulation within pancreatic islets. Thus, our platform for sustained release of β-cell antigens and CCL21 immunomodulatory molecule could enable the development of antigen-specific tolerance therapies for T1D.
Collapse
|
3
|
Aran A, Peg V, Rabanal RM, Bernadó C, Zamora E, Molina E, Arribas YA, Arribas J, Pérez J, Roura-Mir C, Carrascal M, Cortés J, Martí M. Epstein-Barr Virus+ B Cells in Breast Cancer Immune Response: A Case Report. Front Immunol 2021; 12:761798. [PMID: 34868006 PMCID: PMC8637110 DOI: 10.3389/fimmu.2021.761798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
EBV-specific T cells have been recently described to be involved in fatal encephalitis and myocarditis in cancer patients after immune checkpoint therapies. Here, we report the study of a human triple-negative breast cancer tumor (TNBC) and EBV-transformed B cells obtained from a patient-derived xenograft (PDX) that progressed into a lymphocytic neoplasm named xenograft-associated B-cell lymphoma (XABCL). T-cell receptor (TCR) high-throughput sequencing was performed to monitor the T-cell clonotypes present in the different samples. Forty-three T-cell clonotypes were found infiltrating the XABCL tissue after three passes in mice along 6 months. Eighteen of these (42%) were also found in the TNBC biopsy. TCR infiltrating the XABCL tissue showed a very restricted T-cell repertoire as compared with the biopsy-infiltrating T cells. Consequently, T cells derived from the TNBC biopsy were expanded in the presence of the B-cell line obtained from the XABCL (XABCL-LCL), after which the TCR repertoire obtained was again very restricted, i.e., only certain clonotypes were selected by the B cells. A number of these TCRs had previously been reported as sequences involved in infection, cancer, and/or autoimmunity. We then analyzed the immunopeptidome from the XABCL-LCL, to identify putative B-cell-associated peptides that might have been expanding these T cells. The HLA class I and class II-associated peptides from XABCL-LCL were then compared with published repertoires from LCL of different HLA typing. Proteins from the antigen processing and presentation pathway remained significantly enriched in the XABCL-LCL repertoire. Interestingly, some class II-presented peptides were derived from cancer-related proteins. These results suggest that bystander tumor-infiltrating EBV+ B cells acting as APC may be able to interact with tumor-infiltrating T cells and influence the TCR repertoire in the tumor site.
Collapse
Affiliation(s)
- Andrea Aran
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Vicente Peg
- Translational Molecular Pathology, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Rosa Maria Rabanal
- Unitat de Patologia Murina i Comparada, Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Cristina Bernadó
- Preclinical and Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Esther Zamora
- Breast Cancer Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Elisa Molina
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Yago A Arribas
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Joaquín Arribas
- Preclinical and Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - José Pérez
- International Breast Cancer Center (BCC), Quironsalud Group, Barcelona, Spain
| | - Carme Roura-Mir
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Montserrat Carrascal
- Biological and Environmental Proteomics, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IIBB-CSIC/IDIBAPS), Barcelona, Spain
| | - Javier Cortés
- Breast Cancer Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Barcelona, Spain.,International Breast Cancer Center (BCC), Quironsalud Group, Barcelona, Spain
| | - Mercè Martí
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| |
Collapse
|
4
|
Hsieh LE, Sidney J, Burns JC, Boyle DL, Firestein GS, Altman Y, Sette A, Franco A. IgG Epitopes Processed and Presented by IgG + B Cells Induce Suppression by Human Thymic-Derived Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:1194-1203. [PMID: 33579724 DOI: 10.4049/jimmunol.2001009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/06/2021] [Indexed: 01/27/2023]
Abstract
We described a human regulatory T cell (Treg) population activated by IgG+ B cells presenting peptides of the heavy C region (Fc) via processing of the surface IgG underlying a model for B cell-Treg cooperation in the human immune regulation. Functionally, Treg inhibited the polarization of naive T cells toward a proinflammatory phenotype in both a cognate and a noncognate fashion. Their fine specificities were similar in healthy donors and patients with rheumatoid arthritis, a systemic autoimmune disease. Four immunodominant Fc peptides bound multiple HLA class II alleles and were recognized by most subjects in the two cohorts. The presentation of Fc peptides that stimulate Treg through the processing of IgG by dendritic cells (DC) occurred in myeloid DC classical DC 1 and classical DC 2. Different routes of Ag processing of the IgG impacted Treg expansion in rheumatoid arthritis patients.
Collapse
Affiliation(s)
- Li-En Hsieh
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Jane C Burns
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - David L Boyle
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093; and
| | - Gary S Firestein
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92093; and
| | - Yoav Altman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Alessandra Franco
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
5
|
Wang M, Zhou J, He F, Cai C, Wang H, Wang Y, Lin Y, Rong H, Cheng G, Xu R, Zhou W. Alteration of gut microbiota-associated epitopes in children with autism spectrum disorders. Brain Behav Immun 2019; 75:192-199. [PMID: 30394313 DOI: 10.1016/j.bbi.2018.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/18/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) affects 1% of children and has no cure. Gastrointestinal (GI) problems are common in children with ASD, and although gut microbiota is known to play an important role in ASD through the gut-brain axis, the specific mechanism is unknown. Recent evidence suggests that gut microbiota may participate in the pathogenesis of ASD through immune- and inflammation-mediated pathways. Here, we identified potentially immunogenic epitopes derived from gut microbiota in stool samples from ASD children with and without GI problems and typically developing (TD) children. METHODS Candidate gut microbiota-associated epitopes (MEs) were identified by blast shotgun metagenomic sequencing of fecal samples from 43 ASD children (19 with and 24 without GI involvement) and 31 sex- and age-matched typically developing (TD) children. Potentially immunogenic epitopes were screened against a predictive human Immune Epitope Database. The composition and abundance of candidate MEs were compared between the three groups of children. RESULTS MEs identified in ASD children with GI problems were significantly more diverse than those in TD children. ME composition could discriminate between the three groups of children. We identified 34 MEs that were significantly more or less abundant in ASD children than TD children, most (29/34) of the differences in MEs were reduced in ASD and associated with abnormal gut IgA level and altered gut microbiota composition, these MEs were limited effected by clinical factors such as age, gender, and GI problems, of which eleven MEs were pathogenic microorganisms peptides with strong T or B cell response, nine MEs showed high homology to peptides from human self proteins associated with autoimmune disease occurrence, eliciting immune attack against hematopoietic stem cells and inhibition antigen binding. We also found that the abundance of five MEs were increased in ASD, including three human self proteins, gap junction alpha-1 (GJA1), paired box protein Pax-3 (PAX3) and eyes absent homolog 1 isoform 4 (EYA1) which associated with cancer, and a ME with homology to a Listeriolysin O peptide from the pathogenic bacterium Listeria monocytogenes was significantly increased in ASD children compared with TD children. CONCLUSIONS Our findings demonstrate the abnormal of MEs composition in the gut of children with ASD, moreover, the abnormality in MEs composition was associated with abnormal gut IgA levels and altered gut microbiota composition, this abnormality also suggests that there may be abnormalities in intestinal immunity in children with ASD; In all, thirty-four MEs identified were potential biomarker of ASD, and alterations in MEs may contribute to abnormalities in gut immunity and/or homeostasis in ASD children. Further study of the MEs identified here may advance our understanding of the pathogenesis of ASD.
Collapse
Affiliation(s)
- Mingbang Wang
- Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Xiamen Branch of Children's Hospital of Fudan University (Xiamen Children's Hospital), Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China.
| | - Jiaxiu Zhou
- Division of Psychology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Fusheng He
- Imunobio, Shenzhen, Guangdong 518001, China
| | - Chunquan Cai
- Division of Neurosurgery, Tianjin Children's Hospital, Tianjin 300134, China
| | - Hui Wang
- Xiamen Branch of Children's Hospital of Fudan University (Xiamen Children's Hospital), Xiamen, Fujian 361006, China
| | - Yan Wang
- Imunobio, Shenzhen, Guangdong 518001, China
| | - Yin Lin
- Division of Psychology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Han Rong
- Shenzhen Key Laboratory for Psychological Healthcare, Shenzhen Institute of Mental Health, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen 518020, China
| | - Guoqiang Cheng
- Division of Neonatology, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China
| | - Ruihuan Xu
- Clinical Laboratory, Longgang Central Hospital of Shenzhen, Guangdong 518116, China.
| | - Wenhao Zhou
- Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Xiamen Branch of Children's Hospital of Fudan University (Xiamen Children's Hospital), Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China.
| |
Collapse
|
6
|
Mestre-Ferrer A, Scholz E, Humet-Alsius J, Alvarez I. PRBAM: a new tool to analyze the MHC class I and HLA-DR anchor motifs. Immunology 2018; 156:187-198. [PMID: 30408168 DOI: 10.1111/imm.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/30/2022] Open
Abstract
Major histocompatibility complex (MHC) genes are highly polymorphic, which makes each MHC molecule different regarding their peptide repertoire, so they can bind and present to T lymphocytes. The increasing importance of immunopeptidomics and its use in personalized medicine in different fields such as oncology or autoimmunity demand the correct analysis of the peptide repertoires bound to human leukocyte antigen type 1 (HLA-I) and HLA-II molecules. Purification of the peptide pool by affinity chromatography and individual peptide sequencing using mass spectrometry techniques is the standard protocol to define the binding motifs of the different MHC-I and MHC-II molecules. The identification of MHC-I binding motifs is relatively simple, but it is more complicated for MHC-II. There are some programs that identify the anchor motifs of MHC-II molecules. However, these programs do not identify the anchor motif correctly for some HLA-II molecules and some anchor motifs have been deduced using subjective interpretation of the data. Here, we present a new software, called PRBAM (Peptide Repertoire-Based Anchor Motif) that uses a new algorithm based on the peptide-MHC interactions and, using peptide lists obtained by mass spectrometry sequencing, identifies the binding motif of MHC-I and HLA-DR molecules. PRBAM has an easy-to-use interface, and the results are presented in graphics, tables and peptide lists. Finally, the fact that PRBAM uses a new algorithm makes it complementary to other existing programs.
Collapse
Affiliation(s)
- Anna Mestre-Ferrer
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Erika Scholz
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Iñaki Alvarez
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
7
|
Schloss J, Ali R, Racine JJ, Chapman HD, Serreze DV, DiLorenzo TP. HLA-B*39:06 Efficiently Mediates Type 1 Diabetes in a Mouse Model Incorporating Reduced Thymic Insulin Expression. THE JOURNAL OF IMMUNOLOGY 2018; 200:3353-3363. [PMID: 29632144 DOI: 10.4049/jimmunol.1701652] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes (T1D) is characterized by T cell-mediated destruction of the insulin-producing β cells of the pancreatic islets. Among the loci associated with T1D risk, those most predisposing are found in the MHC region. HLA-B*39:06 is the most predisposing class I MHC allele and is associated with an early age of onset. To establish an NOD mouse model for the study of HLA-B*39:06, we expressed it in the absence of murine class I MHC. HLA-B*39:06 was able to mediate the development of CD8 T cells, support lymphocytic infiltration of the islets, and confer T1D susceptibility. Because reduced thymic insulin expression is associated with impaired immunological tolerance to insulin and increased T1D risk in patients, we incorporated this in our model as well, finding that HLA-B*39:06-transgenic NOD mice with reduced thymic insulin expression have an earlier age of disease onset and a higher overall prevalence as compared with littermates with typical thymic insulin expression. This was despite virtually indistinguishable blood insulin levels, T cell subset percentages, and TCR Vβ family usage, confirming that reduced thymic insulin expression does not impact T cell development on a global scale. Rather, it will facilitate the thymic escape of insulin-reactive HLA-B*39:06-restricted T cells, which participate in β cell destruction. We also found that in mice expressing either HLA-B*39:06 or HLA-A*02:01 in the absence of murine class I MHC, HLA transgene identity alters TCR Vβ usage by CD8 T cells, demonstrating that some TCR Vβ families have a preference for particular class I MHC alleles.
Collapse
Affiliation(s)
- Jennifer Schloss
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Riyasat Ali
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | | | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; .,Division of Endocrinology and Diabetes, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
8
|
Ritz D, Sani E, Debiec H, Ronco P, Neri D, Fugmann T. Membranal and Blood-Soluble HLA Class II Peptidome Analyses Using Data-Dependent and Independent Acquisition. Proteomics 2018; 18:e1700246. [PMID: 29314611 DOI: 10.1002/pmic.201700246] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/29/2017] [Indexed: 12/18/2022]
Abstract
The interaction between HLA class II peptide complexes on antigen-presenting cells and CD4+ T cells is of fundamental importance for anticancer and antipathogen immunity as well as for the maintenance of immunological tolerance. To study CD4+ T cell reactivities, detailed knowledge of the presented peptides is necessary. In recent years, dramatic advances in the characterization of membranal and soluble HLA class I peptidomes could be observed. However, the same is not true for HLA class II peptidomes, where only few studies identify more than hundred peptides. Here we describe a MS-based workflow for the characterization of membranal and soluble HLA class II DR and DQ peptidomes. Using this workflow, we identify a total of 8595 and 3727 HLA class II peptides from Maver-1 and DOHH2 cells, respectively. Based on this data, a motif-based binding predictor is developed and compared to NetMHCIIpan 3.1. We then apply the workflow to human plasma, resulting in the identification of between 34 and 152 HLA-DR and between 100 and 180 HLA-DQ peptides, respectively. Finally, we implement a data-independent acquisition workflow to increase reproducibility and sensitivity of HLA class II peptidome characterizations.
Collapse
Affiliation(s)
- Danilo Ritz
- Philochem AG, Libernstrasse 3, Otelfingen, Switzerland
| | | | - Hanna Debiec
- Inserm UMRS 1155, Hôpital Tenon, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Pierre Ronco
- Inserm UMRS 1155, Hôpital Tenon, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France
| | - Dario Neri
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Tim Fugmann
- Philochem AG, Libernstrasse 3, Otelfingen, Switzerland
| |
Collapse
|
9
|
Scholz EM, Marcilla M, Daura X, Arribas-Layton D, James EA, Alvarez I. Human Leukocyte Antigen (HLA)-DRB1*15:01 and HLA-DRB5*01:01 Present Complementary Peptide Repertoires. Front Immunol 2017; 8:984. [PMID: 28871256 PMCID: PMC5566978 DOI: 10.3389/fimmu.2017.00984] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/02/2017] [Indexed: 11/21/2022] Open
Abstract
Human leukocyte antigen (HLA)-DR15 is a haplotype associated with multiple sclerosis. It contains the two DRB* genes DRB1*1501 (DR2b) and DRB5*0101 (DR2a). The reported anchor motif of the corresponding HLA-DR molecules was determined in 1994 based on a small number of peptide ligands and binding assays. DR2a could display a set of peptides complementary to that presented by DR2b or, alternatively, a similar peptide repertoire but recognized in a different manner by T cells. It is known that DR2a and DR2b share some peptide ligands, although the degree of similarity of their associated peptidomes remains unclear. In addition, the contribution of each molecule to the global peptide repertoire presented by the HLA-DR15 haplotype has not been evaluated. We used mass spectrometry to analyze the peptide pools bound to DR2a and DR2b, identifying 169 and 555 unique peptide ligands of DR2a and DR2b, respectively. The analysis of these sets of peptides allowed the refinement of the corresponding binding motifs revealing novel anchor residues that had been overlooked in previous analyses. Moreover, the number of shared ligands between both molecules was low, indicating that DR2a and DR2b present complementary peptide repertoires to T cells. Finally, our analysis suggests that, quantitatively, both molecules contribute to the peptide repertoire presented by cells expressing the HLA-DR15 haplotype.
Collapse
Affiliation(s)
- Erika Margaret Scholz
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Immunology Unit, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Miguel Marcilla
- Proteomics Unit, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | - Eddie A James
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Iñaki Alvarez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Immunology Unit, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
10
|
Verbeke CS, Gordo S, Schubert DA, Lewin SA, Desai RM, Dobbins J, Wucherpfennig KW, Mooney DJ. Multicomponent Injectable Hydrogels for Antigen-Specific Tolerogenic Immune Modulation. Adv Healthc Mater 2017; 6:10.1002/adhm.201600773. [PMID: 28116870 PMCID: PMC5518671 DOI: 10.1002/adhm.201600773] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/14/2016] [Indexed: 12/27/2022]
Abstract
Biomaterial scaffolds that enrich and modulate immune cells in situ can form the basis for potent immunotherapies to elicit immunity or reëstablish tolerance. Here, the authors explore the potential of an injectable, porous hydrogel to induce a regulatory T cell (Treg) response by delivering a peptide antigen to dendritic cells in a noninflammatory context. Two methods are described for delivering the BDC peptide from pore-forming alginate gels in the nonobese diabetic mouse model of type 1 diabetes: encapsulation in poly(lactide-co-glycolide) (PLG) microparticles, or direct conjugation to the alginate polymer. While particle-based delivery leads to antigen-specific T cells responses in vivo, PLG particles alter the phenotype of the cells infiltrating the gels. Following gel-based peptide delivery, transient expansion of endogenous antigen-specific T cells is observed in the draining lymph nodes. Antigen-specific T cells accumulate in the gels, and, strikingly, ≈60% of the antigen-specific CD4+ T cells in the gels are Tregs. Antigen-specific T cells are also enriched in the pancreatic islets, and administration of peptide-loaded gels does not accelerate diabetes. This work demonstrates that a noninflammatory biomaterial system can generate antigen-specific Tregs in vivo, which may enable the development of new therapies for the treatment of transplant rejection or autoimmune diseases.
Collapse
Affiliation(s)
- Catia S Verbeke
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Susana Gordo
- Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | | | - Sarah A Lewin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Rajiv M Desai
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | | | | | - David J Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
11
|
Scholz E, Mestre-Ferrer A, Daura X, García-Medel N, Carrascal M, James EA, Kwok WW, Canals F, Álvarez I. A Comparative Analysis of the Peptide Repertoires of HLA-DR Molecules Differentially Associated With Rheumatoid Arthritis. Arthritis Rheumatol 2016; 68:2412-21. [PMID: 27158783 DOI: 10.1002/art.39736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/26/2016] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To evaluate similarity of the peptide repertoires bound to HLA-DR molecules that are differentially associated with rheumatoid arthritis (RA), and to define structural features of the shared peptides. METHODS Peptide pools bound to HLA-DRB1*01:01, HLA-DRB1*04:01, and HLA-DRB1*10:01 (RA associated) and those bound to HLA-DRB1*15:01 (non-RA-associated) were purified and analyzed by liquid chromatography (LC) matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MS) and LC-ion-trap MS. Peptide pools from each allotype were compared in terms of size, protein origin, composition, and affinity (both theoretical and experimental with some peptides). Finally, 1 peptide sequenced from DR1, DR4, and DR10, but not from DR15, was modeled in complex with all 4 HLA-DRB1 molecules and HLA-DRB5*01:01. RESULTS A total of 6,309 masses and 962 unique peptide sequences were compared. DR10 shared 29 peptides with DR1, 9 with DR4, and 1 with DR15; DR1 shared 6 peptides with DR4 and 9 with DR15; and DR4 and DR15 shared 4 peptides. The direct identification of peptide ligands indicated that DR1 and DR10 were the most similar molecules regarding the peptides that they could share. The peptides common to these molecules contained a high proportion of Leu at P4 and basic residues at P8 binding core positions. CONCLUSION The degree of overlap between peptide repertoires associated with different HLA-DR molecules is low. The repertoires associated with DR1 and DR10 have the highest similarity among the molecules analyzed (∼10% overlap). Among the peptides shared between DR1 and DR10, a high proportion contained Leu(4) and basic residues at the P8 position of the binding core.
Collapse
Affiliation(s)
- Erika Scholz
- Institut de Biotecnologia i de Biomedicina and Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anna Mestre-Ferrer
- Institut de Biotecnologia i de Biomedicina and Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Daura
- Institut de Biotecnologia i de Biomedicina and Universitat Autònoma de Barcelona, Bellaterra, Spain, and Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | | | - Montserrat Carrascal
- CSIC/UAB Proteomics Laboratory, IIBB-CSIC/Institut d'Investigacions Biomèdiques August Pi i Sunyer, Bellaterra, Spain
| | - Eddie A James
- Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Francesc Canals
- Vall d'Hebron University Hospital Research Institute Proteomics Laboratory, Barcelona, Spain
| | - Iñaki Álvarez
- Institut de Biotecnologia i de Biomedicina and Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
12
|
Payton A, Dawes P, Platt H, Morton CC, Moore DR, Massey J, Horan M, Ollier W, Munro KJ, Pendleton N. A role for HLA-DRB1*1101 and DRB1*0801 in cognitive ability and its decline with age. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:209-14. [PMID: 26473500 DOI: 10.1002/ajmg.b.32393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022]
Abstract
Cognitive abilities (memory, processing speed, vocabulary, and fluid intelligence) are correlated with educational attainment and occupational status, as well as physical and mental health. The variation in cognitive abilities observed within a population has a substantial genetic contribution (heritability ∼50%) and yet the identification of genetic polymorphisms from both genome-wide association and candidate studies have to date only uncovered a limited number of genetic variants that exert small genetic effects. Here we impute human leukocyte antigens (HLA) using existing genome-wide association data from 1,559 non-pathological elderly volunteers who have been followed for changes in cognitive functioning between a 12- and 18-year period. Specifically, we investigate DRB1*05 (*11/*12) and DRB1*01, which have previously been associated with cognitive ability. We also analyze DRB1*0801, which shares close sequence homology with DRB1*1101. Together with DRB1*1101, DRB1*0801 has been associated with several diseases including multiple sclerosis and primary biliary cirrhosis, which themselves are associated with cognitive impairment. We observed that both DRB1*0801 and DRB1*1101 were significantly associated with vocabulary ability (cross-sectional and longitudinal scores) and that the effects were in opposite directions with DRB1*0801 associated with lower score and faster decline. This opposing affect is similar to that reported by other groups in systemic lupus erythematosus, type 1 diabetes, and primary biliary cirrhosis. DRB1*0801 was also significantly associated with reduced memory ability. We observed no associations between cognitive abilities and DRB1*01 or DRB1*12.
Collapse
Affiliation(s)
- Antony Payton
- Centre for Integrated Genomic Medical Research, The University of Manchester, Manchester, UK.,Human Communication and Deafness, School of Psychological Sciences, The University of Manchester, Manchester, UK
| | - Piers Dawes
- Human Communication and Deafness, School of Psychological Sciences, The University of Manchester, Manchester, UK
| | - Hazel Platt
- Centre for Integrated Genomic Medical Research, The University of Manchester, Manchester, UK
| | - Cynthia C Morton
- Human Communication and Deafness, School of Psychological Sciences, The University of Manchester, Manchester, UK.,Departments of Obstetrics, Gynecology and Reproductive Biology and Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - David R Moore
- Human Communication and Deafness, School of Psychological Sciences, The University of Manchester, Manchester, UK
| | - Jonathan Massey
- Arthritis Research UK Centre for Genetics and Genomics, Musculoskeletal Research Group, The University of Manchester, Manchester, UK
| | - Michael Horan
- Centre for Clinical and Cognitive Neuroscience, Institute of Brain Behaviour and Mental Health, Salford Royal NHS Hospital, The University of Manchester, Manchester, UK
| | - William Ollier
- Centre for Integrated Genomic Medical Research, The University of Manchester, Manchester, UK
| | - Kevin J Munro
- Human Communication and Deafness, School of Psychological Sciences, The University of Manchester, Manchester, UK
| | - Neil Pendleton
- Centre for Clinical and Cognitive Neuroscience, Institute of Brain Behaviour and Mental Health, Salford Royal NHS Hospital, The University of Manchester, Manchester, UK
| |
Collapse
|
13
|
Espinosa G, Collado JA, Scholz E, Mestre-Ferrer A, Kuse N, Takiguchi M, Carrascal M, Canals F, Pujol-Borrell R, Jaraquemada D, Alvarez I. Peptides presented by HLA class I molecules in the human thymus. J Proteomics 2013; 94:23-36. [PMID: 24029068 DOI: 10.1016/j.jprot.2013.08.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 12/31/2022]
Abstract
UNLABELLED The thymus is the organ in which T lymphocytes mature. Thymocytes undergo exhaustive selection processes that require interactions between the TCRs and peptide-HLA complexes on thymus antigen-presenting cells. The thymic peptide repertoire associated with HLA molecules must mirror the peptidome that mature T cells will encounter at the periphery, including peptides that arise from tissue-restricted antigens. The transcriptome of specific thymus cell populations has been widely studied, but there are no data on the HLA-I peptidome of the human thymus. Here, we describe the HLA-I-bound peptide repertoire from thymus samples, showing that it is mostly composed of high-affinity ligands from cytosolic and nuclear proteins. Several proteins generated more than one peptide, and some redundant peptides were found in different samples, suggesting the existence of antigen immunodominance during the processes that lead to central tolerance. Three HLA-I ligands were found to be derived from proteins expressed by stromal cells, including one from the protein TBATA (or SPATIAL), which is present in the thymus, brain and testis. The expression of TBATA in medullary thymic epithelial cells has been reported to be AIRE dependent. Thus, this report describes the first identification of a thymus HLA-I natural ligand derived from an AIRE-dependent protein with restricted tissue expression. BIOLOGICAL SIGNIFICANCE We present the first description of the HLA-I-bound peptide repertoire from ex vivo thymus samples. This repertoire is composed of standard ligands from cytosolic and nuclear proteins. Some peptides seem to be dominantly presented to thymocytes in the thymus. Most importantly, some HLA-I associated ligands derived from proteins expressed by stromal cells, including one peptide, restricted by HLA-A*31:01, arising from an AIRE-dependent protein with restricted tissue expression.
Collapse
Affiliation(s)
- Gabriel Espinosa
- Immunology Unit, Department of Cell Biology, Physiology and Immunology and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Collado JA, Alvarez I, Ciudad MT, Espinosa G, Canals F, Pujol-Borrell R, Carrascal M, Abian J, Jaraquemada D. Composition of the HLA-DR-associated human thymus peptidome. Eur J Immunol 2013; 43:2273-82. [PMID: 23719902 DOI: 10.1002/eji.201243280] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/17/2013] [Accepted: 05/27/2013] [Indexed: 11/05/2022]
Abstract
Major histocompatibility complex class II (MHC-II) molecules bind to and display antigenic peptides on the surface of antigen-presenting cells (APCs). In the absence of infection, MHC-II molecules on APCs present self-peptides and interact with CD4(+) T cells to maintain tolerance and homeostasis. In the thymus, self-peptides bind to MHC-II molecules expressed by defined populations of APCs specialised for the different steps of T-cell selection. Cortical epithelial cells present peptides for positive selection, whereas medullary epithelial cells and dendritic cells are responsible for peptide presentation for negative selection. However, few data are available on the peptides presented by MHC molecules in the thymus. Here, we apply mass spectrometry to analyse and identify MHC-II-associated peptides from five fresh human thymus samples. The data show a diverse self-peptide repertoire, mostly consisting of predicted MHC-II high binders. Despite technical limitations preventing single cell population analyses of peptides, these data constitute the first direct assessment of the HLA-II-bound peptidome and provide insight into how this peptidome is generated and how it drives T-cell repertoire formation.
Collapse
Affiliation(s)
- Javier A Collado
- Immunology Unit, Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain; Departament de Biologia Cel·lular, Fisiologia i Immunologia (BCFI), Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yakubu A, Salako AE, De Donato M, Takeet MI, Peters SO, Adefenwa MA, Okpeku M, Wheto M, Agaviezor BO, Sanni TM, Ajayi OO, Onasanya GO, Ekundayo OJ, Ilori BM, Amusan SA, Imumorin IG. Genetic Diversity in Exon 2 of the Major Histocompatibility Complex Class II DQB1 Locus in Nigerian Goats. Biochem Genet 2013; 51:954-66. [DOI: 10.1007/s10528-013-9620-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 02/13/2013] [Indexed: 10/26/2022]
|
16
|
Chow IT, James EA, Gates TJ, Tan V, Moustakas AK, Papadopoulos GK, Kwok WW. Differential binding of pyruvate dehydrogenase complex-E2 epitopes by DRB1*08:01 and DRB1*11:01 Is predicted by their structural motifs and correlates with disease risk. THE JOURNAL OF IMMUNOLOGY 2013; 190:4516-24. [PMID: 23543758 DOI: 10.4049/jimmunol.1202445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DRB1*08:01 (DR0801) and DRB1*11:01 (DR1101) are highly homologous alleles that have opposing effects on susceptibility to primary biliary cirrhosis (PBC). DR0801 confers risk and shares a key feature with other HLA class II alleles that predispose to autoimmunity: a nonaspartic acid at beta57. DR1101 is associated with protection from PBC, and its sequence includes an aspartic acid at beta57. To elucidate a mechanism for the opposing effects of these HLA alleles on PBC susceptibility, we compared the features of epitopes presented by DR0801 and DR1101. First, we identified DR0801- and DR1101-restricted epitopes within multiple viral Ags, observing both shared and distinct epitopes. Because DR0801 is not well characterized, we deduced its motif by measuring binding affinities for a library of peptides, confirming its key features through structural modeling. DR0801 was distinct from DR1101 in its ability to accommodate charged residues within all but one of its binding pockets. In particular, DR0801 strongly preferred acidic residues in pocket 9. These findings were used to identify potentially antigenic sequences within PDC-E2 (an important hepatic autoantigen) that contain a DR0801 motif. Four peptides bound to DR0801 with reasonable affinity, but only one of these bound to DR1101. Three peptides, PDC-E2145-159, PDC-E2(249-263), and PDC-E2(629-643), elicited high-affinity T cell responses in DR0801 subjects, implicating these as likely autoreactive specificities. Therefore, the unique molecular features of DR0801 may lead to the selection of a distinct T cell repertoire that contributes to breakdown of self-tolerance in primary biliary cirrhosis, whereas those of DR1101 promote tolerance.
Collapse
Affiliation(s)
- I-Ting Chow
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | | | | | | | | | | | | |
Collapse
|