1
|
高 波, 肖 淑, 陈 晓, 李 茹, 王 玲. [CHARGE syndrome in a neonate]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:1238-1244. [PMID: 39587755 PMCID: PMC11601103 DOI: 10.7499/j.issn.1008-8830.2406105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
A female infant, aged 11 days, was admitted due to dyspnea for 11 days after birth, with the main clinical manifestations of inspiratory dyspnea, feeding difficulties, and unusual facies (micrognathia, high palatal arch, cleft palate, glossoptosis, and oblique mouth to the right), and the preliminary diagnosis was Pierre-Robin syndrome. There was no marked improvement after treatment such as ventilator-assisted ventilation, nutrition, and surgical ligation of patent ductus arteriosus. Whole-exome sequencing of the family showed a heterozygous mutation of c.3082A>G (p.Ile1028 Val) in the CHD7 gene, which was a pathogenic mutation of CHARGE syndrome. The neonate was ultimately diagnosed with CHARGE syndrome, and the family decided to withdraw treatment due to concerns about poor prognosis. This article reports a case of CHARGE syndrome caused by a mutation in the CHD7 gene and the multidisciplinary diagnosis and treatment of this disease, in order to provide help for early disease identification and guide clinical decision-making.
Collapse
Affiliation(s)
| | | | | | - 茹 李
- 广州医科大学附属妇女儿童医疗中心,产前诊断中心,广东广州510623
| | | |
Collapse
|
2
|
Sun F, Xiao M, Ji D, Zheng F, Shi T. Deciphering potential causative factors for undiagnosed Waardenburg syndrome through multi-data integration. Orphanet J Rare Dis 2024; 19:226. [PMID: 38844942 PMCID: PMC11155130 DOI: 10.1186/s13023-024-03220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/19/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Waardenburg syndrome (WS) is a rare genetic disorder mainly characterized by hearing loss and pigmentary abnormalities. Currently, seven causative genes have been identified for WS, but clinical genetic testing results show that 38.9% of WS patients remain molecularly unexplained. In this study, we performed multi-data integration analysis through protein-protein interaction and phenotype-similarity to comprehensively decipher the potential causative factors of undiagnosed WS. In addition, we explored the association between genotypes and phenotypes in WS with the manually collected 443 cases from published literature. RESULTS We predicted two possible WS pathogenic genes (KIT, CHD7) through multi-data integration analysis, which were further supported by gene expression profiles in single cells and phenotypes in gene knockout mouse. We also predicted twenty, seven, and five potential WS pathogenic variations in gene PAX3, MITF, and SOX10, respectively. Genotype-phenotype association analysis showed that white forelock and telecanthus were dominantly present in patients with PAX3 variants; skin freckles and premature graying of hair were more frequently observed in cases with MITF variants; while aganglionic megacolon and constipation occurred more often in those with SOX10 variants. Patients with variations of PAX3 and MITF were more likely to have synophrys and broad nasal root. Iris pigmentary abnormality was more common in patients with variations of PAX3 and SOX10. Moreover, we found that patients with variants of SOX10 had a higher risk of suffering from auditory system diseases and nervous system diseases, which were closely associated with the high expression abundance of SOX10 in ear tissues and brain tissues. CONCLUSIONS Our study provides new insights into the potential causative factors of WS and an alternative way to explore clinically undiagnosed cases, which will promote clinical diagnosis and genetic counseling. However, the two potential disease-causing genes (KIT, CHD7) and 32 potential pathogenic variants (PAX3: 20, MITF: 7, SOX10: 5) predicted by multi-data integration in this study are all computational predictions and need to be further verified through experiments in follow-up research.
Collapse
Affiliation(s)
- Fengying Sun
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Minmin Xiao
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Dong Ji
- Department of Otolaryngology, Head and Neck Surgery, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Feng Zheng
- Wuhu Hospital and Health Science Center, East China Normal University, Shanghai, 200241, China
| | - Tieliu Shi
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
- Center for Bioinformatics and Computational Biology, the Institute of Biomedical Sciences and the School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Beijing Advanced Innovation Center, for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, 100083, China.
| |
Collapse
|
3
|
Hoogenboom A, Falix FA, van der Laan L, Kerkhof J, Alders M, Sadikovic B, van Haelst MM. Novel PUF60 variant suggesting an interaction between Verheij and Cornelia de Lange syndrome: phenotype description and review of the literature. Eur J Hum Genet 2024; 32:435-439. [PMID: 38273166 PMCID: PMC10999433 DOI: 10.1038/s41431-023-01527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Verheij syndrome [VRJS; OMIM 615583] is a rare autosomal dominant neurodevelopmental disorder characterized by distinct clinical features, including growth retardation, intellectual disability, cardiac, and renal anomalies. VRJS is caused by deletions of chromosome 8q24.3 or pathogenic variants in the PUF60 gene. Recently, pathogenic PUF60 variants have been reported in some individuals with VRJS, contributing to the variability in the clinical presentation and severity of the condition. PUF60 encodes a protein involved in regulating gene expression and cellular growth. In this report, we describe a new case of VRJS with developmental delay, cardiac-, and renal abnormalities, caused by a heterozygous pathogenic PUF60 variant. Surprisingly, DNA methylation analysis revealed a pattern resembling the Cornelia de Lange syndrome (CdLS) episignature, suggesting a potential connection between PUF60 and CdLS-related genes. This case report further delineates the clinical and molecular spectrum of VRJS and supports further research to validate the interaction between VRJS and CdLS.
Collapse
Affiliation(s)
- Amarens Hoogenboom
- Medical University of Groningen (UMCG), Groningen, the Netherlands
- Department of pediatrics, Curaçao Medical Center (CMC), Willemstad, Curaçao
| | - Farah A Falix
- Department of pediatrics, Curaçao Medical Center (CMC), Willemstad, Curaçao
| | - Liselot van der Laan
- Department of Human Genetics, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development, Amsterdam University Medical Centers (AUMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development, Amsterdam University Medical Centers (AUMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Bekim Sadikovic
- Department of Human Genetics, Amsterdam UMC, Amsterdam, the Netherlands
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Mieke M van Haelst
- Department of pediatrics, Curaçao Medical Center (CMC), Willemstad, Curaçao.
- Department of Human Genetics, Amsterdam UMC, Amsterdam, the Netherlands.
- Amsterdam Reproduction & Development, Amsterdam University Medical Centers (AUMC), University of Amsterdam, Amsterdam, The Netherlands.
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Miao M, Wang J, Guo C, Su X, Sun L, Lu S. Identification of a novel de novo PUF60 variant causing Verheij syndrome in a fetus. Gene 2024; 897:148092. [PMID: 38110042 DOI: 10.1016/j.gene.2023.148092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Verheij syndrome (VRJS) is a craniofacial spliceosomopathy with a wide phenotypic spectrum. Haploinsufficiency of the poly-uridine binding splicing factor 60 gene (PUF60) and its loss-of-function (LOF) variants are involved in VRJS. We evaluated a human fetus with congenital heart defects and preaxial polydactyly. Clinical data were obtained from the medical record. Whole-exome sequencing (WES) was used to explore the potential genetic etiology, and the detected variant verified using Sanger sequencing. Functional studies were performed to validate the pathogenic effects of the variant. Using trio-WES, we identified a novel PUF60 variant (NM_078480.2; c.1678 T > A, p.*560Argext*204) in the pedigree. Bioinformatic analyses revealed that the variant is potentially pathogenic, and functional studies indicated that it leads to degradation of the elongated protein and subsequently PUF60 LOF, producing some VRJS phenotypes. These findings confirmed the pathogenicity of the variant. This study implicates PUF60 LOF in the etiopathogenesis of VRJS. It not only expands the PUF60 variant spectrum, and also provides a basis for genetic counseling and the diagnosis of VRJS. Although trio-WES is a well-established approach for identifying the genetic etiology of rare multisystemic conditions, functional studies could aid in verifying the pathogenicity of novel variants.
Collapse
Affiliation(s)
- Mingzhu Miao
- Department of Prenatal Diagnosis, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210036, China
| | - Jue Wang
- Department of Prenatal Diagnosis, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210036, China
| | - Chenyan Guo
- Department of Obstetrics, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210036, China
| | - Xiaotian Su
- Department of Bioinformatics, Berry Genomics Co., Ltd., Beijing, China
| | - Lizhou Sun
- Department of Obstetrics, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210036, China.
| | - Shoulian Lu
- Department of Prenatal Diagnosis, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing 210036, China.
| |
Collapse
|
5
|
Baum E, Huang W, Vincent-Delorme C, Brunelle P, Antebi A, Dafsari HS. Novel Genetic and Phenotypic Expansion in Ameliorated PUF60-Related Disorders. Int J Mol Sci 2024; 25:2053. [PMID: 38396730 PMCID: PMC10889399 DOI: 10.3390/ijms25042053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Heterozygous variants in the Poly(U) Binding Splicing Factor 60kDa gene (PUF60) have been associated with Verheij syndrome, which has the key features of coloboma, short stature, skeletal abnormalities, developmental delay, palatal abnormalities, and congenital heart and kidney defects. Here, we report five novel patients from unrelated families with PUF60-related disorders exhibiting novel genetic and clinical findings with three truncating variants, one splice-site variant with likely reduced protein expression, and one missense variant. Protein modeling of the patient's missense variant in the PUF60 AlphaFold structure revealed a loss of polar bonds to the surrounding residues. Neurodevelopmental disorders were present in all patients, with variability in speech, motor, cognitive, social-emotional and behavioral features. Novel phenotypic expansions included movement disorders as well as immunological findings with recurrent respiratory, urinary and ear infections, atopic diseases, and skin abnormalities. We discuss the role of PUF60 in immunity with and without infection based on recent organismic and cellular studies. As our five patients showed less-severe phenotypes than classical Verheij syndrome, particularly with the absence of key features such as coloboma or palatal abnormalities, we propose a reclassification as PUF60-related neurodevelopmental disorders with multi-system involvement. These findings will aid in the genetic counseling of patients and families.
Collapse
Affiliation(s)
- Emily Baum
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Wenming Huang
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
| | | | - Perrine Brunelle
- Institut de Génétique Médicale, University of Lille, ULR7364 RADEME, CHU Lille, F-59000 Lille, France
| | - Adam Antebi
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Hormos Salimi Dafsari
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
- Department of Pediatric Neurology, Evelina’s Children Hospital, Guy’s & St. Thomas’ Hospital NHS Foundation Trust, London SE1 7EH, UK
- Randall Division of Cell and Molecular Biophysics, Muscle Signaling Section, King’s College London, London WC2R 2LS, UK
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
6
|
Hodorovich DR, Fryer Harris T, Burton DF, Neese KM, Bieler RA, Chudasama V, Marsden KC. Effects of 4 Testing Arena Sizes and 11 Types of Embryo Media on Sensorimotor Behaviors in Wild-Type and chd7 Mutant Zebrafish Larvae. Zebrafish 2024; 21:1-14. [PMID: 38301171 PMCID: PMC10902501 DOI: 10.1089/zeb.2023.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
The larval zebrafish is a highly versatile model across research disciplines, and the expanding use of behavioral analysis has contributed to many advances in neuropsychiatric, developmental, and toxicological studies, often through large-scale chemical and genetic screens. In the absence of standardized approaches to larval zebrafish behavior analysis, however, it is critical to understand the impact on behavior of experimental variables such as the size of testing arenas and the choice of embryo medium. Using a custom-built, modular high-throughput testing system, we examined the effects of 4 testing arena sizes and 11 types of embryo media on conserved sensorimotor behaviors in zebrafish larvae. Our data show that testing arena size impacts acoustic startle sensitivity and kinematics, as well as spontaneous locomotion and thigmotaxis, with fish tested in larger arenas displaying reduced startle sensitivity and increased locomotion. We also find that embryo media can dramatically affect startle sensitivity, kinematics, habituation, and prepulse inhibition, as well as spontaneous swimming, turning, and overall activity. Common medium components such as methylene blue and high calcium concentration consistently reduced startle sensitivity and locomotion. To further address how the choice of embryo medium can impact phenotype expression in zebrafish models of disease, we reared chd7 mutant larvae, a model of CHARGE syndrome with previously characterized morphological and behavioral phenotypes, in five different types of media and observed impacts on all phenotypes. By defining the effects of these key extrinsic factors on larval zebrafish behavior, these data can help researchers select the most appropriate conditions for their specific research questions, particularly for genetic and chemical screens.
Collapse
Affiliation(s)
- Dana R. Hodorovich
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Tiara Fryer Harris
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Derek F. Burton
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Katie M. Neese
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Rachael A. Bieler
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Vimal Chudasama
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Kurt C. Marsden
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
7
|
Mušálková D, Přistoupilová A, Jedličková I, Hartmannová H, Trešlová H, Nosková L, Hodaňová K, Bittmanová P, Stránecký V, Jiřička V, Langmajerová M, Woodbury‐Smith M, Zarrei M, Trost B, Scherer SW, Bleyer AJ, Vevera J, Kmoch S. Increased burden of rare protein-truncating variants in constrained, brain-specific and synaptic genes in extremely impulsively violent males with antisocial personality disorder. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12882. [PMID: 38359179 PMCID: PMC10869132 DOI: 10.1111/gbb.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
The genetic correlates of extreme impulsive violence are poorly understood, and there have been few studies that have characterized a large group of affected individuals both clinically and genetically. We performed whole exome sequencing (WES) in 290 males with the life-course-persistent, extremely impulsively violent form of antisocial personality disorder (APD) and analyzed the spectrum of rare protein-truncating variants (rPTVs). Comparisons were made with 314 male controls and publicly available genotype data. Functional annotation tools were used for biological interpretation. Participants were significantly more likely to harbor rPTVs in genes that are intolerant to loss-of-function variants (odds ratio [OR] 2.06; p < 0.001), specifically expressed in brain (OR 2.80; p = 0.036) and enriched for those involved in neurotransmitter transport and synaptic processes. In 60 individuals (20%), we identified rPTVs that we classified as clinically relevant based on their clinical associations, biological function and gene expression patterns. Of these, 37 individuals harbored rPTVs in 23 genes that are associated with a monogenic neurological disorder, and 23 individuals harbored rPTVs in 20 genes reportedly intolerant to loss-of-function variants. The analysis presents evidence in support of a model where presence of either one or several private, functionally relevant mutations contribute significantly to individual risk of life-course-persistent APD and reveals multiple individuals who could be affected by clinically unrecognized neuropsychiatric Mendelian disease. Thus, Mendelian diseases and increased rPTV burden may represent important factors for the development of extremely impulsive violent life-course-persistent forms of APD irrespective of their clinical presentation.
Collapse
Affiliation(s)
- Dita Mušálková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Anna Přistoupilová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Ivana Jedličková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Hana Hartmannová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Helena Trešlová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Kateřina Hodaňová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Petra Bittmanová
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Viktor Stránecký
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
| | - Václav Jiřička
- Department of PsychologyPrison Service of the Czech RepublicPragueCzech Republic
- Department of Psychiatry, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Michaela Langmajerová
- Department of Psychiatry, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Marc Woodbury‐Smith
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick ChildrenTorontoOntarioCanada
- Faculty of Medical Sciences, Biosciences InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Mehdi Zarrei
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick ChildrenTorontoOntarioCanada
| | - Brett Trost
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick ChildrenTorontoOntarioCanada
| | - Stephen W. Scherer
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Molecular Genetics and McLaughlin CentreUniversity of TorontoTorontoOntarioCanada
| | - Anthony J. Bleyer
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
- Section on Nephrology, Wake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jan Vevera
- Department of Psychiatry, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
- Department of PsychiatryUniversity Hospital PilsenPilsenCzech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of MedicineCharles University in Prague and General University Hospital in PraguePragueCzech Republic
- Department of Psychiatry, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| |
Collapse
|
8
|
Qing W, Xun C, Guangmin N, Yan L, Min J, Ruimin Y, Chunyan L, Xiaobo Z, Xiang Y, Jing L. Early-onset pharyngeal airway collapse in infants: a retrospective single-center study. BMC Pediatr 2023; 23:600. [PMID: 38017440 PMCID: PMC10683220 DOI: 10.1186/s12887-023-04436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Early-onset pharyngeal airway collapse (PAC) in infants, which presents with onset within 6-months old is relatively rare. This disease has not been given enough attention in clinic. The aim of this study was to explore the clinical features, endoscopic findings and outcomes of early-onset PAC in infants. METHODS The children of PAC with onset within 6-months old were included. A retrospective study was conducted. RESULTS (1) Total 26 cases were included. The age of onset was neonatal period in 20 cases, 1 to 3-months old in 5 cases, and 4 to 6-months old in 1 case. (2) The main clinical manifestations were noisy breathing (26/26), suprasternal retraction (18/26), snoring (14/26) and hypoxic episode (13/26). (3) Based on the endoscopic findings, collapse at the retropalatal level was most common (24/26). (4) Twelve cases underwent pharyngolaryngeal CT examination, which revealed abnormal findings in 7 cases. (5) Fifteen cases were accompanied with the other airway malformations. (6) In the group with comorbidities of cerebral impairment or craniofacial abnormalities, 1 case was lost to follow up, 4 cases died, and 10 cases survived, in which 9 cases had neurodevelopmental disorders. In the group without comorbidities, 2 cases were lost to follow up, 9 cases survived, in which 1 case had neurodevelopmental disorders. The incidence of poor prognosis including death and neurodevelopmental disorders was significantly higher in the group with comorbidities than that without comorbidities (P<0.01). (7) An symptomatic improvement of PAC was found in the majority of the survived cases (18/19) with age. CONCLUSIONS Early-onset PAC in infants usually exhibits varying degrees of relief with age, whereas the cases with comorbidities had a poor prognosis.
Collapse
Affiliation(s)
- Wei Qing
- Department of Pediatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Chen Xun
- Department of Pediatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Nong Guangmin
- Department of Pediatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Li Yan
- Department of Pediatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jiang Min
- Department of Pediatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yang Ruimin
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Li Chunyan
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zhang Xiaobo
- Department of Pediatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yi Xiang
- Department of Otolaryngology/Head and Neck Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Liu Jing
- Department of Pediatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
9
|
Robson CD. Conductive Hearing Loss in Children. Neuroimaging Clin N Am 2023; 33:543-562. [PMID: 37741657 DOI: 10.1016/j.nic.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
A variety of congenital and acquired disorders result in pediatric conductive hearing loss. Malformations of the external auditory canal are invariably associated with malformations of the middle ear space and ossicles. Isolated ossicular malformations are uncommon. Syndromes associated with external and middle ear malformations are frequently associated with abnormal development of first and second pharyngeal arch derivatives. Chronic inflammatory disorders include cholesteatoma, cholesterol granuloma, and tympanosclerosis.
Collapse
Affiliation(s)
- Caroline D Robson
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Grimes H, Ansari M, Ashraf T, Cueto-González AM, Calder A, Day M, Fernandez Alvarez P, Foster A, Lahiri N, Repetto GM, Scurr I, Varghese V, Low KJ. PUF60-related developmental disorder: A case series and phenotypic analysis of 10 additional patients with monoallelic PUF60 variants. Am J Med Genet A 2023; 191:2610-2622. [PMID: 37303278 DOI: 10.1002/ajmg.a.63313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
PUF60-related developmental disorder (also referred to as Verheij syndrome), resulting from haploinsufficiency of PUF60, is associated with multiple congenital anomalies affecting a wide range of body systems. These anomalies include ophthalmic coloboma, and congenital anomalies of the heart, kidney, and musculoskeletal system. Behavioral and intellectual difficulties are also observed. While less common than other features associated with PUF60-related developmental disorder, for instance hearing impairment and short stature, identification of specific anomalies such as ophthalmic coloboma can aid with diagnostic identification given the limited spectrum of genes linked with this feature. We describe 10 patients with PUF60 gene variants, bringing the total number reported in the literature, to varying levels of details, to 56 patients. Patients were recruited both via locally based exome sequencing from international sites and from the DDD study in the United Kingdom. Eight of the variants reported were novel PUF60 variants. The addition of a further patient with a reported c449-457del variant to the existing literature highlights this as a recurrent variant. One variant was inherited from an affected parent. This is the first example in the literature of an inherited variant resulting in PUF60-related developmental disorder. Two patients (20%) were reported to have a renal anomaly consistent with 22% of cases in previously reported literature. Two patients received specialist endocrine treatment. More commonly observed were clinical features such as: cardiac anomalies (40%), ocular abnormalities (70%), intellectual disability (60%), and skeletal abnormalities (80%). Facial features did not demonstrate a recognizable gestalt. Of note, but remaining of unclear causality, we describe a single pediatric patient with pineoblastoma. We recommend that stature and pubertal progress should be monitored in PUF60-related developmental disorder with a low threshold for endocrine investigations as hormone therapy may be indicated. Our study reports an inherited case with PUF60-related developmental disorder which has important genetic counseling implications for families.
Collapse
Affiliation(s)
- H Grimes
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS Trust, Bristol, UK
| | - M Ansari
- South East Scotland Genetics Service, Western General Hospital, Edinburgh, UK
| | - T Ashraf
- Department of Clinical Genetics, Great Ormond Street Hospital, London, UK
| | - Anna Mª Cueto-González
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Autonomous University of Barcelona, Barcelona, Spain
| | - A Calder
- Department of Radiology, Great Ormond Street Hospital, London, UK
| | - M Day
- Exeter Genetics Laboratory, Royal Devon and Exeter NHS Trust, Exeter, UK
| | - P Fernandez Alvarez
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - A Foster
- Department of Clinical Genetics, West Midlands Regional Genetics Centre, Birmingham, UK
| | - N Lahiri
- Department of Clinical Genetics, St Georges University Hospital NHS Foundation Trust, London, UK
- Department of Clinical and Molecular Science, St Georges University of London, London, UK
| | - G M Repetto
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - I Scurr
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS Trust, Bristol, UK
| | - V Varghese
- All Wales Medical Genomics Services, University Hospital of Wales, Cardiff, UK
| | - Karen J Low
- Department of Clinical Genetics, University Hospitals Bristol and Weston NHS Trust, Bristol, UK
- Centre for Academic Child Health, University of Bristol, Bristol, UK
| |
Collapse
|
11
|
Hodorovich DR, Fryer Harris T, Burton D, Neese K, Bieler R, Chudasama V, Marsden KC. Effects of 4 testing arena sizes and 11 types of embryo media on sensorimotor behaviors in wild-type and chd7 mutant zebrafish larvae: Media and arena size impact zebrafish behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551330. [PMID: 37577457 PMCID: PMC10418063 DOI: 10.1101/2023.07.31.551330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The larval zebrafish is a highly versatile model across research disciplines, and the expanding use of behavioral analysis has contributed to many advances in neuro-psychiatric, developmental, and toxicological studies, often through large-scale chemical and genetic screens. In the absence of standardized approaches to larval zebrafish behavior analysis, however, it is critical to understand the impact on behavior of experimental variables such as the size of testing arenas and the choice of embryo medium. Using a custom-built, modular high-throughput testing system, we examined the effects of 4 testing arena sizes and 11 types of embryo media on conserved sensorimotor behaviors in zebrafish larvae. Our data show that testing arena size impacts acoustic startle sensitivity and kinematics as well as spontaneous locomotion and thigmotaxis, with fish tested in larger arenas displaying reduced startle sensitivity and increased locomotion. We also find that embryo media can dramatically affect startle sensitivity, kinematics, habituation, and pre-pulse inhibition, as well as spontaneous swimming, turning, and overall activity. Common media components such as methylene blue and high calcium concentration consistently reduced startle sensitivity and locomotion. To further address how the choice of embryo medium can impact phenotype expression in zebrafish models of disease, we reared chd7 mutant larvae, a model of CHARGE syndrome with previously characterized morphological and behavioral phenotypes, in 5 different types of media and observed impacts on all phenotypes. By defining the effects of these key extrinsic factors on larval zebrafish behavior, these data can help researchers select the most appropriate conditions for their specific research questions, particularly for genetic and chemical screens.
Collapse
Affiliation(s)
- Dana R. Hodorovich
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
- Current Address: National Institute of Environmental Health Sciences, Durham, North Carolina, United States of America
| | - Tiara Fryer Harris
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
| | - Derek Burton
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
- Current Address: Biogen, Durham, North Carolina, United States of America
| | - Katie Neese
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
| | - Rachael Bieler
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
| | - Vimal Chudasama
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
| | - Kurt. C Marsden
- Department of Biological Sciences, North Carolina State University, North Carolina, United States of America
| |
Collapse
|
12
|
Sallis S, Bérubé-Simard FA, Grondin B, Leduc E, Azouz F, Bélanger C, Pilon N. The CHARGE syndrome-associated protein FAM172A controls AGO2 nuclear import. Life Sci Alliance 2023; 6:e202302133. [PMID: 37221016 PMCID: PMC10205598 DOI: 10.26508/lsa.202302133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
CHARGE syndrome is a neural crest-related disorder mainly caused by mutation of the chromatin remodeler-coding gene CHD7 Alternative causes include mutation of other chromatin and/or splicing factors. One of these additional players is the poorly characterized FAM172A, which we previously found in a complex with CHD7 and the small RNA-binding protein AGO2 at the chromatin-spliceosome interface. Focusing on the FAM172A-AGO2 interplay, we now report that FAM172A is a direct binding partner of AGO2 and, as such, one of the long sought-after regulators of AGO2 nuclear import. We show that this FAM172A function mainly relies on its classical bipartite nuclear localization signal and associated canonical importin-α/β pathway, being enhanced by CK2-induced phosphorylation and abrogated by a CHARGE syndrome-associated missense mutation. Overall, this study thus strengthens the notion that noncanonical nuclear functions of AGO2 and associated regulatory mechanisms might be clinically relevant.
Collapse
Affiliation(s)
- Sephora Sallis
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
| | - Félix-Antoine Bérubé-Simard
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
| | - Benoit Grondin
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
| | - Elizabeth Leduc
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
| | - Fatiha Azouz
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
| | - Catherine Bélanger
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montreal, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Canada
| |
Collapse
|
13
|
Fennell AP, Baxter AE, Berkovic SF, Ellaway CJ, Forwood C, Hildebrand MS, Kumble S, McKeown C, Mowat D, Poke G, Rajagopalan S, Regan BM, Scheffer IE, Stark Z, Stutterd CA, Tan TY, Wilkins EJ, Yeung A, Hunter MF. The diverse pleiotropic effects of spliceosomal protein PUF60: A case series of Verheij syndrome. Am J Med Genet A 2022; 188:3432-3447. [PMID: 36367278 DOI: 10.1002/ajmg.a.62950] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/17/2022] [Accepted: 06/11/2022] [Indexed: 01/31/2023]
Abstract
Verheij syndrome (VRJS) is a rare craniofacial spliceosomopathy presenting with craniofacial dysmorphism, multiple congenital anomalies and variable neurodevelopmental delay. It is caused by single nucleotide variants (SNVs) in PUF60 or interstitial deletions of the 8q24.3 region. PUF60 encodes a splicing factor which forms part of the spliceosome. To date, 36 patients with a sole diagnosis of VRJS due to disease-causing PUF60 SNVs have been reported in peer-reviewed publications. Although the depth of their phenotyping has varied greatly, they exhibit marked phenotypic heterogeneity. We report 10 additional unrelated patients, including the first described patients of Khmer, Indian, and Vietnamese ethnicities, and the eldest patient to date, with 10 heterozygous PUF60 variants identified through exome sequencing, 8 previously unreported. All patients underwent deep phenotyping identifying variable dysmorphism, growth delay, neurodevelopmental delay, and multiple congenital anomalies, including several unique features. The eldest patient is the only reported individual with a germline variant and neither neurodevelopmental delay nor intellectual disability. In combining these detailed phenotypic data with that of previously reported patients (n = 46), we further refine the known frequencies of features associated with VRJS. These include neurodevelopmental delay/intellectual disability (98%), axial skeletal anomalies (74%), appendicular skeletal anomalies (73%), oral anomalies (68%), short stature (66%), cardiac anomalies (63%), brain malformations (48%), hearing loss (46%), microcephaly (41%), colobomata (38%), and other ocular anomalies (65%). This case series, incorporating three patients from previously unreported ethnic backgrounds, further delineates the broad pleiotropy and mutational spectrum of PUF60 pathogenic variants.
Collapse
Affiliation(s)
- Andrew Paul Fennell
- Monash Genetics, Monash Health, Melbourne, Australia.,Clinical Genetics Service, Austin Health, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia
| | | | - Samuel Frank Berkovic
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Australia
| | - Carolyn Jane Ellaway
- Paediatrics North, Sydney, Australia.,Genetic Metabolic Disorders Service, The Sydney Children's Hospital Network, Sydney, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital Randwick, Sydney, Australia
| | - Caitlin Forwood
- Centre for Clinical Genetics, Sydney Children's Hospital Randwick, Sydney, Australia
| | - Michael Stephen Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| | - Smitha Kumble
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Colina McKeown
- Genetic Health Service New Zealand, Wellington Hospital, Wellington, New Zealand
| | - David Mowat
- Centre for Clinical Genetics, Sydney Children's Hospital Randwick, Sydney, Australia
| | - Gemma Poke
- Genetic Health Service New Zealand, Wellington Hospital, Wellington, New Zealand
| | | | - Brigid M Regan
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Australia
| | - Ingrid Eileen Scheffer
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Heidelberg, Australia.,Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia.,The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Chloe Alice Stutterd
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Ella Jane Wilkins
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Alison Yeung
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Matthew Frank Hunter
- Monash Genetics, Monash Health, Melbourne, Australia.,Department of Paediatrics, Monash University, Melbourne, Australia
| |
Collapse
|
14
|
Huang W, Kew C, Fernandes SDA, Löhrke A, Han L, Demetriades C, Antebi A. Decreased spliceosome fidelity and egl-8 intron retention inhibit mTORC1 signaling to promote longevity. NATURE AGING 2022; 2:796-808. [PMID: 37118503 PMCID: PMC10154236 DOI: 10.1038/s43587-022-00275-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
AbstractChanges in splicing fidelity are associated with loss of homeostasis and aging, yet only a handful of splicing factors have been shown to be causally required to promote longevity, and the underlying mechanisms and downstream targets in these paradigms remain elusive. Surprisingly, we found a hypomorphic mutation within ribonucleoprotein RNP-6/poly(U)-binding factor 60 kDa (PUF60), a spliceosome component promoting weak 3′-splice site recognition, which causes aberrant splicing, elevates stress responses and enhances longevity in Caenorhabditis elegans. Through genetic suppressor screens, we identify a gain-of-function mutation within rbm-39, an RNP-6-interacting splicing factor, which increases nuclear speckle formation, alleviates splicing defects and curtails longevity caused by rnp-6 mutation. By leveraging the splicing changes induced by RNP-6/RBM-39 activities, we uncover intron retention in egl-8/phospholipase C β4 (PLCB4) as a key splicing target prolonging life. Genetic and biochemical evidence show that neuronal RNP-6/EGL-8 downregulates mammalian target of rapamycin complex 1 (mTORC1) signaling to control organismal lifespan. In mammalian cells, PUF60 downregulation also potently and specifically inhibits mTORC1 signaling. Altogether, our results reveal that splicing fidelity modulates lifespan through mTOR signaling.
Collapse
|
15
|
Ufartes R, Grün R, Salinas G, Sitte M, Kahl F, Wong MTY, van Ravenswaaij-Arts CMA, Pauli S. CHARGE syndrome and related disorders: A mechanistic link. Hum Mol Genet 2021; 30:2215-2224. [PMID: 34230955 DOI: 10.1093/hmg/ddab183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
CHARGE syndrome is an autosomal dominant malformation disorder caused by pathogenic variants in the chromatin remodeler CHD7. Affected are craniofacial structures, cranial nerves and multiple organ systems. Depending on the combination of malformations present, its distinction from other congenital disorders can be challenging. To gain a better insight into the regulatory disturbances in CHARGE syndrome, we performed RNA-Seq analysis on blood samples of 19 children with CHARGE syndrome and a confirmed disease-causing CHD7 variant in comparison to healthy control children. Our analysis revealed a distinct CHARGE syndrome pattern with downregulation of genes that are linked to disorders described to mimic the CHARGE phenotype, i.e. KMT2D and KDM6A (Kabuki syndrome), EP300 and CREBBP (Rubinstein-Taybi syndrome) and ARID1A and ARID1B (Coffin-Siris syndrome). Furthermore, by performing protein-protein interaction studies using co-immunoprecipitation, direct yeast-two hybrid and in situ proximity ligation assays, we could demonstrate an interplay between CHD7, KMT2D, KDM6A and EP300. In summary, our data demonstrate a mechanistic and regulatory link between the developmental disorders CHARGE-, Kabuki- and Rubinstein Taybi-syndrome providing an explanation for the overlapping phenotypes.
Collapse
Affiliation(s)
- Roser Ufartes
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| | - Regina Grün
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| | - Gabriela Salinas
- NGS Integrative Genomics Core Unit, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Maren Sitte
- NGS Integrative Genomics Core Unit, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Fritz Kahl
- Department of General-, Visceral- and Pediatric Surgery, University Medical Center Goettingen, UMG, Göttingen, Germany
| | - Monica T Y Wong
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB Groningen, The Netherlands
| | - Conny M A van Ravenswaaij-Arts
- University of Groningen, University Medical Center Groningen, Department of Genetics, 9700 RB Groningen, The Netherlands
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| |
Collapse
|
16
|
Khabibullina DA, Kalinchenko NY, Egorova SV, Vasilyev EV, Petrov VM, Tiulpakov AN. [Familial case of hypogonadotropic hypogonadism as the CHARGE syndrome manifestation]. ACTA ACUST UNITED AC 2021; 67:68-72. [PMID: 34297504 DOI: 10.14341/probl12748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/06/2022]
Abstract
CHARGE syndrome is a rare autosomal dominant disease caused by CHD7 gene mutations. Individuals with CHARGE display a wide spectrum of clinical features. It might be presented only as a delay puberty, which does not require any hormone replacement therapy to severe CHARGE phenotype, requiring a multidisciplinary therapeutic approach. Wild spectrum of clinical presentation can be seen even among the patients with identical mutation. Diagnosis might be suspected by a combination of major and minor clinical criteria of this disorder, but molecular genetic analysis is mandatory for final verification. Accurate diagnosis is essential to informing patients about all possible clinical features, reproductive status and choosing the correct treatment approach. The most common endocrine abnormality in patients with CHARGE syndrome is the disturbance in gonadotropins function ranged from delay puberty to persistent hypogonadotropic hypogonadism with different olfactory phenotypes, resulted by specific role of CHD7 in GnRH neuronal embryogenesis.We describe a familial case of CHARGE syndrome with significant intrafamilial clinical heterogeneity due to CHD7 gene mutation.
Collapse
Affiliation(s)
| | | | - S V Egorova
- A.K. Piotrovich Children Regional Clinical Hospital
| | | | | | | |
Collapse
|
17
|
Ezan J, Moreau MM, Mamo TM, Shimbo M, Decroo M, Richter M, Peyroutou R, Rachel R, Tissir F, de Anda FC, Sans N, Montcouquiol M. Early loss of Scribble affects cortical development, interhemispheric connectivity and psychomotor activity. Sci Rep 2021; 11:9106. [PMID: 33907211 PMCID: PMC8079449 DOI: 10.1038/s41598-021-88147-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/01/2021] [Indexed: 12/03/2022] Open
Abstract
Neurodevelopmental disorders arise from combined defects in processes including cell proliferation, differentiation, migration and commissure formation. The evolutionarily conserved tumor-suppressor protein Scribble (Scrib) serves as a nexus to transduce signals for the establishment of apicobasal and planar cell polarity during these processes. Human SCRIB gene mutations are associated with neural tube defects and this gene is located in the minimal critical region deleted in the rare Verheij syndrome. In this study, we generated brain-specific conditional cKO mouse mutants and assessed the impact of the Scrib deletion on brain morphogenesis and behavior. We showed that embryonic deletion of Scrib in the telencephalon leads to cortical thickness reduction (microcephaly) and partial corpus callosum and hippocampal commissure agenesis. We correlated these phenotypes with a disruption in various developmental mechanisms of corticogenesis including neurogenesis, neuronal migration and axonal connectivity. Finally, we show that Scrib cKO mice have psychomotor deficits such as locomotor activity impairment and memory alterations. Altogether, our results show that Scrib is essential for early brain development due to its role in several developmental cellular mechanisms that could underlie some of the deficits observed in complex neurodevelopmental pathologies.
Collapse
Affiliation(s)
- Jerome Ezan
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France.
| | - Maité M Moreau
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Tamrat M Mamo
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Miki Shimbo
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Maureen Decroo
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Melanie Richter
- Germany Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronan Peyroutou
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Rivka Rachel
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Fadel Tissir
- Developmental Neurobiology Group, Institute of Neuroscience, University of Louvain, Avenue Mounier 73, Box B1.73.16, 1200, Brussels, Belgium
| | - Froylan Calderon de Anda
- Germany Center for Molecular Neurobiology Hamburg (ZMNH), Research Group Neuronal Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Sans
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France
| | - Mireille Montcouquiol
- Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, 33077, Bordeaux, France.
| |
Collapse
|
18
|
Latypova X, Dang X, Zhang J, Isidor B. Letter regarding the article "two girls with short stature, short neck, vertebral anomalies, Sprengel deformity and intellectual disability" (Isidor et al., 2015). Eur J Med Genet 2021; 64:104179. [PMID: 33636376 DOI: 10.1016/j.ejmg.2021.104179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Xenia Latypova
- Service de Génétique Médicale, Hôpital Hôtel-Dieu, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Xiao Dang
- BGI-Shenzhen, Shenzhen, 518083, China; BGI-Genomics, BGI-Shenzhen, Shenzhen, 518083, China; Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianguo Zhang
- BGI-Shenzhen, Shenzhen, 518083, China; BGI-Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Bertrand Isidor
- Service de Génétique Médicale, Hôpital Hôtel-Dieu, Centre Hospitalier Universitaire de Nantes, Nantes, France.
| |
Collapse
|
19
|
Pilon N. Treatment and Prevention of Neurocristopathies. Trends Mol Med 2021; 27:451-468. [PMID: 33627291 DOI: 10.1016/j.molmed.2021.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Neurocristopathies form a heterogeneous group of rare diseases caused by abnormal development of neural crest cells. Heterogeneity of neurocristopathies directly relates to the nature of these migratory and multipotent cells, which generate dozens of specialized cell types throughout the body. Neurocristopathies are thus characterized by congenital malformations of tissues/organs that otherwise appear to have very little in common, such as the craniofacial skeleton and enteric nervous system. Treatment options are currently very limited, mainly consisting of corrective surgeries. Yet, as reviewed here, analyses of normal and pathological neural crest development in model organisms have opened up the possibility for better treatment options involving cellular and molecular approaches. These approaches provide hope that some neurocristopathies might soon be curable or preventable.
Collapse
Affiliation(s)
- Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal H3C 3P8, Québec, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Québec, Canada; Département de Pédiatrie, Université de Montréal, Montréal H3T 1C5, Québec, Canada.
| |
Collapse
|
20
|
Sakaguchi Y, Yoshihashi H, Uehara T, Miyama S, Kosaki K, Takenouchi T. Coloboma may be a shared feature in a spectrum of disorders caused by mutations in the WDR37-PACS1-PACS2 axis. Am J Med Genet A 2020; 185:884-888. [PMID: 33369122 DOI: 10.1002/ajmg.a.62020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/12/2023]
Abstract
We report a male adult with early infantile-onset epilepsy, facial dysmorphism, and iridal and choroidal coloboma who had a de novo heterozygous mutation in PACS2, that is, c.625G > A p.(Glu209Lys). This specific mutation was previously reported in a patient with PACS2-related disorder (early infantile epileptic encephalopathy 66). De novo heterozygous mutations in WDR37 have been shown to cause a novel human disorder, neurooculocardiogenitourinary syndrome (NOCGUS syndrome) (OMIM #618652), characterized by intellectual disability, facial dysmorphism, and coloboma. According to large-scale interactome data, WDR37 interacts most strongly, by far, with PACS1 and PACS2. Clinically, coloboma has been described as a feature in a WDR37-related disorder and a PACS1-related disorder (Schuurs-Hoeijmakers syndrome), but not in a PACS2-related disorder. Our review of the phenotypes of three human disorders caused by WDR37, PACS1, and PACS2 mutations showed a significant overlap of epilepsy, intellectual disability, cerebellar atrophy, and facial features. The present observation of coloboma as a shared feature among these three disorders suggests that this group of genes may be involved in ocular development. We propose that dysregulation of the WDR37-PACS1-PACS2 axis results in a spectrum that is recognizable by intellectual disability, distinctive facial features, and coloboma.
Collapse
Affiliation(s)
- Yuri Sakaguchi
- Division of Neurology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Hiroshi Yoshihashi
- Division of Clinical Genetics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Sahoko Miyama
- Division of Neurology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Schwenty-Lara J, Pauli S, Borchers A. Using Xenopus to analyze neurocristopathies like Kabuki syndrome. Genesis 2020; 59:e23404. [PMID: 33351273 DOI: 10.1002/dvg.23404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/08/2022]
Abstract
Neurocristopathies are human congenital syndromes that arise from defects in neural crest (NC) development and are typically associated with malformations of the craniofacial skeleton. Genetic analyses have been very successful in identifying pathogenic mutations, however, model organisms are required to characterize how these mutations affect embryonic development thereby leading to complex clinical conditions. The African clawed frog Xenopus laevis provides a broad range of in vivo and in vitro tools allowing for a detailed characterization of NC development. Due to the conserved nature of craniofacial morphogenesis in vertebrates, Xenopus is an efficient and versatile system to dissect the morphological and cellular phenotypes as well as the signaling events leading to NC defects. Here, we review a set of techniques and resources how Xenopus can be used as a disease model to investigate the pathogenesis of Kabuki syndrome and neurocristopathies in a wider sense.
Collapse
Affiliation(s)
- Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
22
|
Simpson BN, Khattar D, Saal H, Prada CE, Choo D, Marcheschi L, Wiley S, Hopkin RJ. CHARGE syndrome in the era of molecular diagnosis: Similar outcomes in those without coloboma or choanal atresia. Eur J Med Genet 2020; 64:104103. [PMID: 33189935 DOI: 10.1016/j.ejmg.2020.104103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022]
Abstract
CHARGE syndrome (OMIM 214800) is a condition characterized by multisystem involvement with CHD7 pathogenic mutations leading to disease in the majority of patients. Discovery of the molecular cause of CHARGE unmasked a larger phenotypic spectrum than was previously appreciated. Within our interdisciplinary CHARGE syndrome program, we sought to characterize our CHD7-positive CHARGE cohort without coloboma or choanal atresia, highlighting complications and outcomes. We describe 18 individuals with CHD7-confirmed diagnosis from 15 families. The most sensitive finding in the cohort was temporal bone malformations, present in 13/15 individuals. Individuals had an average of 1.6 major features and 3.3 minor features defined by the Blake et al. guidelines. Despite lack of major features or major malformations, the majority of individuals continued to have difficulties with pneumonia, aspiration, secretion management and motility issues that greatly impacted their lives. Our findings illustrate the need for molecular testing and timely recognition given that the major co-morbidities are frequently experienced by patients with the mildest clinical spectrum of CHARGE syndrome.
Collapse
Affiliation(s)
- Brittany N Simpson
- Cincinnati Children's Hospital Medical Center: Division of Human Genetics, United States; Cincinnati Children's Hospital Medical Center: Department of Pediatrics, University of Cincinnati College of Medicine, United States.
| | - Divya Khattar
- Cincinnati Children's Hospital Medical Center: Division of Human Genetics, United States; Cincinnati Children's Hospital Medical Center: Department of Pediatrics, University of Cincinnati College of Medicine, United States
| | - Howard Saal
- Cincinnati Children's Hospital Medical Center: Division of Human Genetics, United States; Cincinnati Children's Hospital Medical Center: Department of Pediatrics, University of Cincinnati College of Medicine, United States
| | - Carlos E Prada
- Cincinnati Children's Hospital Medical Center: Division of Human Genetics, United States; Cincinnati Children's Hospital Medical Center: Department of Pediatrics, University of Cincinnati College of Medicine, United States
| | - Daniel Choo
- Cincinnati Children's Hospital Medical Center, Division of Pediatric Otolaryngology, University of Cincinnati College of Medicine, Department of Otolaryngology Head and Neck Surgery, United States
| | - Lucy Marcheschi
- Cincinnati Children's Hospital Medical Center: Division of Pediatric Otolaryngology, United States
| | - Susan Wiley
- Cincinnati Children's Hospital Medical Center: Division of Developmental and Behavioral Pediatrics, United States
| | - Robert J Hopkin
- Cincinnati Children's Hospital Medical Center: Division of Human Genetics, United States; Cincinnati Children's Hospital Medical Center: Department of Pediatrics, University of Cincinnati College of Medicine, United States
| |
Collapse
|
23
|
CHD7 Regulates Osteogenic Differentiation of Human Dental Follicle Cells via PTH1R Signaling. Stem Cells Int 2020; 2020:8882857. [PMID: 33014071 PMCID: PMC7525296 DOI: 10.1155/2020/8882857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/16/2020] [Accepted: 08/28/2020] [Indexed: 02/05/2023] Open
Abstract
Chromodomain helicase DNA-binding protein 7 (CHD7) is an ATP-dependent chromatin remodeling enzyme, functioning as chromatin reader to conduct epigenetic modification. Its effect on osteogenic differentiation of human dental follicle cells (hDFCs) remains unclear. Here, we show the CHD7 expression increases with osteogenic differentiation. The knockdown of CHD7 impairs the osteogenic ability of hDFCs, characterized by reduced alkaline phosphatase activity and mineralization, and the decreased expression of osteogenesis-related genes. Conversely, the CHD7 overexpression enhances the osteogenic differentiation of hDFCs. Mechanically, RNA-seq analyses revealed the downregulated enrichment of PTH (parathyroid hormone)/PTH1R (parathyroid hormone receptor-1) signaling pathway after CHD7 knockdown. We found the expression of PTH1R positively correlates with CHD7. Importantly, the overexpression of PTH1R in CHD7-knockdown hDFCs partially rescued the impaired osteogenic differentiation. Our research demonstrates that CHD7 regulates the osteogenic differentiation of hDFCs by regulating the transcription of PTH1R.
Collapse
|
24
|
Yamada M, Uehara T, Suzuki H, Takenouchi T, Kosaki K. Protein elongation variant of PUF60: Milder phenotypic end of the Verheij syndrome. Am J Med Genet A 2020; 182:2709-2714. [PMID: 32851780 DOI: 10.1002/ajmg.a.61816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
The PUF60 gene encodes a ubiquitously expressed essential splicing factor that is recruited to the U2snRNA complex. The complex binds to the 3' splice site of exons in specific target genes and regulates the inclusion or exclusion of such exons. Recently, pathogenic variants of PUF60 have been shown to cause a relatively specific and potentially recognizable pattern of malformation referred to as Verheij syndrome. Here, we report a 12-year-old female patient with a de novo mutation in PUF60 whose phenotype was representative of the milder end of the phenotypic spectrum of Verheij syndrome; the de novo mutation was a frameshift mutation p.(Ser558Cysfs*21) that resulted in the addition of 21 extra amino acids at the carboxy end of the protein. Among the frequent features of Verheij syndrome, the patient exhibited coloboma, cervical spinal segmentation defects, and borderline intellectual functioning, but lacked cardiac abnormalities, deafness, and urogenital abnormalities. The results of RNA analysis using peripheral blood showed the escape of the mutant allele from nonsense-mediated mRNA decay, possibly accounting for the mild phenotype in the presently reported patient. Based on our clinical observations, we inferred that two embryologic processes, closure of the ocular plate and cervical spinal segmentation, are particularly susceptible to deficient PUF60-mediated splicing regulation, compared with other embryogenetic processes leading to the central nervous system, heart, ear, and kidney.
Collapse
Affiliation(s)
- Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Qin Z, Su J, Li M, Yang Q, Yi S, Zheng H, Zhang Q, Chen F, Yi S, Lu W, Li W, Huang L, Xu J, Shen Y, Luo J. Clinical and Genetic Analysis of CHD7 Expands the Genotype and Phenotype of CHARGE Syndrome. Front Genet 2020; 11:592. [PMID: 32625235 PMCID: PMC7314916 DOI: 10.3389/fgene.2020.00592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
CHARGE syndrome is a life-threatening disease caused by mutations of chromodomain helicase DNA-binding protein 7 gene (CHD7). The disease is characterized by a pattern of congenital anomalies that involve multiple organs. In this study, five patients were diagnosed as CHARGE syndrome with CHD7 mutations by whole exome sequencing. Although the clinical phenotypes of probands are highly variable and typical symptoms such as coloboma and choanal atresia are not commonly manifested in this cohort, they all presented congenital heart defects. Of note, dyspnea is the most prominent symptom in all five neonatal patients, suggesting that dyspnea might be a phenotypic clue of CHARGE syndrome.
Collapse
Affiliation(s)
- Zailong Qin
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jiasun Su
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Mengting Li
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qi Yang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Yi
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Haiyang Zheng
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Fei Chen
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sheng Yi
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Weiliang Lu
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wei Li
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Limei Huang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jing Xu
- Department of Neonatology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
26
|
Squeo GM, Augello B, Massa V, Milani D, Colombo EA, Mazza T, Castellana S, Piccione M, Maitz S, Petracca A, Prontera P, Accadia M, Della Monica M, Di Giacomo MC, Melis D, Selicorni A, Giglio S, Fischetto R, Di Fede E, Malerba N, Russo M, Castori M, Gervasini C, Merla G. Customised next-generation sequencing multigene panel to screen a large cohort of individuals with chromatin-related disorder. J Med Genet 2020; 57:760-768. [PMID: 32170002 DOI: 10.1136/jmedgenet-2019-106724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND The regulation of the chromatin state by epigenetic mechanisms plays a central role in gene expression, cell function, and maintenance of cell identity. Hereditary disorders of chromatin regulation are a group of conditions caused by abnormalities of the various components of the epigenetic machinery, namely writers, erasers, readers, and chromatin remodelers. Although neurological dysfunction is almost ubiquitous in these disorders, the constellation of additional features characterizing many of these genes and the emerging clinical overlap among them indicate the existence of a community of syndromes. The introduction of high-throughput next generation sequencing (NGS) methods for testing multiple genes simultaneously is a logical step for the implementation of diagnostics of these disorders. METHODS We screened a heterogeneous cohort of 263 index patients by an NGS-targeted panel, containing 68 genes associated with more than 40 OMIM entries affecting chromatin function. RESULTS This strategy allowed us to identify clinically relevant variants in 87 patients (32%), including 30 for which an alternative clinical diagnosis was proposed after sequencing analysis and clinical re-evaluation. CONCLUSION Our findings indicate that this approach is effective not only in disorders with locus heterogeneity, but also in order to anticipate unexpected misdiagnoses due to clinical overlap among cognate disorders. Finally, this work highlights the utility of a prompt diagnosis in such a clinically and genetically heterogeneous group of disorders that we propose to group under the umbrella term of chromatinopathies.
Collapse
Affiliation(s)
- Gabriella Maria Squeo
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Bartolomeo Augello
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Valentina Massa
- Dipartimento di Scienze della Salute, Universita degli Studi di Milano Dipartimento di Scienze della Salute, Milano, Italy
| | - Donatella Milani
- UOSD Pediatria ad alta intensità di cura, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Adele Colombo
- Dipartimento di Scienze della Salute, Universita degli Studi di Milano Dipartimento di Scienze della Salute, Milano, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Stefano Castellana
- Bioinformatics Unit, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maria Piccione
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Silvia Maitz
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, Hospital San Gerardo, Monza, Italy
| | - Antonio Petracca
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Paolo Prontera
- Medical Genetics Unit, University of Perugia Hospital SM della Misericordia, Perugia, Italy
| | - Maria Accadia
- Medical Genetics Service, Hospital "Cardinale G. Panico", Tricase, Italy
| | - Matteo Della Monica
- Medical Genetics Unit, Cardarelli Hospital, Largo A Cardarelli, Napoli, Italy
| | | | - Daniela Melis
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Napoli, Italy
| | - Angelo Selicorni
- Pediatric Department, ASST Lariana, Sant'Anna General Hospital, Como, Italy
| | - Sabrina Giglio
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', Medical Genetics Unit, University Hospital Meyer, Firenze, Italy
| | - Rita Fischetto
- Metabolic Diseases, Clinical Genetics and Diabetology Unit, Paediatric Hospital Giovanni XXIII, Bari, Italy
| | - Elisabetta Di Fede
- Dipartimento di Scienze della Salute, Universita degli Studi di Milano Dipartimento di Scienze della Salute, Milano, Italy
| | - Natascia Malerba
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Matteo Russo
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Marco Castori
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Cristina Gervasini
- Dipartimento di Scienze della Salute, Universita degli Studi di Milano Dipartimento di Scienze della Salute, Milano, Italy
| | - Giuseppe Merla
- Division of Medical Genetics, IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
27
|
Ailiken G, Kitamura K, Hoshino T, Satoh M, Tanaka N, Minamoto T, Rahmutulla B, Kobayashi S, Kano M, Tanaka T, Kaneda A, Nomura F, Matsubara H, Matsushita K. Post-transcriptional regulation of BRG1 by FIRΔexon2 in gastric cancer. Oncogenesis 2020; 9:26. [PMID: 32071290 PMCID: PMC7028737 DOI: 10.1038/s41389-020-0205-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Brahma-related gene 1 (BRG1), an ATPase subunit of the SWItch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex controls multipotent neural crest formation by regulating epithelial-mesenchymal transition (EMT)-related genes with adenosine triphosphate-dependent chromodomain-helicase DNA-binding protein 7 (CHD7). The expression of BRG1 engages in pre-mRNA splicing through interacting RNPs in cancers; however, the detailed molecular pathology of how BRG1and CHD7 relate to cancer development remains largely unveiled. This study demonstrated novel post-transcriptional regulation of BRG1 in EMT and relationship with FIRΔexon2, which is a splicing variant of the far-upstream element-binding protein (FUBP) 1-interacting repressor (FIR) lacking exon 2, which fails to repress c-myc transcription in cancers. Previously, we have reported that FIR complete knockout mice (FIR-/-) was embryonic lethal before E9.5, suggesting FIR is crucial for development. FIRΔexon2 acetylated H3K27 on promoter of BRG1 by CHIP-sequence and suppressed BRG1 expression post-transcriptionally; herein BRG1 suppressed Snai1 that is a transcriptional suppressor of E-cadherin that prevents cancer invasion and metastasis. Ribosomal proteins, hnRNPs, splicing-related factors, poly (A) binding proteins, mRNA-binding proteins, tRNA, DEAD box, and WD-repeat proteins were identified as co-immunoprecipitated proteins with FIR and FIRΔexon2 by redoing exhaustive mass spectrometry analysis. Furthermore, the effect of FIRΔexon2 on FGF8 mRNA splicing was examined as an indicator of neural development due to impaired CHD7 revealed in CHARGE syndrome. Expectedly, siRNA of FIRΔexon2 altered FGF8 pre-mRNA splicing, indicated close molecular interaction among FIRΔexon2, BRG1 and CHD7. FIRΔexon2 mRNA was elevated in human gastric cancers but not in non-invasive gastric tumors in FIR+/ mice (K19-Wnt1/C2mE x FIR+/-). The levels of FIR family (FIR, FIRΔexon2 and PUF60), BRG1, Snai1, FBW7, E-cadherin, c-Myc, cyclin-E, and SAP155 increased in the gastric tumors in FIR+/- mice compared to those expressed in wild-type mice. FIR family, Snai1, cyclin-E, BRG1, and c-Myc showed trends toward higher expression in larger tumors than in smaller tumors in Gan-mice (K19-Wnt1/C2mE). The expressions of BRG1 and Snai1 were positively correlated in the gastric tumors of the Gan-mice. Finally, BRG1 is a candidate substrate of F-box and WD-repeat domain-containing 7 (FBW7) revealed by three-dimensional crystal structure analysis that the U2AF-homology motif (UHM) of FIRΔexon2 interacted with tryptophan-425 and asparate-399 (WD)-like motif in the degron pocket of FBW7 as a UHM-ligand motif. Together, FIRΔexon2 engages in multi-step post-transcriptional regulation of BRG1, affecting EMT through the BRG1/Snai1/E-cadherin pathway and promoting tumor proliferation and invasion of gastric cancers.
Collapse
Affiliation(s)
- Guzhanuer Ailiken
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kouichi Kitamura
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Tyuji Hoshino
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Mamoru Satoh
- Divisions of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Nobuko Tanaka
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sohei Kobayashi
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumio Nomura
- Divisions of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuyuki Matsushita
- Department of Laboratory Medicine & Division of Clinical Genetics and Proteomics, Chiba University Hospital, Chiba, Japan.
| |
Collapse
|
28
|
Schwenty-Lara J, Nehl D, Borchers A. The histone methyltransferase KMT2D, mutated in Kabuki syndrome patients, is required for neural crest cell formation and migration. Hum Mol Genet 2020; 29:305-319. [PMID: 31813957 PMCID: PMC7003132 DOI: 10.1093/hmg/ddz284] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022] Open
Abstract
Kabuki syndrome is an autosomal dominant developmental disorder with high similarities to CHARGE syndrome. It is characterized by a typical facial gestalt in combination with short stature, intellectual disability, skeletal findings and additional features like cardiac and urogenital malformations, cleft palate, hearing loss and ophthalmological anomalies. The major cause of Kabuki syndrome are mutations in KMT2D, a gene encoding a histone H3 lysine 4 (H3K4) methyltransferase belonging to the group of chromatin modifiers. Here we provide evidence that Kabuki syndrome is a neurocrestopathy, by showing that Kmt2d loss-of-function inhibits specific steps of neural crest (NC) development. Using the Xenopus model system, we find that Kmt2d loss-of-function recapitulates major features of Kabuki syndrome including severe craniofacial malformations. A detailed marker analysis revealed defects in NC formation as well as migration. Transplantation experiments confirm that Kmt2d function is required in NC cells. Furthermore, analyzing in vivo and in vitro NC migration behavior demonstrates that Kmt2d is necessary for cell dispersion but not protrusion formation of migrating NC cells. Importantly, Kmt2d knockdown correlates with a decrease in H3K4 monomethylation and H3K27 acetylation supporting a role of Kmt2d in the transcriptional activation of target genes. Consistently, using a candidate approach, we find that Kmt2d loss-of-function inhibits Xenopus Sema3F expression, and overexpression of Sema3F can partially rescue Kmt2d loss-of-function defects. Taken together, our data reveal novel functions of Kmt2d in multiple steps of NC development and support the hypothesis that major features of Kabuki syndrome are caused by defects in NC development.
Collapse
Affiliation(s)
- Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Denise Nehl
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-Universität Marburg, Marburg 35043, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg 35043, Germany
| |
Collapse
|
29
|
Meisner JK, Martin DM. Congenital heart defects in CHARGE: The molecular role of CHD7 and effects on cardiac phenotype and clinical outcomes. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 184:81-89. [PMID: 31833191 DOI: 10.1002/ajmg.c.31761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
CHARGE syndrome is characterized by a pattern of congenital anomalies (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth, Genital abnormalities, and Ear abnormalities). De novo mutations of chromodomain helicase DNA binding protein 7 (CHD7) are the primary cause of CHARGE syndrome. The clinical phenotype is highly variable including a wide spectrum of congenital heart defects. Here, we review the range of congenital heart defects and the molecular effects of CHD7 on cardiovascular development that lead to an over-representation of atrioventricular septal, conotruncal, and aortic arch defects in CHARGE syndrome. Further, we review the overlap of cardiovascular and noncardiovascular comorbidities present in CHARGE and their impact on the peri-operative morbidity and mortality in individuals with CHARGE syndrome.
Collapse
Affiliation(s)
- Joshua K Meisner
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Donna M Martin
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan.,Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
30
|
Novel pathogenic variants and multiple molecular diagnoses in neurodevelopmental disorders. J Neurodev Disord 2019; 11:11. [PMID: 31238879 PMCID: PMC6593513 DOI: 10.1186/s11689-019-9270-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/23/2019] [Indexed: 01/27/2023] Open
Abstract
Background Rare denovo variants represent a significant cause of neurodevelopmental delay and intellectual disability (ID). Methods Exome sequencing was performed on 4351 patients with global developmental delay, seizures, microcephaly, macrocephaly, motor delay, delayed speech and language development, or ID according to Human Phenotype Ontology (HPO) terms. All patients had previously undergone whole exome sequencing as part of diagnostic genetic testing with a focus on variants in genes implicated in neurodevelopmental disorders up to January 2017. This resulted in a genetic diagnosis in 1336 of the patients. In this study, we specifically searched for variants in 14 recently implicated novel neurodevelopmental disorder (NDD) genes. Results We identified 65 rare, protein-changing variants in 11 of these 14 novel candidate genes. Fourteen variants in CDK13, CHD4, KCNQ3, KMT5B, TCF20, and ZBTB18 were scored pathogenic or likely pathogenic. Of note, two of these patients had a previously identified cause of their disease, and thus, multiple molecular diagnoses were made including pathogenic/likely pathogenic variants in FOXG1 and CDK13 or in TMEM237 and KMT5B. Conclusions Looking for pathogenic variants in newly identified NDD genes enabled us to provide a molecular diagnosis to 14 patients and their close relatives and caregivers. This underlines the relevance of re-evaluation of existing exome data on a regular basis to improve the diagnostic yield and serve the needs of our patients. Electronic supplementary material The online version of this article (10.1186/s11689-019-9270-4) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Parivesh A, Barseghyan H, Délot E, Vilain E. Translating genomics to the clinical diagnosis of disorders/differences of sex development. Curr Top Dev Biol 2019; 134:317-375. [PMID: 30999980 PMCID: PMC7382024 DOI: 10.1016/bs.ctdb.2019.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The medical and psychosocial challenges faced by patients living with Disorders/Differences of Sex Development (DSD) and their families can be alleviated by a rapid and accurate diagnostic process. Clinical diagnosis of DSD is limited by a lack of standardization of anatomical and endocrine phenotyping and genetic testing, as well as poor genotype/phenotype correlation. Historically, DSD genes have been identified through positional cloning of disease-associated variants segregating in families and validation of candidates in animal and in vitro modeling of variant pathogenicity. Owing to the complexity of conditions grouped under DSD, genome-wide scanning methods are better suited for identifying disease causing gene variant(s) and providing a clinical diagnosis. Here, we review a number of established genomic tools (karyotyping, chromosomal microarrays and exome sequencing) used in clinic for DSD diagnosis, as well as emerging genomic technologies such as whole-genome (short-read) sequencing, long-read sequencing, and optical mapping used for novel DSD gene discovery. These, together with gene expression and epigenetic studies can potentiate the clinical diagnosis of DSD diagnostic rates and enhance the outcomes for patients and families.
Collapse
Affiliation(s)
- Abhinav Parivesh
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States
| | - Hayk Barseghyan
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States
| | - Emmanuèle Délot
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC, United States; Department of Genomics and Precision Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
32
|
Alkhunaizi E, Braverman N. Clinical characterization of a PUF60 variant in a patient with Dubowitz-like syndrome. Am J Med Genet A 2018; 179:130-133. [PMID: 30569551 DOI: 10.1002/ajmg.a.60691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Ebba Alkhunaizi
- Department of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nancy Braverman
- Department of Pediatrics and Medical Genetics, McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
33
|
Ungaro C, Citrigno L, Trojsi F, Sprovieri T, Gentile G, Muglia M, Monsurrò MR, Tedeschi G, Cavallaro S, Conforti FL. ALS and CHARGE syndrome: a clinical and genetic study. Acta Neurol Belg 2018; 118:629-635. [PMID: 30317490 PMCID: PMC6244742 DOI: 10.1007/s13760-018-1029-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/06/2018] [Indexed: 12/30/2022]
Abstract
Amyotrophic Lateral Sclerosis and CHARGE syndrome are complex neurological disorders, which never occurred together in the same family and, to date, no putative correlation between them has been described on PubMed Central. Due to our aim was to evaluate the presence of different genetic variants involved in these pathologies, we reported a clinical and genetic description of two sisters affected by these two different disorders. In the CHARGE patient, molecular analysis of the CHD7 gene revealed the c.8016G >A de novo variant in exon 37. The ALS patient had been screened negative for mutations in SOD1, TARDBP, FUS/TLS, C9orf72 and KIF5A genes. Anyway, targeted next generation sequencing analysis identified known and unknown genetic variations in 39 ALS-related genes: a total of 380 variants were reported, of which 194 in the ALS patient and 186 in the CHARGE patient. To date, although the results suggest that the occurrence of the two syndromes in the same family is co-incidental rather than based on a causative genetic variant, we could hypothesize that other factors might act as modulators in the pathogenesis of these different phenotypes.
Collapse
Affiliation(s)
- Carmine Ungaro
- Institute of Neurological Sciences (ISN), National Research Council, C.da Burga, Mangone, CS, Italy
| | - Luigi Citrigno
- Institute of Neurological Sciences (ISN), National Research Council, C.da Burga, Mangone, CS, Italy
| | - Francesca Trojsi
- Dipartimento di Scienze Mediche, Chirurgiche, Neurologiche, Metaboliche e dell'Invecchiamento, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Teresa Sprovieri
- Institute of Neurological Sciences (ISN), National Research Council, C.da Burga, Mangone, CS, Italy
| | - Giulia Gentile
- Institute of Neurological Sciences (ISN), National Research Council, C.da Burga, Mangone, CS, Italy
| | - Maria Muglia
- Institute of Neurological Sciences (ISN), National Research Council, C.da Burga, Mangone, CS, Italy
| | - Maria Rosaria Monsurrò
- Dipartimento di Scienze Mediche, Chirurgiche, Neurologiche, Metaboliche e dell'Invecchiamento, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Gioacchino Tedeschi
- Dipartimento di Scienze Mediche, Chirurgiche, Neurologiche, Metaboliche e dell'Invecchiamento, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Sebastiano Cavallaro
- Institute of Neurological Sciences (ISN), National Research Council, C.da Burga, Mangone, CS, Italy
| | - Francesca Luisa Conforti
- Institute of Neurological Sciences (ISN), National Research Council, C.da Burga, Mangone, CS, Italy.
| |
Collapse
|
34
|
Xu Q, Li CY, Wang Y, Li HP, Wu BB, Jiang YH, Xu X. Role of PUF60 gene in Verheij syndrome: a case report of the first Chinese Han patient with a de novo pathogenic variant and review of the literature. BMC Med Genomics 2018; 11:92. [PMID: 30352594 PMCID: PMC6199733 DOI: 10.1186/s12920-018-0421-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/12/2018] [Indexed: 02/06/2023] Open
Abstract
Background Verheij syndrome is a rare microdeletion syndrome of chromosome 8q24.3 that harbors PUF60, SCRIB, and NRBP2 genes. Subsequently, loss of function mutations in PUF60 have been found in children with clinical features significantly overlapping with Verheij. Case presentation Here we present the first Chinese Han patient with a de novo nonsense variant (c.1357C > T, p.Gln453*) in PUF60 by clinical whole exome sequencing. The 5-year-old boy presents with dysmorphic facial features, intellectual disability, and growth retardation but without apparent cardiac, renal, ocular, and spinal anomalies. Conclusions Our finding contributes to the understanding of the genotype and phenotype in PUF60 related disorder.
Collapse
Affiliation(s)
- Qiong Xu
- Developmental and Behavioral Pediatric Department & Child Health Care Department, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Chun-Yang Li
- Developmental and Behavioral Pediatric Department & Child Health Care Department, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Yi Wang
- Developmental and Behavioral Pediatric Department & Child Health Care Department, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Hui-Ping Li
- Developmental and Behavioral Pediatric Department & Child Health Care Department, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Bing-Bing Wu
- Developmental and Behavioral Pediatric Department & Child Health Care Department, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Yong-Hui Jiang
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA.,Program in Genetics and Genomics, Duke University School of Medicine, Durham, NC, 27710, USA.,Cellular Molecular Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xiu Xu
- Developmental and Behavioral Pediatric Department & Child Health Care Department, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
35
|
Bérubé-Simard FA, Pilon N. Molecular dissection of CHARGE syndrome highlights the vulnerability of neural crest cells to problems with alternative splicing and other transcription-related processes. Transcription 2018; 10:21-28. [PMID: 30205741 DOI: 10.1080/21541264.2018.1521213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CHARGE syndrome is characterized by co-occurrence of multiple malformations due to abnormal development of neural crest cells. Here, we review the phenotypic and molecular overlap between CHARGE syndrome and similar pathologies, and further discuss the observation that neural crest cells appear especially sensitive to malfunction of the chromatin-transcription-splicing molecular hub.
Collapse
Affiliation(s)
- Félix-Antoine Bérubé-Simard
- a Laboratoire de génétique moléculaire du développement, Département des sciences biologiques , Université du Québec à Montréal (UQAM) , Montréal , QC , Canada.,b Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC) , Université du Québec à Montréal (UQAM) , Montréal , QC , Canada
| | - Nicolas Pilon
- a Laboratoire de génétique moléculaire du développement, Département des sciences biologiques , Université du Québec à Montréal (UQAM) , Montréal , QC , Canada.,b Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC) , Université du Québec à Montréal (UQAM) , Montréal , QC , Canada.,c Département de pédiatrie , Université de Montréal , Montréal , QC , Canada
| |
Collapse
|