1
|
Liu Y, Ju Y, Chen TH, Jiang YX. Genotype-phenotype Correlations of Ocular Posterior Segment Abnormalities in Marfan Syndrome. OPHTHALMOLOGY SCIENCE 2024; 4:100526. [PMID: 38840780 PMCID: PMC11152728 DOI: 10.1016/j.xops.2024.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 06/07/2024]
Abstract
Purpose Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in the fibrillin-1 ( (FBN1). In addition to typical phenotypes such as ectopia lentis (EL) and aortic dilation, patients with MFS are prone to ocular posterior segment abnormalities, including retinal detachment (RD), maculopathy, and posterior staphyloma (PS). This study aims to investigate the correlations between FBN1 genotype and posterior segment abnormalities within a Chinese cohort of MFS. Design Retrospective study. Participants One hundred twenty-one eyes of 121 patients with confirmed FBN1 mutations between January 2015 and May 2023 were included. Methods Comprehensive ophthalmic examination findings were reviewed, and the incidence of RD, atrophic, tractional, and neovascular maculopathy (ATN classification system), and PS was analyzed between different genotype groups. Only the more severely affected eye from each patient was included. Main Outcome Measures Clinical features and risk factors. Results Of 121 patients, 60 eyes (49.59%) exhibited posterior segment abnormalities, including RD (4, 3.31%), maculopathy (47, 38.84%), and PS (54, 44.63%). The mean age was 11.53 ± 11.66 years, with 79.34% of patients <20 years old. The location and region of mutations were found to be associated with the incidence of maculopathy (P = 0.013, P = 0.033) and PS (P = 0.043, P = 0.036). Mutations in the middle region had a lower incidence of maculopathy and PS (P = 0.028 and P = 0.006, respectively) than those in C-terminal region. Mutations in the transforming growth factor-β (TGF-β) regulating sequence exhibited a higher incidence of maculopathy and PS (P = 0.020, P = 0.040). Importantly, the location and region of mutations were also associated with the incidence of atrophic maculopathy (P = 0.013 and P = 0.033, respectively). Mutations in the middle region had a significantly lower probability of atrophic maculopathy (P = 0.006), while mutations in the TGF-β regulating region had a higher incidence of atrophic maculopathy (P = 0.020). Conclusions Maculopathy and PS were associated with the location and region of FBN1 mutations. Patients with mutations in the TGF-β regulating region faced an increased risk of developing retinopathy. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Yan Liu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yuqiao Ju
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Tian-hui Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yong-xiang Jiang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
2
|
Xu N, Alfieri CM, Yu Y, Guo M, Yutzey KE. Wnt Signaling Inhibition Prevents Postnatal Inflammation and Disease Progression in Mouse Congenital Myxomatous Valve Disease. Arterioscler Thromb Vasc Biol 2024; 44:1540-1554. [PMID: 38660802 PMCID: PMC11209782 DOI: 10.1161/atvbaha.123.320388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Myxomatous valve disease (MVD) is the most common cause of mitral regurgitation, leading to impaired cardiac function and heart failure. MVD in a mouse model of Marfan syndrome includes valve leaflet thickening and progressive valve degeneration. However, the underlying mechanisms by which the disease progresses remain undefined. METHODS Mice with Fibrillin 1 gene variant Fbn1C1039G/+ recapitulate histopathologic features of Marfan syndrome, and Wnt (Wingless-related integration site) signaling activity was detected in TCF/Lef-lacZ (T-cell factor/lymphoid enhancer factor-β-galactosidase) reporter mice. Single-cell RNA sequencing was performed from mitral valves of wild-type and Fbn1C1039G/+ mice at 1 month of age. Inhibition of Wnt signaling was achieved by conditional induction of the secreted Wnt inhibitor Dkk1 (Dickkopf-1) expression in periostin-expressing valve interstitial cells of Periostin-Cre; tetO-Dkk1; R26rtTA; TCF/Lef-lacZ; Fbn1C1039G/+ mice. Dietary doxycycline was administered for 1 month beginning with MVD initiation (1-month-old) or MVD progression (2-month-old). Histological evaluation and immunofluorescence for ECM (extracellular matrix) and immune cells were performed. RESULTS Wnt signaling is activated early in mitral valve disease progression, before immune cell infiltration in Fbn1C1039G/+ mice. Single-cell transcriptomics revealed similar mitral valve cell heterogeneity between wild-type and Fbn1C1039G/+ mice at 1 month of age. Wnt pathway genes were predominantly expressed in valve interstitial cells and valve endothelial cells of Fbn1C1039G/+ mice. Inhibition of Wnt signaling in Fbn1C1039G/+ mice at 1 month of age prevented the initiation of MVD as indicated by improved ECM remodeling and reduced valve leaflet thickness with decreased infiltrating macrophages. However, later, Wnt inhibition starting at 2 months did not prevent the progression of MVD. CONCLUSIONS Wnt signaling is involved in the initiation of mitral valve abnormalities and inflammation but is not responsible for later-stage valve disease progression once it has been initiated. Thus, Wnt signaling contributes to MVD progression in a time-dependent manner and provides a promising therapeutic target for the early treatment of congenital MVD in Marfan syndrome.
Collapse
Affiliation(s)
- Na Xu
- Division of Molecular Cardiovascular Biology, the Heart Institute, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Christina M. Alfieri
- Division of Molecular Cardiovascular Biology, the Heart Institute, Cincinnati Children’s Hospital Medical Center
| | - Yang Yu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center
| | - Minzhe Guo
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, the Heart Institute, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| |
Collapse
|
3
|
Yang S, Li Z. FBN2 pathogenic variants in congenital contractural arachnodactyly with severe cardiovascular manifestations. Connect Tissue Res 2024; 65:214-225. [PMID: 38602424 DOI: 10.1080/03008207.2024.2340004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE Congenital contractural arachnodactyly (CCA) is an extremely rare autosomal dominant connective tissue genetic disorder caused by pathogenic variants in FBN2. CCA is characterized by arachnodactyly, camptodactyly, contracture of major joints, scoliosis, pectus deformities, and crumpled ears, but rarely with lethal cardiovascular manifestations as in Marfan syndrome. It is imperative to conduct a comprehensive analysis and review of the pathogenesis of CCA resulting from pathogenic variants in FBN2 gene. MATERIALS AND METHODS Using whole-exome sequencing and Sanger sequencing, we identified a novel pathogenic splice-altering variant (c.4472-3C>A) in intron 34 of FBN2 gene in a CCA pedigree. The transcriptional result of the splicing-altering variant was analyzed by RNA sequencing. We systematically analyzed the clinical manifestations of all reported cases of CCA caused by splicing-altering pathogenic variants and focused on all the pathogenic variants in FBN2 gene that are associated with severe cardiovascular manifestations. RESULTS The splice-altering variant (c.4472-3C>A) in FBN2 was demonstrated to result in the exon 35 skipping and cause an in-frame deletion. Furthermore, we identified exons 31 to 35 may be a hotspot region in FBN2 gene associated with severe cardiovascular phenotype. CONCLUSIONS This study enriched the pathogenic spectrum of CCA and identified a hotspot region in FBN2 gene associated with severe cardiovascular manifestations. We recommend that patients carrying pathogenic variants in exons 31 to 35 of FBN2 pay more attention to cardiac evaluation.
Collapse
Affiliation(s)
- Shulin Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zongzhe Li
- Division of Cardiology, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Kim SW, Kim B, Kim Y, Lee KA. Re-evaluation of a Fibrillin-1 Gene Variant of Uncertain Significance Using the ClinGen Guidelines. Ann Lab Med 2024; 44:271-278. [PMID: 37840311 PMCID: PMC10813823 DOI: 10.3343/alm.2023.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/25/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Background Marfan syndrome (MFS) is caused by fibrillin-1 gene (FBN1) variants. Mutational hotspots and/or well-established critical functional domains of FBN1 include cysteine residues, calcium-binding consensus sequences, and amino acids related to interdomain packaging. Previous guidelines for variant interpretation do not reflect the features of genes or related diseases. Using the Clinical Genome Resource (ClinGen) FBN1 variant curation expert panel (VCEP), we re-evaluated FBN1 germline variants reported as variants of uncertain significance (VUSs). Methods We re-evaluated 26 VUSs in FBN1 reported in 161 patients with MFS. We checked the variants in the Human Genome Mutation Database, ClinVar, and VarSome databases and assessed their allele frequencies using the gnomAD database. Patients' clinical information was reviewed. Results Four missense variants affecting cysteines (c.460T>C, c.1006T>C, c.5330G>C, and c.8020T>C) were reclassified as likely pathogenic and were assigned PM1_strong or PM1. Two intronic variants were reclassified as benign by granting BA1 (stand-alone). Four missense variants were reclassified as likely benign. BP5 criteria were applied in cases with an alternate molecular basis for disease, one of which (c.7231G>A) was discovered alongside a pathogenic de novo COL3A1 variant (c.1988G>T, p.Gly633Val). Conclusions Considering the high penetrance of FBN1 variants and clinical variability of MFS, the detection of pathogenic variants is important. The ClinGen FBN1 VCEP encompasses mutational hotspots and/or well-established critical functional domains and adjusts the criteria specifically for MFS; therefore, it is beneficial not only for identifying pathogenic FBN1 variants but also for distinguishing these variants from those that cause other connective tissue disorders with overlapping clinical features.
Collapse
Affiliation(s)
- Seo Wan Kim
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Boyeon Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yoonjung Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung-A Lee
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Klemenzdottir EO, Arnadottir GA, Jensson BO, Jonasdottir A, Katrinardottir H, Fridriksdottir R, Jonasdottir A, Sigurdsson A, Gudjonsson SA, Jonsson JJ, Stefansdottir V, Danielsen R, Palsdottir A, Jonsson H, Helgason A, Magnusson OT, Thorsteinsdottir U, Bjornsson HT, Stefansson K, Sulem P. A population-based survey of FBN1 variants in Iceland reveals underdiagnosis of Marfan syndrome. Eur J Hum Genet 2024; 32:44-51. [PMID: 37684520 PMCID: PMC10772070 DOI: 10.1038/s41431-023-01455-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Marfan syndrome (MFS) is an autosomal dominant condition characterized by aortic aneurysm, skeletal abnormalities, and lens dislocation, and is caused by variants in the FBN1 gene. To explore causes of MFS and the prevalence of the disease in Iceland we collected information from all living individuals with a clinical diagnosis of MFS in Iceland (n = 32) and performed whole-genome sequencing of those who did not have a confirmed genetic diagnosis (27/32). Moreover, to assess a potential underdiagnosis of MFS in Iceland we attempted a genotype-based approach to identify individuals with MFS. We interrogated deCODE genetics' database of 35,712 whole-genome sequenced individuals to search for rare sequence variants in FBN1. Overall, we identified 15 pathogenic or likely pathogenic variants in FBN1 in 44 individuals, only 22 of whom were previously diagnosed with MFS. The most common of these variants, NM_000138.4:c.8038 C > T p.(Arg2680Cys), is present in a multi-generational pedigree, and was found to stem from a single forefather born around 1840. The p.(Arg2680Cys) variant associates with a form of MFS that seems to have an enrichment of abdominal aortic aneurysm, suggesting that this may be a particularly common feature of p.(Arg2680Cys)-associated MFS. Based on these combined genetic and clinical data, we show that MFS prevalence in Iceland could be as high as 1/6,600 in Iceland, compared to 1/10,000 based on clinical diagnosis alone, which indicates underdiagnosis of this actionable genetic disorder.
Collapse
Affiliation(s)
| | - Gudny Anna Arnadottir
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | | | | | | - Jon Johannes Jonsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Genetics, Landspitali Universtity Hospital, Reykjavik, Iceland
| | | | - Ragnar Danielsen
- Department of Cardiology, Landspitali University Hospital, Reykjavik, Iceland
| | - Astridur Palsdottir
- Institute for Experimental Pathology at Keldur, University of Iceland, Reykjavik, Iceland
| | | | - Agnar Helgason
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | | | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Hans Tomas Bjornsson
- Department of Pediatrics, Landspitali University Hospital, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Genetics, Landspitali Universtity Hospital, Reykjavik, Iceland
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland.
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| | | |
Collapse
|
6
|
Liu X, Niu L, Zhang L, Jiang L, Liu K, Wu X, Liu X, Wang J. Clinical and genetic findings in Chinese families with congenital ectopia lentis. Mol Genet Genomic Med 2023; 11:e2140. [PMID: 36670079 PMCID: PMC10178797 DOI: 10.1002/mgg3.2140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/17/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Congenital ectopia lentis (EL) refers to the congenital dysplasia or weakness of the lens suspensory ligament, resulting in an abnormal position of the crystalline lens, which can appear as isolated EL or as an ocular manifestation of a syndrome, such as the Marfan syndrome. The fibrillin-1 protein encoded by the FBN1 gene is an essential component of the lens zonules. Mutations in FBN1 are the leading causes of congenital EL and Marfan syndrome. Owing to the complexity and individual heterogeneity of FBN1 gene mutations, the correlation between FBN1 mutation characteristics and various clinical phenotypes remains unclear. METHODS This study describes the clinical characteristics and identifies possible causative genes in eight families with Marfan syndrome or isolated EL using Sanger and whole-exome sequencing. RESULTS Eight FBN1 mutations were identified in these families, of which three (c.5065G > C, c.1600 T > A, and c.2210G > C) are reported for the first time. Based on in silico analyses, we hypothesized that these mutations may be pathogenic by affecting the fibrillin-1 protein structure and function. CONCLUSION These findings expand the number of known mutations involved in EL and provide a reference for the research on their genotype and phenotype associations.
Collapse
Affiliation(s)
- Xin Liu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Liman Niu
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Liyun Zhang
- Postgraduate Training Base of Jinzhou Medical University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Shenzhen, Guangdong, China
| | - Liqiong Jiang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Kaiqing Liu
- Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Xueping Wu
- Postgraduate Training Base of Jinzhou Medical University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Shenzhen, Guangdong, China
| | - Xinhua Liu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| | - Jiantao Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Li D, Qiao J, Huang D, Guo R, Ji J, Liu W. Novel and recurrent FBN1 mutations causing Marfan syndrome in two Chinese families. Front Med (Lausanne) 2022; 9:1086844. [PMID: 36582279 PMCID: PMC9792469 DOI: 10.3389/fmed.2022.1086844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Background To explore the genetic defects of two families with autosomal dominant Marfan syndrome (MFS). Methods Two families with MFS were enrolled in this study. The detailed ocular presentations of the patients were recorded. Whole exome sequencing was performed to explore the pathogenic variants and Sanger sequencing was performed to confirm the gene mutations. Segregation analysis among the family members was made and bioinformatics analysis was performed to predict the functional impact of the mutations. Results The main ocular presentations of the probands were increased axial length and ectopia lentis. Using whole exome sequencing and Sanger sequencing, a novel heterozygous missense mutation (c.5060G > C, p.Cys1687Ser) and a recurrent missense mutation (c.2168A > T, p.Asp723Val) were identified within FBN1, which were co-segregated with the MFS phenotype in the families. Evolutionary conservation analysis showed that codons 723 and 1,687 were highly conserved among several species. Functional impact predictions made using several online programs suggested that the mutations were pathogenic. Conclusion We identified a novel and a recurrent missense mutation in FBN1 in two Chinese families with MFS using whole exome sequencing, and our bioinformatics analysis indicated that the mutations were disease-causing. Our results expand the mutation spectrum of FBN1 and could help us better understand the genetic defects of the patients with MFS.
Collapse
Affiliation(s)
- Dandan Li
- Department of Ophthalmology, Tianjin TEDA Hospital, Tianjin, China
| | - Jun Qiao
- Department of Ophthalmology, Lanzhou Huaxia Eye Hospital, Lanzhou, Gansu, China
| | - Dandan Huang
- Department of Ophthalmology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ruru Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jian Ji
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Wei Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China,*Correspondence: Wei Liu,
| |
Collapse
|
8
|
Wang JJ, Yu B, Sun Y, Song X, Wang DW, Li Z. FBN1 Splice-Altering Mutations in Marfan Syndrome: A Case Report and Literature Review. Genes (Basel) 2022; 13:genes13101842. [PMID: 36292727 PMCID: PMC9602130 DOI: 10.3390/genes13101842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/27/2022] Open
Abstract
Marfan syndrome (MFS) is a life-threatening autosomal dominant genetic disorder of connective tissue caused by the pathogenic mutation of FBN1. Whole exome sequencing and Sanger sequencing were performed to identify the pathogenic mutation. The transcriptional consequence of the splice-altering mutation was analyzed via minigene assays and reverse-transcription PCR. We identified a novel pathogenic mutation (c.8051+1G>C) in the splice site of exon 64 of the FBN1 gene in an MFS-pedigree. This mutation was confirmed to cause two different truncated transcripts (entire exon 64 skipping; partial exon 64 exclusion). We also systematically summarized previously reported transcriptional studies of pathogenic splice-altering mutations in the FBN1 gene to investigate the clinical and transcriptional consequences. In conclusion, we reported for the first time that a splice-altering mutation in the FBN1 gene leads to two abnormal transcripts simultaneously.
Collapse
Affiliation(s)
- James Jiqi Wang
- Division of Cardiology, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bo Yu
- Division of Cardiology, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Sun
- Division of Cardiology, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuli Song
- Division of Cardiology, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zongzhe Li
- Division of Cardiology, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: ; Tel./Fax: +86-27-8366-3280
| |
Collapse
|
9
|
Chen ZX, Jia WN, Jiang YX. Genotype-phenotype correlations of marfan syndrome and related fibrillinopathies: Phenomenon and molecular relevance. Front Genet 2022; 13:943083. [PMID: 36176293 PMCID: PMC9514320 DOI: 10.3389/fgene.2022.943083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Marfan syndrome (MFS, OMIM: 154700) is a heritable multisystemic disease characterized by a wide range of clinical manifestations. The underlying molecular defect is caused by variants in the FBN1. Meanwhile, FBN1 variants are also detected in a spectrum of connective tissue disorders collectively termed as ‘type I fibrillinopathies’. A multitude of FBN1 variants is reported and most of them are unique in each pedigree. Although MFS is being considered a monogenic disorder, it is speculated that the allelic heterogeneity of FBN1 variants contributes to various manifestations, distinct prognoses, and differential responses to the therapies in affected patients. Significant progress in the genotype–phenotype correlations of MFS have emerged in the last 20 years, though, some of the associations were still in debate. This review aims to update the recent advances in the genotype-phenotype correlations of MFS and related fibrillinopathies. The molecular bases and pathological mechanisms are summarized for better support of the observed correlations. Other factors contributing to the phenotype heterogeneity and future research directions were also discussed. Dissecting the genotype-phenotype correlation of FBN1 variants and related disorders will provide valuable information in risk stratification, prognosis, and choice of therapy.
Collapse
Affiliation(s)
- Ze-Xu Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Wan-Nan Jia
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yong-Xiang Jiang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
10
|
Meester JAN, Peeters S, Van Den Heuvel L, Vandeweyer G, Fransen E, Cappella E, Dietz HC, Forbus G, Gelb BD, Goldmuntz E, Hoskoppal A, Landstrom AP, Lee T, Mital S, Morris S, Olson AK, Renard M, Roden DM, Singh MN, Selamet Tierney ES, Tretter JT, Van Driest SL, Willing M, Verstraeten A, Van Laer L, Lacro RV, Loeys BL. Molecular characterization and investigation of the role of genetic variation in phenotypic variability and response to treatment in a large pediatric Marfan syndrome cohort. Genet Med 2022; 24:1045-1053. [PMID: 35058154 PMCID: PMC9680912 DOI: 10.1016/j.gim.2021.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
PURPOSE In a large cohort of 373 pediatric patients with Marfan syndrome (MFS) with a severe cardiovascular phenotype, we explored the proportion of patients with MFS with a pathogenic FBN1 variant and analyzed whether the type/location of FBN1 variants was associated with specific clinical characteristics and response to treatment. Patients were recruited on the basis of the following criteria: aortic root z-score > 3, age 6 months to 25 years, no prior or planned surgery, and aortic root diameter < 5 cm. METHODS Targeted resequencing and deletion/duplication testing of FBN1 and related genes were performed. RESULTS We identified (likely) pathogenic FBN1 variants in 91% of patients. Ectopia lentis was more frequent in patients with dominant-negative (DN) variants (61%) than in those with haploinsufficient variants (27%). For DN FBN1 variants, the prevalence of ectopia lentis was highest in the N-terminal region (84%) and lowest in the C-terminal region (17%). The association with a more severe cardiovascular phenotype was not restricted to DN variants in the neonatal FBN1 region (exon 25-33) but was also seen in the variants in exons 26 to 49. No difference in the therapeutic response was detected between genotypes. CONCLUSION Important novel genotype-phenotype associations involving both cardiovascular and extra-cardiovascular manifestations were identified, and existing ones were confirmed. These findings have implications for prognostic counseling of families with MFS.
Collapse
Affiliation(s)
- Josephina A N Meester
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Silke Peeters
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Lotte Van Den Heuvel
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Geert Vandeweyer
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Erik Fransen
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; StatUa Center for Statistics, University of Antwerp, Antwerp, Belgium
| | | | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, The Johns Hopkins University, Baltimore, MD; Howard Hughes Medical Institute, Baltimore, MD
| | - Geoffrey Forbus
- Department of Pediatrics, Division of Pediatric Cardiology, Medical University of South Carolina, Charleston, SC
| | - Bruce D Gelb
- Departments of Pediatrics and Genetics & Genomic Sciences, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Arvind Hoskoppal
- Departments of Pediatrics and Internal Medicine, University of Utah and Intermountain Healthcare, Salt Lake City, UT
| | - Andrew P Landstrom
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Teresa Lee
- Children's Hospital of New York, New York City, NY
| | - Seema Mital
- Department of Pediatrics, Division of Cardiology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Shaine Morris
- Division of Cardiology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Aaron K Olson
- Department of Pediatrics, Seattle Children's Hospital, Seattle, WA
| | - Marjolijn Renard
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Michael N Singh
- Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA
| | | | - Justin T Tretter
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Sara L Van Driest
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Marcia Willing
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Aline Verstraeten
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Lut Van Laer
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Ronald V Lacro
- Department of Cardiology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Bart L Loeys
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
11
|
Chen S, Fei H, Zhang J, Chen Y, Huang H, Lu D, Xu C. Classification and Interpretation for 11 FBN1 Variants Responsible for Marfan Syndrome and Pre-implantation Genetic Testing (PGT) for Two Families Successfully Blocked Transmission of the Pathogenic Mutations. Front Mol Biosci 2021; 8:749842. [PMID: 34957211 PMCID: PMC8702824 DOI: 10.3389/fmolb.2021.749842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/15/2022] Open
Abstract
Background: The lifespan of Marfan Syndrome (MFS) patients is shortened, especially in patients without early diagnostics, preventive treatment, and elective surgery. Clinically, MFS diagnosis is mainly dependent on phenotypes, but for children, sporadic cases, or suspicious MFS patients, molecular genetic testing, and mainly FBN1 mutation screening, plays a significant role in the diagnosis of MFS. PGT-M gives couples that had a family history of monogenic disorders the opportunity to avoid the occurrence of MFS. Methods: In this study, 11 families with MFS were recruited and complete clinical features were collected. Variants were classified and interpreted through pedigree analysis according to guidelines. Two families chose to undergo PGT-M; 16 blastocysts were biopsied and amplified. Haplotype analysis was performed to deduce the embryo’s genotype by using single nucleotide polymorphisms (SNPs) identified in each sample. Results: We identified 11 potential disease-causing FBN1 variants, six of which are novel. All variants were assessed with prediction tools to assess mutation pathogenicity, population databases to evaluate population allele frequency, literature databases to identify whether the variant had been reported in MFS patients, and multiple sequence alignment to carry out conservative analysis. Finally, nine variants were classified as likely pathogenic/pathogenic variants. Among 11 variants, eight variants were missense, and seven of them were located in the Ca-binding EGF-like motifs, moreover, half of them substituted conserved Cysteine residues. We also identified a splice site variant, a frameshift variant, and a synonymous variant. There are two variants that are de novo variants. PGT-M helped two MFS families give birth to a healthy baby not carrying the FBN1 mutation. Conclusions: In the present study, the FBN1 mutation spectrum was enriched, and may help further elucidate the pathogenesis, benefiting clinical diagnosis and management of MFS. We make use of a reliable PGT-M method for the successful birth of healthy babies to two MFS families.
Collapse
Affiliation(s)
- Songchang Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Orignal Diseases, Shanghai, China.,State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongjun Fei
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Orignal Diseases, Shanghai, China
| | - Junyun Zhang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Orignal Diseases, Shanghai, China
| | - Yiyao Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Orignal Diseases, Shanghai, China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Orignal Diseases, Shanghai, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chenming Xu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.,The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Orignal Diseases, Shanghai, China
| |
Collapse
|
12
|
Chen ZX, Chen TH, Zhang M, Chen JH, Lan LN, Deng M, Zheng JL, Jiang YX. Correlation between FBN1 mutations and ocular features with ectopia lentis in the setting of Marfan syndrome and related fibrillinopathies. Hum Mutat 2021; 42:1637-1647. [PMID: 34550612 DOI: 10.1002/humu.24283] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/07/2021] [Accepted: 09/17/2021] [Indexed: 02/01/2023]
Abstract
Mutations of fibrillin-1 (FBN1) have been associated with Marfan syndrome and pleiotropic connective tissue disorders, collectively termed as "type I fibrillinopathy". However, few genotype-phenotype correlations are known in the ocular system. Patients with congenital ectopia lentis (EL) received panel-based next-generation sequencing, complemented with multiplex ligation-dependent probe amplification. In a total of 125 probands, the ocular phenotypes were compared for different types of FBN1 mutations. Premature termination codons were associated with less severe EL and a thinner central corneal thickness (CCT) than the inframe mutations. The eyes of patients with mutations in the C-terminal region had a higher incidence of posterior staphyloma than those in the middle and N-terminal regions. Mutations in the TGF-β-regulating sequence had larger horizontal corneal diameters (white-to-white [WTW]), higher incidence of posterior staphyloma, but less severe EL than those with mutations in other regions. Mutations in the neonatal region were associated with thinner CCT. Longer axial length (AL) was associated with mutations in the C-terminal region or TGF-β regulating sequence after adjusting for age, EL severity, and corneal curvature radius. FBN1 genotype-phenotype correlations were established for some ocular features, including EL severity, AL, WTW, CCT, and so forth, providing novel perspectives and directions for further mechanistic studies.
Collapse
Affiliation(s)
- Ze-Xu Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Tian-Hui Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Min Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jia-Hui Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Li-Na Lan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Michael Deng
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jia-Lei Zheng
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yong-Xiang Jiang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
13
|
Yin X, Hao J, Yao Y. CRISPR/Cas9 in zebrafish: An attractive model for FBN1 genetic defects in humans. Mol Genet Genomic Med 2021; 9:e1775. [PMID: 34324266 PMCID: PMC8580104 DOI: 10.1002/mgg3.1775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Background Mutations in the fibrillin‐1 gene (FBN1) are associated with various heritable connective tissue disorders (HCTD). The most studied HCTD is Marfan syndrome. Ninety percent of Marfan syndrome is caused by mutations in the FBN1 gene. The zebrafish share high genetic similarity to humans, representing an ideal model for genetic research of human diseases. This study aimed to generate and characterize fbn1+/− mutant zebrafish using the CRISPR/Cas9 gene‐editing technology. Methods CRISPR/Cas9 was applied to generate an fbn1 frameshift mutation (fbn1+/−) in zebrafish. F1 fbn1+/− heterozygotes were crossed with transgenic fluorescent zebrafish to obtain F2 fbn1+/− zebrafish. Morphological abnormalities were assessed in F2 fbn1+/− zebrafish by comparing with the Tuebingen (TU) wild‐type controls at different development stages. Results We successfully generated a transgenic line of fbn1+/− zebrafish. Compared with TU wild‐type zebrafish, F2 fbn1+/− zebrafish exhibited noticeably decreased pigmentation, increased lengths, slender body shape, and abnormal cardiac blood flow from atrium to ventricle. Conclusion We generated the first fbn1+/− zebrafish model using CRISPR/Cas9 gene‐editing approach to mimic FBN1 genetic defects in humans, providing an attractive model of Marfan syndrome and a method to determine the pathogenicity of gene mutation sites.
Collapse
Affiliation(s)
- Xiaoyun Yin
- Medical School of Chinese PLA, Beijing, China
| | - Jianxiu Hao
- Clinical Biobank Center, the Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
| | | |
Collapse
|
14
|
Chen Z, Chen T, Zhang M, Chen J, Deng M, Zheng J, Lan LN, Jiang Y. Fibrillin-1 gene mutations in a Chinese cohort with congenital ectopia lentis: spectrum and genotype-phenotype analysis. Br J Ophthalmol 2021; 106:1655-1661. [PMID: 34281902 DOI: 10.1136/bjophthalmol-2021-319084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/02/2021] [Indexed: 11/04/2022]
Abstract
AIMS To identify the mutation spectrum and genotype-phenotype correlations of fibrillin-1 (FBN1) mutations in a Chinese cohort with congenital ectopia lentis (EL). METHODS Patients clinically suspected of congenital zonulopathy were screened using panel-based next-generation sequencing followed by multiplex ligation-dependent probe amplification. All the probands were subjected to thorough ocular examinations. Molecular and clinical data were integrated in pursuit of genotype-phenotype correlation. RESULTS A total of 131 probands of FBN1 mutations from unrelated families were recruited. Around 65% of the probands were children younger than 9 years old. Overall, 110 distinct FBN1 mutations were identified, including 39 novel ones. The most at-risk regions were exons 13, 2, 6, 15, 24 and 33 in descending order of mutation frequency. The most prevalent mutation was c.184C>T (seven, 5.34%) in the coding sequence and c.5788+5G>A (three, 2.29%) in introns. Missense mutations were the most frequent type (103, 78.63%); half of which were distributed in the N-terminal regions (53, 51.46%). The majority of missense mutations were detected in one of the calcium-binding epidermal growth factor-like domains (62, 60.19%), and 39 (62.90%) of them were substitutions of conserved cysteine residues. Microspherophakia (MSP) was found in 15 patients (11.45%). Mutations in the middle region (exons 22-42), especially exon 26, had higher risks of combined MSP (OR, 5.51 (95% CI 1.364 to 22.274), p=0.017). CONCLUSIONS This study extended the knowledge of the FBN1 mutation spectrum and provided novel insights into its clinical correlation regarding EL and MSP in the Chinese population.
Collapse
Affiliation(s)
- Zexu Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Tianhui Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Min Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jiahui Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Michael Deng
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jialei Zheng
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Li-Na Lan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yongxiang Jiang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China .,NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
15
|
Fernández-Álvarez P, Codina-Sola M, Valenzuela I, Teixidó-Turá G, Cueto-González A, Paramonov I, Antolín M, López-Grondona F, Vendrell T, Evangelista A, García-Arumí E, Tizzano EF. A systematic study and literature review of parental somatic mosaicism of FBN1 pathogenic variants in Marfan syndrome. J Med Genet 2021; 59:605-612. [PMID: 33910934 DOI: 10.1136/jmedgenet-2020-107604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND A proportion of de novo variants in patients affected by genetic disorders, particularly those with autosomal dominant (AD) inheritance, could be the consequence of somatic mosaicism in one of the progenitors. There is growing evidence that germline and somatic mosaicism are more common and play a greater role in genetic disorders than previously acknowledged. In Marfan syndrome (MFS), caused by pathogenic variants in the fibrillin-1 gene (FBN1) gene, approximately 25% of the disease-causing variants are reported as de novo. Only a few cases of parental mosaicism have been reported in MFS. METHODS Employing an amplicon-based deep sequencing (ADS) method, we carried out a systematic analysis of 60 parents of 30 FBN1 positive, consecutive patients with MFS with an apparently de novo pathogenic variant. RESULTS Out of the 60 parents studied (30 families), the majority (n=51, 85%) had a systemic score of 0, seven had a score of 1 and two a score of 2, all due to minor criteria common in the normal population. We detected two families with somatic mosaicism in one of the progenitors, with a rate of 6.6% (2/30) of apparently de novo cases. CONCLUSIONS The search for parental somatic mosaicism should be routinely implemented in de novo cases of MFS, to offer appropriate genetic and reproductive counselling as well as to reveal masked, isolated clinical signs of MFS in progenitors that may require specific follow-up.
Collapse
Affiliation(s)
- Paula Fernández-Álvarez
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Marta Codina-Sola
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Gisela Teixidó-Turá
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Anna Cueto-González
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Ida Paramonov
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - María Antolín
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Fermina López-Grondona
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Teresa Vendrell
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Artur Evangelista
- Department of Cardiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Elena García-Arumí
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Departament de Patologia Neuromuscular i Mitocondrial, Biomedical Network Research Centre on Rare Diseases (CIBERER), Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Barcelona, Spain .,Medicine Genetics Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| |
Collapse
|
16
|
Du Q, Zhang D, Zhuang Y, Xia Q, Wen T, Jia H. The Molecular Genetics of Marfan Syndrome. Int J Med Sci 2021; 18:2752-2766. [PMID: 34220303 PMCID: PMC8241768 DOI: 10.7150/ijms.60685] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/18/2021] [Indexed: 12/27/2022] Open
Abstract
Marfan syndrome (MFS) is a complex connective tissue disease that is primarily characterized by cardiovascular, ocular and skeletal systems disorders. Despite its rarity, MFS severely impacts the quality of life of the patients. It has been shown that molecular genetic factors serve critical roles in the pathogenesis of MFS. FBN1 is associated with MFS and the other genes such as FBN2, transforming growth factor beta (TGF-β) receptors (TGFBR1 and TGFBR2), latent TGF-β-binding protein 2 (LTBP2) and SKI, amongst others also have their associated syndromes, however high overlap may exist between these syndromes and MFS. Abnormalities in the TGF-β signaling pathway also contribute to the development of aneurysms in patients with MFS, although the detailed molecular mechanism remains unclear. Mutant FBN1 protein may cause unstableness in elastic structures, thereby perturbing the TGF-β signaling pathway, which regulates several processes in cells. Additionally, DNA methylation of FBN1 and histone acetylation in an MFS mouse model demonstrated that epigenetic factors play a regulatory role in MFS. The purpose of the present review is to provide an up-to-date understanding of MFS-related genes and relevant assessment technologies, with the aim of laying a foundation for the early diagnosis, consultation and treatment of MFS.
Collapse
Affiliation(s)
- Qiu Du
- Marfan Research Group, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Dingding Zhang
- Marfan Research Group, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China.,Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Yue Zhuang
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Qiongrong Xia
- Marfan Research Group, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Taishen Wen
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Haiping Jia
- Department of Immunology, North Sichuan Medical College, Nanchong, 637100, Sichuan, China
| |
Collapse
|
17
|
Brahmandam A, Vallabhajosyula P. Novel fibrillin-1 mutation with variable presentation as a thoracic aortic aneurysm and intramural hematoma. JTCVS Tech 2020; 6:39-41. [PMID: 34318135 PMCID: PMC8300566 DOI: 10.1016/j.xjtc.2020.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/18/2022] Open
Affiliation(s)
- Anand Brahmandam
- Division of Vascular Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Conn
- Address for reprints: Anand Brahmandam, MBBS, Division of Vascular Surgery, Yale University School of Medicine, 330 Cedar St BB204, New Haven, CT 06510.
| | - Prashanth Vallabhajosyula
- Division of Cardiothoracic Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Conn
| |
Collapse
|
18
|
Stengl R, Bors A, Ágg B, Pólos M, Matyas G, Molnár MJ, Fekete B, Csabán D, Andrikovics H, Merkely B, Radovits T, Szabolcs Z, Benke K. Optimising the mutation screening strategy in Marfan syndrome and identifying genotypes with more severe aortic involvement. Orphanet J Rare Dis 2020; 15:290. [PMID: 33059708 PMCID: PMC7558671 DOI: 10.1186/s13023-020-01569-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022] Open
Abstract
Background Marfan syndrome (MFS) is a systemic connective tissue disorder with life-threatening manifestations affecting the ascending aorta. MFS is caused by dominant negative (DN) and haploinsufficient (HI) mutations of the FBN1 gene. Our aim was to identify mutations of MFS patients with high detection rate and to investigate the use of a gene panel for patients with Marfanoid habitus. We also aimed to examine correlations between genotype and cardiovascular manifestations to predict “malignant” mutations.
Methods 136 individuals were enrolled. In the first phase, next-generation sequencing (NGS) and Sanger sequencing were performed for 57 patients to screen the FBN1 gene, followed by multiplex ligation-dependent probe amplification (MLPA) in negative cases. For repeated negative results, NGS gene panel involving 9 genes was used. In the second phase, 79 patients were tested primarily with the same gene panel, negative samples were tested by MLPA. Results 84 pathogenic mutations were detected, out of which 78 affected FBN1, 6 non-FBN1 mutations (2 TGFB2, 1 TGFBR2, 2 TGFBR1, 1 SMAD3) are associated with Loeys-Dietz syndrome (LDS). LDS patients had lower systemic score and they were younger, but their aortic involvement did not differ. MLPA detected 4 multi-exon deletions of FBN1 gene, which could not be identified by our first-step screening method. Aortic involvement (aortic dissection and/or dilation) did not differ significantly among HI and DN mutations (p = 0.061). Combined group of HI and DN mutations eliminating a disulphide-bonding cysteine (DN Cys) had significantly higher aortic involvement rate than DN mutations not eliminating a disulphide-bonding cysteine (DN non-Cys) (p < 0.001). Patients with DN Cys required significantly more aortic surgeries than HI and DN non-Cys mutations (p = 0.042 and p = 0.015, respectively). Conclusions Due to the relevant number of mutations affecting genes other than FBN1, preferred approach for testing individuals with Marfanoid habitus is using a gene panel rather than single-gene analysis, followed by MLPA for negative samples. DN Cys and HI mutations should be considered as risk factors for aortic involvement. Genetic testing for patients with Marfanoid features and a systemic score under 7 is recommended, as LDS patients may have lower scores, but they may have severe cardiovascular manifestations.
Collapse
Affiliation(s)
- Roland Stengl
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary. .,Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary. .,Laboratory of Molecular Genetics, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Albert Flórián út 5-7, Budapest, 1097, Hungary.
| | - András Bors
- Laboratory of Molecular Genetics, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Albert Flórián út 5-7, Budapest, 1097, Hungary
| | - Bence Ágg
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary.,Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary.,Department of Pharmacology and Pharmacotherapy, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Miklós Pólos
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary.,Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary
| | - Gabor Matyas
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People With Rare Diseases, Wagistrasse 25, 8952, Schlieren, Zurich, Switzerland
| | - Mária Judit Molnár
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő u. 25-29, Budapest, 1083, Hungary
| | - Bálint Fekete
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő u. 25-29, Budapest, 1083, Hungary
| | - Dóra Csabán
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, Tömő u. 25-29, Budapest, 1083, Hungary
| | - Hajnalka Andrikovics
- Laboratory of Molecular Genetics, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Albert Flórián út 5-7, Budapest, 1097, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Zoltán Szabolcs
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary.,Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary
| | - Kálmán Benke
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary.,Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary
| |
Collapse
|
19
|
Verstraeten A, Meester J, Peeters S, Mortier G, Loeys B. Chondrodysplasias and Aneurysmal Thoracic Aortopathy: An Emerging Tale of Molecular Intersection. Trends Mol Med 2020; 26:783-795. [PMID: 32507656 DOI: 10.1016/j.molmed.2020.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/03/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022]
Abstract
Although at first glance chondrodysplasia and aneurysmal thoracic aortopathy seem oddly dissimilar, recent lines of evidences indicate that they share molecular similarities. Chondrodysplasias are a group of skeletal disorders characterized by genetic defects in hyaline cartilage. Aneurysmal thoracic aortopathy is the pathological enlargement of the thoracic aorta due to wall weakness, along with its ensuing life-threatening complications (i.e., aortic dissection and/or rupture). Extracellular matrix dysregulation, abnormal TGF-β signaling, and, to a more limited extent, endoplasmic reticulum stress emerge as common disease processes. In this review we provide a comprehensive overview of the genetic and pathomechanistic overlap as well as of how these commonalities can guide treatment strategies for both disease entities.
Collapse
Affiliation(s)
- Aline Verstraeten
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium. @uantwerpen.be
| | - Josephina Meester
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Silke Peeters
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Geert Mortier
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Centre of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Yang Y, Zhou YL, Yao TT, Pan H, Gu P, Wang ZY. Novel p.G1344E mutation in FBN1 is associated with ectopia lentis. Br J Ophthalmol 2020; 105:341-347. [PMID: 32404357 PMCID: PMC7907564 DOI: 10.1136/bjophthalmol-2019-315265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/31/2020] [Accepted: 04/23/2020] [Indexed: 11/20/2022]
Abstract
Background Ectopia lentis refers to dislocation or subluxation of the crystalline lens. Fibrillin-1, encoded by FBN1, is an important microfibrillar structural component that is specifically required for the suspensory ligament of the lens. FBN1 mutations may cause abnormal structure of microfibrils and has been associated with a broad spectrum of clinical phenotypes. In this study, we characterised a Chinese dominant family with late-onset isolated ectopia lentis caused by a novel missense FBN1 mutation. Methods Eight family members, including four patients with suspected isolated ectopia lentis, were recruited from Shanghai. Clinical data and family history of the proband and other affected family members were collected. Ophthalmic examination, systemic examination and echocardiography were performed. Whole exome sequencing and Sanger sequencing were used to detect potential pathogenic variants. Results A novel heterozygous missense mutation c.4031 G>A/p.Gly1344Glu in exon 33 of FBN1 was identified. This mutation was detected in all affected family members and led to specific ocular system phenotypes (ectopia lentis, microspherophakia and secondary glaucoma) with minor skeletal involvement (hallux valgus). Conclusion The novel c.4031G>A mutation in FBN1 is a likely pathogenic mutation for isolated ectopia lentis. Our study expands the spectrum of FBN1 mutations and contributes to better comprehension of genotype-phenotype correlations of ectopia lentis disease.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ya-Li Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Teng-Teng Yao
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hui Pan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Zhao-Yang Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
21
|
Najafi A, Caspar SM, Meienberg J, Rohrbach M, Steinmann B, Matyas G. Variant filtering, digenic variants, and other challenges in clinical sequencing: a lesson from fibrillinopathies. Clin Genet 2020; 97:235-245. [PMID: 31506931 PMCID: PMC7004123 DOI: 10.1111/cge.13640] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 12/23/2022]
Abstract
Genome-scale high-throughput sequencing enables the detection of unprecedented numbers of sequence variants. Variant filtering and interpretation are facilitated by mutation databases, in silico tools, and population-based reference datasets such as ExAC/gnomAD, while variants are classified using the ACMG/AMP guidelines. These methods, however, pose clinically relevant challenges. We queried the gnomAD dataset for (likely) pathogenic variants in genes causing autosomal-dominant disorders. Furthermore, focusing on the fibrillinopathies Marfan syndrome (MFS) and congenital contractural arachnodactyly (CCA), we screened 500 genomes of our patients for co-occurring variants in FBN1 and FBN2. In gnomAD, we detected 2653 (likely) pathogenic variants in 253 genes associated with autosomal-dominant disorders, enabling the estimation of variant-filtering thresholds and disease predisposition/prevalence rates. In our database, we discovered two families with hitherto unreported co-occurrence of FBN1/FBN2 variants causing phenotypes with mixed or modified MFS/CCA clinical features. We show that (likely) pathogenic gnomAD variants may be more frequent than expected and are challenging to classify according to the ACMG/AMP guidelines as well as that fibrillinopathies are likely underdiagnosed and may co-occur. Consequently, selection of appropriate frequency cutoffs, recognition of digenic variants, and variant classification represent considerable challenges in variant interpretation. Neglecting these challenges may lead to incomplete or missed diagnoses.
Collapse
Affiliation(s)
- Arash Najafi
- Center for Cardiovascular Genetics and Gene DiagnosticsFoundation for People with Rare DiseasesSchlieren‐ZurichSwitzerland
- Cantonal Hospital WinterthurInstitute of Radiology and Nuclear MedicineWinterthurSwitzerland
| | - Sylvan M. Caspar
- Center for Cardiovascular Genetics and Gene DiagnosticsFoundation for People with Rare DiseasesSchlieren‐ZurichSwitzerland
| | - Janine Meienberg
- Center for Cardiovascular Genetics and Gene DiagnosticsFoundation for People with Rare DiseasesSchlieren‐ZurichSwitzerland
| | - Marianne Rohrbach
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich Eleonore FoundationZurichSwitzerland
| | - Beat Steinmann
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich Eleonore FoundationZurichSwitzerland
| | - Gabor Matyas
- Center for Cardiovascular Genetics and Gene DiagnosticsFoundation for People with Rare DiseasesSchlieren‐ZurichSwitzerland
- Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
22
|
Identification of novel FBN1 variations implicated in congenital scoliosis. J Hum Genet 2019; 65:221-230. [PMID: 31827250 PMCID: PMC6983459 DOI: 10.1038/s10038-019-0698-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/23/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
Congenital scoliosis (CS) is a form of scoliosis caused by congenital vertebral malformations. Genetic predisposition has been demonstrated in CS. We previously reported that TBX6 loss-of-function causes CS in a compound heterozygous model; however, this model can explain only 10% of CS. Many monogenic and polygenic CS genes remain to be elucidated. In this study, we analyzed exome sequencing (ES) data of 615 Chinese CS from the Deciphering Disorders Involving Scoliosis and COmorbidities (DISCO) project. Cosegregation studies for 103 familial CS identified a novel heterozygous nonsense variant, c.2649G>A (p.Trp883Ter) in FBN1. The association between FBN1 and CS was then analyzed by extracting FBN1 variants from ES data of 574 sporadic CS and 828 controls; 30 novel variants were identified and prioritized for further analyses. A mutational burden test showed that the deleterious FBN1 variants were significantly enriched in CS subjects (OR = 3.9, P = 0.03 by Fisher’s exact test). One missense variant, c.2613A>C (p.Leu871Phe) was recurrent in two unrelated CS subjects, and in vitro functional experiments for the variant suggest that FBN1 may contribute to CS by upregulating the transforming growth factor beta (TGF-β) signaling. Our study expanded the phenotypic spectrum of FBN1, and provided nove insights into the genetic etiology of CS.
Collapse
|
23
|
Damrauer SM, Hardie K, Kember RL, Judy R, Birtwell D, Williams H, Rader DJ, Pyeritz RE. FBN1 Coding Variants and Nonsyndromic Aortic Disease. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e002454. [PMID: 31211626 DOI: 10.1161/circgen.119.002454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Scott M Damrauer
- Departments of Surgery (S.M.D., R.J.).,Corporal Michael Crescenz VA Medical Center, Philadelphia, PA (S.M.D.)
| | | | | | | | - David Birtwell
- Bioinformatics, Epidemiology, and Informatics (D.B., H.W.), Perelman School of Medicine, University of Pennsylvania
| | - Heather Williams
- Bioinformatics, Epidemiology, and Informatics (D.B., H.W.), Perelman School of Medicine, University of Pennsylvania
| | - Daniel J Rader
- Medicine (K.H., D.J.R., R.E.P.).,Genetics (R.L.K., D.J.R.)
| | | |
Collapse
|
24
|
Abstract
Current management of aortic aneurysms relies exclusively on prophylactic operative repair of larger aneurysms. Great potential exists for successful medical therapy that halts or reduces aneurysm progression and hence alleviates or postpones the need for surgical repair. Preclinical studies in the context of abdominal aortic aneurysm identified hundreds of candidate strategies for stabilization, and data from preoperative clinical intervention studies show that interventions in the pathways of the activated inflammatory and proteolytic cascades in enlarging abdominal aortic aneurysm are feasible. Similarly, the concept of pharmaceutical aorta stabilization in Marfan syndrome is supported by a wealth of promising studies in the murine models of Marfan syndrome-related aortapathy. Although some clinical studies report successful medical stabilization of growing aortic aneurysms and aortic root stabilization in Marfan syndrome, these claims are not consistently confirmed in larger and controlled studies. Consequently, no medical therapy can be recommended for the stabilization of aortic aneurysms. The discrepancy between preclinical successes and clinical trial failures implies shortcomings in the available models of aneurysm disease and perhaps incomplete understanding of the pathological processes involved in later stages of aortic aneurysm progression. Preclinical models more reflective of human pathophysiology, identification of biomarkers to predict severity of disease progression, and improved design of clinical trials may more rapidly advance the opportunities in this important field.
Collapse
Affiliation(s)
- Jan H. Lindeman
- Dept. Vascular Surgery, Leiden University Medical Center, The Netherlands
| | - Jon S. Matsumura
- Division of Vascular Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
25
|
Siegert AM, García Díaz-Barriga G, Esteve-Codina A, Navas-Madroñal M, Gorbenko del Blanco D, Alberch J, Heath S, Galán M, Egea G. A FBN1 3′UTR mutation variant is associated with endoplasmic reticulum stress in aortic aneurysm in Marfan syndrome. Biochim Biophys Acta Mol Basis Dis 2019; 1865:107-114. [DOI: 10.1016/j.bbadis.2018.10.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/02/2018] [Accepted: 10/26/2018] [Indexed: 01/01/2023]
|
26
|
Yang H, Ma Y, Luo M, Zhao K, Zhang Y, Zhu G, Sun X, Luo F, Wang L, Shu C, Zhou Z. Identification of gross deletions in FBN1 gene by MLPA. Hum Genomics 2018; 12:46. [PMID: 30286810 PMCID: PMC6172713 DOI: 10.1186/s40246-018-0178-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022] Open
Abstract
Background Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder caused by mutations in the FBN1 gene. Approximately 90% of classic MFS patients have a FBN1 mutation that can be identified by single-gene sequencing or gene-panel sequencing targeting FBN1. However, a small proportion of MFS patients carry a large genomic deletion in FBN1, which cannot be detected by routine sequencing. Here, we performed an MLPA (multiplex ligation-dependent probe amplification) test to detect large deletions and/or duplications in FBN1 and TGFBR2 in 115 unrelated Chinese patients with suspected MFS or early-onset aneurysm/dissection. Results Five novel large deletions encompassing a single exon or multiple exons in the FBN1 gene were characterized in five unrelated patients, of which four were proven by Sanger sequencing, and the breakpoints were identified. Three of them met the revised Ghent criteria when genetic results were not available, and the other two patients were highly suspected and diagnosed with MFS until the FBN1 deletions were identified. Conclusions Our finding expands the mutation spectrum of large FBN1 deletions and emphasizes the importance of screening for large FBN1 deletions in clinical genetic testing, especially for those with classic Marfan phenotype. Electronic supplementary material The online version of this article (10.1186/s40246-018-0178-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hang Yang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yanyun Ma
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Mingyao Luo
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Kun Zhao
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yinhui Zhang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Guoyan Zhu
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xiaogang Sun
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Fanyan Luo
- Department of Cardiovascular Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
| | - Lin Wang
- Department of Cardiovascular Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China.
| | - Chang Shu
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
27
|
Groth KA, Gravholt CH, Andersen NH. Letter by Groth et al Regarding Article, “Impact of Pathogenic FBN1 (Fibrillin-1) Variant Types on the Progression of Aortic Disease in Patients With Marfan Syndrome”. Circ Genom Precis Med 2018; 11:e002319. [DOI: 10.1161/circgen.118.002319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kristian A. Groth
- Department of Cardiology, Aarhus University Hospital, Denmark. (K.A.G.)
| | - Claus H. Gravholt
- Department of Endocrinology and Internal Medicine and Department of Molecular Medicine, Aarhus University Hospital, Denmark. (C.H.G.)
| | - Niels H. Andersen
- Department of Cardiology, Aalborg University Hospital, Denmark (N.H.A.)
| |
Collapse
|
28
|
Takeda N, Inuzuka R, Morita H, Komuro I. Response by Takeda et al to Letter Regarding Article, “Impact of Pathogenic FBN1Variant Types on the Progression of Aortic Disease in Patients With Marfan Syndrome”. Circ Genom Precis Med 2018; 11:e002321. [DOI: 10.1161/circgen.118.002321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Norifumi Takeda
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Japan (N.T., H.M., I.K.)
| | - Ryo Inuzuka
- Department of Pediatrics (R.I.), The University of Tokyo Hospital, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Japan (N.T., H.M., I.K.)
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo Hospital, Japan (N.T., H.M., I.K.)
| |
Collapse
|
29
|
Seo GH, Kim YM, Kang E, Kim GH, Seo EJ, Lee BH, Choi JH, Yoo HW. The phenotypic heterogeneity of patients with Marfan-related disorders and their variant spectrums. Medicine (Baltimore) 2018; 97:e10767. [PMID: 29768367 PMCID: PMC5976283 DOI: 10.1097/md.0000000000010767] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS) are the connective tissue disorders characterized by aortic root aneurysm and/or dissection and various additional features. We evaluated the correlation of these mutations with the phenotypes and determined the clinical applicability of the revised Ghent criteria.The mutation spectrum and phenotypic heterogeneities of the 83 and 5 Korean patients with suspected MFS and LDS were investigated as a retrospective manner. In patients with suspected MFS patients, genetic testing was conducted in half of 44 patients who met the revised Ghent criteria clinically and half of 39 patients who did not meet these criteria.Fibrillin1 gene (FBN1) variants were detected in all the 22 patients (100%) who met the revised Ghent criteria and in 14 patients (77.8%) who did not meet the revised Ghent criteria (P = .0205). Patients with mutations in exons 24-32 were diagnosed at a younger age than those with mutations in other exons. Ectopia lentis was more common in patients with missense mutations than in patients with other mutations. Aortic diameter was greater in patients with missense mutations in cysteine residues than in patients with missense mutations in noncysteine residues. Five LDS patients had either TGFBR1 or TGFBR2 variants, of which 1 patient identified TGFBR1 variant uncertain significance.The revised Ghent criteria had very high clinical applicability for detecting FBN1 variants in patients with MFS and might help in selecting patients with suspected MFS for genetic testing.
Collapse
Affiliation(s)
- Go Hun Seo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul
| | - Yoon-Myung Kim
- Department of Pediatrics, Jeju National University School of Medicine, Jeju
| | - Eungu Kang
- Department of Pediatrics, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Eul-Ju Seo
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul
| | - Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Abstract
Genetic aortic syndromes (GAS) include Marfan, Loeys-Dietz, vascular Ehlers-Danlos, and Turner syndrome as well as congenital bicuspid aortic valve. The clinical management of these diseases has certain similarities and differences. We employed medical strategy analysis to test the utility of genetic diagnostics in the management of GAS. We chose the standpoint of the cardiologist for our analysis. In the first step, the medical goals in the management of GAS are specified. In the second step, the accuracy of genetic diagnostics for GAS is examined. Finally, conclusions can be drawn about the utility of genetic diagnostics in managing GAS. We found that genetic diagnostics is necessary to exclude GAS, to diagnose GAS, and to specify disease types. Second, combining phenotype with genotype information maximizes the predictability of the course of disease. Third, with genetic diagnostics it is possible to predict the birth of children with causative mutations for GAS and to initiate drug therapy to prevent the onset of aortic dilatation or to slow down its progression to aortic aneurysm. Finally, genetic diagnostics improves prognostic predictions and thereby contributes to a better timing of elective surgery and to a better choice of procedures. The findings of our medical strategy analysis indicate the high utility of genetic diagnostics for managing GAS.
Collapse
|