1
|
Casto AM, Song H, Xie H, Selke S, Roychoudhury P, Wu MC, Wald A, Greninger AL, Johnston C. Viral Genomic Variation and the Severity of Genital Herpes Simplex Virus-2 Infection as Quantified by Shedding Rate: A Viral Genome-Wide Association Study. J Infect Dis 2024; 230:1357-1366. [PMID: 38805234 PMCID: PMC11646587 DOI: 10.1093/infdis/jiae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The clinical severity of genital herpes simplex virus-2 (HSV-2) infection varies widely among infected persons with some experiencing frequent genital lesions while others are asymptomatic. The viral genital shedding rate is closely associated with, and has been established as, a surrogate marker of clinical severity. METHODS To assess the relationship between viral genetics and shedding, we assembled a set of 145 persons who had the severity of their genital herpes quantified through determination of their HSV genital shedding rate. An HSV-2 sample from each person was sequenced and biallelic variants among these genomes were identified. RESULTS We found no association between metrics of genome-wide variation in HSV-2 and shedding rate. A viral genome-wide association study identified the minor alleles of 3 individual unlinked variants as significantly associated with higher shedding rate (P < 8.4 × 10-5): C44973T (A512T), a nonsynonymous variant in UL22 (glycoprotein H); A74534G, a synonymous variant in UL36 (large tegument protein); and T119283C, an intergenic variant. We also found an association between the total number of minor alleles for the significant variants and shedding rate (P = 6.6 × 10-7). CONCLUSIONS These results add to a growing body of literature for HSV suggesting a connection between viral genetic variation and clinically important phenotypes of infection.
Collapse
Affiliation(s)
- Amanda M Casto
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Hoseung Song
- Division of Industrial and Systems Engineering, Graduate School of Data Science, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Stacy Selke
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Michael C Wu
- Public Health Sciences Division, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Anna Wald
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Alexander L Greninger
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Christine Johnston
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Palmer WH, Norman PJ. The impact of HLA polymorphism on herpesvirus infection and disease. Immunogenetics 2023; 75:231-247. [PMID: 36595060 PMCID: PMC10205880 DOI: 10.1007/s00251-022-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/24/2022] [Indexed: 01/04/2023]
Abstract
Human Leukocyte Antigens (HLA) are cell surface molecules, central in coordinating innate and adaptive immune responses, that are targets of strong diversifying natural selection by pathogens. Of these pathogens, human herpesviruses have a uniquely ancient relationship with our species, where coevolution likely has reciprocating impact on HLA and viral genomic diversity. Consistent with this notion, genetic variation at multiple HLA loci is strongly associated with modulating immunity to herpesvirus infection. Here, we synthesize published genetic associations of HLA with herpesvirus infection and disease, both from case/control and genome-wide association studies. We analyze genetic associations across the eight human herpesviruses and identify HLA alleles that are associated with diverse herpesvirus-related phenotypes. We find that whereas most HLA genetic associations are virus- or disease-specific, HLA-A*01 and HLA-A*02 allotypes may be more generally associated with immune susceptibility and control, respectively, across multiple herpesviruses. Connecting genetic association data with functional corroboration, we discuss mechanisms by which diverse HLA and cognate receptor allotypes direct variable immune responses during herpesvirus infection and pathogenesis. Together, this review examines the complexity of HLA-herpesvirus interactions driven by differential T cell and Natural Killer cell immune responses.
Collapse
Affiliation(s)
- William H. Palmer
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| |
Collapse
|
3
|
Alves E, McLeish E, Blancafort P, Coudert JD, Gaudieri S. Manipulating the NKG2D Receptor-Ligand Axis Using CRISPR: Novel Technologies for Improved Host Immunity. Front Immunol 2021; 12:712722. [PMID: 34456921 PMCID: PMC8397441 DOI: 10.3389/fimmu.2021.712722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/28/2021] [Indexed: 12/26/2022] Open
Abstract
The activating immune receptor natural killer group member D (NKG2D) and its cognate ligands represent a fundamental surveillance system of cellular distress, damage or transformation. Signaling through the NKG2D receptor-ligand axis is critical for early detection of viral infection or oncogenic transformation and the presence of functional NKG2D ligands (NKG2D-L) is associated with tumor rejection and viral clearance. Many viruses and tumors have developed mechanisms to evade NKG2D recognition via transcriptional, post-transcriptional or post-translational interference with NKG2D-L, supporting the concept that circumventing immune evasion of the NKG2D receptor-ligand axis may be an attractive therapeutic avenue for antiviral therapy or cancer immunotherapy. To date, the complexity of the NKG2D receptor-ligand axis and the lack of specificity of current NKG2D-targeting therapies has not allowed for the precise manipulation required to optimally harness NKG2D-mediated immunity. However, with the discovery of clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins, novel opportunities have arisen in the realm of locus-specific gene editing and regulation. Here, we give a brief overview of the NKG2D receptor-ligand axis in humans and discuss the levels at which NKG2D-L are regulated and dysregulated during viral infection and oncogenesis. Moreover, we explore the potential for CRISPR-based technologies to provide novel therapeutic avenues to improve and maximize NKG2D-mediated immunity.
Collapse
Affiliation(s)
- Eric Alves
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA, Australia
| | - Emily McLeish
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Pilar Blancafort
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Perth, WA, Australia
- The Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jerome D. Coudert
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- School of Medicine, University of Notre Dame, Fremantle, WA, Australia
| | - Silvana Gaudieri
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
4
|
Schiffer JT, Swan DA, Prlic M, Lund JM. Herpes simplex virus-2 dynamics as a probe to measure the extremely rapid and spatially localized tissue-resident T-cell response. Immunol Rev 2019; 285:113-133. [PMID: 30129205 DOI: 10.1111/imr.12672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herpes simplex virus-2 infection is characterized by frequent episodic shedding in the genital tract. Expansion in HSV-2 viral load early during episodes is extremely rapid. However, the virus invariably peaks within 18 hours and is eliminated nearly as quickly. A critical feature of HSV-2 shedding episodes is their heterogeneity. Some episodes peak at 108 HSV DNA copies, last for weeks due to frequent viral re-expansion, and lead to painful ulcers, while others only reach 103 HSV DNA copies and are eliminated within hours and without symptoms. Within single micro-environments of infection, tissue-resident CD8+ T cells (TRM ) appear to contain infection within a few days. Here, we review components of TRM biology relevant to immune surveillance between HSV-2 shedding episodes and containment of infection upon detection of HSV-2 cognate antigen. We then describe the use of mathematical models to correlate large spatial gradients in TRM density with the heterogeneity of observed shedding within a single person. We describe how models have been leveraged for clinical trial simulation, as well as future plans to model the interactions of multiple cellular subtypes within mucosa, predict the mechanism of action of therapeutic vaccines, and describe the dynamics of 3-dimensional infection environment during the natural evolution of an HSV-2 lesion.
Collapse
Affiliation(s)
- Joshua T Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - David A Swan
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Martin Prlic
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jennifer M Lund
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Ramchandani MS, Jing L, Russell RM, Tran T, Laing KJ, Magaret AS, Selke S, Cheng A, Huang ML, Xie H, Strachan E, Greninger AL, Roychoudhury P, Jerome KR, Wald A, Koelle DM. Viral Genetics Modulate Orolabial Herpes Simplex Virus Type 1 Shedding in Humans. J Infect Dis 2019; 219:1058-1066. [PMID: 30383234 PMCID: PMC6420167 DOI: 10.1093/infdis/jiy631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Orolabial herpes simplex virus type 1 (HSV-1) infection has a wide spectrum of severity in immunocompetent persons. To study the role of viral genotype and host immunity, we characterized oral HSV-1 shedding rates and host cellular response, and genotyped viral strains, in monozygotic (MZ) and dizygotic (DZ) twins. METHODS A total of 29 MZ and 22 DZ HSV-1-seropositive twin pairs were evaluated for oral HSV-1 shedding for 60 days. HSV-1 strains from twins were genotyped as identical or different. CD4+ T-cell responses to HSV-1 proteins were studied. RESULTS The median per person oral HSV shedding rate was 9% of days that a swab was obtained (mean, 10.2% of days). A positive correlation between shedding rates was observed within all twin pairs, and in the MZ and DZ twins. In twin subsets with sufficient HSV-1 DNA to genotype, 15 had the same strain and 14 had different strains. Viral shedding rates were correlated for those with the same but not different strains. The median number of HSV-1 open reading frames recognized per person was 16. The agreement in the CD4+ T-cell response to specific HSV-1 open reading frames was greater between MZ twins than between unrelated persons (P = .002). CONCLUSION Viral strain characteristics likely contribute to oral HSV-1 shedding rates.
Collapse
Affiliation(s)
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, Washington
| | - Ronnie M Russell
- Department of Medicine, University of Washington, Seattle, Washington
| | - Tran Tran
- Department of Medicine, University of Washington, Seattle, Washington
| | - Kerry J Laing
- Department of Medicine, University of Washington, Seattle, Washington
| | - Amalia S Magaret
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stacy Selke
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Anqi Cheng
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Hong Xie
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Eric Strachan
- Department of Psychiatry, University of Washington, Seattle, Washington
| | - Alex L Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Keith R Jerome
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Benaroya Research Institute, Seattle, Washington
| |
Collapse
|
6
|
Kleinstein SE, Shea PR, Allen AS, Koelle DM, Wald A, Goldstein DB. Genome-wide association study (GWAS) of human host factors influencing viral severity of herpes simplex virus type 2 (HSV-2). Genes Immun 2019; 20:112-120. [PMID: 29535370 PMCID: PMC6113125 DOI: 10.1038/s41435-018-0013-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/24/2017] [Accepted: 12/01/2017] [Indexed: 12/28/2022]
Abstract
Herpes simplex virus type 2 (HSV-2) is an incurable viral infection with severity ranging from asymptomatic to frequent recurrences. The viral shedding rate has been shown as a reproducible HSV-2 severity end point that correlates with lesion rates. We used a genome-wide association study (GWAS) to investigate the role of common human genetic variation in HSV-2 severity. We performed a GWAS on 223 HSV-2-positive participants of European ancestry. Severity was measured by viral shedding rate, as defined by the percent of days PCR+ for HSV-2 DNA over at least 30 days. Analyses were performed under linear regression models, adjusted for age, sex, and ancestry. There were no genome-wide significant (p < 5E-08) associations with HSV-2 viral shedding rate. The top nonsignificant SNP (rs75932292, p = 6.77E-08) associated with HSV-2 viral shedding was intergenic, with the nearest known biologically interesting gene (ABCA1) ~130 kbp downstream. Several other SNPs approaching significance were in or near genes with viral or neurological associations, including four SNPs in KIF1B. The current study is the first comprehensive genome-wide investigation of human genetic variation in virologic severity of established HSV-2 infection. However, no significant associations were observed with HSV-2 virologic severity, leaving the exact role of human variation in HSV-2 severity unclear.
Collapse
Affiliation(s)
- Sarah E Kleinstein
- Institute for Genomic Medicine, Columbia University, New York, NY, 10032, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Patrick R Shea
- Institute for Genomic Medicine, Columbia University, New York, NY, 10032, USA
| | - Andrew S Allen
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27708, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Benaroya Research Institute, Seattle, WA, 98101, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA
- Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98195, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Sioofy-Khojine AB, Oikarinen S, Honkanen H, Huhtala H, Lehtonen JP, Briese T, Hyöty H. Molecular epidemiology of enteroviruses in young children at increased risk of type 1 diabetes. PLoS One 2018; 13:e0201959. [PMID: 30192755 PMCID: PMC6128458 DOI: 10.1371/journal.pone.0201959] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022] Open
Abstract
Background Young children are susceptible to enterovirus (EV) infections, which cause significant morbidity in this age group. However, the current knowledge regarding the epidemiology of EVs and the circulating virus strains is mostly based on viruses detected in children with severe diseases leading to contact with the health care system, while the vast reservoir of EVs that circulate in the general population is less characterized. Methodology The present study investigates the types and the prevalence of EVs circulating in the young children of the background population in Georgia, Colorado, and Washington State in the USA, and Germany, Sweden, and Finland in Europe. A total of 4018 stool samples, collected monthly from 300 healthy and non-hospitalized children at the age of 3–18 months in 2005–2009, were analyzed for the presence of EVs using RT-PCR, followed by sequencing of the VP1-2A region of the viral genome to type the EV(s) present. All of the children carried type HLA-DQ2 or -DQ8 alleles associated with type 1 diabetes. Principal findings Altogether 201 children (67%) were found to be EV positive. The prevalence was much lower in Finnish children (26%) than in the children of the other counties combined (75%). Infections increased by age and showed a nadir during the winter months. Children who carried both the HLA-DQ2 and -DQ8 alleles had less infections than children who were homozygous for these alleles. Coxsackieviruses type A were the most frequently detected viruses in all geographical regions. Coxsackievirus type A4, Echovirus type 18, and Echovirus type 25 were shed for longer time periods than the other EV types. Conclusions Compared to prevalence data from symptomatic patients requiring medical attention, this study provides a better view of EVs circulating in young children in the USA and in Europe. The observations may prove useful for the selection of strategies for designing EV vaccines in the future. The study also confirms our previous serological findings suggesting that EV infections are relatively rare in Finland.
Collapse
Affiliation(s)
- Amir-Babak Sioofy-Khojine
- Department of Virology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- * E-mail:
| | - Sami Oikarinen
- Department of Virology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Hanna Honkanen
- Department of Virology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | - Jussi P. Lehtonen
- Department of Virology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Thomas Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York
| | - Heikki Hyöty
- Department of Virology, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | | |
Collapse
|