1
|
El-Dessouky SH, Sharaf-Eldin WE, Aboulghar MM, Mousa HA, Zaki MS, Maroofian R, Senousy SM, Eid MM, Gaafar HM, Ebrashy A, Shikhah AZ, Abdelfattah AN, Ezz-Elarab A, Ateya MI, Hosny A, Mohamed Abdelfattah Y, Abdella R, Issa MY, Matsa LS, Abdelaziz N, Saad AK, Alavi S, Tajsharghi H, Abdalla EM. Integrating Prenatal Exome Sequencing and Ultrasonographic Fetal Phenotyping for Assessment of Congenital Malformations: High Molecular Diagnostic Yield and Novel Phenotypic Expansions in a Consanguineous Cohort. Clin Genet 2025. [PMID: 39891418 DOI: 10.1111/cge.14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
To evaluate the diagnostic yield of prenatal exome sequencing (pES) in fetuses with structural anomalies detected by prenatal ultrasound in a consanguineous population. This was a prospective study of 244 anomalous fetuses from unrelated consanguineous Egyptian families. Detailed phenotyping was performed throughout pregnancy and postnatally, and pES data analysis was conducted. Genetic variants were prioritized based on the correlation of their corresponding human phenotype ontology terms with the ultrasound findings. Analyses were carried out to determine the diagnostic efficiency of pES and its correlation to the organ systems involved. The largest clinical category of fetuses referred for pES was those manifesting multisystem anomalies (104/244, 42.6%). pES provided a definitive diagnosis explaining the fetal anomalies in 47.1% (115/244) of the cases, with the identification of 122 pathogenic or likely pathogenic variants completely fitting with the phenotype. Variants of uncertain significance associated with the fetal phenotypes were detected in 84 fetuses (34%), while 18.44% (45/244) had negative results. Positive consanguinity is associated with a high diagnostic yield of ES. The novel variants and new fetal manifestations, described in our cohort, further expand the mutational and phenotypic spectrum of a wide variety of genetic disorders presenting with congenital malformations.
Collapse
Affiliation(s)
- Sara H El-Dessouky
- Prenatal Diagnosis & Fetal Medicine Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Wessam E Sharaf-Eldin
- Medical & Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mona M Aboulghar
- Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt
| | - Hatem A Mousa
- Maternal and Fetal Medicine Unit, University Hospitals of Leicester NHS Trust, UK
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Sameh M Senousy
- Prenatal Diagnosis & Fetal Medicine Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Maha M Eid
- Human Cytogenetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Hassan M Gaafar
- Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt
| | - Alaa Ebrashy
- Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt
| | - Ahmed Z Shikhah
- Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt
| | - Ahmed N Abdelfattah
- Prenatal Diagnosis & Fetal Medicine Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Ahmed Ezz-Elarab
- Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt
| | - Mohamed I Ateya
- Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt
| | - Adel Hosny
- Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt
| | | | - Rana Abdella
- Department of Obstetrics and Gynecology, Cairo University, Cairo, Egypt
| | - Mahmoud Y Issa
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Lova S Matsa
- Genomic Precision Diagnostic Department, Igenomix, New Delhi, India
| | - Nahla Abdelaziz
- Medical & Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Ahmed K Saad
- Medical & Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Shahryar Alavi
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Homa Tajsharghi
- School of Health Sciences, Division Biomedicine, University of Skövde, Skövde, Sweden
| | - Ebtesam M Abdalla
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Tenorio-Castano J, Mansilla Aparicio E, García Santiago FA, Klotz CM, Regojo RM, Anguita E, Ryan E, Juusola J, Herrero B, Arias P, Parra A, Pascual P, Gallego N, Cazalla M, Rodriguez-González R, Antolín E, Nevado J, Ruiz-Perez VL, Lapunzina P. Non-immune hydrops fetalis is associated with bi-allelic pathogenic variants in the MYB Binding Protein 1a (MYBBP1A) gene. Clin Genet 2024; 106:713-720. [PMID: 39191491 DOI: 10.1111/cge.14601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024]
Abstract
Non-immune hydrops fetalis (NIHF) is a rare entity characterized by excessive accumulation of fluid within the fetal extravascular compartments and body cavities. Here we present two intrauterine fetal demises with NIHF presenting with oligohydramnios, cystic hygroma, pleural effusion, and generalized hydrops with predominance of subcutaneous edema. The fetuses also presented with ascites, severe and precocious IUGR and skeletal anomalies. Whole exome sequencing was applied in order to screen for a possible genetic cause. The results identified biallelic variants in MYBBP1A in both fetuses. A previous report described another case with a similar phenotype having compound heterozygous variants in the same gene. The protein encoded by MYBBP1A is involved in several cellular processes including the synthesis of ribosomal DNA, the response to nucleolar stress, and tumor suppression. Our functional protein analysis through immunohistochemistry indicates that MYBBP1A is a gene expressed during fetal stages. Altogether, we concluded that MYBBP1A is associated with the development of hydrops fetalis. More cases and further studies are necessary to understand the role of this gene and the mechanism associated with NIHF.
Collapse
Affiliation(s)
- Jair Tenorio-Castano
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
| | - Elena Mansilla Aparicio
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
| | - Fe Amalia García Santiago
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
| | - Cherise M Klotz
- Swedish Medical Center, Maternal and Fetal Specialty Center, Seattle, Washington, USA
| | | | - Estefanía Anguita
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
| | | | | | - Beatriz Herrero
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Hospital Universitario La Paz. IdiPAZ, Madrid, Spain
| | - Pedro Arias
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
| | - Alejandro Parra
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
| | - Patricia Pascual
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
| | - Natalia Gallego
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
| | - Mario Cazalla
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
| | - Roberto Rodriguez-González
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Hospital Universitario La Paz. IdiPAZ, Madrid, Spain
| | - Eugenia Antolín
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Hospital Universitario La Paz. IdiPAZ, Madrid, Spain
| | - Julián Nevado
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
| | - Víctor L Ruiz-Perez
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
- Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
| | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Rare Malformation Syndromes, Brussels, Belgium
| |
Collapse
|
3
|
Jin P, Hong J, Xu Y, Qian Y, Han S, Dong M. Molecular diagnostic yield of exome sequencing in a Chinese cohort of 512 fetuses with anomalies. BMC Pregnancy Childbirth 2024; 24:591. [PMID: 39251974 PMCID: PMC11385820 DOI: 10.1186/s12884-024-06782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Currently, whole exome sequencing has been performed as a helpful complement in the prenatal setting in case of fetal anomalies. However, data on its clinical utility remain limited in practice. Herein, we reported our data of fetal exome sequencing in a cohort of 512 trios to evaluate its diagnostic yield. METHODS In this retrospective cohort study, the couples performing prenatal exome sequencing were enrolled. Fetal phenotype was classified according to ultrasound and magnetic resonance imaging findings. Genetic variants were analyzed based on a phenotype-driven followed by genotype-driven approach in all trios. RESULTS A total of 97 diagnostic variants in 65 genes were identified in 69 fetuses, with an average detection rate of 13.48%. Skeletal and renal system were the most frequently affected organs referred for whole exome sequencing, with the highest diagnostic rates. Among them, short femur and kidney cyst were the most common phenotype. Fetal growth restriction was the most frequently observed phenotype with a low detection rate (4.3%). Exome sequencing had limited value in isolated increased nuchal translucency and chest anomalies. CONCLUSIONS This study provides our data on the detection rate of whole exome sequencing in fetal anomalies in a large cohort. It contributes to the expanding of phenotypic and genotypic spectrum.
Collapse
Affiliation(s)
- Pengzhen Jin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiawei Hong
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuqing Xu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeqing Qian
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
| | - Shuning Han
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Minyue Dong
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China.
| |
Collapse
|
4
|
Wall E, Petley E, Mone F, Doyle S, Hartles-Spencer L, Allen SK, Castleman J, Marton T, Williams D. Molecular autopsy for fetal structural anomaly: diagnostic and clinical utility of multidisciplinary team approach. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 64:381-387. [PMID: 38517166 DOI: 10.1002/uog.27647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE In the West Midlands regional genetics service, cases of perinatal death with a possible genetic diagnosis are evaluated by the perinatal pathology genetic multidisciplinary team (MDT). The MDT assesses autopsy findings and suggests appropriate genomic assessment. The objective of this retrospective service evaluation was to determine the clinical utility of the MDT in assessing perinatal deaths associated with structural anomaly. This is the first evaluation since the introduction of whole-genome and whole-exome sequencing in routine clinical care. METHODS This was a retrospective service evaluation including all cases of perinatal death with an associated structural anomaly and suspected genetic etiology that underwent perinatal MDT assessment between January and December 2021. All cases received a full or partial postmortem examination and at least a chromosomal microarray analysis. Demographic characteristics, phenotype, genotype, MDT recommendations, diagnoses, outcomes and impact of postmortem analysis and genetic testing data were collected from patient case notes. RESULTS Overall, 123 cases were discussed at the MDT meetings in 2021. Genetic evaluation was recommended in 84 cases and accepted in 64 cases. A range of genetic tests were requested according to indication and availability. Thirty diagnoses were made in 29 cases from 26 unrelated families. The diagnostic yield was 24% (29/123) in all cases or 45% (29/64) in cases with a suspected genetic diagnosis who underwent genetic testing. Postmortem examination provided clinically actionable phenotypic data in 79% of cases. A genetic diagnosis enabled accurate recurrence risk counseling and provision of appropriate follow-up, including prenatal testing and preimplantation diagnosis for patients with inherited conditions. CONCLUSIONS Genomic testing was a clinically useful addition to (but not a substitute for) postmortem examination in cases of perinatal death associated with structural anomaly. The MDT approach helped assess cases and plan appropriate follow-up. Expedited whole-genome sequencing or panel-agnostic analysis were most appropriate for heterogeneous presentations. This broad approach can also expand knowledge of prenatal phenotypes and detect novel disease genes, and should be a priority in future research. © 2024 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- E Wall
- West Midlands Clinical Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Edgbaston, UK
| | - E Petley
- West Midlands Clinical Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Edgbaston, UK
| | - F Mone
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - S Doyle
- Perinatal Genomics Service, National Maternity Hospital, Holles St, Dublin, Ireland
| | - L Hartles-Spencer
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - S K Allen
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - J Castleman
- West Midlands Fetal Medicine Centre, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - T Marton
- West Midlands Perinatal Pathology Department, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
- Department of Obstetrics and Gynaecology, Semmelweis University Faculty of Medicine, Budapest, Hungary
| | - D Williams
- West Midlands Clinical Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Edgbaston, UK
| |
Collapse
|
5
|
Orlova M, Gundorova P, Kadnikova V, Polyakov A. Spectrum of pathogenic variants and high prevalence of pathogenic BBS7 variants in Russian patients with Bardet-Biedl syndrome. Front Genet 2024; 15:1419025. [PMID: 39092430 PMCID: PMC11291329 DOI: 10.3389/fgene.2024.1419025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/05/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Bardet-Biedl syndrome is a rare condition characterized by obesity, retinitis pigmentosa, polydactyly, development delay, and structural kidney anomalies. This syndrome has an autosomal recessive type of inheritance. For the first time, molecular genetic testing has been provided for a large cohort of Russian patients with Bardet-Biedl syndrome. Materials and methods Genetic testing was provided to 61 unrelated patients using an MPS panel that includes coding regions and intronic areas of all genes (n = 21) currently associated with Bardet-Biedl syndrome. Results The diagnosis was confirmed for 41% of the patients (n = 25). Disease-causing variants were observed in BBS1, BBS4, BBS7, TTC8, BBS9, BBS10, BBS12, and MKKS genes. In most cases, pathogenic and likely pathogenic variants were localized in BBS1, BBS10, and BBS7 genes; recurrent variants were also observed in these genes. Discussion The frequency of pathogenic and likely pathogenic variants in the BBS1 and BBS10 genes among Russian patients matches the research data in other countries. The frequency of pathogenic variants in the BBS7 gene is about 1.5%-2% of patients with Bardet-Biedl syndrome, while in the cohort of Russian patients, the fraction is 24%. In addition, the recurrent pathogenic variant c.1967_1968delinsC was detected in the BBS7 gene. The higher frequency of this variant in the Russian population, as well as the lack of association of this pathogenic variant with Bardet-Biedl syndrome in other populations, suggests that the variant c.1967_1968delinsC in the BBS7 gene is major and has a founder effect in the Russian population. Results provided in this article show the significant role of pathogenic variants in the BBS7 gene for patients with Bardet-Biedl syndrome in the Russian population.
Collapse
Affiliation(s)
- M. Orlova
- DNA-diagnostics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - P. Gundorova
- University Children’s Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - V. Kadnikova
- DNA-diagnostics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - A. Polyakov
- DNA-diagnostics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
6
|
Zheng Y, Lin C, Wang WJ, Wang L, Qian Y, Mao L, Li B, Lou L, Mao Y, Li N, Zheng J, Jiang N, He C, Wang Q, Zhou Q, Chen F, Jin F. Post-implantation analysis of genomic variations in the progeny from developing fetus to birth. Hum Genomics 2024; 18:79. [PMID: 39010135 PMCID: PMC11247737 DOI: 10.1186/s40246-024-00634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/17/2024] Open
Abstract
The analysis of genomic variations in offspring after implantation has been infrequently studied. In this study, we aim to investigate the extent of de novo mutations in humans from developing fetus to birth. Using high-depth whole-genome sequencing, 443 parent-offspring trios were studied to compare the results of de novo mutations (DNMs) between different groups. The focus was on fetuses and newborns, with DNA samples obtained from the families' blood and the aspirated embryonic tissues subjected to deep sequencing. It was observed that the average number of total DNMs in the newborns group was 56.26 (54.17-58.35), which appeared to be lower than that the multifetal reduction group, which was 76.05 (69.70-82.40) (F = 2.42, P = 0.12). However, after adjusting for parental age and maternal pre-pregnancy body mass index (BMI), significant differences were found between the two groups. The analysis was further divided into single nucleotide variants (SNVs) and insertion/deletion of a small number of bases (indels), and it was discovered that the average number of de novo SNVs associated with the multifetal reduction group and the newborn group was 49.89 (45.59-54.20) and 51.09 (49.22-52.96), respectively. No significant differences were noted between the groups (F = 1.01, P = 0.32). However, a significant difference was observed for de novo indels, with a higher average number found in the multifetal reduction group compared to the newborn group (F = 194.17, P < 0.001). The average number of de novo indels among the multifetal reduction group and the newborn group was 26.26 (23.27-29.05) and 5.17 (4.82-5.52), respectively. To conclude, it has been observed that the quantity of de novo indels in the newborns experiences a significant decrease when compared to that in the aspirated embryonic tissues (7-9 weeks). This phenomenon is evident across all genomic regions, highlighting the adverse effects of de novo indels on the fetus and emphasizing the significance of embryonic implantation and intrauterine growth in human genetic selection mechanisms.
Collapse
Affiliation(s)
- Yingming Zheng
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, China
| | - Chuanping Lin
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, China
- Reproductive Medical Center, the Second Affiliated Hospital of Wenzhou Medical College and Yuying Children's hospital, Wenzhou, Zhejiang, 325027, China
| | | | - Liya Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, China
| | - Yeqing Qian
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, China
| | - Luna Mao
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, China
| | - Baohua Li
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, China
| | - Lijun Lou
- Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, 322100, China
| | - Yuchan Mao
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, China
| | - Na Li
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, China
| | - Jiayong Zheng
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, China
| | - Nan Jiang
- Reproductive Medical Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Chaying He
- Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang, 310008, China
| | - Qijing Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, China
| | - Qing Zhou
- BGI Research, Shenzhen, Guangdong, 518083, China
| | - Fang Chen
- BGI Research, Shenzhen, Guangdong, 518083, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
7
|
Cacheiro P, Lawson S, Van den Veyver IB, Marengo G, Zocche D, Murray SA, Duyzend M, Robinson PN, Smedley D. Lethal phenotypes in Mendelian disorders. Genet Med 2024; 26:101141. [PMID: 38629401 PMCID: PMC11232373 DOI: 10.1016/j.gim.2024.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
PURPOSE Existing resources that characterize the essentiality status of genes are based on either proliferation assessment in human cell lines, viability evaluation in mouse knockouts, or constraint metrics derived from human population sequencing studies. Several repositories document phenotypic annotations for rare disorders; however, there is a lack of comprehensive reporting on lethal phenotypes. METHODS We queried Online Mendelian Inheritance in Man for terms related to lethality and classified all Mendelian genes according to the earliest age of death recorded for the associated disorders, from prenatal death to no reports of premature death. We characterized the genes across these lethality categories, examined the evidence on viability from mouse models and explored how this information could be used for novel gene discovery. RESULTS We developed the Lethal Phenotypes Portal to showcase this curated catalog of human essential genes. Differences in the mode of inheritance, physiological systems affected, and disease class were found for genes in different lethality categories, as well as discrepancies between the lethal phenotypes observed in mouse and human. CONCLUSION We anticipate that this resource will aid clinicians in the diagnosis of early lethal conditions and assist researchers in investigating the properties that make these genes essential for human development.
Collapse
Affiliation(s)
- Pilar Cacheiro
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Samantha Lawson
- ITS Research, Queen Mary University of London, London, United Kingdom
| | - Ignatia B Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Gabriel Marengo
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - David Zocche
- North West Thames Regional Genetics Service, Northwick Park and St Mark's Hospitals, London, United Kingdom
| | | | - Michael Duyzend
- Massachusetts General Hospital, Boston, MA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA; Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Peter N Robinson
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
8
|
Fortin O, Mulkey SB, Fraser JL. Advancing fetal diagnosis and prognostication using comprehensive prenatal phenotyping and genetic testing. Pediatr Res 2024:10.1038/s41390-024-03343-9. [PMID: 38937640 DOI: 10.1038/s41390-024-03343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
Prenatal diagnoses of congenital malformations have increased significantly in recent years with use of high-resolution prenatal imaging. Despite more precise radiological diagnoses, discussions with expectant parents remain challenging because congenital malformations are associated with a wide spectrum of outcomes. Comprehensive prenatal genetic testing has become an essential tool that improves the accuracy of prognostication. Testing strategies include chromosomal microarray, exome sequencing, and genome sequencing. The diagnostic yield varies depending on the specific malformations, severity of the abnormalities, and multi-organ involvement. The utility of prenatal genetic diagnosis includes increased diagnostic clarity for clinicians and families, informed pregnancy decision-making, neonatal care planning, and reproductive planning. Turnaround time for results of comprehensive genetic testing remains a barrier, especially for parents that are decision-making, although this has improved over time. Uncertainty inherent to many genetic testing results is a challenge. Appropriate genetic counseling is essential for parents to understand the diagnosis and prognosis and to make informed decisions. Recent research has investigated the yield of exome or genome sequencing in structurally normal fetuses, both with non-invasive screening methods and invasive diagnostic testing; the prenatal diagnostic community must evaluate and analyze the significant ethical considerations associated with this practice prior to generalizing its use. IMPACT: Reviews available genetic testing options during the prenatal period in detail. Discusses the impact of prenatal genetic testing on care using case-based examples. Consolidates the current literature on the yield of genetic testing for prenatal diagnosis of congenital malformations.
Collapse
Affiliation(s)
- Olivier Fortin
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA
| | - Sarah B Mulkey
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA
- Department of Neurology and Rehabilitation Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jamie L Fraser
- Zickler Family Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA.
- Rare Disease Institute, Children's National Hospital, Washington, DC, USA.
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA.
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
9
|
Milibari D, Nowilaty SR, Ba-Abbad R. The Clinical and Mutational Spectrum of Bardet-Biedl Syndrome in Saudi Arabia. Genes (Basel) 2024; 15:762. [PMID: 38927698 PMCID: PMC11202873 DOI: 10.3390/genes15060762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The retinal features of Bardet-Biedl syndrome (BBS) are insufficiently characterized in Arab populations. This retrospective study investigated the retinal features and genotypes of BBS in Saudi patients managed at a single tertiary eye care center. Data analysis of the identified 46 individuals from 31 families included visual acuity (VA), systemic manifestations, multimodal retinal imaging, electroretinography (ERG), family pedigrees, and genotypes. Patients were classified to have cone-rod, rod-cone, or generalized photoreceptor dystrophy based on the pattern of macular involvement on the retinal imaging. Results showed that nyctalopia and subnormal VA were the most common symptoms with 76% having VA ≤ 20/200 at the last visit (age: 5-35). Systemic features included obesity 91%, polydactyly 56.5%, and severe cognitive impairment 33%. The predominant retinal phenotype was cone-rod dystrophy 75%, 10% had rod-cone dystrophy and 15% had generalized photoreceptor dystrophy. ERGs were undetectable in 95% of patients. Among the 31 probands, 61% had biallelic variants in BBSome complex genes, 32% in chaperonin complex genes, and 6% had biallelic variants in ARL6; including six previously unreported variants. Interfamilial and intrafamilial variabilities were noted, without a clear genotype-phenotype correlation. Most BBS patients had advanced retinopathy and were legally blind by early adulthood, indicating a narrow therapeutic window for rescue strategies.
Collapse
Affiliation(s)
- Doaa Milibari
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh 12211, Saudi Arabia; (D.M.); (S.R.N.)
- Department of Ophthalmology, King Abdullah Medical City, Makkah 24211, Saudi Arabia
| | - Sawsan R. Nowilaty
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh 12211, Saudi Arabia; (D.M.); (S.R.N.)
| | - Rola Ba-Abbad
- Vitreoretinal Division, King Khaled Eye Specialist Hospital, Riyadh 12211, Saudi Arabia; (D.M.); (S.R.N.)
- Ocular Genetics Services, King Khaled Eye Specialist Hospital, Riyadh 12211, Saudi Arabia
| |
Collapse
|
10
|
Siranosian J, Lewis C, Hill M, Ormond KE. Exploring prenatal testing preferences among US pregnant individuals: A discrete choice experiment. J Genet Couns 2024; 33:699-708. [PMID: 37646199 DOI: 10.1002/jgc4.1777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Although there are numerous benefits to diagnostic prenatal testing, such as fetal exome sequencing, there are also consequences, including the possibility of receiving variants of uncertain significance or identifying secondary findings. In this study, we utilized a survey-based discrete choice experiment to elicit the preferences of pregnant people in Northern California for hypothetical prenatal genomic tests. Pregnant individuals were invited to complete the survey through advertisements on social media. Five test attributes were studied: likelihood of getting a result, time taken to receive results, who explains results, reporting of uncertain results, and reporting of secondary findings. The survey also gathered information about the participants' demographics, current and past pregnancies, and tolerance of uncertainty using the IUS-12 scale. Participants were eligible if they were female, currently 24 or more weeks pregnant, and able to read/write enough English or Spanish to complete an online survey. Overall, participants (n = 56) preferred the option of having a prenatal test over not having a prenatal test (p < 0.01) and had substantially higher preferences for tests with the highest likelihood of getting a result (p < 0.01). There were also positive preferences for tests that reported secondary findings (p = 0.01) and those where results were returned by a genetic specialist (vs. their prenatal provider) (p = 0.04). These findings can be used to guide conversations between pregnant individuals and genetics specialists, such as genetic counselors, as they weigh the pros and cons of diagnostic prenatal testing options.
Collapse
Affiliation(s)
- Jennifer Siranosian
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Celine Lewis
- Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, London, UK
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Melissa Hill
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital NHS Foundation Trust, London, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Kelly E Ormond
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
- Stanford Center for Biomedical Ethics, Stanford University School of Medicine, Stanford, California, USA
- Health Ethics and Policy Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Reilly K, Sonner S, McCay N, Rolnik DL, Casey F, Seale AN, Watson CJ, Kan A, Lai THT, Chung BHY, Diderich KEM, Srebniak MI, Dempsey E, Drury S, Giordano J, Wapner R, Kilby MD, Chitty LS, Mone F. The incremental yield of prenatal exome sequencing over chromosome microarray for congenital heart abnormalities: A systematic review and meta-analysis. Prenat Diagn 2024; 44:821-831. [PMID: 38708840 DOI: 10.1002/pd.6581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVES To determine the incremental yield of prenatal exome sequencing (PES) over standard testing in fetuses with an isolated congenital heart abnormality (CHA), CHA associated with extra-cardiac malformations (ECMs) and CHA dependent upon anatomical subclassification. METHODS A systematic review of the literature was performed using MEDLINE, EMBASE, Web of Science and grey literature January 2010-February 2023. Studies were selected if they included greater than 20 cases of prenatally diagnosed CHA when standard testing (QF-PCR/chromosome microarray/karyotype) was negative. Pooled incremental yield was determined. PROSPERO CRD 42022364747. RESULTS Overall, 21 studies, incorporating 1957 cases were included. The incremental yield of PES (causative pathogenic and likely pathogenic variants) over standard testing was 17.4% (95% CI, 13.5%-21.6%), 9.3% (95% CI, 6.6%-12.3%) and 35.9% (95% CI, 21.0%-52.3%) for all CHAs, isolated CHAs and CHAs associated with ECMs. The subgroup with the greatest yield was complex lesions/heterotaxy; 35.2% (95% CI 9.7%-65.3%). The most common syndrome was Kabuki syndrome (31/256, 12.1%) and most pathogenic variants occurred de novo and in autosomal dominant (monoallelic) disease causing genes (114/224, 50.9%). CONCLUSION The likelihood of a monogenic aetiology in fetuses with multi-system CHAs is high. Clinicians must consider the clinical utility of offering PES in selected isolated cardiac lesions.
Collapse
Affiliation(s)
- K Reilly
- Centre for Public Health, Queens University Belfast, Belfast, UK
| | - S Sonner
- Centre for Public Health, Queens University Belfast, Belfast, UK
| | - N McCay
- Department of Paediatric Cardiology, Royal Belfast Hospital for Sick Children, Belfast, UK
| | - D L Rolnik
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - F Casey
- Department of Paediatric Cardiology, Royal Belfast Hospital for Sick Children, Belfast, UK
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - A N Seale
- Department of Paediatric Cardiology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
| | - C J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - A Kan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Hong Kong, China
| | - T H T Lai
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Hong Kong, China
| | - B H Y Chung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - K E M Diderich
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - M I Srebniak
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - E Dempsey
- South West Thames Regional Genetics Service, London, UK
- School of Biological and Molecular Sciences, St George's University of London, London, UK
| | - S Drury
- Congenica Ltd, Biodata Innovation Centre, Wellcome Trust Genome Campus, Hinxton, UK
| | - J Giordano
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Columbia University Medical Center, New York, New York, USA
| | - R Wapner
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Columbia University Medical Center, New York, New York, USA
| | - M D Kilby
- Fetal Medicine Center, Birmingham Women's & Children's Foundation Trust, Birmingham, UK
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Medical Genomics Research Group, Illumina, Cambridge, UK
| | - L S Chitty
- Great Ormond Street NHS Foundation Trust, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - F Mone
- Centre for Public Health, Queens University Belfast, Belfast, UK
| |
Collapse
|
12
|
Kume E, Yamakawa M, Miyakoshi C, Aota C, Tsuruta S, Horie M, Ohno S. Molecular Autopsy With Banked Cord Blood Reveals Brugada Syndrome in Past Sudden Death Case. Pediatrics 2024; 153:e2023063054. [PMID: 38721668 DOI: 10.1542/peds.2023-063054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 07/11/2024] Open
Abstract
Molecular autopsy has recently been gaining attention as a means of postmortem diagnosis; however, it is usually performed using the victim's blood sample at the time of death. Here, we report the first case of a deceased infant with Brugada syndrome whose diagnosis was made with banked cord blood. A seemingly healthy 1-year-old male infant collapsed while having a fever; this collapse was witnessed by his mother. Despite cardiopulmonary resuscitation, he died of ventricular fibrillation. No abnormalities of cardiac structure were identified on autopsy. Genomic samples were not stored at the time because of a lack of suspicion for familial arrhythmia. Five years later, his sister showed Brugada electrocardiogram pattern while febrile from Kawasaki disease. Their father showed a spontaneous type 1 Brugada electrocardiogram pattern. A heterozygous SCN5A p.R893C variant was found by genetic testing in the proband's father and sister. Furthermore, the proband's genetic testing was performed using his banked cord blood, which identified the same variant. Family history of Brugada syndrome with an SCN5A-R893C variant and clinical evidence led to a postmortem diagnosis of Brugada syndrome in the proband. Identification of this variant in this case later contributed to verifying SCN5A-R893C as a pathogenic variant through data accumulation. Banked cord blood may prove useful for conducting molecular autopsies in previously undiagnosed cases of sudden death in which genomic samples were not stored.
Collapse
Affiliation(s)
- Eitaro Kume
- Department of Pediatrics, Kyoto University Hospital, Kyoto, Japan
| | - Masaru Yamakawa
- Department of Pediatrics, Kobe City Medical Center General Hospital, Kobe, Japan
- Department of Health and Well-being, Sonoda Women's University, Amagasaki, Japan
| | - Chisato Miyakoshi
- Department of Pediatrics, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Chie Aota
- Department of Pediatrics, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Satoru Tsuruta
- Department of Pediatrics, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| |
Collapse
|
13
|
Makhamreh MM, Shivashankar K, Araji S, Critchlow E, O'Brien BM, Wodoslawsky S, Berger SI, Al-Kouatly HB. RASopathies are the most common set of monogenic syndromes identified by exome sequencing for nonimmune hydrops fetalis: A systematic review and meta-analysis. Am J Med Genet A 2024; 194:e63494. [PMID: 38156365 DOI: 10.1002/ajmg.a.63494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
RASopathies are a group of malformation syndromes known to lead to nonimmune hydrops fetalis (NIHF) in severe presentations. Pathogenic variants can be de novo or parentally inherited. Despite being a known frequent presentation, the fraction of monogenic NIHF cases due to RASopathies is limited in the literature. Also, the specific parental contribution of RASopathies to NIHF is not well described. Our objective was to review pooled exome sequencing (ES) diagnostic yield of RASopathies for NIHF and to determine the parental contribution of RASopathy to NIHF. We performed a systematic review of prenatal ES studies from January 1, 2000 to August 1, 2022. Thirty-six studies met inclusion criteria. Cases with RASopathy gene variants were reviewed. NIHF cases were further classified as isolated or non-isolated. Thirty-six ES studies including 46 pregnancies with NIHF and a diagnosed RASopathy were reviewed. Forty-four diagnostic variants and 2 variants of uncertain significance in 12 RASopathy genes were identified. Expanding on what was previously published, a total of 506 NIHF cases were extracted with 191 cases yielding a positive diagnosis by ES. The overall rate of RASopathy diagnosis in clinically diagnosed NIHF cases was 9% (44/506). The rate of RASopathy diagnosis among NIHF cases with positive genetic diagnosis by ES was 23% (44/191). Of the 46 cases identified, 13 (28%) variants were parentally inherited; specifically, 5/13 (38%) maternal, 3/13 (23%) paternal, 2/13 (15%) biparental, and 3/13 (23%) unspecified. Majority of NIHF cases 29/46 (63%) were isolated. Among NIHF cases with positive ES diagnoses, RASopathy diagnostic yield by ES was 23%. NIHF secondary to RASopathies was parentally inherited in 28% of cases. Most cases of NIHF due to RASopathy were isolated, with no prenatal detection of associated anomalies.
Collapse
Affiliation(s)
- Mona M Makhamreh
- Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, New York, USA
| | - Kavya Shivashankar
- Department of Obstetrics and Gynecology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Sarah Araji
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Mississippi, Jackson, Mississippi, USA
| | - Elizabeth Critchlow
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Barbara M O'Brien
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sascha Wodoslawsky
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Seth I Berger
- Center for Genetic Medicine Research and Rare Disease Institute, Children's National Medical Center, Washington, DC, USA
| | - Huda B Al-Kouatly
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Duyzend MH, Cacheiro P, Jacobsen JO, Giordano J, Brand H, Wapner RJ, Talkowski ME, Robinson PN, Smedley D. Improving prenatal diagnosis through standards and aggregation. Prenat Diagn 2024; 44:454-464. [PMID: 38242839 PMCID: PMC11006584 DOI: 10.1002/pd.6522] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024]
Abstract
Advances in sequencing and imaging technologies enable enhanced assessment in the prenatal space, with a goal to diagnose and predict the natural history of disease, to direct targeted therapies, and to implement clinical management, including transfer of care, election of supportive care, and selection of surgical interventions. The current lack of standardization and aggregation stymies variant interpretation and gene discovery, which hinders the provision of prenatal precision medicine, leaving clinicians and patients without an accurate diagnosis. With large amounts of data generated, it is imperative to establish standards for data collection, processing, and aggregation. Aggregated and homogeneously processed genetic and phenotypic data permits dissection of the genomic architecture of prenatal presentations of disease and provides a dataset on which data analysis algorithms can be tuned to the prenatal space. Here we discuss the importance of generating aggregate data sets and how the prenatal space is driving the development of interoperable standards and phenotype-driven tools.
Collapse
Affiliation(s)
- Michael H. Duyzend
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Pilar Cacheiro
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Julius O.B. Jacobsen
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jessica Giordano
- Department of Obstetrics & Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Ronald J. Wapner
- Department of Obstetrics & Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Michael E. Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
- Program in Bioinformatics and Integrative Genomics, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Peter N. Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032, USA
| | - Damian Smedley
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
15
|
Raaby L, Lou S, Lodberg Ivarsen RR, Sørensen J, Larsen OH, Vogel I. Has the introduction of increased genetic prenatal testing affected rates of termination of pregnancy due to fetal abnormality? Prenat Diagn 2024; 44:280-288. [PMID: 38348952 DOI: 10.1002/pd.6526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 01/17/2024] [Indexed: 03/16/2024]
Abstract
OBJECTIVE Genetic high-resolution analyses and improved diagnostic imaging have impacted the ability to detect fetal disorders. It is unknown if this resulted in an alteration in the number of terminations of pregnancy due to fetal anomalies (TOPFA). The objective was to describe the incidence and indication of TOPFA. METHODS A descriptive study based on records from the Regional Abortion Council in the Central Denmark Region from 2008 to 2021 consisting of 1895 TOPFA. RESULTS A consistent incidence of TOPFA was observed, accounting for 0.96% of the total births during that period. When examining fetal indications, there was a small increase in the occurrence of genetic aberrations, primarily caused by deletions, duplications, and single nucleotide variations, whereas the number of chromosomal aberrations remained stable. Of 35.5% of the cases with malformations, the central nervous system was the most affected organ system, followed by malformations of the heart 29.6%. Overall, the total number of cases remained stable. DISCUSSION AND CONCLUSION Unexpectedly, despite the development of new diagnostic tools, the incidence of TOPFA from 2008 to 2021 remained stable. However, the number of cases with genetic aberrations increased. This may be attributed to increased genetic testing for fetuses with identified malformations, resulting in more accurate diagnoses.
Collapse
Affiliation(s)
- Line Raaby
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Stina Lou
- Center for Fetal Diagnostics, Aarhus University, Aarhus, Denmark
- DEFACTUM - Public Health & Health Services Research, Central Denmark Region, Aarhus, Denmark
| | | | - Jette Sørensen
- Department of Social Medicine and Rehabilitation, The secretariat of Regional Abortion Council, Gødstrup Hospital, Herning, Denmark
| | - Ole Halfdan Larsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ida Vogel
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Center for Fetal Diagnostics, Aarhus University, Aarhus, Denmark
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
16
|
Thompson BB, Holzer PH, Kliman HJ. Placental Pathology Findings in Unexplained Pregnancy Losses. Reprod Sci 2024; 31:488-504. [PMID: 37725247 PMCID: PMC10827979 DOI: 10.1007/s43032-023-01344-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
There are approximately 5 million pregnancies per year in the USA, with 1 million ending in miscarriage (a loss occurring prior to 20 weeks of gestation) and over 20,000 ending in stillbirth at or beyond 20 weeks of gestation. As many as 50% of these losses are unexplained. Our objective was to evaluate the effect of expanding the placental pathology diagnostic categories to include the explicit categories of (1) dysmorphic chorionic villi and (2) small placenta in examining previously unexplained losses. Using a clinical database of 1256 previously unexplained losses at 6-43 weeks of gestation, the most prevalent abnormality associated with each loss was determined through examination of its placental pathology slides. Of 1256 cases analyzed from 922 patients, there were 878 (69.9%) miscarriages and 378 (30.1%) antepartum stillbirths. We determined the pathologic diagnoses for 1150/1256 (91.6%) of the entire series, 777/878 (88.5%) of the miscarriages (< 20 weeks' gestation), and 373/378 (98.7%) of the stillbirths (≥ 20 weeks' gestation). The most common pathologic feature observed in unexplained miscarriages was dysmorphic chorionic villi (757 cases; 86.2%), a marker associated with genetic abnormalities. The most common pathologic feature observed in unexplained stillbirths was a small placenta (128 cases; 33.9%). Our classification system reinforced the utility of placental examination for elucidating potential mechanisms behind pregnancy loss. The improved rate of diagnosis appeared to be the result of filling a gap in previous pregnancy loss classification systems via inclusion of the categories of dysmorphic chorionic villi and small placenta.
Collapse
Affiliation(s)
- Beatrix B Thompson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
- Harvard Medical School, Boston, MA, USA
| | - Parker H Holzer
- Department of Statistics & Data Science, Yale University, New Haven, CT, USA
- Spiff Incorporated, Sandy, UT, USA
| | - Harvey J Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
17
|
Cacheiro P, Lawson S, Van den Veyver IB, Marengo G, Zocche D, Murray SA, Duyzend M, Robinson PN, Smedley D. Lethal phenotypes in Mendelian disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.12.24301168. [PMID: 38260283 PMCID: PMC10802756 DOI: 10.1101/2024.01.12.24301168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Essential genes are those whose function is required for cell proliferation and/or organism survival. A gene's intolerance to loss-of-function can be allocated within a spectrum, as opposed to being considered a binary feature, since this function might be essential at different stages of development, genetic backgrounds or other contexts. Existing resources that collect and characterise the essentiality status of genes are based on either proliferation assessment in human cell lines, embryonic and postnatal viability evaluation in different model organisms, and gene metrics such as intolerance to variation scores derived from human population sequencing studies. There are also several repositories available that document phenotypic annotations for rare disorders in humans such as the Online Mendelian Inheritance in Man (OMIM) and the Human Phenotype Ontology (HPO) knowledgebases. This raises the prospect of being able to use clinical data, including lethality as the most severe phenotypic manifestation, to further our characterisation of gene essentiality. Here we queried OMIM for terms related to lethality and classified all Mendelian genes into categories, according to the earliest age of death recorded for the associated disorders, from prenatal death to no reports of premature death. To showcase this curated catalogue of human essential genes, we developed the Lethal Phenotypes Portal (https://lethalphenotypes.research.its.qmul.ac.uk), where we also explore the relationships between these lethality categories, constraint metrics and viability in cell lines and mouse. Further analysis of the genes in these categories reveals differences in the mode of inheritance of the associated disorders, physiological systems affected and disease class. We highlight how the phenotypic similarity between genes in the same lethality category combined with gene family/group information can be used for novel disease gene discovery. Finally, we explore the overlaps and discrepancies between the lethal phenotypes observed in mouse and human and discuss potential explanations that include differences in transcriptional regulation, functional compensation and molecular disease mechanisms. We anticipate that this resource will aid clinicians in the diagnosis of early lethal conditions and assist researchers in investigating the properties that make these genes essential for human development.
Collapse
Affiliation(s)
- Pilar Cacheiro
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Ignatia B. Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Gabriel Marengo
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - David Zocche
- North West Thames Regional Genetics Service, Northwick Park & St Mark’s Hospitals, London, UK
| | | | | | - Peter N. Robinson
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
18
|
Maksiutenko EM, Barbitoff YA, Nasykhova YA, Pachuliia OV, Lazareva TE, Bespalova ON, Glotov AS. The Landscape of Point Mutations in Human Protein Coding Genes Leading to Pregnancy Loss. Int J Mol Sci 2023; 24:17572. [PMID: 38139401 PMCID: PMC10743817 DOI: 10.3390/ijms242417572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Pregnancy loss is the most frequent complication of a pregnancy which is devastating for affected families and poses a significant challenge for the health care system. Genetic factors are known to play an important role in the etiology of pregnancy loss; however, despite advances in diagnostics, the causes remain unexplained in more than 30% of cases. In this review, we aggregated the results of the decade-long studies into the genetic risk factors of pregnancy loss (including miscarriage, termination for fetal abnormality, and recurrent pregnancy loss) in euploid pregnancies, focusing on the spectrum of point mutations associated with these conditions. We reviewed the evolution of molecular genetics methods used for the genetic research into causes of pregnancy loss, and collected information about 270 individual genetic variants in 196 unique genes reported as genetic cause of pregnancy loss. Among these, variants in 18 genes have been reported by multiple studies, and two or more variants were reported as causing pregnancy loss for 57 genes. Further analysis of the properties of all known pregnancy loss genes showed that they correspond to broadly expressed, highly evolutionary conserved genes involved in crucial cell differentiation and developmental processes and related signaling pathways. Given the features of known genes, we made an effort to construct a list of candidate genes, variants in which may be expected to contribute to pregnancy loss. We believe that our results may be useful for prediction of pregnancy loss risk in couples, as well as for further investigation and revealing genetic etiology of pregnancy loss.
Collapse
Affiliation(s)
| | - Yury A. Barbitoff
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.N.); (O.V.P.); (T.E.L.); (O.N.B.)
| | | | | | | | | | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.N.); (O.V.P.); (T.E.L.); (O.N.B.)
| |
Collapse
|
19
|
Brewer CJ, Makhamreh MM, Shivashankar K, McLaren R, Toro M, Berger SI, Al-Kouatly HB. PIEZO1 is the most common monogenic etiology of non-immune hydrops fetalis detected by prenatal exome sequencing. Prenat Diagn 2023; 43:1556-1566. [PMID: 37902181 DOI: 10.1002/pd.6451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023]
Abstract
OBJECTIVE To clarify the relevance of PIEZO1 variants detected by prenatal exome in the context of non-immune hydrops fetalis (NIHF). METHODS A systematic review of prenatal exome studies from 1/1/2000-8/1/2022 was performed. Thirty-six studies met the inclusion criteria. PIEZO1 variants were categorized by disease mode (dominant (AD) versus recessive (AR)) and classified by the American College of Medical Genetics and Genomics (ACMG) guidelines. RESULTS Twenty-two pregnancies with 35 distinct PIEZO1 variants were included. We deemed PIEZO1 variants to be "likely diagnostic" in 12/22 pregnancies, "possibly diagnostic" in 7/22, and "unlikely diagnostic" in 3/22. In total, 19 of 191 NIHF cases diagnosed by prenatal exome were attributed to PIEZO1. Among likely diagnosed cases, the disease mode was AR in eight and AD in four. PIEZO1 variants causing AR NIHF were characterized by loss of function and isolated NIHF phenotype. PIEZO1 variants causing AD NIHF were characterized by gain of function in red blood cells, scarcity in databases, and sporadic inheritance. Missense variants associated with NIHF were clustered in three domains: transmembrane helical unit 4 (THU4), THU5, and the Cap. CONCLUSION PIEZO1 variants were reported in 10% of NIHF cases diagnosed by prenatal exome, making PIEZO1 the most common single gene reported in NIHF.
Collapse
Affiliation(s)
- Casey J Brewer
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mona M Makhamreh
- Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, New York, USA
| | - Kavya Shivashankar
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Rodney McLaren
- Division of Maternal-Fetal Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mariella Toro
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Seth I Berger
- Center for Genetic Medicine Research/Rare Disease Institute, Children's National Medical Center, Washington, District of Columbia, USA
| | - Huda B Al-Kouatly
- Division of Maternal-Fetal Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Greenberg ABW, Mehta NH, Allington G, Jin SC, Moreno-De-Luca A, Kahle KT. Molecular Diagnostic Yield of Exome Sequencing in Patients With Congenital Hydrocephalus: A Systematic Review and Meta-Analysis. JAMA Netw Open 2023; 6:e2343384. [PMID: 37991765 PMCID: PMC10665979 DOI: 10.1001/jamanetworkopen.2023.43384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/29/2023] [Indexed: 11/23/2023] Open
Abstract
Importance Exome sequencing (ES) has been established as the preferred first line of diagnostic testing for certain neurodevelopmental disorders, such as global developmental delay and autism spectrum disorder; however, current recommendations are not specific to or inclusive of congenital hydrocephalus (CH). Objective To determine the diagnostic yield of ES in CH and whether ES should be considered as a first line diagnostic test for CH. Data Sources PubMed, Cochrane Library, and Google Scholar were used to identify studies published in English between January 1, 2010, and April 10, 2023. The following search terms were used to identify studies: congenital hydrocephalus, ventriculomegaly, cerebral ventriculomegaly, primary ventriculomegaly, fetal ventriculomegaly, prenatal ventriculomegaly, molecular analysis, genetic cause, genetic etiology, genetic testing, exome sequencing, whole exome sequencing, genome sequencing, microarray, microarray analysis, and copy number variants. Study Selection Eligible studies included those with at least 10 probands with the defining feature of CH and/or severe cerebral ventriculomegaly that had undergone ES. Studies with fewer than 10 probands, studies of mild or moderate ventriculomegaly, and studies using genetic tests other than ES were excluded. A full-text review of 68 studies was conducted by 2 reviewers. Discrepancies were resolved by consensus. Data Extraction and Synthesis Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and Meta-Analysis of Observational Studies in Epidemiology guidelines were used by 2 reviewers to extract data. Data were synthesized using a random-effects model of single proportions. Data analysis occurred in April 2023. Main Outcomes and Measures The primary outcome was pooled diagnostic yield. Additional diagnostic yields were estimated for specific subgroups on the basis of clinical features, syndromic presentation, and parental consanguinity. For each outcome, a 95% CI and estimate of interstudy heterogeneity (I2 statistic) was reported. Results From 498 deduplicated and screened records, 9 studies with a total of 538 CH probands were selected for final inclusion. The overall diagnostic yield was 37.9% (95% CI, 20.0%-57.4%; I2 = 90.1). The yield was lower for isolated and/or nonsyndromic cases (21.3%; 95% CI, 12.8%-31.0%; I2 = 55.7). The yield was higher for probands with reported consanguinity (76.3%; 95% CI, 65.1%-86.1%; I2 = 0) than those without (16.2%; 95% CI, 12.2%-20.5%; I2 = 0). Conclusions and Relevance In this systematic review and meta-analysis of the diagnostic yield of ES in CH, the diagnostic yield was concordant with that of previous recommendations for other neurodevelopmental disorders, suggesting that ES should also be recommended as a routine diagnostic adjunct for patients with CH.
Collapse
Affiliation(s)
| | - Neel H. Mehta
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Garrett Allington
- Department of Neurosurgery, Massachusetts General Hospital, Boston
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri
| | - Andrés Moreno-De-Luca
- Department of Radiology, Neuroradiology Section, Kingston Health Sciences Centre, Queen’s University Faculty of Health Sciences, Kingston, Ontario, Canada
| | - Kristopher T. Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Boston
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston
| |
Collapse
|
21
|
Qin Y, Yao Y, Liu N, Wang B, Liu L, Li H, Gao T, Xu R, Wang X, Zhang F, Song J. Prenatal whole-exome sequencing for fetal structural anomalies: a retrospective analysis of 145 Chinese cases. BMC Med Genomics 2023; 16:262. [PMID: 37880672 PMCID: PMC10601195 DOI: 10.1186/s12920-023-01697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Whole-exome sequencing (WES) significantly improves the diagnosis of the etiology of fetal structural anomalies. This study aims to evaluate the diagnostic value of prenatal WES and to investigate the pathogenic variants in structurally abnormal fetuses. METHODS We recruited 144 fetuses with structural anomalies between 14 and 2020 and 15 December 2021 in the study. Genetic screening was performed by WES combined with karyotyping and chromosomal microarray analysis. The molecular diagnostic yield of prenatal WES for each type of fetal structural anomaly and the identified pathogenic genes and mutations were reported. RESULTS In this study, we retrospectively analyzed the clinical and genetic data of 145 structurally anomalous fetuses. These cases were classified into 9 phenotypic classes based on antenatal ultrasound findings. Thirty-eight pathogenic variants in 24 genes were identified in 35 of the 145 cases, including 14 novel variants in 13 genes (EP300, MYH3, TSC2, MMP9, CPLANE1, INVS, COL1A1, EYA1, TTC21B, MKS1, COL11A2, PDHA1 and L1CAM). Five additional pathogenic variants were classified as incidental findings. Our study showed that the overall diagnosis rate of WES was 28.1% (27/96) in the parent-fetus trio cases and 16.3% (8/49) in the proband-only cases. Fetuses with musculoskeletal anomalies had the highest diagnostic yield (51.4%, 19/37). In addition, FGFR3 and COL1A1 were the most common pathogenic genes. CONCLUSIONS Our work expands the mutation spectrum of the genes associated with fetal structural anomalies and provides valuable information for future parental genetic counselling and pregnancy management of the structurally anomalous fetuses.
Collapse
Affiliation(s)
- Yayun Qin
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Yanyi Yao
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Nian Liu
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Bo Wang
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Lijun Liu
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Hui Li
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Tangxinzi Gao
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Runhong Xu
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Xiaoyan Wang
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China
| | - Fanglian Zhang
- Honghu Hospital of Traditional Chinese Medicine, Jingzhou, 433200, Hubei Province, China
| | - Jieping Song
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
22
|
Cacheiro P, Smedley D. Essential genes: a cross-species perspective. Mamm Genome 2023; 34:357-363. [PMID: 36897351 PMCID: PMC10382395 DOI: 10.1007/s00335-023-09984-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/17/2023] [Indexed: 03/11/2023]
Abstract
Protein coding genes exhibit different degrees of intolerance to loss-of-function variation. The most intolerant genes, whose function is essential for cell or/and organism survival, inform on fundamental biological processes related to cell proliferation and organism development and provide a window on the molecular mechanisms of human disease. Here we present a brief overview of the resources and knowledge gathered around gene essentiality, from cancer cell lines to model organisms to human development. We outline the implications of using different sources of evidence and definitions to determine which genes are essential and highlight how information on the essentiality status of a gene can inform novel disease gene discovery and therapeutic target identification.
Collapse
Affiliation(s)
- Pilar Cacheiro
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
23
|
Mustafa HJ, Sambatur EV, Barbera JP, Pagani G, Yaron Y, Baptiste CD, Wapner RJ, Khalil A. Diagnostic yield with exome sequencing in prenatal severe bilateral ventriculomegaly: a systematic review and meta-analysis. Am J Obstet Gynecol MFM 2023; 5:101048. [PMID: 37311485 DOI: 10.1016/j.ajogmf.2023.101048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
OBJECTIVE This study aimed to determine the incremental diagnostic yield of prenatal exome sequencing after negative chromosomal microarray analysis results in prenatally diagnosed bilateral severe ventriculomegaly or hydrocephalus; another objective was to categorize the associated genes and variants. DATA SOURCES A systematic search was performed to identify relevant studies published until June 2022 using 4 databases (Cochrane Library, Web of Science, Scopus, and MEDLINE). STUDY ELIGIBILITY CRITERIA Studies in English reporting on the diagnostic yield of exome sequencing following negative chromosomal microarray analysis results in cases of prenatally diagnosed bilateral severe ventriculomegaly were included. METHODS Authors of cohort studies were contacted for individual participant data, and 2 studies provided their extended cohort data. The incremental diagnostic yield of exome sequencing was assessed for pathogenic/likely pathogenic findings in cases of: (1) all severe ventriculomegaly; (2) isolated severe ventriculomegaly (as the only cranial anomaly); (3) severe ventriculomegaly with other cranial anomalies; and (4) nonisolated severe ventriculomegaly (with extracranial anomalies). To be able to identify all reported genetic associations, the systematic review portion was not limited to any minimal severe ventriculomegaly case numbers; however, for the synthetic meta-analysis, we included studies with ≥3 severe ventriculomegaly cases. Meta-analysis of proportions was done using a random-effects model. Quality assessment of the included studies was performed using the modified STARD (Standards for Reporting of Diagnostic Accuracy Studies) criteria. RESULTS A total of 28 studies had 1988 prenatal exome sequencing analyses performed following negative chromosomal microarray analysis results for various prenatal phenotypes; this included 138 cases with prenatal bilateral severe ventriculomegaly. We categorized 59 genetic variants in 47 genes associated with prenatal severe ventriculomegaly along with their full phenotypic description. There were 13 studies reporting on ≥3 severe ventriculomegaly cases, encompassing 117 severe ventriculomegaly cases that were included in the synthetic analysis. Of all the included cases, 45% (95% confidence interval, 30-60) had positive pathogenic/likely pathogenic exome sequencing results. The highest yield was for nonisolated cases (presence of extracranial anomalies; 54%; 95% confidence interval, 38-69), followed by severe ventriculomegaly with other cranial anomalies (38%; 95% confidence interval, 22-57) and isolated severe ventriculomegaly (35%; 95% confidence interval, 18-58). CONCLUSION There is an apparent incremental diagnostic yield of prenatal exome sequencing following negative chromosomal microarray analysis results in bilateral severe ventriculomegaly. Although the greatest yield was found in cases of nonisolated severe ventriculomegaly, consideration should also be given to performing exome sequencing in cases of isolated severe ventriculomegaly as the only brain anomaly identified on prenatal imaging.
Collapse
Affiliation(s)
- Hiba J Mustafa
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Indiana University School of Medicine, Indianapolis, IN (Dr Mustafa); Fetal Center at Riley Children's Health, Indiana University Health, Indianapolis, IN (Dr Mustafa).
| | - Enaja V Sambatur
- Research Division, Houston Center for Maternal Fetal Medicine, Houston, TX (Ms Sambatur)
| | - Julie P Barbera
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (Ms Barbera)
| | - Giorgio Pagani
- Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, ASST Papa Giovanni XXIII, Bergamo, Italy (Dr Pagani)
| | - Yuval Yaron
- Prenatal Genetic Diagnosis Unit, Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel (Dr Yaron); Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Dr Yaron)
| | - Caitlin D Baptiste
- Division of Women's Genetics, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY (Drs Baptiste and Wapner)
| | - Ronald J Wapner
- Division of Women's Genetics, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY (Drs Baptiste and Wapner)
| | - Asma Khalil
- Fetal Medicine Unit, St George's Hospital, St George's University of London, London, United Kingdom (Dr Khalil); Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom (Dr Khalil)
| |
Collapse
|
24
|
Huang W, Zhu X, Sun G, Gao Z, Kong X. Whole-exome sequencing in deceased fetuses with ultrasound anomalies: a retrospective analysis. BMC Med Genomics 2023; 16:25. [PMID: 36797717 PMCID: PMC9936674 DOI: 10.1186/s12920-022-01427-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/23/2022] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Whole-exome sequencing (WES) is an effective method in the prenatal setting for identification of the underlying genetic etiology of fetal ultrasound abnormalities. To investigate the diagnostic value of WES in fetuses with ultrasound abnormalities that resulted in fetal demise or pregnancy termination. METHODS 61 deceased fetuses with ultrasound abnormalities and normal copy number variation Sequencing were retrospectively collected. Proband-only or trio-WES were performed on the products of conception. RESULT Collectively, 28 cases were positive with 39 variants (10 pathogenic, 22 likely pathogenic and 7 variants of uncertain significance) of 18 genes, and the overall diagnostic rate was 45.9% (28/61), of which 39.2% (11/28) were de novo variants. In addition, 21 variants in 11 genes among the positive cases had not been previously reported. The diagnostic yield for definitive findings for trio analysis was 55.9% (19/34) compared to 33.3% (9/27) for singletons. The most common ultrasound abnormalities were skeletal system abnormalities 39.2% (11/28), followed by multiple system abnormalities (17.9%, 5/28) and genitourinary abnormalities (17.9%, 5/28). CONCLUSION Our results support the use of WES to identify genetic etiologies of ultrasound abnormalities and improve understanding of pathogenic variants. The identification of disease-related variants provided information for subsequent genetic counseling of recurrence risk and management of subsequent pregnancies.
Collapse
Affiliation(s)
- Wei Huang
- grid.412633.10000 0004 1799 0733Department of Obstetrics and Gynecology, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Xiaofan Zhu
- grid.412633.10000 0004 1799 0733Department of Obstetrics and Gynecology, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Gege Sun
- grid.412633.10000 0004 1799 0733Department of Obstetrics and Gynecology, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Zhi Gao
- grid.412633.10000 0004 1799 0733Department of Obstetrics and Gynecology, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Xiangdong Kong
- Department of Obstetrics and Gynecology, Genetics and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
25
|
Al-Kouatly HB, Shivashankar K, Mossayebi MH, Makhamreh M, Critchlow E, Gao Z, Fasehun LK, Alkuraya FS, Ryan EE, Hegde M, Wodoslawsky S, Hughes J, Berger SI. Diagnostic yield from prenatal exome sequencing for non-immune hydrops fetalis: A systematic review and meta-analysis. Clin Genet 2023; 103:503-512. [PMID: 36757664 DOI: 10.1111/cge.14309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Non-immune hydrops fetalis (NIHF) has multiple genetic etiologies diagnosable by exome sequencing (ES). We evaluated the yield of prenatal ES for NIHF, and the contribution of additional clinical findings and history. Systematic review was performed with PROSPERO tag 232951 using CINAHL, PubMed, and Ovid MEDLINE from January 1, 2000 through December 1, 2021. Selected studies performed ES to augment standard prenatal diagnostic approaches. Cases meeting a strict NIHF phenotype were tabulated with structured data imputed from papers or requested from authors. Genetic variants and diagnostic outcomes were harmonized across studies using current ACMG and ClinGen variant classification guidelines. Thirty-one studies reporting 445 NIHF cases had a 37% (95% CI: 32%-41%) diagnostic rate. There was no significant difference between isolated NIHF and NIHF with fetal malformations or between recurrent and simplex cases. Diagnostic rate was higher for consanguineous than non-consanguineous cases. Disease categories included RASopathies (24%), neuromuscular (21%), metabolic (17%), lymphatic (13%), other syndromes (9%), cardiovascular (5%), hematologic (2%), skeletal (2%), and other categories (7%). Inheritance patterns included recessive (55%), dominant (41%), and X-linked (4%). ES should be considered in the diagnostic workup of NIHF with and without associated ultrasound findings regardless of history of recurrence or consanguinity.
Collapse
Affiliation(s)
- Huda B Al-Kouatly
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kavya Shivashankar
- Department of Obstetrics and Gynecology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Matthew H Mossayebi
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mona Makhamreh
- Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, New York, USA
| | - Elizabeth Critchlow
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Zimeng Gao
- Department of Obstetrics and Gynecology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Luther-King Fasehun
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, Pennsylvania, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Erin E Ryan
- Genomic Data / Genetic Counseling, GeneDx, Gaithersburg, Maryland, USA
| | - Madhuri Hegde
- Global Lab Services, PerkinElmer Genomics, Atlanta, Georgia, USA
| | - Sascha Wodoslawsky
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Joel Hughes
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Seth I Berger
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, USA
| |
Collapse
|
26
|
Genomic autopsy to identify underlying causes of pregnancy loss and perinatal death. Nat Med 2023; 29:180-189. [PMID: 36658419 DOI: 10.1038/s41591-022-02142-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 11/22/2022] [Indexed: 01/21/2023]
Abstract
Pregnancy loss and perinatal death are devastating events for families. We assessed 'genomic autopsy' as an adjunct to standard autopsy for 200 families who had experienced fetal or newborn death, providing a definitive or candidate genetic diagnosis in 105 families. Our cohort provides evidence of severe atypical in utero presentations of known genetic disorders and identifies novel phenotypes and disease genes. Inheritance of 42% of definitive diagnoses were either autosomal recessive (30.8%), X-linked recessive (3.8%) or autosomal dominant (excluding de novos, 7.7%), with risk of recurrence in future pregnancies. We report that at least ten families (5%) used their diagnosis for preimplantation (5) or prenatal diagnosis (5) of 12 pregnancies. We emphasize the clinical importance of genomic investigations of pregnancy loss and perinatal death, with short turnaround times for diagnostic reporting and followed by systematic research follow-up investigations. This approach has the potential to enable accurate counseling for future pregnancies.
Collapse
|
27
|
The Value of a Comprehensive Genomic Evaluation in Prenatal Diagnosis of Genetic Diseases: A Retrospective Study. Genes (Basel) 2022; 13:genes13122365. [PMID: 36553632 PMCID: PMC9778469 DOI: 10.3390/genes13122365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Currently, there are still many challenges in prenatal diagnosis, such as limited or uncertain fetal phenotyping, variant interpretation, and rapid turnaround times. The aim of this study was to illustrate the value of a comprehensive genomic evaluation in prenatal diagnosis. We retrospectively reviewed 20 fetuses with clinically significant copy number variants (CNVs) detected by chromosomal microarray analysis (CMA) and no further exome sequencing testing in our tertiary center between 2019 and 2020. The residual DNA from the prenatal cases was used for the parallel implementation of CNV sequencing (CNV-seq) and trio-based clinical exome sequencing (trio-CES). CMA revealed 26 clinically significant CNVs (18 deletions and eight duplications) in 20 fetuses, in which five fetuses had two or more CNVs. There were eight fetuses with pathogenic CNVs (e.g., del 1p36), nine fetuses with likely pathogenic CNVs (e.g., dup 22q11.21), and three fetuses with variants of unknown significance (VOUS, e.g., dup 1q21.1q21.2). Trio-CES identified four fetuses with likely pathogenic mutations (SNV/InDels). Of note, a fetus was detected with a maternally inherited hemizygous variant in the SLX4 gene due to a 16p13.3 deletion on the paternal chromosome. The sizes of CNVs detected by CNV-seq were slightly larger than that of the SNP array, and four cases with mosaic CNVs were all identified by CNV-seq. In conclusion, microdeletion/duplication syndromes and monogenic disorders may co-exist in a subject, and CNV deletion may contribute to uncovering additional recessive disease alleles. The application of a comprehensive genomic evaluation (CNVs and SNV/InDels) has great value in the prenatal diagnosis arena. CNV-seq based on NGS technology is a reliable and a cost-effective technique for identifying CNVs.
Collapse
|
28
|
Chen CP. Prenatal Diagnosis of Euploid Increased Nuchal Translucency on Fetal Ultrasound (I): Noonan Syndrome: Prenatal Diagnosis and Genetic Testing. J Med Ultrasound 2022; 30:257-260. [PMID: 36844761 PMCID: PMC9944828 DOI: 10.4103/jmu.jmu_78_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/28/2022] Open
Abstract
Prenatal diagnosis of euploid increased nuchal translucency (NT) remains a challenge to obstetricians and genetic counselors although increased euploid NT at prenatal diagnosis can be associated with a favorable outcome. Prenatal diagnosis of euploid increased NT should include a differential diagnosis of pathogenetic copy number variants and RASopathy disorders (RDs) including Noonan syndrome (NS). Therefore, chromosomal microarray analysis, whole-exome sequencing, RD testing, and protein-tyrosine phosphatase, nonreceptor type 11 (PTPN11) gene testing may be necessary under such a circumstance. In this report, a comprehensive review of NS with its prenatal diagnosis and genetic testing is presented.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan,Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan,School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan,Institute of Clinical and Community Health Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan,Department of Obstetrics and Gynecology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan,Address for correspondence: Prof. Chih-Ping Chen, Department of Obstetrics and Gynecology, MacKay Memorial Hospital, No. 92, Section 2, Chung-Shan North Road, Taipei 10449, Taiwan. E-mail:
| |
Collapse
|
29
|
Next Generation Sequencing after Invasive Prenatal Testing in Fetuses with Congenital Malformations: Prenatal or Neonatal Investigation. Genes (Basel) 2022; 13:genes13091517. [PMID: 36140685 PMCID: PMC9498826 DOI: 10.3390/genes13091517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 11/24/2022] Open
Abstract
Congenital malformations diagnosed by ultrasound screening complicate 3–5% of pregnancies and many of these have an underlying genetic cause. Approximately 40% of prenatally diagnosed fetal malformations are associated with aneuploidy or copy number variants, detected by conventional karyotyping, QF-PCR and microarray techniques, however monogenic disorders are not diagnosed by these tests. Next generation sequencing as a secondary prenatal genetic test offers additional diagnostic yield for congenital abnormalities deemed to be potentially associated with an underlying genetic aetiology, as demonstrated by two large cohorts: the ‘Prenatal assessment of genomes and exomes’ (PAGE) study and ‘Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study’ performed at Columbia University in the US. These were large and prospective studies but relatively ‘unselected’ congenital malformations, with little Clinical Genetics input to the pre-test selection process. This review focuses on the incremental yield of next generation sequencing in single system congenital malformations, using evidence from the PAGE, Columbia and subsequent cohorts, with particularly high yields in those fetuses with cardiac and neurological anomalies, large nuchal translucency and non-immune fetal hydrops (of unknown aetiology). The total additional yield gained by exome sequencing in congenital heart disease was 12.7%, for neurological malformations 13.8%, 13.1% in increased nuchal translucency and 29% in non-immune fetal hydrops. This demonstrates significant incremental yield with exome sequencing in single-system anomalies and supports next generation sequencing as a secondary genetic test in routine clinical care of fetuses with congenital abnormalities.
Collapse
|
30
|
Yaron Y, Ofen Glassner V, Mory A, Zunz Henig N, Kurolap A, Bar Shira A, Brabbing Goldstein D, Marom D, Ben Sira L, Baris Feldman H, Malinger G, Krajden Haratz K, Reches A. Exome sequencing as first-tier test for fetuses with severe central nervous system structural anomalies. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:59-67. [PMID: 35229910 PMCID: PMC9328397 DOI: 10.1002/uog.24885] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 05/08/2023]
Abstract
OBJECTIVE Prenatally detected central nervous system (CNS) anomalies present a diagnostic challenge. In this study, we compared the diagnostic yield of exome sequencing (ES) and chromosomal microarray analysis (CMA) in fetuses with a major CNS anomaly. METHODS This was a retrospective study of 114 cases referred for genetic evaluation following termination of pregnancy (TOP) due to a major CNS anomaly detected on prenatal ultrasound. All fetuses were first analyzed by CMA. All CMA-negative cases were offered ES. CMA-positive cases were reanalyzed using ES to assess its ability to detect copy-number variants (CNVs). RESULTS CMA identified a pathogenic or likely pathogenic (P/LP) CNV in 11/114 (10%) cases. Eighty-six CMA-negative cases were analyzed using ES, which detected P/LP sequence variants in 38/86 (44%). Among recurrent cases (i.e. cases with a previously affected pregnancy), the incidence of P/LP sequence variants was non-significantly higher compared with non-recurrent ones (12/19 (63%) vs 26/67 (39%); P = 0.06). Among the 38 cases with an ES diagnosis, 20 (53%) were inherited and carried a significant risk of recurrence. Reanalysis of 10 CMA-positive cases by ES demonstrated that the bioinformatics pipeline used for sequence variant analysis also detected all P/LP CNVs, as well as three previously known non-causative CNVs. CONCLUSIONS In our study, ES provided a high diagnostic yield (> 50%) in fetuses with severe CNS structural anomalies, which may have been partly due to the highly selected case series that included post-TOP cases from a specialist referral center. These data suggest that ES may be considered as a first-tier test for the prenatal diagnosis of major fetal CNS anomalies, detecting both P/LP sequence variants and CNVs. This is of particular importance given the time constraints of an ongoing pregnancy and the risk of recurrence in future pregnancies. © 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- Y. Yaron
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - V. Ofen Glassner
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - A. Mory
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - N. Zunz Henig
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - A. Kurolap
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - A. Bar Shira
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - D. Brabbing Goldstein
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Division of Obstetric Ultrasound, Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - D. Marom
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - L. Ben Sira
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Radiology DepartmentTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - H. Baris Feldman
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - G. Malinger
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Division of Obstetric Ultrasound, Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - K. Krajden Haratz
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Division of Obstetric Ultrasound, Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - A. Reches
- Prenatal Genetic Diagnosis UnitGenetics Institute, Tel Aviv Sourasky Medical CenterTel AvivIsrael
- Division of Obstetric Ultrasound, Lis Maternity HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
| |
Collapse
|
31
|
Dawood Y, Honhoff C, van der Post A, Roosendaal SD, Coolen BF, Strijkers GJ, Pajkrt E, de Bakker BS. Comparison of postmortem whole-body contrast-enhanced microfocus computed tomography and high-field magnetic resonance imaging of human fetuses. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:109-117. [PMID: 34826157 PMCID: PMC9328149 DOI: 10.1002/uog.24827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Although fetal autopsy is generally recommended to confirm or refute the antemortem diagnosis, parental acceptance of the procedure has fallen over time, mainly due to its invasiveness. Contrast-enhanced microfocus CT (micro-CT) and high-field magnetic resonance imaging (HF-MRI, ≥ 3 Tesla) have both been suggested as non-invasive alternatives to conventional fetal autopsy for fetuses < 20 weeks of gestation. The aim of this study was to compare these two modalities in postmortem whole-body fetal imaging. METHODS In this study, the imaging process and quality of micro-CT and HF-MRI were compared using both qualitative and quantitative assessments. For the qualitative evaluation, fetal anatomy experts scored 56 HF-MRI and 56 micro-CT images of four human fetuses aged 13-18 gestational weeks on two components: overall image quality and the ability to recognize and assess 21 anatomical structures. For the quantitative evaluation, participants segmented manually three organs with increasing complexity to assess interobserver variability. In addition, the signal-to-noise and contrast-to-noise ratios of five major organs were determined. RESULTS Both imaging techniques were able to reach submillimeter voxel size. The highest resolution of micro-CT was 22 µm (isotropic), while the highest resolution of HF-MRI was 137 µm (isotropic). The qualitative image assessment form was sent to 45 fetal anatomy experts, of whom 36 (80%) responded. It was observed that micro-CT scored higher on all components of the qualitative assessment compared with HF-MRI. In addition, the quantitative assessment showed that micro-CT had lower interobserver variability and higher signal-to-noise and contrast-to-noise ratios. CONCLUSIONS Our findings show that micro-CT outperforms HF-MRI in postmortem whole-body fetal imaging in terms of both quantitative and qualitative outcomes. Combined, these findings suggest that the ability to extract diagnostic information is greater when assessing micro-CT compared with HF-MRI images. We, therefore, believe that micro-CT is the preferred imaging modality as an alternative to conventional fetal autopsy for early gestation and is an indispensable tool in postmortem imaging services. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- Y. Dawood
- Department of Obstetrics and GynecologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of Medical Biology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Reproduction and Development Research InstituteAmsterdamThe Netherlands
| | - C. Honhoff
- Department of Medical Biology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - A.‐S. van der Post
- Department of Radiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. D. Roosendaal
- Department of Radiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - B. F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - G. J. Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - E. Pajkrt
- Department of Obstetrics and GynecologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Reproduction and Development Research InstituteAmsterdamThe Netherlands
| | - B. S. de Bakker
- Department of Obstetrics and GynecologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of Medical Biology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Reproduction and Development Research InstituteAmsterdamThe Netherlands
- Department of Pediatric Surgery, Erasmus MC – Sophia Children's HospitalUniversity Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
32
|
Pauta M, Martinez-Portilla RJ, Borrell A. Diagnostic yield of exome sequencing in fetuses with multisystem malformations: systematic review and meta-analysis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 59:715-722. [PMID: 35041238 DOI: 10.1002/uog.24862] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To determine the diagnostic yield of exome sequencing (ES) above that of chromosomal microarray analysis (CMA) or karyotyping in fetuses with multisystem structural anomalies (at least two major anomalies in different anatomical systems). METHOD This was a systematic review conducted in accordance with PRISMA guidelines. Searching PubMed, Web of Knowledge and Cochrane database, we identified studies describing ES, whole-genome and/or next-generation sequencing in fetuses with multisystem malformations. Included were observational studies involving five or more eligible fetuses. A fetus was eligible for inclusion if it had at least two major anomalies of different anatomical systems and a negative CMA or karyotyping result. Only positive variants classified as likely pathogenic or pathogenic determined to be causative of the fetal phenotype were considered. A negative CMA or karyotype result was treated as the reference standard. The diagnostic yield of the primary outcome was calculated by single-proportion analysis using random-effects modeling. A subgroup analysis was performed to compare the diagnostic yield of the solo approach (fetus alone sequenced) with that of the trio approach (fetus and both parents sequenced). RESULTS Seventeen articles with data on ES diagnostic yield, including 694 individuals with multisystem malformations, were identified. Overall, a pathogenic or likely pathogenic variant potentially causative of the fetal phenotype was found in 213 fetuses, giving a 33% (95% CI, 27-40%) incremental yield of ES. A stratified analysis showed similar diagnostic yields of ES using the solo approach (30%; 95% CI, 11-52%) and the trio approach (35%; 95% CI, 26-44%). CONCLUSIONS ES applied in fetuses with multisystem structural anomalies was able to identify a potentially causative gene when CMA or karyotyping had failed to do so in an additional one-third of cases. No differences were observed between the solo and trio approaches for ES. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- M Pauta
- BCNatal, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - R J Martinez-Portilla
- Clinical Research Division, Evidence-Based Medicine Department, National Institute of Perinatology, Mexico City, Mexico
| | - A Borrell
- BCNatal, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Barcelona Centre for Maternal-Fetal and Neonatal Medicine (BCNatal), Hospital Clínic Barcelona, Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
33
|
Prenatal case of RIT1 mutation associated Noonan syndrome by whole exome sequencing (WES) and review of the literature. Taiwan J Obstet Gynecol 2022; 61:535-538. [PMID: 35595454 DOI: 10.1016/j.tjog.2022.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE We aimed to identify the genetic cause of one hydrops fetalis with Noonan syndrome (NS) manifestations including increased nuchal translucency (INT) and ascites through prenatal whole exome sequencing (WES). CASE REPORT The case is a gestational age (GA) 18 fetus of two healthy parents with a normal child. We proceeded the genomic DNA from both fetus amniotic cells and parents to WES and identified a RIT1 mutation (c.268A>G) as the pathogenic cause of the hydrops fetalis by automatic prioritization algorithm after array-comparative genomic hybridization results showing negative. CONCLUSION Mutations in RIT1 have been reported as the causes for different fetus structural abnormities in the recent years. This case contributes to the summary delineations of the prenatal NS phenotypes related to RIT1 mutation. In addition, the fast WES application, in this case, has demonstrated its advantage in prenatal disorder diagnosis when conventional karyotyping or chromosomal microarray testing result is negative.
Collapse
|
34
|
Rinaldi B, Cesaretti C, Boito S, Villa R, Guerneri S, Borzani I, Rizzuti T, Marchetti D, Conte G, Cinnante C, Triulzi F, Persico N, Iascone M, Natacci F. Family history is key to the interpretation of exome sequencing in the prenatal context: Unexpected diagnosis of Basal Cell Nevus Syndrome. Prenat Diagn 2022; 42:927-933. [PMID: 35584264 DOI: 10.1002/pd.6171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To reach a molecular diagnosis for a family with two consecutive fetuses presenting with multiple congenital anomalies. METHOD The two fetuses underwent prenatal ultrasound, autopsy, radiologic and genetic investigation. Genetic analysis included karyotype and array-CGH for both fetuses and trio-based whole exome sequencing (WES) only for the second fetus. RESULTS WES results, initially focusing on recessive or dominant de novo variants, were negative. However, as a result of new relevant information regarding family history, the variant c.648_651dup in the PTCH1 gene was identified as causative of the fetal phenotype. CONCLUSION This case further highlights how WES data analysis and interpretation strongly rely on family history and robust genotype-phenotype correlation. This is even more relevant in the prenatal setting, where access to fetal phenotype is limited and prenatal recognition of many morbid genes is not fully explored. We also provide a detailed description of the prenatal manifestations of Basal Cell Nevus Syndrome. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Berardo Rinaldi
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia Cesaretti
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simona Boito
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberta Villa
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvana Guerneri
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Irene Borzani
- Pediatric Radiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tommaso Rizzuti
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Marchetti
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Giorgio Conte
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Claudia Cinnante
- Istituto Auxologico Italiano IRCCS, Dipartimento di Radiologia e Diagnostica per Immagini, Milan, Italy
| | - Fabio Triulzi
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nicola Persico
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Federica Natacci
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
35
|
A single center experience of prenatal parent‐fetus trio exome sequencing for pregnancies with congenital anomalies. Prenat Diagn 2022; 42:901-910. [DOI: 10.1002/pd.6170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/07/2022]
|
36
|
Cao Y, Chau M, Zheng Y, Zhao YL, Kwan A, Hui A, Lam YH, Tan T, Tse WT, Wong L, Leung TY, Dong Z, Choy KW. Exploring the diagnostic utility of genome sequencing for fetal congenital heart defects. Prenat Diagn 2022; 42:862-872. [PMID: 35441720 DOI: 10.1002/pd.6151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The diagnostic yield for congenital heart defects (CHD) with routine genetic testing is around 10-20% when considering the pathogenic CNVs or aneuploidies as positive findings. This is a pilot study to investigate the utility of genome sequencing (GS) for prenatal diagnosis of CHD. METHODS Genome sequencing (GS, 30X) was performed on 13 trios with CHD for which karyotyping and/or chromosomal microarray results were non-diagnostic. RESULTS Trio GS provided a diagnosis for 4/13 (30.8%) fetuses with complex CHDs and other structural anomalies. Findings included pathogenic or likely pathogenic variants in DNAH5, COL4A1, PTPN11, and KRAS. Of nine cases without a possibly genetic etiology by GS, we had follow-up on eight. For five of them (60%), the parents chose to keep the pregnancy. A balanced translocation [46,XX,t(14;22)(q32.33;q13.31)mat] was detected in a trio with biallelic DNAH5 mutations, which together explained the recurrent fetal situs inversus and dextrocardia that was presumably due to de novo Phelan-McDermid syndrome. A secondary finding of a BRCA2 variant and carrier status of HBB, USH2A, HBA1/HBA2 were detected in the trio. CONCLUSIONS GS expands the diagnostic scope of mutation types over conventional testing, revealing the genetic etiology for fetal heart anomalies. Patients without a known genetic abnormality indicated by GS likely opted to keep pregnancy especially if the heart issue could be repaired. We provide evidence to support the application of GS for fetuses with CHD. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Y Cao
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Laboratory Genetics and Genomics, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Fertility Preservation Research Centre, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mhk Chau
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Laboratory Genetics and Genomics, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Fertility Preservation Research Centre, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Y Zheng
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Y L Zhao
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ahw Kwan
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Asy Hui
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Y H Lam
- OB GYN ULTRASOUND, Henley Building, 5 Queen's Road C, Central, Hong Kong SAR, China
| | - Tyt Tan
- Tony Tan Women and Fetal Clinic, Mount Alvernia Hospital, Singapore
| | - W T Tse
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - L Wong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - T Y Leung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Laboratory Genetics and Genomics, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong SAR, China
| | - Z Dong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Laboratory Genetics and Genomics, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Fertility Preservation Research Centre, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - K W Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Laboratory Genetics and Genomics, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,Fertility Preservation Research Centre, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China.,The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong SAR, China
| |
Collapse
|
37
|
Shi JW, Cao H, Hong L, Ma J, Cui L, Zhang Y, Song X, Liu J, Yang Y, Lv Q, Zhang L, Wang J, Xie M. Diagnostic yield of whole exome data in fetuses aborted for conotruncal malformations. Prenat Diagn 2022; 42:852-861. [PMID: 35420166 DOI: 10.1002/pd.6147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE We investigated a custom congenital heart disease (CHD) geneset to assess the diagnostic value of whole-exome sequencing (WES) in karyotype- and copy number variation (CNV)-negative aborted fetuses with conotruncal defects (CTD), and to explore the impact of postnatal phenotyping on genetic diagnosis. METHODS We sequentially analyzed CNV-seq and WES data from 47 CTD fetuses detected by prenatal ultrasonography. Fetuses with either a confirmed aneuploidy or pathogenic CNV were excluded from the WES analyses, which were performed following the American College of Medical Genetics and Genomics recommendations and a custom CHD-geneset. Imaging and autopsy were applied to obtain postnatal phenotypic information about aborted fetuses. RESULTS CNV-seq identified aneuploidy in 7/47 cases while 13/47 fetuses were CNV-positive. Eighty-five rare deleterious variants in 61 genes (from custom geneset) were identified by WES in the remaining fetuses. Of these, five (likely) pathogenic variants (LPV/PV) were identified in five fetuses, revealing a 10.6% incremental diagnostic yield. Furthermore, RERE:c.2461_2472delGGGATGTGGCGA was reclassified as LPV based on postnatal phenotypic data. CONCLUSION We have developed and defined a CHD gene panel that can be utilized in a subset of fetuses with CTDs. We demonstrate the utility of incorporating both prenatal and postnatal phenotypic information may facilitate WES diagnostics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jia-Wei Shi
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Haiyan Cao
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Liu Hong
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jing Ma
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Li Cui
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yi Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiaoyan Song
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Juanjuan Liu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yali Yang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qing Lv
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jing Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| |
Collapse
|
38
|
Smogavec M, Gerykova Bujalkova M, Lehner R, Neesen J, Behunova J, Yerlikaya-Schatten G, Reischer T, Altmann R, Weis D, Duba HC, Laccone F. Singleton exome sequencing of 90 fetuses with ultrasound anomalies revealing novel disease-causing variants and genotype-phenotype correlations. Eur J Hum Genet 2022; 30:428-438. [PMID: 34974531 PMCID: PMC8991249 DOI: 10.1038/s41431-021-01012-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 11/08/2022] Open
Abstract
Exome sequencing has been increasingly implemented in prenatal genetic testing for fetuses with morphological abnormalities but normal rapid aneuploidy detection and microarray analysis. We present a retrospective study of 90 fetuses with different abnormal ultrasound findings, in which we employed the singleton exome sequencing (sES; 75 fetuses) or to a lesser extent (15 fetuses) a multigene panel analysis of 6713 genes as a primary tool for the detection of monogenic diseases. The detection rate of pathogenic or likely pathogenic variants in this study was 34.4%. The highest diagnostic rate of 56% was in fetuses with multiple anomalies, followed by cases with skeletal or renal abnormalities (diagnostic rate of 50%, respectively). We report 20 novel disease-causing variants in different known disease-associated genes and new genotype-phenotype associations for the genes KMT2D, MN1, CDK10, and EXOC3L2. Based on our data, we postulate that sES of fetal index cases with a concurrent sampling of parental probes for targeted testing of the origin of detected fetal variants could be a suitable tool to obtain reliable and rapid prenatal results, particularly in situations where a trio analysis is not possible.
Collapse
Affiliation(s)
- Mateja Smogavec
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.
| | | | - Reinhard Lehner
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Jürgen Neesen
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Jana Behunova
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Gülen Yerlikaya-Schatten
- Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Theresa Reischer
- Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Reinhard Altmann
- Department of Prenatal Medicine, Kepler University Hospital, School of Medicine, Johannes Kepler University, Linz, Austria
| | - Denisa Weis
- Department of Medical Genetics, Kepler University Hospital, School of Medicine, Johannes Kepler University, Linz, Austria
| | - Hans-Christoph Duba
- Department of Medical Genetics, Kepler University Hospital, School of Medicine, Johannes Kepler University, Linz, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
39
|
Achiron R, Kassif E, Shohat M, Kivilevitch Z. Pathologic whole exome sequencing analysis in fetuses with minor sonographic abnormal findings and normal chromosomal microarray analysis: case series. J Matern Fetal Neonatal Med 2022; 35:9730-9735. [PMID: 35282760 DOI: 10.1080/14767058.2022.2051006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND No current data exists regarding the occurrence of pathological results when using Whole Exome Sequencing (WES) analysis in a subgroup of fetuses with minor abnormalities and normal Chromosomal Microarray Analysis (CMA) results. OBJECTIVE Our study aimed to report our experience with in-utero WES abnormal results, found in fetuses with minor anomalies after a normal CMA result. METHODS A retrospective study conducted in a single tertiary center, during four years, included collating data regarding fetuses with minor structural abnormalities, normal CMA results, and abnormal triple WES test results. RESULTS Eleven fetuses were included in the study. Eight were with cardiovascular and lymphatic drainage alterations. Two fetuses developed late third-trimester macrocephaly (head circumference ≥ +2 standard deviations), and one fetus had unilateral mildly short and bowed femur bone. In seven cases (63.6%) the parents opted to terminate the pregnancy as a result of the WES analysis results. CONCLUSION Our case series raises the possibility that fetuses with even minor structural alterations and normal CMA results can have genetic variants revealable only by WES analysis which can provide critical information regarding pregnancy management.
Collapse
Affiliation(s)
- Reuven Achiron
- Department of Obstetrics and Gynecology, Ultrasound unit, Tel-Hashomer, Sackler School of Medicine, Tel-Aviv University, Ramat-Gan, Israel
| | - Eran Kassif
- Department of Obstetrics and Gynecology, Ultrasound unit, Tel-Hashomer, Sackler School of Medicine, Tel-Aviv University, Ramat-Gan, Israel
| | - Mordehay Shohat
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel
| | - Zvi Kivilevitch
- Department of Obstetrics and Gynecology, Ultrasound unit, Tel-Hashomer, Sackler School of Medicine, Tel-Aviv University, Ramat-Gan, Israel
| |
Collapse
|
40
|
Mastromoro G, Guadagnolo D, Khaleghi Hashemian N, Marchionni E, Traversa A, Pizzuti A. Molecular Approaches in Fetal Malformations, Dynamic Anomalies and Soft Markers: Diagnostic Rates and Challenges-Systematic Review of the Literature and Meta-Analysis. Diagnostics (Basel) 2022; 12:575. [PMID: 35328129 PMCID: PMC8947110 DOI: 10.3390/diagnostics12030575] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Fetal malformations occur in 2-3% of pregnancies. They require invasive procedures for cytogenetics and molecular testing. "Structural anomalies" include non-transient anatomic alterations. "Soft markers" are often transient minor ultrasound findings. Anomalies not fitting these definitions are categorized as "dynamic". This meta-analysis aims to evaluate the diagnostic yield and the rates of variants of uncertain significance (VUSs) in fetuses undergoing molecular testing (chromosomal microarray (CMA), exome sequencing (ES), genome sequencing (WGS)) due to ultrasound findings. The CMA diagnostic yield was 2.15% in single soft markers (vs. 0.79% baseline risk), 3.44% in multiple soft markers, 3.66% in single structural anomalies and 8.57% in multiple structural anomalies. Rates for specific subcategories vary significantly. ES showed a diagnostic rate of 19.47%, reaching 27.47% in multiple structural anomalies. WGS data did not allow meta-analysis. In fetal structural anomalies, CMA is a first-tier test, but should be integrated with karyotype and parental segregations. In this class of fetuses, ES presents a very high incremental yield, with a significant VUSs burden, so we encourage its use in selected cases. Soft markers present heterogeneous CMA results from each other, some of them with risks comparable to structural anomalies, and would benefit from molecular analysis. The diagnostic rate of multiple soft markers poses a solid indication to CMA.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (N.K.H.); (E.M.); (A.T.); (A.P.)
| | | | | | | | | | | |
Collapse
|
41
|
Mellis R, Oprych K, Scotchman E, Hill M, Chitty LS. Diagnostic yield of exome sequencing for prenatal diagnosis of fetal structural anomalies: A systematic review and meta-analysis. Prenat Diagn 2022; 42:662-685. [PMID: 35170059 PMCID: PMC9325531 DOI: 10.1002/pd.6115] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/10/2022]
Abstract
Objectives We conducted a systematic review and meta‐analysis to determine the diagnostic yield of exome sequencing (ES) for prenatal diagnosis of fetal structural anomalies, where karyotype/chromosomal microarray (CMA) is normal. Methods Following electronic searches of four databases, we included studies with ≥10 structurally abnormal fetuses undergoing ES or whole genome sequencing. The incremental diagnostic yield of ES over CMA/karyotype was calculated and pooled in a meta‐analysis. Sub‐group analyses investigated effects of case selection and fetal phenotype on diagnostic yield. Results We identified 72 reports from 66 studies, representing 4350 fetuses. The pooled incremental yield of ES was 31% (95% confidence interval (CI) 26%–36%, p < 0.0001). Diagnostic yield was significantly higher for cases pre‐selected for likelihood of monogenic aetiology compared to unselected cases (42% vs. 15%, p < 0.0001). Diagnostic yield differed significantly between phenotypic sub‐groups, ranging from 53% (95% CI 42%–63%, p < 0.0001) for isolated skeletal abnormalities, to 2% (95% CI 0%–5%, p = 0.04) for isolated increased nuchal translucency. Conclusion Prenatal ES provides a diagnosis in an additional 31% of structurally abnormal fetuses when CMA/karyotype is non‐diagnostic. The expected diagnostic yield depends on the body system(s) affected and can be optimised by pre‐selection of cases following multi‐disciplinary review to determine that a monogenic cause is likely.
What's already known about this topic?
Prenatal exome sequencing (ES) increases genetic diagnoses in fetuses with structural abnormalities and a normal karyotype and chromosomal microarray. Published diagnostic yields from ES are varied and may be influenced by study size, case selection and fetal phenotype.
What does this study add?
This study provides a comprehensive systematic review of the literature to date and investigates the diagnostic yield of ES for a range of isolated system anomalies, to support clinical decision‐making on how to offer prenatal ES.
Collapse
Affiliation(s)
- Rhiannon Mellis
- North Thames Genomic Laboratory HubGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthLondonUK
| | | | - Elizabeth Scotchman
- North Thames Genomic Laboratory HubGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Melissa Hill
- North Thames Genomic Laboratory HubGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Lyn S Chitty
- North Thames Genomic Laboratory HubGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
- Genetics and Genomic MedicineUCL Great Ormond Street Institute of Child HealthLondonUK
| |
Collapse
|
42
|
Buonaiuto S, Biase ID, Aleotti V, Ravaei A, Marino AD, Damaggio G, Chierici M, Pulijala M, D'Ambrosio P, Esposito G, Ayub Q, Furlanello C, Greco P, Capalbo A, Rubini M, Biase SD, Colonna V. Prioritization of putatively detrimental variants in euploid miscarriages. Sci Rep 2022; 12:1997. [PMID: 35132093 PMCID: PMC8821623 DOI: 10.1038/s41598-022-05737-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Miscarriage is the spontaneous termination of a pregnancy before 24 weeks of gestation. We studied the genome of euploid miscarried embryos from mothers in the range of healthy adult individuals to understand genetic susceptibility to miscarriage not caused by chromosomal aneuploidies. We developed GP , a pipeline that we used to prioritize 439 unique variants in 399 genes, including genes known to be associated with miscarriages. Among the prioritized genes we found STAG2 coding for the cohesin complex subunit, for which inactivation in mouse is lethal, and TLE4 a target of Notch and Wnt, physically interacting with a region on chromosome 9 associated to miscarriages.
Collapse
Affiliation(s)
| | | | - Valentina Aleotti
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, 44121, Italy
| | - Amin Ravaei
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, 44121, Italy
| | | | | | | | - Madhuri Pulijala
- Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, 47500, Bandar Sunway, Malaysia
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| | | | | | - Qasim Ayub
- Monash University Malaysia Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, 47500, Bandar Sunway, Malaysia
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| | | | - Pantaleo Greco
- Department of Medical Sciences, University of Ferrara, Ferrara, 44121, Italy
| | | | - Michele Rubini
- Department of Neurosciences and Rehabilitation, University of Ferrara, Ferrara, 44121, Italy
| | | | - Vincenza Colonna
- Institute of Genetics and Biophysics, National Research Council, Naples, 80111, Italy.
| |
Collapse
|
43
|
Chen L, Wang L, Yin D, Tang F, Zeng Y, Zhu H, Wang J. Analysis of autosomal dominant genes impacted by copy number loss in 24,844 fetuses without structural abnormalities. BMC Genomics 2022; 23:94. [PMID: 35109792 PMCID: PMC8812209 DOI: 10.1186/s12864-022-08340-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The broad application of high-resolution chromosome detection technology in prenatal diagnosis has identified copy number loss (CNL) involving autosomal dominant (AD) genes in certain fetuses. Exon sequencing of fetuses exhibiting structural anomalies yields diagnostic information in up to 20% of cases. However, there is currently no relevant literature about the genetic origin and pregnancy outcome of CNL involving AD genes in fetuses without structural abnormalities. RESULTS This was a prospective study involving pregnant women who underwent amniocentesis for fetal copy number variation sequencing (CNVseq). Detection of parent-of-origin was suggested in cases of samples with CNL involving AD genes and the pregnancy outcome was monitored. Amniotic fluid samples from 24,844 fetuses without structural abnormalities were successfully tested via CNVseq. The results showed that 134 fetuses (0.5%) had small CNL (< 10 Mb) containing AD genes, after excluding microdeletion and microduplication syndrome and polymorphisms. By monitoring the pregnancy outcomes of the 134 fetuses, we found that 104 (77.6%) were good, 13 (9.7%) were adverse, and 17 (12.7%) pregnant women voluntarily chose to terminate pregnancy. Of the 13 fetuses with adverse pregnancy outcomes, only 2 fetuses had phenotypes consistent with those of diseases caused by AD genes involved in CNL. CONCLUSIONS The overall prognosis for fetuses without family history or structural abnormalities but with small CNL containing AD genes detected during pregnancy is good. The genetic origin, overlap status of established haploinsufficient gene and/or region, size of the CNL, and genetic mode may affect the pathogenicity of the CNL.
Collapse
Affiliation(s)
- Lin Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Li Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Daishu Yin
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Feng Tang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Yang Zeng
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Hongmei Zhu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
44
|
Sadeghi S, Rahaie M, Ostad-Hasanzadeh B. Nanostructures in non-invasive prenatal genetic screening. Biomed Eng Lett 2022; 12:3-18. [PMID: 35186357 PMCID: PMC8825889 DOI: 10.1007/s13534-021-00208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/22/2021] [Accepted: 10/02/2021] [Indexed: 11/24/2022] Open
Abstract
Prenatal screening is an important issue during pregnancy to ensure fetal and maternal health, as well as preventing the birth of a defective fetus and further problems such as extra costs for the family and society. The methods for the screening have progressed to non-invasive approaches over the recent years. Limitations of common standard screening tests, including invasive sampling, high risk of abortion and a big delay in result preparation have led to the introduction of new rapid and non-invasive approaches for screening. Non-invasive prenatal screening includes a wide range of procedures, including fetal cell-free DNA analysis, proteome, RNAs and other fetal biomarkers in maternal serum. These biomarkers require less invasive sampling than usual methods such as chorionic villus sampling, amniocentesis or cordocentesis. Advanced strategies including the development of nanobiosensors and the use of special nanoparticles have provided optimization and development of NIPS tests, which leads to more accurate, specific and sensitive screening tests, rapid and more reliable results and low cost, as well. This review discusses the specifications and limitations of current non-invasive prenatal screening tests and introduces a novel collection of detection methods reported studies on nanoparticles' aided detection. It can open a new prospect for further studies and effective investigations in prenatal screening field.
Collapse
Affiliation(s)
- Samira Sadeghi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 14399-57131 Tehran, Iran
| | - Mahdi Rahaie
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 14399-57131 Tehran, Iran
| | - Bita Ostad-Hasanzadeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 14399-57131 Tehran, Iran
| |
Collapse
|
45
|
Chen X, Jiang Y, Chen R, Qi Q, Zhang X, Zhao S, Liu C, Wang W, Li Y, Sun G, Song J, Huang H, Cheng C, Zhang J, Cheng L, Liu J. Clinical efficiency of simultaneous CNV-seq and whole-exome sequencing for testing fetal structural anomalies. J Transl Med 2022; 20:10. [PMID: 34980134 PMCID: PMC8722033 DOI: 10.1186/s12967-021-03202-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/16/2021] [Indexed: 12/27/2022] Open
Abstract
Background Birth defects are responsible for approximately 7% of neonatal deaths worldwide by World Health Organization in 2004. Many methods have been utilized for examining the congenital anomalies in fetuses. This study aims to investigate the efficiency of simultaneous CNV-seq and whole-exome sequencing (WES) in the diagnosis of fetal anomaly based on a large Chinese cohort. Methods In this cohort study, 1800 pregnant women with singleton fetus in Hubei Province were recruited from 2018 to 2020 for prenatal ultrasonic screening. Those with fetal structural anomalies were transferred to the Maternal and Child Health Hospital of Hubei Province through a referral network in Hubei, China. After multidisciplinary consultation and decision on fetal outcome, products of conception (POC) samples were obtained. Simultaneous CNV-seq and WES was conducted to identify the fetal anomalies that can compress initial DNA and turnaround time of reports. Results In total, 959 couples were finally eligible for the enrollment. A total of 227 trios were identified with a causative alteration (CNV or variant), among which 191 (84.14%) were de novo. Double diagnosis of pathogenic CNVs and variants have been identified in 10 fetuses. The diagnostic yield of multisystem anomalies was significantly higher than single system anomalies (32.28% vs. 22.36%, P = 0.0183). The diagnostic rate of fetuses with consistent intra- and extra-uterine phenotypes (172/684) was significantly higher than the rate of these with inconsistent phenotypes (17/116, P = 0.0130). Conclusions Simultaneous CNV-seq and WES analysis contributed to fetal anomaly diagnosis and played a vital role in elucidating complex anomalies with compound causes. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03202-9.
Collapse
Affiliation(s)
- Xinlin Chen
- Department of Ultrasound Diagnosis, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei, China
| | - Yulin Jiang
- Department of Obstetrics and Gynecology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruiguo Chen
- Berry Genomics Corporation, Beijing, 102200, China
| | - Qingwei Qi
- Department of Obstetrics and Gynecology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | | | - Sheng Zhao
- Department of Ultrasound Diagnosis, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei, China
| | - Chaoshi Liu
- Berry Genomics Corporation, Beijing, 102200, China
| | - Weiyun Wang
- Department of Ultrasound Diagnosis, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei, China
| | - Yuezhen Li
- Berry Genomics Corporation, Beijing, 102200, China
| | - Guoqiang Sun
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei, China
| | - Jieping Song
- Department of Genetic Laboratory, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei, China
| | - Hui Huang
- Department of Ultrasound Diagnosis, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei, China
| | - Chen Cheng
- Department of Ultrasound Diagnosis, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, Hubei, China
| | | | - Longxian Cheng
- Department of Ultrasound Diagnosis, Hubei Maternity and Child Health Hospital, No. 745, Wuluo Road, Hongshan District, Wuhan, 430030, Hubei, China.
| | - Juntao Liu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1, Shuaifu Garden, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
46
|
Cai M, Lin N, Fan X, Chen X, Xu S, Fu X, Xu L, Huang H. Fetal Aberrant Right Subclavian Artery: Associated Anomalies, Genetic Etiology, and Postnatal Outcomes in a Retrospective Cohort Study. Front Pediatr 2022; 10:895562. [PMID: 35722491 PMCID: PMC9203729 DOI: 10.3389/fped.2022.895562] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Aberrant right subclavian artery (ARSA) is becoming increasingly common in fetuses. However, there are relatively fewer studies regarding the genetic etiology of ARSA. We performed a genetic analysis of fetuses with ARSA and followed up on the pregnancy outcomes to evaluate the prognosis of the fetuses, providing information for prenatal and eugenic consultations. METHODS This retrospective study included 112 pregnant females whose fetuses were diagnosed with ARSA from December 2016 to February 2021. Fetal karyotype analysis and single-nucleotide polymorphism (SNP) array were performed. RESULTS The 112 fetuses were divided into two groups: the isolated ARSA group (n = 48, 42.9%) and the non-isolated ARSA group (ARSA with other ultrasound abnormalities, n = 64, 57.1%). The total rate of pathogenic copy number variation (CNV) observed using karyotype analysis (3/8) and SNP array (5/8) was 7.1% (8/112). The rates of pathogenic CNV in the isolated and non-isolated ARSA groups were 4.2% (2/48) and 9.4% (6/64), respectively. No significant difference was observed between the two groups (P = 0.463). The results of genetic analysis influenced the parents' decision to terminate the pregnancy. During the follow-up examination, fetuses with ARSA without pathogenic CNV were found to have normal growth and development after birth. CONCLUSION Fetuses with isolated ARSA have a low probability of being diagnosed with pathogenic CNV. However, when ARSA is complicated with other ultrasound abnormalities, the risk of pathogenic CNV remarkably increases. Prenatal genetic counseling and SNP-array should be recommended for better assessment of fetal prognosis.
Collapse
Affiliation(s)
- Meiying Cai
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Xiangqun Fan
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Xuemei Chen
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Shiyi Xu
- Guangxi Medical University, Guangxi, China
| | - Xianguo Fu
- Department of Prenatal Diagnosis, Ningde Municipal Hospital, Ningde Normal University, Ningde, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou, China
| |
Collapse
|
47
|
Vaknin N, Azoulay N, Tsur E, Tripolszki K, Urzi A, Rolfs A, Bauer P, Achiron R, Lipitz S, Goldberg Y, Berger R, Shohat M. High rate of abnormal findings in Prenatal Exome Trio in low risk pregnancies and apparently normal fetuses. Prenat Diagn 2021; 42:725-735. [PMID: 34918830 DOI: 10.1002/pd.6077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Data on the value of exome sequencing in fetuses with no structural anomalies are limited, especially in the early stages of pregnancy and in low risk pregnancies. We investigated the yield of targeted clinical prenatal trio exome sequencing (pES) in pregnancies with and without fetal structural anomalies. METHODS We performed pES in 353 pregnancies: Group 1 included 143 pregnancies with high clinical suspicion for a genetic disease: pregnancies with increased nuchal translucency, ultrasound structural defects, intrauterine growth restriction, polyhydramnios, or effusion/nuchal edema. Group 2 included 210 pregnancies with no notable abnormal fetal ultrasound findings. 2a. Low risk pregnancies with minor ultrasound findings, referred to the geneticist due to mildly increased risk for genetic disease (50); and 2b. Normal pregnancy surveillance (160). RESULTS Overall, 26 (7.36%) fetal analyses had pathogenic (P)/likely pathogenic (LP) variants. In group 1, 20/143 (13.99%) cases had P/LP variants. In group 2, 6/210 (2.86%) cases were found to have P/LP variants [5/50 in (2a) and 1/160 in (2b)]. CONCLUSION These results show a high rate of abnormal findings on pES even in apparently normal pregnancies.
Collapse
Affiliation(s)
- Noam Vaknin
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noy Azoulay
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel.,Raphael Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Erez Tsur
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel
| | | | | | | | | | - Reuven Achiron
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Shlomo Lipitz
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Yael Goldberg
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Raphael Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva, Israel
| | - Rachel Berger
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel
| | - Mordechai Shohat
- The Genetic Institute of Maccabi Health Services, Rehovot, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Bioinformatics Unit, Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
48
|
Carey AZ, Blue NR, Varner MW, Page JM, Chaiyakunapruk N, Quinlan AR, Branch DW, Silver RM, Workalemahu T. A Systematic Review to Guide Future Efforts in the Determination of Genetic Causes of Pregnancy Loss. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3. [PMID: 35462723 PMCID: PMC9031276 DOI: 10.3389/frph.2021.770517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Pregnancy loss is the most common obstetric complication occurring in almost 30% of conceptions overall and in 12–14% of clinically recognized pregnancies. Pregnancy loss has strong genetic underpinnings, and despite this consensus, our understanding of its genetic causes remains limited. We conducted a systematic review of genetic factors in pregnancy loss to identify strategies to guide future research.Methods: To synthesize data from population-based association studies on genetics of pregnancy loss, we searched PubMed for relevant articles published between 01/01/2000-01/01/2020. We excluded review articles, case studies, studies with limited sample sizes to detect associations (N < 4), descriptive studies, commentaries, and studies with non-genetic etiologies. Studies were classified based on developmental periods in gestation to synthesize data across various developmental epochs.Results: Our search yielded 580 potential titles with 107 (18%) eligible after title/abstract review. Of these, 54 (50%) were selected for systematic review after full-text review. These studies examined either early pregnancy loss (n = 9 [17%]), pregnancy loss >20 weeks' gestation (n = 10 [18%]), recurrent pregnancy loss (n = 32 [59%]), unclassified pregnancy loss (n = 3 [4%]) as their primary outcomes. Multiple genetic pathways that are essential for embryonic/fetal survival as well as human development were identified.Conclusion: Several genetic pathways may play a role in pregnancy loss across developmental periods in gestation. Systematic evaluation of pregnancy loss across developmental epochs, utilizing whole genome sequencing in families may further elucidate causal genetic mechanisms and identify other pathways critical for embryonic/fetal survival.
Collapse
Affiliation(s)
- Andrew Z. Carey
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
| | - Nathan R. Blue
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
- Department of Obstetrics and Gynecology, Intermountain Healthcare, Salt Lake City, UT, United States
| | - Michael W. Varner
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
- Department of Obstetrics and Gynecology, Intermountain Healthcare, Salt Lake City, UT, United States
| | - Jessica M. Page
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
- Department of Obstetrics and Gynecology, Intermountain Healthcare, Salt Lake City, UT, United States
| | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Aaron R. Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, United States
| | - D. Ware Branch
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
- Department of Obstetrics and Gynecology, Intermountain Healthcare, Salt Lake City, UT, United States
| | - Robert M. Silver
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
- Department of Obstetrics and Gynecology, Intermountain Healthcare, Salt Lake City, UT, United States
| | - Tsegaselassie Workalemahu
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
- *Correspondence: Tsegaselassie Workalemahu
| |
Collapse
|
49
|
Al-Hamed MH, Kurdi W, Khan R, Tulbah M, AlNemer M, AlSahan N, AlMugbel M, Rafiullah R, Assoum M, Monies D, Shah Z, Rahbeeni Z, Derar N, Hakami F, Almutairi G, AlOtaibi A, Ali W, AlShammasi A, AlMubarak W, AlDawoud S, AlAmri S, Saeed B, Bukhari H, Ali M, Akili R, Alquayt L, Hagos S, Elbardisy H, Akilan A, Almuhana N, AlKhalifah A, Abouelhoda M, Ramzan K, Sayer JA, Imtiaz F. Prenatal exome sequencing and chromosomal microarray analysis in fetal structural anomalies in a highly consanguineous population reveals a propensity of ciliopathy genes causing multisystem phenotypes. Hum Genet 2021; 141:101-126. [PMID: 34853893 DOI: 10.1007/s00439-021-02406-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/26/2021] [Indexed: 12/25/2022]
Abstract
Fetal abnormalities are detected in 3% of all pregnancies and are responsible for approximately 20% of all perinatal deaths. Chromosomal microarray analysis (CMA) and exome sequencing (ES) are widely used in prenatal settings for molecular genetic diagnostics with variable diagnostic yields. In this study, we aimed to determine the diagnostic yield of trio-ES in detecting the cause of fetal abnormalities within a highly consanguineous population. In families with a history of congenital anomalies, a total of 119 fetuses with structural anomalies were recruited and DNA from invasive samples were used together with parental DNA samples for trio-ES and CMA. Data were analysed to determine possible underlying genetic disorders associated with observed fetal phenotypes. The cohort had a known consanguinity of 81%. Trio-ES led to diagnostic molecular genetic findings in 59 fetuses (with pathogenic/likely pathogenic variants) most with multisystem or renal abnormalities. CMA detected chromosomal abnormalities compatible with the fetal phenotype in another 7 cases. Monogenic ciliopathy disorders with an autosomal recessive inheritance were the predominant cause of multisystem fetal anomalies (24/59 cases, 40.7%) with loss of function variants representing the vast majority of molecular genetic abnormalities. Heterozygous de novo pathogenic variants were found in four fetuses. A total of 23 novel variants predicted to be associated with the phenotype were detected. Prenatal trio-ES and CMA detected likely causative molecular genetic defects in a total of 55% of families with fetal anomalies confirming the diagnostic utility of trio-ES and CMA as first-line genetic test in the prenatal diagnosis of multisystem fetal anomalies including ciliopathy syndromes.
Collapse
Affiliation(s)
- Mohamed H Al-Hamed
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia.
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia.
| | - Wesam Kurdi
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Rubina Khan
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Maha Tulbah
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Maha AlNemer
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Nada AlSahan
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Maisoon AlMugbel
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Rafiullah Rafiullah
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Mirna Assoum
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Dorota Monies
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Zeeshan Shah
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Medical Genetics Department, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Nada Derar
- Medical Genetics Department, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Fahad Hakami
- King Abdulaziz Medical City/King Saud bin Abdulaziz University for Health Science, Jeddah, Saudi Arabia
| | - Gawaher Almutairi
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Afaf AlOtaibi
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Wafaa Ali
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Amal AlShammasi
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Wardah AlMubarak
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Samia AlDawoud
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Saja AlAmri
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Bashayer Saeed
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Hanifa Bukhari
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Mohannad Ali
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Rana Akili
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Laila Alquayt
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Samia Hagos
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Hadeel Elbardisy
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Asma Akilan
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Nora Almuhana
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Abrar AlKhalifah
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Mohamed Abouelhoda
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Khushnooda Ramzan
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - John A Sayer
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
- Renal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Tyne and Wear, Newcastle upon Tyne, NE4 5PL, UK
| | - Faiqa Imtiaz
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia.
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia.
| |
Collapse
|
50
|
Prenatal Exome Sequencing in Recurrent Fetal Structural Anomalies: Systematic Review and Meta-Analysis. J Clin Med 2021; 10:jcm10204739. [PMID: 34682862 PMCID: PMC8538791 DOI: 10.3390/jcm10204739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 01/14/2023] Open
Abstract
To determine the diagnostic yield of exome sequencing (ES), a microarray analysis was carried out of fetuses with recurrent fetal structural anomalies (with similar anomalies in consecutive pregnancies). This is a systematic review conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. The selected studies describing ES in fetuses with recurrent fetal malformation were assessed using the Standards for Reporting of Diagnostic Accuracy Studies (STARD) criteria for risk of bias. Incidence was used as the pooled effect size by single-proportion analysis using random-effects modeling (weighted by inverse of variance). We identified nine studies on ES diagnostic yield that included 140 fetuses with recurrent structural anomalies. A pathogenic or likely pathogenic variant was found in 57 fetuses, resulting in a 40% (95%CI: 26% to 54%) incremental performance pool of ES. As expected, the vast majority (86%: 36/42) of the newly identified diseases had a recessive inheritance pattern, and among these, 42% (15/36) of variants were found in homozygosity. Meckel syndrome was the monogenic disease most frequently found, although the genes involved were diverse. The ES diagnostic yield in pregnancies with recurrent fetal structural anomalies was 40% (57/140). Homozygous disease-causing variants were found in 36% (15/57) of the newly identified monogenic disorders.
Collapse
|