1
|
Zemet R, Van den Veyver IB. Impact of prenatal genomics on clinical genetics practice. Best Pract Res Clin Obstet Gynaecol 2024; 97:102545. [PMID: 39265228 DOI: 10.1016/j.bpobgyn.2024.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
Genetic testing for prenatal diagnosis in the pre-genomic era primarily focused on detecting common fetal aneuploidies, using methods that combine maternal factors and imaging findings. The genomic era, ushered in by the emergence of new technologies like chromosomal microarray analysis and next-generation sequencing, has transformed prenatal diagnosis. These new tools enable screening and testing for a broad spectrum of genetic conditions, from chromosomal to monogenic disorders, and significantly enhance diagnostic precision and efficacy. This chapter reviews the transition from traditional karyotyping to comprehensive sequencing-based genomic analyses. We discuss both the clinical utility and the challenges of integrating prenatal exome and genome sequencing into prenatal care and underscore the need for ethical frameworks, improved prenatal phenotypic characterization, and global collaboration to further advance the field.
Collapse
Affiliation(s)
- Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Ignatia B Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Division of Prenatal and Reproductive Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Tang F, Wang Z, Sun Y, Fan L, Yang Y, Guo X, Wang Y, Yan S, Qiao Z, Li Y, Jiang T, Wang X, Man J, Wang L, Wang S, Peng H, Peng Z, Xie X, Song L. Recurrent neural network for predicting absence of heterozygosity from low pass WGS with ultra-low depth. BMC Genomics 2024; 25:470. [PMID: 38745141 PMCID: PMC11092001 DOI: 10.1186/s12864-024-10400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The absence of heterozygosity (AOH) is a kind of genomic change characterized by a long contiguous region of homozygous alleles in a chromosome, which may cause human genetic disorders. However, no method of low-pass whole genome sequencing (LP-WGS) has been reported for the detection of AOH in a low-pass setting of less than onefold. We developed a method, termed CNVseq-AOH, for predicting the absence of heterozygosity using LP-WGS with ultra-low sequencing data, which overcomes the sparse nature of typical LP-WGS data by combing population-based haplotype information, adjustable sliding windows, and recurrent neural network (RNN). We tested the feasibility of CNVseq-AOH for the detection of AOH in 409 cases (11 AOH regions for model training and 863 AOH regions for validation) from the 1000 Genomes Project (1KGP). AOH detection using CNVseq-AOH was also performed on 6 clinical cases with previously ascertained AOHs by whole exome sequencing (WES). RESULTS Using SNP-based microarray results as reference (AOHs detected by CNVseq-AOH with at least a 50% overlap with the AOHs detected by chromosomal microarray analysis), 409 samples (863 AOH regions) in the 1KGP were used for concordant analysis. For 784 AOHs on autosomes and 79 AOHs on the X chromosome, CNVseq-AOH can predict AOHs with a concordant rate of 96.23% and 59.49% respectively based on the analysis of 0.1-fold LP-WGS data, which is far lower than the current standard in the field. Using 0.1-fold LP-WGS data, CNVseq-AOH revealed 5 additional AOHs (larger than 10 Mb in size) in the 409 samples. We further analyzed AOHs larger than 10 Mb, which is recommended for reporting the possibility of UPD. For the 291 AOH regions larger than 10 Mb, CNVseq-AOH can predict AOHs with a concordant rate of 99.66% with only 0.1-fold LP-WGS data. In the 6 clinical cases, CNVseq-AOH revealed all 15 known AOH regions. CONCLUSIONS Here we reported a method for analyzing LP-WGS data to accurately identify regions of AOH, which possesses great potential to improve genetic testing of AOH.
Collapse
Affiliation(s)
- Fei Tang
- Clin Lab, BGI Genomics, Tianjin, 300308, China
| | | | - Yan Sun
- BGI Genomics, Shenzhen, 518083, China
| | - Linlin Fan
- Clin Lab, BGI Genomics, Tianjin, 300308, China
| | - Yun Yang
- Clin Lab, BGI Genomics, Wuhan, 430074, China
| | - Xueqin Guo
- Clin Lab, BGI Genomics, Wuhan, 430074, China
| | | | - Saiying Yan
- Clin Lab, BGI Genomics, Tianjin, 300308, China
| | | | - Yun Li
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Ting Jiang
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Xiaoli Wang
- Clin Lab, BGI Genomics, Shenzhen, 518083, China
| | - Jianfen Man
- Clin Lab, BGI Genomics, Wuhan, 430074, China
| | - Lina Wang
- Clin Lab, BGI Genomics, Wuhan, 430074, China
| | | | | | | | - Xiaoyuan Xie
- Tianjin Women's and Children's Health Center, Tianjin, 300070, China.
| | - Lijie Song
- Clin Lab, BGI Genomics, Tianjin, 300308, China.
- DTU Bioengineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
3
|
Xue H, Yu A, Zhang L, Chen L, Guo Q, Lin M, Lin N, Chen X, Xu L, Huang H. Genetic testing for fetal loss of heterozygosity using single nucleotide polymorphism array and whole-exome sequencing. Sci Rep 2024; 14:2190. [PMID: 38273042 PMCID: PMC10810965 DOI: 10.1038/s41598-024-52812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/23/2024] [Indexed: 01/27/2024] Open
Abstract
The study explored the clinical significance of fetal loss of heterozygosity (LOH) identified by single-nucleotide polymorphism array (SNP array). We retrospectively reviewed data from pregnant women who underwent invasive diagnostic procedures at prenatal diagnosis centers in southeastern China from December 2016 to December 2021. SNP array was performed by the Affymetrix CytoScan 750 K array platform. Fetuses with LOH were further identified by parental verification, MS-MLPA, and/or trio whole-exome sequencing (trio-WES). The genetic results, fetal clinical manifestations, and perinatal outcome were analyzed. Of 11,062 fetuses, 106 (0.96%) had LOH exhibiting a neutral copy number, 88 (83.0%) had LOH in a single chromosome, whereas 18 (17.0%) had multiple LOHs on different chromosomes. Sixty-six fetuses had ultrasound anomalies (UAs), most frequently fetal growth restriction (18/66 (27.3%)). Parental SNP array verification was performed in 21 cases and trio-WES in 21 cases. Twelve cases had clinically relevant uniparental disomy, five had pathogenic variants, four had likely pathogenic variants, six had variants of unknown significance, and eight had identity by descent. The rate of adverse pregnancy outcomes in fetuses with LOH and UAs (24/66 (36.4%)) was higher than in those without UAs (6/40 (15.0%)) (p < 0.05). LOH is not uncommon. Molecular genetic testing techniques, including parental SNP array verification, trio-WES, methylation-specific multiplex ligation-dependent probe amplification, regular and systematic ultrasonic monitoring, and placental study, can accurately assess the prognosis and guide the management of the affected pregnancy.
Collapse
Affiliation(s)
- Huili Xue
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| | - Aili Yu
- Reproductive Medicine Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Lin Zhang
- Fujian Medical University, No. 88 Jiaotong Road, Cangshan District, Fuzhou City, 350001, Fujian Province, China
| | - Lingji Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Qun Guo
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Min Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Xuemei Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defects, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No. 18 Daoshan Road, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| |
Collapse
|
4
|
Zhi Y, Liu L, Cui S, Li Y, Chen X, Che J, Han X, Zhao L. Pathogenic/likely pathogenic copy number variations and regions of homozygosity in fetal central nervous system malformations. Arch Gynecol Obstet 2023; 308:1723-1735. [PMID: 36464758 DOI: 10.1007/s00404-022-06866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To explore pathogenic/likely pathogenic copy number variations (P/LP CNVs) and regions of homozygosity (ROHs) in fetal central nervous system (CNS) malformations. METHODS A cohort of 539 fetuses with CNS malformations diagnosed by ultrasound/MRI was retrospectively analyzed between January 2016 and December 2019. All fetuses were analyzed by chromosomal microarray analysis (CMA). Three cases with ROHs detected by CMA were subjected to whole-exome sequencing (WES). The fetuses were divided into two groups according to whether they had other structural abnormalities. The CNS phenotypes of the two groups were further classified as simple (one type) or complicated (≥ 2 types). RESULTS (1) A total of 35 cases with P/LP CNVs were found. The incidence of P/LP CNVs was higher in the extra-CNS group [18.00% (9/50)] than in the isolated group [5.32% (26/489)] (P < 0.01), while there was no significant difference between the simpletype and complicated-type groups. (2) In the simple-type group, the three most common P/LP CNV phenotypes were holoprosencephaly, Dandy-Walker syndrome, and exencephaly. There were no P/LP CNVs associated with anencephaly, microcephaly, arachnoid cysts, ependymal cysts, or intracranial hemorrhage. (3) Only four cases with ROHs were found, and there were no cases of uniparental disomy or autosomal diseases. CONCLUSION The P/LP CNV detection rates varied significantly among the different phenotypes of CNS malformations, although simple CNS abnormalities may also be associated with genetic abnormalities.
Collapse
Affiliation(s)
- Yunxiao Zhi
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Ling Liu
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shihong Cui
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Ying Li
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xiaolin Chen
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Jia Che
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xiao Han
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Lanlan Zhao
- Department of the Third Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| |
Collapse
|
5
|
Hartley T, Gillespie MK, Graham ID, Hayeems RZ, Li S, Sampson M, Boycott KM, Potter BK. Exome and genome sequencing for rare genetic disease diagnosis: A scoping review and critical appraisal of clinical guidance documents produced by genetics professional organizations. Genet Med 2023; 25:100948. [PMID: 37551668 DOI: 10.1016/j.gim.2023.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
PURPOSE Exome and genome sequencing have rapidly transitioned from research methods to widely used clinical tests for diagnosing rare genetic diseases. We sought to synthesize the topics covered and appraise the development processes of clinical guidance documents generated by genetics professional organizations. METHODS We conducted a scoping review of guidance documents published since 2010, systematically identified in peer-reviewed and gray literature, using established methods and reporting guidelines. We coded verbatim recommendations by topic using content analysis and critically appraised documents using the Appraisal of Guidelines Research and Evaluation (AGREE) II tool. RESULTS We identified 30 guidance documents produced by 8 organizations (2012-2022), yielding 611 recommendations covering 21 topics. The most common topic related to findings beyond the primary testing indication. Mean AGREE II scores were low across all 6 quality domains; scores for items related to rigor of development were among the lowest. More recently published documents generally received higher scores. CONCLUSION Guidance documents included a broad range of recommendations but were of low quality, particularly in their rigor of development. Developers should consider using tools such as AGREE II and basing recommendations on living knowledge syntheses to improve guidance development in this evolving space.
Collapse
Affiliation(s)
- Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; University of Ottawa, Ottawa, Ontario, Canada.
| | - Meredith K Gillespie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Ian D Graham
- University of Ottawa, Ottawa, Ontario, Canada; The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Robin Z Hayeems
- Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Sheena Li
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Margaret Sampson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; University of Ottawa, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | | |
Collapse
|
6
|
Ngo C, Baluyot M, Bennetts B, Carmichael J, Clark A, Darmanian A, Gayagay T, Jones L, Nash B, Clark M, Jose N, Robinson S, St Heaps L, Wright D. SNP chromosome microarray genotyping for detection of uniparental disomy in the clinical diagnostic laboratory. Pathology 2023; 55:818-826. [PMID: 37414616 DOI: 10.1016/j.pathol.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/21/2023] [Accepted: 04/17/2023] [Indexed: 07/08/2023]
Abstract
Single nucleotide polymorphism (SNP) chromosome microarray is well established for investigation of children with intellectual deficit/development delay and prenatal diagnosis of fetal malformation but has also emerged for uniparental disomy (UPD) genotyping. Despite published guidelines on clinical indications for testing there are no laboratory guidelines published for performing SNP microarray UPD genotyping. We evaluated SNP microarray UPD genotyping using Illumina beadchips on family trios/duos within a clinical cohort (n=98) and then explored our findings in a post-study audit (n=123). UPD occurred in 18.6% and 19.5% cases, respectively, with chromosome 15 most frequent (62.5% and 25.0%). UPD was predominantly maternal in origin (87.5% and 79.2%), highest in suspected genomic imprinting disorder cases (56.3% and 41.7%) but absent amongst children of translocation carriers. We assessed regions of homozygosity among UPD cases. The smallest interstitial and terminal regions were 2.5 Mb and 9.3 Mb, respectively. We found regions of homozygosity confounded genotyping in a consanguineous case with UPD15 and another with segmental UPD due to non-informative probes. In a unique case with chromosome 15q UPD mosaicism, we established the detection limit of mosaicism as ∼5%. From the benefits and pitfalls identified in this study, we propose a testing model and recommendations for UPD genotyping by SNP microarray.
Collapse
Affiliation(s)
- Con Ngo
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia.
| | - Maria Baluyot
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Bruce Bennetts
- Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Sydney Genome Diagnostics, Molecular Genetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Johanna Carmichael
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Alissa Clark
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Artur Darmanian
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Thet Gayagay
- Sydney Genome Diagnostics, Molecular Genetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Luke Jones
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Benjamin Nash
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia; Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Melanie Clark
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Ngaire Jose
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Samantha Robinson
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Luke St Heaps
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia; Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Dale Wright
- Sydney Genome Diagnostics, Cytogenetics, The Children's Hospital at Westmead, Westmead, NSW, Australia; Specialty of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Beers BJ, Similuk MN, Ghosh R, Seifert BA, Jamal L, Kamen M, Setzer MR, Jodarski C, Duncan R, Hunt D, Mixer M, Cao W, Bi W, Veltri D, Karlins E, Zhang L, Li Z, Oler AJ, Jevtich K, Yu Y, Hullfish H, Bielekova B, Frischmeyer-Guerrerio P, Dang Do A, Huryn LA, Olivier KN, Su HC, Lyons JJ, Zerbe CS, Rao VK, Keller MD, Freeman AF, Holland SM, Franco LM, Walkiewicz MA, Yan J. Chromosomal microarray analysis supplements exome sequencing to diagnose children with suspected inborn errors of immunity. Front Immunol 2023; 14:1172004. [PMID: 37215141 PMCID: PMC10196392 DOI: 10.3389/fimmu.2023.1172004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/04/2023] [Indexed: 05/24/2023] Open
Abstract
Purpose Though copy number variants (CNVs) have been suggested to play a significant role in inborn errors of immunity (IEI), the precise nature of this role remains largely unexplored. We sought to determine the diagnostic contribution of CNVs using genome-wide chromosomal microarray analysis (CMA) in children with IEI. Methods We performed exome sequencing (ES) and CMA for 332 unrelated pediatric probands referred for evaluation of IEI. The analysis included primary, secondary, and incidental findings. Results Of the 332 probands, 134 (40.4%) received molecular diagnoses. Of these, 116/134 (86.6%) were diagnosed by ES alone. An additional 15/134 (11.2%) were diagnosed by CMA alone, including two likely de novo changes. Three (2.2%) participants had diagnostic molecular findings from both ES and CMA, including two compound heterozygotes and one participant with two distinct diagnoses. Half of the participants with CMA contribution to diagnosis had CNVs in at least one non-immune gene, highlighting the clinical complexity of these cases. Overall, CMA contributed to 18/134 diagnoses (13.4%), increasing the overall diagnostic yield by 15.5% beyond ES alone. Conclusion Pairing ES and CMA can provide a comprehensive evaluation to clarify the complex factors that contribute to both immune and non-immune phenotypes. Such a combined approach to genetic testing helps untangle complex phenotypes, not only by clarifying the differential diagnosis, but in some cases by identifying multiple diagnoses contributing to the overall clinical presentation.
Collapse
Affiliation(s)
- Breanna J. Beers
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Morgan N. Similuk
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rajarshi Ghosh
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bryce A. Seifert
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Leila Jamal
- National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Michael Kamen
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael R. Setzer
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Colleen Jodarski
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rylee Duncan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Devin Hunt
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Madison Mixer
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Wenjia Cao
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Weimin Bi
- Baylor Genetics, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Daniel Veltri
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Eric Karlins
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lingwen Zhang
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Zhiwen Li
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrew J. Oler
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kathleen Jevtich
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yunting Yu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Haley Hullfish
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bibiana Bielekova
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Pamela Frischmeyer-Guerrerio
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - An Dang Do
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Laryssa A. Huryn
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kenneth N. Olivier
- Division of Pulmonary Diseases and Critical Care Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Helen C. Su
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jonathan J. Lyons
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christa S. Zerbe
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - V. Koneti Rao
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael D. Keller
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alexandra F. Freeman
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Steven M. Holland
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Luis M. Franco
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Magdalena A. Walkiewicz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jia Yan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
8
|
Prenatal diagnosis of fetuses with region of homozygosity detected by single nucleotide polymorphism array: a retrospective cohort study. J Hum Genet 2022; 67:629-638. [PMID: 35896820 DOI: 10.1038/s10038-022-01062-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
Region of homozygosity (ROH) is classified as uniparental disomy (UPD) or identity by descent, depending on its origin. To explore the clinical relevance of ROH in prenatal diagnoses, we reviewed 5063 fetal samples subjected to single nucleotide polymorphism array at our center over 5 years. ROH cases meeting our reporting threshold were further analyzed. ROHs were detected in 22 fetuses (0.43%, 22/5063), of which, 77.3% (17/22) showed a ROH on a single chromosome and 22.7% (5/22) showed multiple ROHs on different chromosomes. Among 5063 fetuses undergoing invasive prenatal diagnoses owing to various indications, five cases were identified as UPDs with a rate of ~1/1000. We observed clinically relevant UPDs in two cases related to Prader-Willi syndrome and transient neonatal diabetes mellitus. Of note, one case showed 50% mosaicism for trisomy 2 in amniotic fluid, whereas a complete UPD (2) was observed in umbilical cord blood. Trio whole-exome sequencing was performed for three cases. Clinically relevant variants were identified in two cases, one of which, NM_000302:c.2071_2072insCC (p.R693Qfs*122) in PLOD1 located in the ROH, may be related to Ehlers-Danlos syndrome, kyphoscoliotic type, 1. Overall, 72.7% (16/22) of the ROH carriers showed ultrasound abnormalities, of whom eight (50%, 8/16) had adverse perinatal outcomes. Our study demonstrates that the clinical relevance of ROHs should be examined regarding fetuses with ROHs occurring on imprinted chromosomes or those derived from consanguineous parents in prenatal diagnoses; imprinting disorders and/or autosomal recessive diseases attributed to ROHs should be considered during genetic counseling.
Collapse
|
9
|
Marafi D, Fatih JM, Kaiyrzhanov R, Ferla MP, Gijavanekar C, Al-Maraghi A, Liu N, Sites E, Alsaif HS, Al-Owain M, Zakkariah M, El-Anany E, Guliyeva U, Guliyeva S, Gaba C, Haseeb A, Alhashem AM, Danish E, Karageorgou V, Beetz C, Subhi AA, Mullegama SV, Torti E, Sebastin M, Breilyn MS, Duberstein S, Abdel-Hamid MS, Mitani T, Du H, Rosenfeld JA, Jhangiani SN, Coban Akdemir Z, Gibbs RA, Taylor JC, Fakhro KA, Hunter JV, Pehlivan D, Zaki MS, Gleeson JG, Maroofian R, Houlden H, Posey JE, Sutton VR, Alkuraya FS, Elsea SH, Lupski JR. Biallelic variants in SLC38A3 encoding a glutamine transporter cause epileptic encephalopathy. Brain 2022; 145:909-924. [PMID: 34605855 PMCID: PMC9050560 DOI: 10.1093/brain/awab369] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/13/2021] [Accepted: 08/26/2021] [Indexed: 11/14/2022] Open
Abstract
The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.org) are associated with rare Mendelian disorders including developmental and epileptic encephalopathy and severe neurodevelopmental disorders. Exome sequencing and family-based rare variant analyses on a cohort with neurodevelopmental disorders identified two siblings with developmental and epileptic encephalopathy and a shared deleterious homozygous splicing variant in SLC38A3. The gene encodes SNAT3, a sodium-coupled neutral amino acid transporter and a principal transporter of the amino acids asparagine, histidine, and glutamine, the latter being the precursor for the neurotransmitters GABA and glutamate. Additional subjects with a similar developmental and epileptic encephalopathy phenotype and biallelic predicted-damaging SLC38A3 variants were ascertained through GeneMatcher and collaborations with research and clinical molecular diagnostic laboratories. Untargeted metabolomic analysis was performed to identify novel metabolic biomarkers. Ten individuals from seven unrelated families from six different countries with deleterious biallelic variants in SLC38A3 were identified. Global developmental delay, intellectual disability, hypotonia, and absent speech were common features while microcephaly, epilepsy, and visual impairment were present in the majority. Epilepsy was drug-resistant in half. Metabolomic analysis revealed perturbations of glutamate, histidine, and nitrogen metabolism in plasma, urine, and CSF of selected subjects, potentially representing biomarkers of disease. Our data support the contention that SLC38A3 is a novel disease gene for developmental and epileptic encephalopathy and illuminate the likely pathophysiology of the disease as perturbations in glutamine homeostasis.
Collapse
Affiliation(s)
- Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
- Correspondence to: Dana Marafi, MD, MSc Department of Pediatrics, Faculty of Medicine, Kuwait University P.O. Box 24923, 13110 Safat, Kuwait E-mail:
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Disorders Institute of Neurology, University College London, Queen Square, London, UK
| | - Matteo P Ferla
- NIHR Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Charul Gijavanekar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Houston, TX 77030, USA
| | | | - Ning Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Houston, TX 77030, USA
| | - Emily Sites
- Division of Molecular and Human Genetics, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Hessa S Alsaif
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Mohammad Al-Owain
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University 11533, Riyadh, Saudi Arabia
| | - Mohamed Zakkariah
- Section of Child Neurology, Department of Pediatrics, Al-adan Hospital, Riqqa, Kuwait
| | - Ehab El-Anany
- Section of Child Neurology, Department of Pediatrics, Al-adan Hospital, Riqqa, Kuwait
| | | | | | - Colette Gaba
- Department of Pediatrics, Bon Secours Mercy Health, Toledo, OH 43608, USA
| | - Ateeq Haseeb
- Mercy Children’s Hospital, Toledo, OH 43608, USA
| | - Amal M Alhashem
- Division of Medical Genetic and Metabolic Medicine, Department of Pediatrics, Prince Sultan Medical Military City, Riyadh, Saudi Arabia
| | - Enam Danish
- Department of Ophthalmology, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | | | | | - Alaa A Subhi
- Neurosciences Department, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | | | | | - Monisha Sebastin
- Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, New York 10467, USA
- Division of Genetics, Department of Pediatrics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, 10467, USA
| | - Margo Sheck Breilyn
- Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, New York 10467, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Susan Duberstein
- Isabelle Rapin Division of Child Neurology in the Saul R Korey Department of Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mohamed S Abdel-Hamid
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jenny C Taylor
- NIHR Oxford Biomedical Research Centre, Oxford OX4 2PG, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha 26999, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar
| | - Jill V Hunter
- E.B. Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Joseph G Gleeson
- Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, CA 92123, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders Institute of Neurology, University College London, Queen Square, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders Institute of Neurology, University College London, Queen Square, London, UK
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics Laboratory, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence may also be addressed to: James R. Lupski, MD, PhD, DSc (hon) Department of Molecular and Human Genetics, Baylor College of Medicine One Baylor Plaza, Room 604B, Houston, TX 77030, USA E-mail:
| |
Collapse
|
10
|
Chien SC, Chen CP, Liou JD. Prenatal diagnosis and genetic counseling of uniparental disomy. Taiwan J Obstet Gynecol 2022; 61:210-215. [DOI: 10.1016/j.tjog.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 10/18/2022] Open
|
11
|
Wen J, Chai H, Grommisch B, DiAdamo A, Dykas D, Ma D, Popa A, Zhao C, Spencer-Manzon M, Jiang YH, McGrath J, Li P, Bale A, Zhang H. Detecting regions of homozygosity improves the diagnosis of pathogenic variants and uniparental disomy in pediatric patients. Am J Med Genet A 2022; 188:1728-1738. [PMID: 35199448 DOI: 10.1002/ajmg.a.62693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/12/2022] [Accepted: 01/28/2022] [Indexed: 11/10/2022]
Abstract
Chromosomal microarray analysis using single nucleotide polymorphism probes can detect regions of homozygosity (ROH). This confers a potential utility in revealing autosomal recessive (AR) diseases and uniparental disomy (UPD). Results of genetic testing among pediatric patients from 2015 to 2019 were evaluated. Diagnostic findings with detected ROH from large consecutive case series in the literature were reviewed. Of 2050 pediatric patients, 65 (3%) had one or more ROH and 31 (53%) had follow-up whole exome sequencing (WES) and methylation studies. Seven homozygous variants were detected and four of them from three patients (9.6%) were within the detected ROH and classified as pathogenic or likely pathogenic variants for AR diseases. One patient (3%) had segmental UPD15q for a diagnosis of Prader-Willi syndrome. Additive diagnostic yield from ROH reporting was at least 0.2% (4/2050) of pediatric patients. These results were consistent with findings from several large case series reported in the literature. Detecting ROH had an estimated baseline predictive value of 10% for AR diseases and 3% for UPD. Consanguinity revealed by multiple ROH was a strong predictor for AR diseases. These results provide evidence for genetic counseling and recommendation of follow-up WES and methylation studies for pediatric patients reported with ROH.
Collapse
Affiliation(s)
- Jiadi Wen
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hongyan Chai
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Brittany Grommisch
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Autumn DiAdamo
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Daniel Dykas
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Deqiong Ma
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andreea Popa
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Chen Zhao
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James McGrath
- Department of Comparative medicine, Yale University, New Haven, Connecticut, USA
| | - Peining Li
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Allen Bale
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hui Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Gonzales PR, Andersen EF, Brown TR, Horner VL, Horwitz J, Rehder CW, Rudy NL, Robin NH, Thorland EC, On Behalf Of The Acmg Laboratory Quality Assurance Committee. Interpretation and reporting of large regions of homozygosity and suspected consanguinity/uniparental disomy, 2021 revision: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2022; 24:255-261. [PMID: 34906464 DOI: 10.1016/j.gim.2021.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
Genomic testing, including single-nucleotide variation (formerly single-nucleotide polymorphism)-based chromosomal microarray and exome and genome sequencing, can detect long regions of homozygosity (ROH) within the genome. Genomic testing can also detect possible uniparental disomy (UPD). Platforms that can detect ROH and possible UPD have matured since the initial American College of Medical Genetics and Genomics (ACMG) standard was published in 2013, and the detection of ROH and UPD by these platforms has shown utility in diagnosis of patients with genetic/genomic disorders. The presence of these segments, when distributed across multiple chromosomes, may indicate a familial relationship between the proband's parents. This technical standard describes the detection of possible consanguinity and UPD by genomic testing, as well as the factors confounding the inference of a specific parental relationship or UPD. Current bioethical and legal issues regarding detection and reporting of consanguinity are also discussed.
Collapse
Affiliation(s)
| | - Erica F Andersen
- ARUP Laboratories, Salt Lake City, UT; The University of Utah, Salt Lake City, UT
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Khalifa A, Mason CC, Garvin JH, Williams MS, Del Fiol G, Jackson BR, Bleyl SB, Alterovitz G, Huff SM. Interoperable genetic lab test reports: mapping key data elements to HL7 FHIR specifications and professional reporting guidelines. J Am Med Inform Assoc 2021; 28:2617-2625. [PMID: 34569596 DOI: 10.1093/jamia/ocab201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE In many cases, genetic testing labs provide their test reports as portable document format files or scanned images, which limits the availability of the contained information to advanced informatics solutions, such as automated clinical decision support systems. One of the promising standards that aims to address this limitation is Health Level Seven International (HL7) Fast Healthcare Interoperability Resources Clinical Genomics Implementation Guide-Release 1 (FHIR CG IG STU1). This study aims to identify various data content of some genetic lab test reports and map them to FHIR CG IG specification to assess its coverage and to provide some suggestions for standard development and implementation. MATERIALS AND METHODS We analyzed sample reports of 4 genetic tests and relevant professional reporting guidelines to identify their key data elements (KDEs) that were then mapped to FHIR CG IG. RESULTS We identified 36 common KDEs among the analyzed genetic test reports, in addition to other unique KDEs for each genetic test. Relevant suggestions were made to guide the standard implementation and development. DISCUSSION AND CONCLUSION The FHIR CG IG covers the majority of the identified KDEs. However, we suggested some FHIR extensions that might better represent some KDEs. These extensions may be relevant to FHIR implementations or future FHIR updates.The FHIR CG IG is an excellent step toward the interoperability of genetic lab test reports. However, it is a work-in-progress that needs informative and continuous input from the clinical genetics' community, specifically professional organizations, systems implementers, and genetic knowledgebase providers.
Collapse
Affiliation(s)
- Aly Khalifa
- Department of Biomedical Informatics, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Clinton C Mason
- Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Jennifer Hornung Garvin
- Department of Biomedical Informatics, School of Medicine, University of Utah, Salt Lake City, Utah, USA.,Health Information Management and Systems Division, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio, USA.,VA Healthcare System, Indianapolis, Indiana, USA
| | - Marc S Williams
- Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, USA
| | - Guilherme Del Fiol
- Department of Biomedical Informatics, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Brian R Jackson
- Department of Biomedical Informatics, School of Medicine, University of Utah, Salt Lake City, Utah, USA.,ARUP Laboratories, Salt Lake City, Utah, USA
| | - Steven B Bleyl
- Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah, USA.,Genome Medical Services, San Francisco, California, USA
| | - Gil Alterovitz
- Division of General Internal Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Veterans Affairs, Office of Research and Development, Washington, District of Columbia, USA
| | - Stanley M Huff
- Department of Biomedical Informatics, School of Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Biomedical Informatics, Intermountain Healthcare, Murray, Utah, USA
| |
Collapse
|
14
|
Bennett RL, Malleda NR, Byers PH, Steiner RD, Barr KM. Genetic counseling and screening of consanguineous couples and their offspring practice resource: Focused Revision. J Genet Couns 2021; 30:1354-1357. [PMID: 34309119 DOI: 10.1002/jgc4.1477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/08/2022]
Abstract
There are no evidence-based guidelines to inform genetic counseling for consanguineous couples and their offspring. This focused revision builds on the expert opinions from the original publication of "Genetic Counseling and Screening of Consanguineous Couples and Their Offspring," based on a review of literature published since 2002.
Collapse
Affiliation(s)
- Robin L Bennett
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Peter H Byers
- Department of Laboratory Medicine and Pathology, Department of Medicine (Medical Genetics), University of Washington, Seattle, Washington, USA
| | - Robert D Steiner
- Marshfield Clinic Health System, Prevention Genetics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kimberly M Barr
- Department of Genetics, Kaiser Permanente Medical Center, San Francisco, California, USA
| |
Collapse
|
15
|
Elfatih A, Mohammed I, Abdelrahman D, Mifsud B. Frequency and management of medically actionable incidental findings from genome and exome sequencing data; A systematic review. Physiol Genomics 2021; 53:373-384. [PMID: 34250816 DOI: 10.1152/physiolgenomics.00025.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The application of whole genome/exome sequencing technologies in clinical genetics and research has resulted in the discovery of incidental findings unrelated to the primary purpose of genetic testing. The American College of Medical Genetics and Genomics published guidelines for reporting pathogenic and likely pathogenic variants that are deemed to be medically actionable, which allowed us to learn about the epidemiology of incidental findings in different populations. However, consensus guidelines for variant reporting and classification are still lacking. We conducted a systematic literature review of incidental findings in whole genome/exome sequencing studies to obtain a comprehensive understanding of variable reporting and classification methods for variants that are deemed to be medically actionable across different populations. The review highlights the elements that demand further consideration or adjustment.
Collapse
Affiliation(s)
- Amal Elfatih
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar
| | - Idris Mohammed
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar
| | - Doua Abdelrahman
- Integrated Genomics Services, Translational Research, Research Branch, Sidra Medicine, Doha, Qatar
| | - Borbala Mifsud
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar.,William Harvey Research Institute, Queen Mary University London, London, UK
| |
Collapse
|
16
|
Alhendi ASN, Lim D, McKee S, McEntagart M, Tatton-Brown K, Temple IK, Davies JH, Mackay DJG. Whole-genome analysis as a diagnostic tool for patients referred for diagnosis of Silver-Russell syndrome: a real-world study. J Med Genet 2021; 59:613-622. [PMID: 34135092 DOI: 10.1136/jmedgenet-2021-107699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/06/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Silver-Russell syndrome (SRS) is an imprinting disorder characterised by prenatal and postnatal growth restriction, but its clinical features are non-specific and its differential diagnosis is broad. Known molecular causes of SRS include imprinting disturbance, single nucleotide variant (SNV), CNV or UPD affecting several genes; however, up to 40% of individuals with a clinical diagnosis of SRS currently receive no positive molecular diagnosis. METHODS To determine whether whole-genome sequencing (WGS) could uncover pathogenic variants missed by current molecular testing, we analysed data of 72 participants recruited to the 100,000 Genomes Project within the clinical category of SRS. RESULTS In 20 participants (27% of the cohort) we identified genetic variants plausibly accounting for SRS. Coding SNVs were identified in genes including CDKN1C, IGF2, IGF1R and ORC1. Maternal-effect variants were found in mothers of five participants, including two participants with imprinting disturbance and one with multilocus imprinting disorder. Two regions of homozygosity were suggestive of UPD involving imprinted regions implicated in SRS and Temple syndrome, and three plausibly pathogenic CNVs were found, including a paternal deletion of PLAGL1. In 48 participants with no plausible pathogenic variant, unbiased analysis of SNVs detected a potential association with STX4. CONCLUSION WGS analysis can detect UPD, CNV and SNV and is potentially a valuable addition to diagnosis of SRS and related growth-restricting disorders.
Collapse
Affiliation(s)
- Ahmed S N Alhendi
- Human Genetics and Genomic Medicine, Faculty of Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Derek Lim
- Department of Clinical Genetics, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Shane McKee
- Department of Genetic Medicine, Belfast City Hospital, Belfast, UK
| | - Meriel McEntagart
- Department of Clinical Genetics, St George's Healthcare NHS Trust, London, UK
| | | | - I Karen Temple
- Human Genetics and Genomic Medicine, Faculty of Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Justin H Davies
- Human Genetics and Genomic Medicine, Faculty of Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Deborah J G Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, UK .,Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
| |
Collapse
|
17
|
Chromosomal microarray analysis, including constitutional and neoplastic disease applications, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23:1818-1829. [PMID: 34131312 DOI: 10.1038/s41436-021-01214-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 11/08/2022] Open
Abstract
Chromosomal microarray technologies, including array comparative genomic hybridization and single-nucleotide polymorphism array, are widely applied in the diagnostic evaluation for both constitutional and neoplastic disorders. In a constitutional setting, this technology is accepted as the first-tier test for the evaluation of chromosomal imbalances associated with intellectual disability, autism, and/or multiple congenital anomalies. Furthermore, chromosomal microarray analysis is recommended for patients undergoing invasive prenatal diagnosis with one or more major fetal structural abnormalities identified by ultrasonographic examination, and in the evaluation of intrauterine fetal demise or stillbirth when further cytogenetic analysis is desired. This technology also provides important genomic data in the diagnosis, prognosis, and therapy of neoplastic disorders, including both hematologic malignancies and solid tumors. To assist clinical laboratories in the validation of chromosomal microarray methodologies for constitutional and neoplastic applications, the American College of Medical Genetics and Genomics (ACMG) Laboratory Quality Assurance Committee has developed these updated technical laboratory standards, which replace the ACMG technical standards and guidelines for microarray analysis in constitutional and neoplastic disorders previously published in 2013.
Collapse
|
18
|
Exome sequencing reveals novel rare variants in Iranian familial multiple sclerosis: The importance of POLD2 in the disease pathogenesis. Genomics 2021; 113:2645-2655. [PMID: 34116171 DOI: 10.1016/j.ygeno.2021.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/20/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
The prevalence of familial multiple sclerosis (FMS) is increasing worldwide which endorses the heritability of the disease. Given that many genome variations are ethnicity-specific and consanguineous marriage could affect genetic diseases, hereditary disease gene analysis among FMS patients from Iran, a country with high rates of parental consanguinity, could be highly effective in finding mutations underlying disease pathogenesis. To examine rare genetic mutations, we selected three Iranian FMS cases with ≥3 MS patients in more than one generation and performed whole exome sequencing. We identified a homozygous rare missense variant in POLD2 (p. Arg141Cys; rs372336011). Molecular dynamics analysis showed reduced polar dehydration energy and conformational changes in POLD2 mutant. Further, we found a heterozygote rare missense variant in NBFP1 (p. Gly487Asp; rs778806175). Our study revealed the possible role of novel rare variants in FMS. Molecular dynamic simulation provided the initial evidence of the structural changes behind POLD2 mutant.
Collapse
|
19
|
Hureaux M, Chantot-Bastaraud S, Cassinari K, Martinez Casado E, Cuny A, Frébourg T, Vargas-Poussou R, Bréhin AC. When a maternal heterozygous mutation of the CYP24A1 gene leads to infantile hypercalcemia through a maternal uniparental disomy of chromosome 20. Mol Cytogenet 2021; 14:23. [PMID: 33952337 PMCID: PMC8101107 DOI: 10.1186/s13039-021-00543-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/04/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Infantile hypercalcemia is an autosomal recessive disorder caused either by mutations in the CYP24A1 gene (20q13.2) or in the SLC34A1 gene (5q35.3). This disease is characterized by hypercalcemia, hypercalciuria and nephrocalcinosis in paediatric patients. Maternal uniparental disomy of chromosome 20 [UPD(20)mat], resulting in aberrant expression of imprinted transcripts at the GNAS locus, is a poorly characterized condition. UPD(20)mat patients manifest a phenotype similar to that of Silver-Russell syndrome and small for gestational age-short stature. CASE PRESENTATION We report here the genetic and clinical characterization of a male child with a phenotype of infantile hypercalcemia, postnatal growth retardation, and minor dysmorphic features. Genetic analysis using a next generation sequencing panel revealed a homozygous pathogenic variant of CYP24A1. The absence of the variant in the father led to microsatellite segregation analysis, suggestive of UPD. SNP-array revealed a large terminal copy neutral loss of heterozygosity leading to CYP24A1 homozygosity. SNP-array data of parent-child trio confirmed a UPD(20)mat responsible for both infantile hypercalcemia and Silver-Russell syndrome-like traits. CONCLUSION This is the first report of uniparental disomy of chromosome 20 revealed by infantile hypercalcemia related to CYP24A1 biallelic homozygous variants, underlying the importance of controlling allelic segregation in cases of homozygosity.
Collapse
Affiliation(s)
- Marguerite Hureaux
- Département de Génétique, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 20 rue Leblanc, 75015, Paris, France.
- Reference Centre for Hereditary Renal Diseases (MARHEA), Paris, France.
- Paris Cardiovascular Research Center, INSERM, Paris, France.
| | - Sandra Chantot-Bastaraud
- Assistance Publique-Hôpitaux de Paris, Departement de Genetique Medicale, Hôpital Trousseau, 75012, Paris, France
| | - Kévin Cassinari
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, 76000, Rouen, France
| | | | - Ariane Cuny
- Department of Pediatrics, Centre Hospitalier Universitaire de Rouen, 76000, Rouen, France
| | - Thierry Frébourg
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, 76000, Rouen, France
| | - Rosa Vargas-Poussou
- Département de Génétique, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 20 rue Leblanc, 75015, Paris, France
- Reference Centre for Hereditary Renal Diseases (MARHEA), Paris, France
| | - Anne-Claire Bréhin
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, 76000, Rouen, France
| |
Collapse
|
20
|
Rehder C, Bean LJH, Bick D, Chao E, Chung W, Das S, O'Daniel J, Rehm H, Shashi V, Vincent LM. Next-generation sequencing for constitutional variants in the clinical laboratory, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23:1399-1415. [PMID: 33927380 DOI: 10.1038/s41436-021-01139-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/17/2022] Open
Abstract
Next-generation sequencing (NGS) technologies are now established in clinical laboratories as a primary testing modality in genomic medicine. These technologies have reduced the cost of large-scale sequencing by several orders of magnitude. It is now cost-effective to analyze an individual with disease-targeted gene panels, exome sequencing, or genome sequencing to assist in the diagnosis of a wide array of clinical scenarios. While clinical validation and use of NGS in many settings is established, there are continuing challenges as technologies and the associated informatics evolve. To assist clinical laboratories with the validation of NGS methods and platforms, the ongoing monitoring of NGS testing to ensure quality results, and the interpretation and reporting of variants found using these technologies, the American College of Medical Genetics and Genomics (ACMG) has developed the following technical standards.
Collapse
Affiliation(s)
| | - Lora J H Bean
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - David Bick
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Elizabeth Chao
- Division of Genetics and Genomics, Department of Pediatrics, University of California, Irvine, CA, USA
| | - Wendy Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | - Soma Das
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Julianne O'Daniel
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Heidi Rehm
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vandana Shashi
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Lisa M Vincent
- Division of Pathology & Laboratory Medicine, Children's National Health System, Washington, DC, USA.,Departments of Pathology and Pediatrics, George Washington University, Washington, DC, USA
| | | |
Collapse
|
21
|
Wen J, Grommisch B, DiAdamo A, Chai H, Ng SME, Hui P, Bale A, Mak W, Wang G, Li P. Detection of cytogenomic abnormalities by OncoScan microarray assay for products of conception from formalin-fixed paraffin-embedded and fresh fetal tissues. Mol Cytogenet 2021; 14:21. [PMID: 33810806 PMCID: PMC8019165 DOI: 10.1186/s13039-021-00542-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/17/2021] [Indexed: 12/02/2022] Open
Abstract
Background The OncoScan microarray assay (OMA) using highly multiplexed molecular inversion probes for single nucleotide polymorphism (SNP) loci enabled the detection of cytogenomic abnormalities of chromosomal imbalances and pathogenic copy number variants (pCNV). The small size of molecular inversion probes is optimal for SNP genotyping of fragmented DNA from fixed tissues. This retrospective study evaluated the clinical utility of OMA as a uniform platform to detect cytogenomic abnormalities for pregnancy loss from fresh and fixed tissues of products of conception (POC). Results Fresh specimens of POC were routinely subjected to cell culture and then analyzed by karyotyping. POC specimens with a normal karyotype (NK) or culture failure (CF) and from formalin-fixed paraffin-embedded (FFPE) tissues were subjected to DNA extraction for OMA. The abnormality detection rate (ADR) by OMA on 94 cases of POC-NK, 38 cases of POC-CF, and 35 cases of POC-FFPE tissues were 2% (2/94), 26% (10/38), and 57% (20/35), respectively. The detected cytogenomic abnormalities of aneuploidies, triploidies and pCNV accounted for 50%, 40% and 10% in POC-CF and 85%, 10% and 5% in POC-FFPE, respectively. False negative result from cultured maternal cells and maternal cell contamination were each detected in one case. OMA on two cases with unbalanced structural chromosome abnormalities further defined genomic imbalances and breakpoints. Conclusion OMA on POC-CF and POC-FFPE showed a high diagnostic yield of cytogenomic abnormalities. This approach circumvented the obstacles of CF from fresh specimens and fragmented DNA from fixed tissues and provided a reliable and effective platform for detecting cytogenomic abnormalities and monitoring true fetal result from maternal cell contamination.
Collapse
Affiliation(s)
- Jiadi Wen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Brittany Grommisch
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Autumn DiAdamo
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Hongyan Chai
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Sok Meng Evelyn Ng
- Yale Center for Genome Analysis, Yale University School of Medicine, New Haven, CT, USA
| | - Pei Hui
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Allen Bale
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Winifred Mak
- Department of Women's Health, Dell Medical School, The University of Texas At Austin, Austin, TX, USA
| | - Guilin Wang
- Yale Center for Genome Analysis, Yale University School of Medicine, New Haven, CT, USA.
| | - Peining Li
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
22
|
Lee K, Abraham RS. Next-generation sequencing for inborn errors of immunity. Hum Immunol 2021; 82:871-882. [PMID: 33715910 DOI: 10.1016/j.humimm.2021.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/27/2022]
Abstract
Inborn errors of immunity (IEIs) include several hundred gene defects affecting various components of the immune system. As with other constitutional disorders, next-generation sequencing (NGS) is a powerful tool for the diagnosis of these diseases. While NGS can provide molecular confirmation of disease in a patient with a suspected or classic phenotype, it can also identify new molecular defects of the immune system, expand gene-disease phenotypes, clarify mechanism of disease, pattern of inheritance or identify new gene-disease associations. Multiple clinical specialties are involved in the diagnosis and management of patients with IEI, and most have no formal genetic training or expertise. To effectively utilize NGS tools and data in clinical practice, it is relevant and pragmatic to obtain a modicum of knowledge about genetic terminology, the variety of platforms and tools available for high-throughput genomic analysis, the interpretation and implementation of such data in clinical practice. There is considerable variability not only in the technologies and analytical tools used for NGS but in the bioinformatics approach to variant identification and interpretation. The ability to provide a molecular basis for disease has the potential to alter therapeutic management and longer-term treatment of the disease, including developing personalized approaches with molecularly targeted therapies. This review is intended for the clinical specialist or diagnostic immunologist who works in the area of inborn errors of immunity, and provides an overview of the need for genetic testing in these patients (the "why" aspect), the various technologies and analytical approaches, bioinformatics tools, resources, and challenges (the "how" aspect), and the clinical evidence for identifying which patients might be best served by such testing (the "when" aspect).
Collapse
Affiliation(s)
- Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Roshini S Abraham
- Diagnostic Immunology Laboratory, Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
23
|
Abstract
Neurodevelopmental disorders are the most prevalent chronic medical conditions encountered in pediatric primary care. In addition to identifying appropriate descriptive diagnoses and guiding families to evidence-based treatments and supports, comprehensive care for individuals with neurodevelopmental disorders includes a search for an underlying etiologic diagnosis, primarily through a genetic evaluation. Identification of an underlying genetic etiology can inform prognosis, clarify recurrence risk, shape clinical management, and direct patients and families to condition-specific resources and supports. Here we review the utility of genetic testing in patients with neurodevelopmental disorders and describe the three major testing modalities and their yields - chromosomal microarray, exome sequencing (with/without copy number variant calling), and FMR1 CGG repeat analysis for fragile X syndrome. Given the diagnostic yield of genetic testing and the potential for clinical and personal utility, there is consensus that genetic testing should be offered to all patients with global developmental delay, intellectual disability, and/or autism spectrum disorder. Despite this recommendation, data suggest that a minority of children with autism spectrum disorder and intellectual disability have undergone genetic testing. To address this gap in care, we describe a structured but flexible approach to facilitate integration of genetic testing into clinical practice across pediatric specialties and discuss future considerations for genetic testing in neurodevelopmental disorders to prepare pediatric providers to care for patients with such diagnoses today and tomorrow.
Collapse
Affiliation(s)
- Juliann M. Savatt
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, United States
| | | |
Collapse
|
24
|
Díez-Del-Molino D, von Seth J, Gyllenstrand N, Widemo F, Liljebäck N, Svensson M, Sjögren-Gulve P, Dalén L. Population genomics reveals lack of greater white-fronted introgression into the Swedish lesser white-fronted goose. Sci Rep 2020; 10:18347. [PMID: 33110153 PMCID: PMC7591532 DOI: 10.1038/s41598-020-75315-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 09/21/2020] [Indexed: 11/09/2022] Open
Abstract
Interspecific introgression is considered a potential threat to endangered taxa. One example where this has had a major impact on conservation policy is the lesser white-fronted goose (LWfG). After a dramatic decline in Sweden, captive breeding birds were released between 1981-1999 with the aim to reinforce the population. However, the detection of greater white-fronted goose (GWfG) mitochondrial DNA in the LWfG breeding stock led to the release program being dismantled, even though the presence of GWfG introgression in the actual wild Swedish LWfG population was never documented. To examine this, we sequenced the complete genomes of 21 LWfG birds from the Swedish, Russian and Norwegian populations, and compared these with genomes from other goose species, including the GWfG. We found no evidence of interspecific introgression into the wild Swedish LWfG population in either nuclear genomic or mitochondrial data. Moreover, Swedish LWfG birds are genetically distinct from the Russian and Norwegian populations and display comparatively low genomic diversity and high levels of inbreeding. Our findings highlight the utility of genomic approaches in providing scientific evidence that can help improve conservation management as well as policies for breeding and reinforcement programmes.
Collapse
Affiliation(s)
- David Díez-Del-Molino
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden. .,Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
| | - Johanna von Seth
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden.,Department of Zoology, Stockholm University, 10691, Stockholm, Sweden
| | - Niclas Gyllenstrand
- Centre for Genetic Identification, Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden
| | - Fredrik Widemo
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Niklas Liljebäck
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 73091, Riddarhyttan, Sweden
| | - Mikael Svensson
- Swedish Species Information Centre, SLU ArtDatabanken, Box 7007, 750 07, Uppsala, Sweden
| | - Per Sjögren-Gulve
- The Wildlife Analysis Unit, Swedish Environmental Protection Agency, 106 48, Stockholm, Sweden
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden.
| |
Collapse
|
25
|
Improved Diagnosis of Rare Disease Patients through Systematic Detection of Runs of Homozygosity. J Mol Diagn 2020; 22:1205-1215. [PMID: 32619640 PMCID: PMC7477492 DOI: 10.1016/j.jmoldx.2020.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/29/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022] Open
Abstract
Autozygosity is associated with an increased risk of genetic rare disease, thus being a relevant factor for clinical genetic studies. More than 2400 exome sequencing data sets were analyzed and screened for autozygosity on the basis of detection of >1 Mbp runs of homozygosity (ROHs). A model was built to predict if an individual is likely to be a consanguineous offspring (accuracy, 98%), and probability of consanguinity ranges were established according to the total ROH size. Application of the model resulted in the reclassification of the consanguinity status of 12% of the patients. The analysis of a subset of 79 consanguineous cases with the Rare Disease (RD)–Connect Genome-Phenome Analysis Platform, combining variant filtering and homozygosity mapping, enabled a 50% reduction in the number of candidate variants and the identification of homozygous pathogenic variants in 41 patients, with an overall diagnostic yield of 52%. The newly defined consanguinity ranges provide, for the first time, specific ROH thresholds to estimate inbreeding within a pedigree on disparate exome sequencing data, enabling confirmation or (re)classification of consanguineous status, hence increasing the efficiency of molecular diagnosis and reporting on secondary consanguinity findings, as recommended by American College of Medical Genetics and Genomics guidelines.
Collapse
|
26
|
Deignan JL, Chao E, Gannon JL, Greely HT, Hagman KDF, Mao R, Topper S. Points to consider when assessing relationships (or suspecting misattributed relationships) during family-based clinical genomic testing: a statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2020; 22:1285-1287. [PMID: 32404921 DOI: 10.1038/s41436-020-0821-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Joshua L Deignan
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elizabeth Chao
- Division of Genetics and Genomics, Department of Pediatrics, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Jennifer L Gannon
- Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO, USA.,Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Henry T Greely
- Center for Law and the Biosciences, Stanford Law School, Stanford, CA, USA
| | | | - Rong Mao
- ARUP Laboratories, University of Utah, Salt Lake City, UT, USA
| | | | | |
Collapse
|
27
|
Russell V, Nikkel SM, Ward MGK. Microarray results as an indicator of sexual abuse. Paediatr Child Health 2020; 25:134-135. [PMID: 32296272 DOI: 10.1093/pch/pxz034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/21/2019] [Indexed: 11/13/2022] Open
Abstract
This case report illustrates the unexpected identification of intrafamilial sexual abuse of a young mother through genetic testing of her child. The child's genome was found to have a relatively common chromosomal condition with congruent clinical manifestations, but the microarray also suggested a close biological relationship between the parents because of a high degree of homozygosity. This prompted a child protection investigation as the mother had been a minor at the time of conception, and intrafamilial sexual abuse was confirmed. Both the intended and unintended results of microarray should be considered with respect to the health and social context of the child and their biological parents. This becomes particularly important for young mothers and raises protection concerns when significant amounts of homozygosity (consanguinity) are detected.
Collapse
Affiliation(s)
| | - Sarah M Nikkel
- Faculty of Medicine, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia
| | - Michelle G K Ward
- Division of Child and Youth Protection, Department of Pediatrics, University of Ottawa, Ottawa, Ontario.,CHEO Research Institute, Ottawa, Ontario
| |
Collapse
|
28
|
Diagnostic testing for uniparental disomy: a points to consider statement from the American College of Medical Genetics and Genomics (ACMG). Genet Med 2020; 22:1133-1141. [PMID: 32296163 DOI: 10.1038/s41436-020-0782-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 11/08/2022] Open
|
29
|
The use of fetal exome sequencing in prenatal diagnosis: a points to consider document of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2020; 22:675-680. [PMID: 31911674 DOI: 10.1038/s41436-019-0731-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 02/01/2023] Open
|
30
|
Chaves TF, Baretto N, Oliveira LFD, Ocampos M, Barbato IT, Anselmi M, De Luca GR, Barbato Filho JH, Pinto LLDC, Bernardi P, Maris AF. Copy Number Variations in a Cohort of 420 Individuals with Neurodevelopmental Disorders From the South of Brazil. Sci Rep 2019; 9:17776. [PMID: 31780800 PMCID: PMC6882836 DOI: 10.1038/s41598-019-54347-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/13/2019] [Indexed: 01/04/2023] Open
Abstract
Chromosomal microarray (CMA) is now recommended as first tier for the evaluation in individuals with unexplained neurodevelopmental disorders (ND). However, in developing countries such as Brazil, classical cytogenetic tests are still the most used in clinical practice, as reflected by the scarcity of publications of microarray investigation in larger cohorts. This is a retrospective study which analyses the reading files of CMA and available clinical data from 420 patients from the south of Brazil, mostly children, with neurodevelopmental disorders requested by medical geneticists and neurologists for diagnostic purpose. Previous karyotyping was reported for 138 and includes 17 with abnormal results. The platforms used for CMA were CYTOSCAN 750K (75%) and CYTOSCAN HD (25%). The sex ratio of the patients was 1.625 males :1 female and the mean age was 9.5 years. A total of 96 pathogenic copy number variations (CNVs), 58 deletions and 38 duplications, were found in 18% of the patients and in all chromosomes, except chromosome 11. For 12% of the patients only variants of uncertain clinical significance were found. No clinically relevant CNV was found in 70%. The main referrals for chromosomal microarrays (CMA) were developmental delay (DD), intellectual disability (ID), facial dysmorphism and autism spectrum disorder (ASD). DD/ID were present in 80%, facial dysmorphism in 52% and ASD in 32%. Some phenotypes in this population could be predictive of a higher probability to carry a pathogenic CNV, as follows: dysmorphic facial features (p-value = < 0.0001, OR = 0.32), obesity (p-value = 0.006, OR = 0.20), short stature (p-value = 0.032, OR = 0.44), genitourinary anomalies (p-value = 0.032, OR = 0.63) and ASD (p-value = 0.039, OR = 1.94). The diagnostic rate for CMA in this study was 18%. We present the largest report of CMA data in a cohort with ND in Brazil. We characterize the rare CNVs found together with the main phenotypes presented by each patient, list phenotypes which could predict a higher diagnostic probability by CMA in patients with a neurodevelopmental disorder and show how CMA and classical karyotyping results are complementary.
Collapse
Affiliation(s)
| | - Nathacha Baretto
- Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | - Mayara Anselmi
- Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | - Pricila Bernardi
- University Hospital Professor Polydoro Ernani de São Thiago, Florianópolis, SC, Brazil
| | | |
Collapse
|
31
|
Paulraj P, Bosworth M, Longhurst M, Hornbuckle C, Gotway G, Lamb AN, Andersen EF. A Novel Homozygous Deletion within the FRY Gene Associated with Nonsyndromic Developmental Delay. Cytogenet Genome Res 2019; 159:19-25. [PMID: 31487712 DOI: 10.1159/000502598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 12/15/2022] Open
Abstract
The role of autosomal recessive (AR) variants in clinically heterogeneous conditions such as intellectual disability and developmental delay (ID/DD) has been difficult to uncover. Implication of causative pathogenic AR variants often requires investigation within large and consanguineous families, and/or identifying rare biallelic variants in affected individuals. Furthermore, detection of homozygous gene-level copy number variants during first-line genomic microarray testing in the pediatric population is a rare finding. We describe a 6.7-year-old male patient with ID/DD and a novel homozygous deletion involving the FRY gene identified by genomic SNP microarray. This deletion was observed within a large region of homozygosity on the long arm of chromosome 13 and in a background of increased low-level (2.6%) autosomal homozygosity, consistent with a reported common ancestry in the family. FRY encodes a protein that regulates cell cytoskeletal dynamics, functions in chromosomal alignment in mitosis in vitro, and has been shown to function in the nervous system in vivo. Homozygous mutation of FRY has been previously reported in 2 consanguineous families from studies of autosomal recessive ID in Middle Eastern and Northern African populations. This report provides additional supportive evidence that deleterious biallelic mutation of FRY is associated with ID/DD and illustrates the utility of genomic SNP microarray detection of low-level homozygosity.
Collapse
|
32
|
Extreme inbreeding in a European ancestry sample from the contemporary UK population. Nat Commun 2019; 10:3719. [PMID: 31481654 PMCID: PMC6722066 DOI: 10.1038/s41467-019-11724-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/18/2019] [Indexed: 01/22/2023] Open
Abstract
In most human societies, there are taboos and laws banning mating between first- and second-degree relatives, but actual prevalence and effects on health and fitness are poorly quantified. Here, we leverage a large observational study of ~450,000 participants of European ancestry from the UK Biobank (UKB) to quantify extreme inbreeding (EI) and its consequences. We use genotyped SNPs to detect large runs of homozygosity (ROH) and call EI when >10% of an individual's genome comprise ROHs. We estimate a prevalence of EI of ~0.03%, i.e., ~1/3652. EI cases have phenotypic means between 0.3 and 0.7 standard deviation below the population mean for 7 traits, including stature and cognitive ability, consistent with inbreeding depression estimated from individuals with low levels of inbreeding. Our study provides DNA-based quantification of the prevalence of EI in a European ancestry sample from the UK and measures its effects on health and fitness traits.
Collapse
|
33
|
Additive Diagnostic Yield of Homozygosity Regions Identified During Chromosomal microarray Testing in Children with Developmental Delay, Dysmorphic Features or Congenital Anomalies. Biochem Genet 2019; 58:74-101. [PMID: 31273557 DOI: 10.1007/s10528-019-09931-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 11/26/2022]
Abstract
Chromosomal microarray (CMA) has emerged as a robust tool for identifying microdeletions and microduplications, termed copy number variants (CNVs). Nevertheless, data regarding its utility in different patient populations with developmental delay (DD), dysmorphic features (DF) and congenital anomalies (CA), is a matter of dense debate. Although regions of homozygosity (ROH) are not diagnostic of a specific condition, they may have pathogenic implications. Certain CNVs and ROH have ethnically specific occurrences and frequencies. We aimed to determine whether CMA testing offers additional diagnostic information over classical cytogenetics for identifying genomic imbalances in a pediatric cohort with idiopathic DD, DF, or CA. One hundred sixty-nine patients were offered cytogenetics and CMA simultaneously for etiological diagnosis of DD (n = 67), DF (n = 52) and CA (n = 50). CMA could identify additional, clinically significant anomalies as compared with cytogenetics. CMA detected 61 CNVs [21 (34.4%) pathogenic CNVs, 37 (60.7%) variants of uncertain clinical significance and 3 (4.9%) benign CNVs] in 44 patients. CMA identified one or more ROH in 116/169 (68.6%) patients. When considering pathogenic CNVs and aneuploidies as positive findings, 9/169 (5.3%) received a genetic diagnosis from cytogenetics, while 25/169 (14.8%) could have a genetic diagnosis from CMA. The identification of ROH was clinically significant in two cases (2/169), thereby, adding 1.2% to the diagnostic yield of CMA (16% vs. 5.3%, p < 0.001). CMA uncovers additional genetic diagnoses over cytogenetics, thereby, offering a much higher diagnostic yield. Our findings convincingly demonstrate the additive diagnostic value of clinically significant ROH identified during CMA testing, highlighting the need for careful clinical interpretation of these ROH.
Collapse
|
34
|
Chaves TF, Oliveira LF, Ocampos M, Barbato IT, de Luca GR, Barbato Filho JH, de Camargo Pinto LL, Bernardi P, Maris AF. Long contiguous stretches of homozygosity detected by chromosomal microarrays (CMA) in patients with neurodevelopmental disorders in the South of Brazil. BMC Med Genomics 2019; 12:50. [PMID: 30866944 PMCID: PMC6417136 DOI: 10.1186/s12920-019-0496-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/28/2019] [Indexed: 01/14/2023] Open
Abstract
Background Currently, chromosomal microarrays (CMA) are recommended as first-tier test in the investigation of developmental disorders to examine copy number variations. The modern platforms also include probes for single nucleotide polymorphisms (SNPs) that detect homozygous regions in the genome, such as long contiguous stretches of homozygosity (LCSH) also named runs of homozygosity (ROH). LCHS are chromosomal segments resulting from complete or segmental chromosomal homozygosity, which may be indicative of uniparental disomy (UPD), consanguinity, as well as replicative DNA repair events, however also are common findings in normal populations. Knowing common LCSH of a population, which probably represent ancestral haplotypes of low-recombination regions in the genome, facilitates the interpretation of LCSH found in patients, allowing to prioritize those with possible clinical significance. However, population records of ancestral haplotype derived LCSH by SNP arrays are still scarce, particularly for countries such as Brazil where even for the clinic, microarrays that include SNPs are difficult to request due to their high cost. Methods In this study, we evaluate the frequencies and implications of LCSH detected by Affymetrix CytoScan® HD or 750 K platforms in 430 patients with neurodevelopmental disorders in southern Brazil. LCSH were analyzed in the context of pathogenic significance and also explored to identify ancestral haplotype derived LCSH. The criteria for considering a region as LCSH was homozygosis ≥3 Mbp on an autosome. Results In 95% of the patients, at least one LCSH was detected, a total of 1478 LCSH in 407 patients. In 2.6%, the findings were suggestive of UPD. For about 8.5% LCSH suggest offspring from first to fifth grade, more likely to have a clinical impact. Considering recurrent LCSH found at a frequency of 5% or more, we outline 11 regions as potentially representing ancestral haplotypes in our population. The region most involved with homozygosity was 16p11.2p11.1 (49%), followed by 1q21.2q21.3 (21%), 11p11.2p11.12 (19%), 3p21.31p21.2 (16%), 15q15 1q33p32.3 (12%), 2q11.1q12.1 (9%), 1p33p32.3 (6%), 20q11.21q11.23 (6%), 10q22.1q23.31 (5%), 6p22.2p22 (5%), and 7q11.22q11.23 (5%). Conclusions In this work, we show the importance and usefulness of interpreting LCSH in the results of CMA wich incorporate SNPs.
Collapse
Affiliation(s)
- Tiago Fernando Chaves
- Biologist, PhD Student in Cell Biology and Development, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Luan Freitas Oliveira
- Biomedic, PhD Student in Cell Biology and Development, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Maristela Ocampos
- Biologist, PhD in Biotechnology and Molecular Biology, Laboratory Neurogene, Florianópolis, SC, Brazil
| | - Ingrid Tremel Barbato
- Biologist and MSc in Chemical Engineering, Laboratory Neurogene, Florianópolis, SC, Brazil
| | - Gisele Rozone de Luca
- Medical Neuropediatrist, Children's Hospital Joana de Gusmão, Florianópolis, SC, Brazil
| | | | | | - Pricila Bernardi
- Medical Geneticist, University Hospital Professor Polydoro Ernani de São Thiago, Florianópolis, SC, Brazil
| | - Angelica Francesca Maris
- Biologist, PhD in Molecular Biology and Genetics, University Professor in the Department of Cell Biology, Embryology and Genetics, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
35
|
Wen J, Comerford K, Xu Z, Wu W, Amato K, Grommisch B, DiAdamo A, Xu F, Chai H, Li P. Analytical validation and chromosomal distribution of regions of homozygosity by oligonucleotide array comparative genomic hybridization from normal prenatal and postnatal case series. Mol Cytogenet 2019; 12:12. [PMID: 30886647 PMCID: PMC6404290 DOI: 10.1186/s13039-019-0424-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/19/2019] [Indexed: 11/17/2022] Open
Abstract
Background Regions of homozygosity (ROH) are continuous homozygous segments commonly seen in the human genome. The integration of single nucleotide polymorphism (SNP) probes into current array comparative genomic hybridization (aCGH) analysis has enabled the detection of the ROH. However, for detecting and reporting biologically relevant ROH in a clinical setting, it is necessary to assess the analytical validity of SNP calling and the chromosomal distribution of ROH in normal populations. Methods The analytical validity was evaluated by correlating the consistency of SNP calling with the quality parameters of aCGH and by accessing the accuracy of SNP calling using PCR based restriction enzyme digestion and Sanger sequencing. The distribution of ROH was evaluated by the numbers, sizes, locations, and frequencies of ROH from the collection of data from parental, postnatal, and prenatal case series that had normal aCGH and chromosome results. Results The SNP calling failure rate was 20–30% with a derivative Log2 ratio (DLR) below 0.2 and increased significantly to 30–40% with DLR of 0.2–0.4. The accuracy of SNP calling is 93%. Of the 958 cases tested, 34% had no ROH, 64% had one to four ROH, and less than 1% had more than five ROH. Of the 1196 ROH detected, 95% were less than 10 Mb. The distribution of numbers and sizes of ROH showed no differences among the parental, pediatric and prenatal case series and test tissues. The chromosomal distribution of ROH was non-random with ROH seen most frequently in chromosome 8, less frequently in chromosomes 2, 6, 10, 12, 11 and 18, and most rarely seen on chromosomes 15, 19, 21 and 22. Recurrent ROH occurring with a frequency greater than 1% were detected in 17 chromosomal loci which locates either in the pericentric or interstitial regions. Conclusion With a quality control parameter of DLR set at below 0.2, the consistency of SNP calling would be 75%, the accuracy of SNP call could be 93%, and the observed chromosomal distribution of ROH could be used as a reference. This aCGH analysis could be a reliable screening tool to document biologically relevant ROH and recommend further molecular analysis. Electronic supplementary material The online version of this article (10.1186/s13039-019-0424-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiadi Wen
- 1Department of Genetics, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Kathleen Comerford
- 2Diagnostic Genetics Program, University of Connecticut, Storrs, CT 06269 USA
| | - Zhiyong Xu
- 3Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong China
| | - Weiqing Wu
- 3Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong China
| | - Katherine Amato
- 1Department of Genetics, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Brittany Grommisch
- 1Department of Genetics, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Autumn DiAdamo
- 1Department of Genetics, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Fang Xu
- PreventionGenetics, Marshfield, WI 54449 USA
| | - Hongyan Chai
- 1Department of Genetics, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Peining Li
- 1Department of Genetics, Yale University School of Medicine, New Haven, CT 06520 USA
| |
Collapse
|
36
|
Normand EA, Braxton A, Nassef S, Ward PA, Vetrini F, He W, Patel V, Qu C, Westerfield LE, Stover S, Dharmadhikari AV, Muzny DM, Gibbs RA, Dai H, Meng L, Wang X, Xiao R, Liu P, Bi W, Xia F, Walkiewicz M, Van den Veyver IB, Eng CM, Yang Y. Clinical exome sequencing for fetuses with ultrasound abnormalities and a suspected Mendelian disorder. Genome Med 2018; 10:74. [PMID: 30266093 PMCID: PMC6162951 DOI: 10.1186/s13073-018-0582-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
Background Exome sequencing is now being incorporated into clinical care for pediatric and adult populations, but its integration into prenatal diagnosis has been more limited. One reason for this is the paucity of information about the clinical utility of exome sequencing in the prenatal setting. Methods We retrospectively reviewed indications, results, time to results (turnaround time, TAT), and impact of exome results for 146 consecutive “fetal exomes” performed in a clinical diagnostic laboratory between March 2012 and November 2017. We define a fetal exome as one performed on a sample obtained from a fetus or a product of conception with at least one structural anomaly detected by prenatal imaging or autopsy. Statistical comparisons were performed using Fisher’s exact test. Results Prenatal exome yielded an overall molecular diagnostic rate of 32% (n = 46/146). Of the 46 molecular diagnoses, 50% were autosomal dominant disorders (n = 23/46), 41% were autosomal recessive disorders (n = 19/46), and 9% were X-linked disorders (n = 4/46). The molecular diagnostic rate was highest for fetuses with anomalies affecting multiple organ systems and for fetuses with craniofacial anomalies. Out of 146 cases, a prenatal trio exome option designed for ongoing pregnancies was performed on 62 fetal specimens, resulting in a diagnostic yield of 35% with an average TAT of 14 days for initial reporting (excluding tissue culture time). The molecular diagnoses led to refined recurrence risk estimates, altered medical management, and informed reproductive planning for families. Conclusion Exome sequencing is a useful diagnostic tool when fetal structural anomalies suggest a genetic etiology, but other standard prenatal genetic tests did not provide a diagnosis. Electronic supplementary material The online version of this article (10.1186/s13073-018-0582-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth A Normand
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Alicia Braxton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Baylor Genetics, Houston, TX, USA
| | - Salma Nassef
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Patricia A Ward
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Baylor Genetics, Houston, TX, USA
| | | | | | | | | | - Lauren E Westerfield
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Samantha Stover
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Donna M Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Linyan Meng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Baylor Genetics, Houston, TX, USA
| | - Xia Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Baylor Genetics, Houston, TX, USA
| | - Rui Xiao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Baylor Genetics, Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Baylor Genetics, Houston, TX, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Baylor Genetics, Houston, TX, USA
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Baylor Genetics, Houston, TX, USA
| | - Magdalena Walkiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Baylor Genetics, Houston, TX, USA.,Present address: The National Institute of Allergy and Infectious Disease, NIH, Bethesda, MD, USA
| | - Ignatia B Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Christine M Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Baylor Genetics, Houston, TX, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA. .,Baylor Genetics, Houston, TX, USA.
| |
Collapse
|
37
|
The Cytoscan HD Array in the Diagnosis of Neurodevelopmental Disorders. High Throughput 2018; 7:ht7030028. [PMID: 30223503 PMCID: PMC6164295 DOI: 10.3390/ht7030028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Submicroscopic chromosomal copy number variations (CNVs), such as deletions and duplications, account for about 15–20% of patients affected with developmental delay, intellectual disability, multiple congenital anomalies, and autism spectrum disorder. Most of CNVs are de novo or inherited rearrangements with clinical relevance, but there are also rare inherited imbalances with unknown significance that make difficult the clinical management and genetic counselling. Chromosomal microarrays analysis (CMA) are recognized as the first-line test for CNV detection and are now routinely used in the clinical diagnostic laboratory. The recent use of CMA platforms that combine classic copy number analysis with single-nucleotide polymorphism (SNP) genotyping has increased the diagnostic yields. Here we discuss the application of the Cytoscan high-density (HD) SNP-array for the detection of CNVs. We provide an overview of molecular analyses involved in identifying pathogenic CNVs and highlight important guidelines to establish pathogenicity of CNV.
Collapse
|
38
|
Misattributed parentage as an unanticipated finding during exome/genome sequencing: current clinical laboratory practices and an opportunity for standardization. Genet Med 2018; 21:861-866. [DOI: 10.1038/s41436-018-0265-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
|
39
|
Abstract
New genetic tests have rapidly entered clinical care with little consistency in laboratory testing and reporting. Non-invasive prenatal screening using cell free DNA (cfDNA) may either screen for common aneuploidies alone or include chromosomal microdeletions. All cfDNA screening tests have false positives and false negatives, and accordingly laboratories should report positive and negative predictive values. In addition, since fetal fraction plays a significant role in the reliability of results, this should also be reported with all test results. Chromosomal microarray addresses significant clinically relevant information beyond that detected with standard karyotype testing but may, in less than one percent of cases, result in a variant of uncertain significance (VUS). Laboratories should indicate their policies for reporting these VUS findings. In addition, physicians using this testing should be aware of the advantages and disadvantages of the laboratory platforms. Whole-exome and whole-genome sequencing are just entering clinical care and issues of VUS, incidental findings, and phenotype/genotype correlations need to be investigated before these techniques enter routine clinical care.
Collapse
Affiliation(s)
- Karen Wou
- Division of Medical Genetics, Department of Pediatrics, Columbia University, United States
| | - Wendy K Chung
- Division of Medical Genetics, Department of Pediatrics, Columbia University, United States
| | - Ronald J Wapner
- Division of Reproductive Genetics, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, 622 W. 168th St, PH-16-66, New York, NY 10032, United States.
| |
Collapse
|
40
|
Abstract
Until recent years, prenatal genetic tests have been almost exclusively developed and implemented by academic physicians and laboratories. In the last several years, industry has led the development of novel prenatal genetic tests, funded clinical trials and implemented these tests into clinical practice. That these efforts have been driven by industry has raised questions about diagnostics development regulations, consistency in reporting of results, and management of potential conflicts of interest. In this article, these topics are addressed from an industry perspective. While commercial laboratories may have the resources to develop and offer novel genetic tests, collaboration with healthcare providers is crucial for appropriate, effective, and efficient utilization of such tests.
Collapse
Affiliation(s)
- Amy Swanson
- Illumina, Inc., 499 Illinois Street, Ste 210, San Francisco, CA 94158, USA.
| | | |
Collapse
|
41
|
Zhu N, Gonzaga-Jauregui C, Welch C, Ma L, Qi H, King AK, Krishnan U, Rosenzweig EB, Ivy DD, Austin ED, Hamid R, Nichols WC, Pauciulo MW, Lutz KA, Sawle A, Reid JG, Overton JD, Baras A, Dewey F, Shen Y, Chung WK. Exome Sequencing in Children With Pulmonary Arterial Hypertension Demonstrates Differences Compared With Adults. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2018; 11:e001887. [PMID: 29631995 PMCID: PMC5896781 DOI: 10.1161/circgen.117.001887] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/31/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a rare disease characterized by pulmonary arteriole remodeling, elevated arterial pressure and resistance, and subsequent heart failure. Compared with adult-onset disease, pediatric-onset PAH is more heterogeneous and often associated with worse prognosis. Although BMPR2 mutations underlie ≈70% of adult familial PAH (FPAH) cases, the genetic basis of PAH in children is less understood. METHODS We performed genetic analysis of 155 pediatric- and 257 adult-onset PAH patients, including both FPAH and sporadic, idiopathic PAH (IPAH). After screening for 2 common PAH risk genes, mutation-negative FPAH and all IPAH cases were evaluated by exome sequencing. RESULTS We observed similar frequencies of rare, deleterious BMPR2 mutations in pediatric- and adult-onset patients: ≈55% in FPAH and 10% in IPAH patients in both age groups. However, there was significant enrichment of TBX4 mutations in pediatric- compared with adult-onset patients (IPAH: 10/130 pediatric versus 0/178 adult-onset), and TBX4 carriers had younger mean age-of-onset compared with BMPR2 carriers. Mutations in other known PAH risk genes were infrequent in both age groups. Notably, among pediatric IPAH patients without mutations in known risk genes, exome sequencing revealed a 2-fold enrichment of de novo likely gene-damaging and predicted deleterious missense variants. CONCLUSIONS Mutations in known PAH risk genes accounted for ≈70% to 80% of FPAH in both age groups, 21% of pediatric-onset IPAH, and 11% of adult-onset IPAH. Rare, predicted deleterious variants in TBX4 are enriched in pediatric patients and de novo variants in novel genes may explain ≈19% of pediatric-onset IPAH cases.
Collapse
Affiliation(s)
- Na Zhu
- Department of Pediatrics, Columbia University Medical Center, New York
- Department of Systems Biology, Columbia University, New York, NY
| | | | - Carrie Welch
- Department of Pediatrics, Columbia University Medical Center, New York
| | - Lijiang Ma
- Department of Pediatrics, Columbia University Medical Center, New York
| | - Hongjian Qi
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY
- Department of Systems Biology, Columbia University, New York, NY
| | | | - Usha Krishnan
- Department of Pediatrics, Columbia University Medical Center, New York
| | - Erika B. Rosenzweig
- Department of Pediatrics, Columbia University Medical Center, New York
- Department of Medicine, Columbia University Medical Center, New York
| | - D. Dunbar Ivy
- Children’s Hospital Colorado, Department of Pediatric Cardiology, Denver, CO
| | - Eric D. Austin
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN
| | - Rizwan Hamid
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN
| | - William C. Nichols
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center & Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Michael W. Pauciulo
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center & Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Katie A. Lutz
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center & Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Ashley Sawle
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York
| | - Jeffrey G. Reid
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown
| | - John D. Overton
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown
| | - Aris Baras
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown
| | - Frederick Dewey
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, NY
- Department of Biomedical Informatics, Columbia University, New York, NY
| | - Wendy K. Chung
- Department of Pediatrics, Columbia University Medical Center, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York
- Department of Medicine, Columbia University Medical Center, New York
| |
Collapse
|
42
|
Córdova-Fletes C, Becerra-Solano LE, Rangel-Sosa MM, Rivas-Estilla AM, Alberto Galán-Huerta K, Ortiz-López R, Rojas-Martínez A, Juárez-Vázquez CI, García-Ortiz JE. Uncommon runs of homozygosity disclose homozygous missense mutations in two ciliopathy-related genes ( SPAG17 and WDR35 ) in a patient with multiple brain and skeletal anomalies. Eur J Med Genet 2018; 61:161-167. [DOI: 10.1016/j.ejmg.2017.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/18/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
|
43
|
A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. Blood 2017; 131:717-732. [PMID: 29146883 DOI: 10.1182/blood-2017-09-806489] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/28/2017] [Indexed: 12/17/2022] Open
Abstract
Bone marrow (BM) failure (BMF) in children and young adults is often suspected to be inherited, but in many cases diagnosis remains uncertain. We studied a cohort of 179 patients (from 173 families) with BMF of suspected inherited origin but unresolved diagnosis after medical evaluation and Fanconi anemia exclusion. All patients had cytopenias, and 12.0% presented ≥5% BM blast cells. Median age at genetic evaluation was 11 years; 20.7% of patients were aged ≤2 years and 36.9% were ≥18 years. We analyzed genomic DNA from skin fibroblasts using whole-exome sequencing, and were able to assign a causal or likely causal germ line mutation in 86 patients (48.0%), involving a total of 28 genes. These included genes in familial hematopoietic disorders (GATA2, RUNX1), telomeropathies (TERC, TERT, RTEL1), ribosome disorders (SBDS, DNAJC21, RPL5), and DNA repair deficiency (LIG4). Many patients had an atypical presentation, and the mutated gene was often not clinically suspected. We also found mutations in genes seldom reported in inherited BMF (IBMF), such as SAMD9 and SAMD9L (N = 16 of the 86 patients, 18.6%), MECOM/EVI1 (N = 6, 7.0%), and ERCC6L2 (N = 7, 8.1%), each of which was associated with a distinct natural history; SAMD9 and SAMD9L patients often experienced transient aplasia and monosomy 7, whereas MECOM patients presented early-onset severe aplastic anemia, and ERCC6L2 patients, mild pancytopenia with myelodysplasia. This study broadens the molecular and clinical portrait of IBMF syndromes and sheds light on newly recognized disease entities. Using a high-throughput sequencing screen to implement precision medicine at diagnosis can improve patient management and family counseling.
Collapse
|
44
|
Kang JTL, Goldberg A, Edge MD, Behar DM, Rosenberg NA. Consanguinity Rates Predict Long Runs of Homozygosity in Jewish Populations. Hum Hered 2017; 82:87-102. [PMID: 28910803 DOI: 10.1159/000478897] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/14/2017] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Recent studies have highlighted the potential of analyses of genomic sharing to produce insight into the demographic processes affecting human populations. We study runs of homozygosity (ROH) in 18 Jewish populations, examining these groups in relation to 123 non-Jewish populations sampled worldwide. METHODS By sorting ROH into 3 length classes (short, intermediate, and long), we evaluate the impact of demographic processes on genomic patterns in Jewish populations. RESULTS We find that the portion of the genome appearing in long ROH - the length class most directly related to recent consanguinity - closely accords with data gathered from interviews during the 1950s on frequencies of consanguineous unions in various Jewish groups. CONCLUSION The high correlation between 1950s consanguinity levels and coverage by long ROH explains differences across populations in ROH patterns. The dissection of ROH into length classes and the comparison to consanguinity data assist in understanding a number of additional phenomena, including similarities of Jewish populations to Middle Eastern, European, and Central and South Asian non-Jewish populations in short ROH patterns, relative lengths of identity-by-descent tracts in different Jewish groups, and the "population isolate" status of the Ashkenazi Jews.
Collapse
|
45
|
Verma IC, Dua-Puri R, Bijarnia-Mahay S. ACMG 2016 Update on Noninvasive Prenatal Testing for Fetal Aneuploidy: Implications for India. JOURNAL OF FETAL MEDICINE 2017. [DOI: 10.1007/s40556-017-0116-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Shin S, Yu N, Choi JR, Jeong S, Lee KA. Routine chromosomal microarray analysis is necessary in Korean patients with unexplained developmental delay/mental retardation/autism spectrum disorder. Ann Lab Med 2016. [PMID: 26206688 PMCID: PMC4510504 DOI: 10.3343/alm.2015.35.5.510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background All over the world, chromosomal microarray (CMA) is now the first tier diagnostic assay for genetic testing to evaluate developmental delay (DD), mental retardation (MR), and autism spectrum disorder (ASD) with unknown etiology. The average diagnostic yield of the CMA test is known to be about 12.2%, while that of conventional G-banding karyotype is below 3%. This study aimed to assess the usefulness of CMA for the purpose of clinical diagnostic testing in the Korean population. Methods We performed CMA and multiplex ligation-dependent probe amplification (MLPA) tests in 96 patients with normal karyotype and unexplained DD, MR, or ASD. The CMA was conducted with CytoScan 750K array (Affymetrix, USA) with an average resolution of 100 kb. Results Pathogenic copy number variations (CNVs) were detected in 15 patients by CMA and in two patients by MLPA for four known microdeletion syndromes (Prader-Willi/Angelman syndrome, DiGeorge syndrome, Miller-Dieker syndrome and Williams syndrome) designated by National Health Insurance system in Korea. The diagnostic yield was 15.6% and 2.1%, respectively. Thirteen (13.5%) patients (excluding cases with pathogenic CNVs) had variants of uncertain clinical significance. There was one patient with a 17.1-megabase (Mb) region of homozygosity on chromosome 4q. Conclusions Our findings suggest the necessity of CMA as a routine diagnostic test for unexplained DD, MR, and ASD in Korea.
Collapse
Affiliation(s)
- Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Nae Yu
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seri Jeong
- Department of Laboratory Medicine, Kosin University College of Medicine, Busan, Korea
| | - Kyung A Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
47
|
Kirkpatrick BE, Rashkin MD. Ancestry Testing and the Practice of Genetic Counseling. J Genet Couns 2016; 26:6-20. [DOI: 10.1007/s10897-016-0014-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/30/2016] [Indexed: 12/20/2022]
|
48
|
Gregg AR, Skotko BG, Benkendorf JL, Monaghan KG, Bajaj K, Best RG, Klugman S, Watson MS. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: a position statement of the American College of Medical Genetics and Genomics. Genet Med 2016; 18:1056-65. [PMID: 27467454 DOI: 10.1038/gim.2016.97] [Citation(s) in RCA: 439] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 12/17/2022] Open
Abstract
DISCLAIMER This statement is designed primarily as an educational resource for clinicians to help them provide quality medical services. Adherence to this statement is completely voluntary and does not necessarily assure a successful medical outcome. This statement should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed toward obtaining the same results. In determining the propriety of any specific procedure or test, the clinician should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or specimen. Clinicians are encouraged to document the reasons for the use of a particular procedure or test, whether or not it is in conformance with this statement. Clinicians also are advised to take notice of the date this statement was adopted and to consider other medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.Noninvasive prenatal screening using cell-free DNA (NIPS) has been rapidly integrated into prenatal care since the initial American College of Medical Genetics and Genomics (ACMG) statement in 2013. New evidence strongly suggests that NIPS can replace conventional screening for Patau, Edwards, and Down syndromes across the maternal age spectrum, for a continuum of gestational age beginning at 9-10 weeks, and for patients who are not significantly obese. This statement sets forth a new framework for NIPS that is supported by information from validation and clinical utility studies. Pretest counseling for NIPS remains crucial; however, it needs to go beyond discussions of Patau, Edwards, and Down syndromes. The use of NIPS to include sex chromosome aneuploidy screening and screening for selected copy-number variants (CNVs) is becoming commonplace because there are no other screening options to identify these conditions. Providers should have a more thorough understanding of patient preferences and be able to educate about the current drawbacks of NIPS across the prenatal screening spectrum. Laboratories are encouraged to meet the needs of providers and their patients by delivering meaningful screening reports and to engage in education. With health-care-provider guidance, the patient should be able to make an educated decision about the current use of NIPS and the ramifications of a positive, negative, or no-call result.Genet Med 18 10, 1056-1065.
Collapse
Affiliation(s)
- Anthony R Gregg
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida, USA
| | - Brian G Skotko
- Department of Pediatrics, Harvard Medical School and Division of Medical Genetics, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | - Komal Bajaj
- New York City Health + Hospitals/Albert Einstein College of Medicine, Bronx, New York, USA
| | - Robert G Best
- University of South Carolina School of Medicine, Greenville Health System, Greenville, South Carolina, USA
| | - Susan Klugman
- Montefiore Medical Center, Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Michael S Watson
- American College of Medical Genetics and Genomics, Bethesda, Maryland, USA
| |
Collapse
|
49
|
Hofmann B. Incidental findings of uncertain significance: To know or not to know--that is not the question. BMC Med Ethics 2016; 17:13. [PMID: 26873084 PMCID: PMC4752786 DOI: 10.1186/s12910-016-0096-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/04/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Although the "right not to know" is well established in international regulations, it has been heavily debated. Ubiquitous results from extended exome and genome analysis have challenged the right not to know. American College of Medical Genetics and Genomics (ACMG) Recommendations urge to inform about incidental findings that pretend to be accurate and actionable. However, ample clinical cases raise the question whether these criteria are met. Many incidental findings are of uncertain significance (IFUS). The eager to feedback information appears to enter the field of IFUS and thereby threaten the right not to know. This makes it imperative to investigate the arguments for and against a right not to know for IFUS. DISCUSSION This article investigates how the various arguments for and against a right not to know hold for IFUS. The main investigated arguments are: hypothetical utilitarianism, the right-based argument, the feasibility argument, the value of knowledge argument, the argument from lost significance, the empirical argument, the duty to disclose argument, the avoiding harm argument; the argument from principle, from autonomy, from privacy, as well as the argument from the right to an open future. The analysis shows that both sides in the debate have exaggerated the importance of incidental findings. Opponents of a right not to know have exaggerated the importance of IFUS, while proponents have exaggerated the need to be protected from something that is not knowledge. Hence, to know or not to know is not the question. The question is whether we should be able to stay ignorant of incidental findings of uncertain significance, if we want to. The answer is yes: As long as the information is not accurate and/or actionable: ignorance is bliss. When answering questions that are not asked, we need to think twice.
Collapse
Affiliation(s)
- Bjørn Hofmann
- Norwegian University of Science and Technology, Gjøvik, Norway. .,Centre for Medical Ethics, University of Oslo, PO Box 1130, Blindern, N-0318, Oslo, Norway.
| |
Collapse
|
50
|
Yu W, You X, Wang D, Dong K, Su J, Li C, Liu J, Zhang Q, You F, Wang X, Huang J, Qiao B, Duan W. Microarray analysis unmasked two siblings with pure hereditary spastic paraplegia shared a run of homozygosity region on chromosome 3q28-q29. J Neurol Sci 2015; 359:351-5. [PMID: 26671141 DOI: 10.1016/j.jns.2015.10.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 10/21/2015] [Accepted: 10/27/2015] [Indexed: 11/29/2022]
Abstract
Hereditary spastic paraplegia (HSP) is a clinical and genetic heterogeneity group of neurodegenerative disorders which is characterized by progressive weakness and spasticity of the lower limbs. More than 70 genetic types of HSP have been described so far. Here we describe a Chinese non-consanguineous family with two affected siblings manifesting early-onset autosomal recessive HSP in pure forms. To identify genotype and characterize phenotype, CytoScan HD array analysis was performed on the two siblings. A run of homozygosity (ROH) shared by the two patients was detected on chromosome 3q28-q29. The ROH region, about 7.7Mb on the chromosome 3:190172058-197851260 partially overlapped with the ROH region of SPG14 previously reported. Subsequently, microsatellite analysis confirmed this ROH and whole-exome sequencing was carried out while no causative mutations were found in the exons of known HSP genes and 68 candidate genes in that region. In conclusion, our data suggest the ROH in this region may play a pivotal role in SPG14 pathogenesis. This is the first clinical description of a pure form spastic paraplegia in a non-consanguineous family associated with the SPG14 locus.
Collapse
Affiliation(s)
- Wenqian Yu
- Institute of Cardiovascular Disease, General Hospital of Jinan Military Region, 8 Lashan Road, Jinan 250022, China
| | - Xiangdong You
- Division of Quality Management, Shandong Center for Disease Control and Prevention, 16992 Jingshi Road, Jinan 250014, China
| | - Dong Wang
- Institute of Cardiovascular Disease, General Hospital of Jinan Military Region, 8 Lashan Road, Jinan 250022, China
| | - Kai Dong
- Institute of Cardiovascular Disease, General Hospital of Jinan Military Region, 8 Lashan Road, Jinan 250022, China
| | - Jing Su
- Department of Neurology, General Hospital of Jinan Military Region, 25 Shifan Road, Jinan 250031, China
| | - Chuanfen Li
- Department of Neurology, General Hospital of Jinan Military Region, 25 Shifan Road, Jinan 250031, China
| | - Jinxiu Liu
- Institute of Cardiovascular Disease, General Hospital of Jinan Military Region, 8 Lashan Road, Jinan 250022, China
| | - Qianqian Zhang
- Institute of Cardiovascular Disease, General Hospital of Jinan Military Region, 8 Lashan Road, Jinan 250022, China
| | - Feng You
- Institute of Cardiovascular Disease, General Hospital of Jinan Military Region, 8 Lashan Road, Jinan 250022, China
| | - Xiangrong Wang
- Institute of Cardiovascular Disease, General Hospital of Jinan Military Region, 8 Lashan Road, Jinan 250022, China
| | - Jing Huang
- Institute of Cardiovascular Disease, General Hospital of Jinan Military Region, 8 Lashan Road, Jinan 250022, China
| | - Bin Qiao
- Institute of Cardiovascular Disease, General Hospital of Jinan Military Region, 8 Lashan Road, Jinan 250022, China.
| | - Wenyuan Duan
- Institute of Cardiovascular Disease, General Hospital of Jinan Military Region, 8 Lashan Road, Jinan 250022, China.
| |
Collapse
|