1
|
Wang J, Yang W, Li Y, Ma X, Xie Y, Zhou G, Liu S. Dual-Temperature/pH-Sensitive Hydrogels with Excellent Strength and Toughness Crosslinked Using Three Crosslinking Methods. Gels 2024; 10:480. [PMID: 39057503 PMCID: PMC11275505 DOI: 10.3390/gels10070480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels are widely used as excellent drug carriers in the field of biomedicine. However, their application in medicine is limited by their poor mechanical properties and softness. To improve the mechanical properties of hydrogels, a novel triple-network amphiphilic hydrogel with three overlapping crosslinking methods using a one-pot free-radical polymerization was synthesized in this study. Temperature-sensitive and pH-sensitive monomers were incorporated into the hydrogel to confer stimulus responsiveness, making the hydrogel stimuli-responsive. The successful synthesis of the hydrogel was confirmed using techniques, such as proton nuclear magnetic resonance spectroscopy (1H NMR), Fourier-transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). In order to compare and analyze the properties of physically crosslinked hydrogels, physically-chemically double-crosslinked hydrogels, and physically-chemically clicked triple-crosslinked hydrogels, various tests were conducted on the gels' morphology, swelling behavior, thermal stability, mechanical properties, and drug loading capacity. The results indicate that the triple-crosslinked hydrogel maintains low swelling, high mechanical strength, and good thermal stability while not significantly compromising its drug delivery capability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shouxin Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China; (J.W.); (W.Y.); (Y.L.); (X.M.); (Y.X.); (G.Z.)
| |
Collapse
|
2
|
Ghasemi Darestani N, Gilmanova AI, Al-Gazally ME, Zekiy AO, Ansari MJ, Zabibah RS, Jawad MA, Al-Shalah SAJ, Rizaev JA, Alnassar YS, Mohammed NM, Mustafa YF, Darvishi M, Akhavan-Sigari R. Mesenchymal stem cell-released oncolytic virus: an innovative strategy for cancer treatment. Cell Commun Signal 2023; 21:43. [PMID: 36829187 PMCID: PMC9960453 DOI: 10.1186/s12964-022-01012-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/10/2022] [Indexed: 02/26/2023] Open
Abstract
Oncolytic viruses (OVs) infect, multiply, and finally remove tumor cells selectively, causing no damage to normal cells in the process. Because of their specific features, such as, the ability to induce immunogenic cell death and to contain curative transgenes in their genomes, OVs have attracted attention as candidates to be utilized in cooperation with immunotherapies for cancer treatment. This treatment takes advantage of most tumor cells' inherent tendency to be infected by certain OVs and both innate and adaptive immune responses are elicited by OV infection and oncolysis. OVs can also modulate tumor microenvironment and boost anti-tumor immune responses. Mesenchymal stem cells (MSC) are gathering interest as promising anti-cancer treatments with the ability to address a wide range of cancers. MSCs exhibit tumor-trophic migration characteristics, allowing them to be used as delivery vehicles for successful, targeted treatment of isolated tumors and metastatic malignancies. Preclinical and clinical research were reviewed in this study to discuss using MSC-released OVs as a novel method for the treatment of cancer. Video Abstract.
Collapse
Affiliation(s)
| | - Anna I Gilmanova
- Department of Prosthetic Dentistry of the I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | | | - Angelina O Zekiy
- Department of Prosthetic Dentistry of the I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Saif A J Al-Shalah
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Mohammad Darvishi
- Department of Aerospace and Subaquatic Medicine, Infectious Diseases and Tropical Medicine Research Center (IDTMRC), AJA University of Medical Sciences, Tehran, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany.,Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
3
|
Hasanzadeh A, Hamblin MR, Kiani J, Noori H, Hardie JM, Karimi M, Shafiee H. Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines? NANO TODAY 2022; 47:101665. [PMID: 37034382 PMCID: PMC10081506 DOI: 10.1016/j.nantod.2022.101665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gene therapy enables the introduction of nucleic acids like DNA and RNA into host cells, and is expected to revolutionize the treatment of a wide range of diseases. This growth has been further accelerated by the discovery of CRISPR/Cas technology, which allows accurate genomic editing in a broad range of cells and organisms in vitro and in vivo. Despite many advances in gene delivery and the development of various viral and non-viral gene delivery vectors, the lack of highly efficient non-viral systems with low cellular toxicity remains a challenge. The application of cutting-edge technologies such as artificial intelligence (AI) has great potential to find new paradigms to solve this issue. Herein, we review AI and its major subfields including machine learning (ML), neural networks (NNs), expert systems, deep learning (DL), computer vision and robotics. We discuss the potential of AI-based models and algorithms in the design of targeted gene delivery vehicles capable of crossing extracellular and intracellular barriers by viral mimicry strategies. We finally discuss the role of AI in improving the function of CRISPR/Cas systems, developing novel nanobots, and mRNA vaccine carriers.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Noori
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Joseph M. Hardie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 141556559, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 1584743311, Iran
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| |
Collapse
|
4
|
Magnetic nanoparticles-based systems for multifaceted biomedical applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Choi MJ, Choi KC, Lee DH, Jeong HY, Kang SJ, Kim MW, Jeong IH, You YM, Lee JS, Lee YK, Im CS, Park YS. EGF Receptor-Targeting Cancer Therapy Using CD47-Engineered Cell-Derived Nanoplatforms. Nanotechnol Sci Appl 2022; 15:17-31. [PMID: 35818431 PMCID: PMC9270928 DOI: 10.2147/nsa.s352038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Avoiding phagocytic cells and reducing off-target toxicity are the primary hurdles in the clinical application of nanoparticles containing therapeutics. For overcoming these errors, in this study, nanoparticles expressing CD47 proteins inhibiting the phagocytic attack of immune cells were prepared and then evaluated as an anti-cancer drug delivery vehicle. Methods The CD47+ cell-derived nanoparticles (CDNs) were prepared from the plasma membranes of human embryonic kidney cells transfected with a plasmid encoding CD47. And the doxorubicin (DOX) was loaded into the CDNs, and anti-EGF receptor (EGFR) antibodies were conjugated to the surface of the CDNs to target tumors overexpressing EGFR. Results The CD47+iCDNs-DOX was successfully synthesized having a stable structure. The CD47+CDNs were taken up less by RAW264.7 macrophages compared to control CDNs. Anti-EGFR CD47+CDNs (iCDNs) selectively recognized EGFR-positive MDA-MB-231 cells in vitro and accumulated more effectively in the target tumor xenografts in mice. Moreover, iCDNs encapsulating doxorubicin (iCDNs-DOX) exhibited the highest suppression of tumor growth in mice, presumably due to the enhanced DOX delivery to tumor tissues, compared to non-targeting CDNs or CD47- iCDNs. Discussion These results suggest that the clinical application of biocompatible cell membrane-derived nanocarriers could be facilitated by functionalization with macrophage-avoiding CD47 and tumor-targeting antibodies.
Collapse
Affiliation(s)
- Moon Jung Choi
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea
| | - Kang Chan Choi
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea
| | - Do Hyun Lee
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea
| | - Hwa Yeon Jeong
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea
| | - Seong Jae Kang
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea
| | - Min Woo Kim
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea
| | - In Ho Jeong
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea
| | - Young Myoung You
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea
| | - Jin Suk Lee
- Department of Anatomy, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Yeon Kyung Lee
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea
| | - Chan Su Im
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea
- Correspondence: Chan Su Im; Yong Serk Park, Department of Biomedical Laboratory Science, Yonsei University, Wonju, Gangwon, 220-710, Republic of Korea, Email ;
| | - Yong Serk Park
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
6
|
McCright J, Ramirez A, Amosu M, Sinha A, Bogseth A, Maisel K. Targeting the Gut Mucosal Immune System Using Nanomaterials. Pharmaceutics 2021; 13:pharmaceutics13111755. [PMID: 34834170 PMCID: PMC8619927 DOI: 10.3390/pharmaceutics13111755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022] Open
Abstract
The gastrointestinal (GI) tract is one the biggest mucosal surface in the body and one of the primary targets for the delivery of therapeutics, including immunotherapies. GI diseases, including, e.g., inflammatory bowel disease and intestinal infections such as cholera, pose a significant public health burden and are on the rise. Many of these diseases involve inflammatory processes that can be targeted by immune modulatory therapeutics. However, nonspecific targeting of inflammation systemically can lead to significant side effects. This can be avoided by locally targeting therapeutics to the GI tract and its mucosal immune system. In this review, we discuss nanomaterial-based strategies targeting the GI mucosal immune system, including gut-associated lymphoid tissues, tissue resident immune cells, as well as GI lymph nodes, to modulate GI inflammation and disease outcomes, as well as take advantage of some of the primary mechanisms of GI immunity such as oral tolerance.
Collapse
|
7
|
Golinelli G, Mastrolia I, Aramini B, Masciale V, Pinelli M, Pacchioni L, Casari G, Dall'Ora M, Soares MBP, Damasceno PKF, Silva DN, Dominici M, Grisendi G. Arming Mesenchymal Stromal/Stem Cells Against Cancer: Has the Time Come? Front Pharmacol 2020; 11:529921. [PMID: 33117154 PMCID: PMC7553050 DOI: 10.3389/fphar.2020.529921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Since mesenchymal stromal/stem cells (MSCs) were discovered, researchers have been drawn to study their peculiar biological features, including their immune privileged status and their capacity to selectively migrate into inflammatory areas, including tumors. These properties make MSCs promising cellular vehicles for the delivery of therapeutic molecules in the clinical setting. In recent decades, the engineering of MSCs into biological vehicles carrying anticancer compounds has been achieved in different ways, including the loading of MSCs with chemotherapeutics or drug functionalized nanoparticles (NPs), genetic modifications to force the production of anticancer proteins, and the use of oncolytic viruses. Recently, it has been demonstrated that wild-type and engineered MSCs can release extracellular vesicles (EVs) that contain therapeutic agents. Despite the enthusiasm for MSCs as cyto-pharmaceutical agents, many challenges, including controlling the fate of MSCs after administration, must still be considered. Preclinical results demonstrated that MSCs accumulate in lung, liver, and spleen, which could prevent their engraftment into tumor sites. For this reason, physical, physiological, and biological methods have been implemented to increase MSC concentration in the target tumors. Currently, there are more than 900 registered clinical trials using MSCs. Only a small fraction of these are investigating MSC-based therapies for cancer, but the number of these clinical trials is expected to increase as technology and our understanding of MSCs improve. This review will summarize MSC-based antitumor therapies to generate an increasing awareness of their potential and limits to accelerate their clinical translation.
Collapse
Affiliation(s)
- Giulia Golinelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Ilenia Mastrolia
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Masciale
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Pinelli
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Lucrezia Pacchioni
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Casari
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimiliano Dall'Ora
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil
| | - Patrícia Kauanna Fonseca Damasceno
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil
| | - Daniela Nascimento Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Rigenerand srl, Modena, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Rigenerand srl, Modena, Italy
| |
Collapse
|
8
|
Combes F, Meyer E, Sanders NN. Immune cells as tumor drug delivery vehicles. J Control Release 2020; 327:70-87. [PMID: 32735878 DOI: 10.1016/j.jconrel.2020.07.043] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/21/2022]
Abstract
This review article describes the use of immune cells as potential candidates to deliver anti-cancer drugs deep within the tumor microenvironment. First, the rationale of using drug carriers to target tumors and potentially decrease drug-related side effects is discussed. We further explain some of the current limitations when using nanoparticles for this purpose. Next, a comprehensive step-by-step description of the migration cascade of immune cells is provided as well as arguments on why immune cells can be used to address some of the limitations associated with nanoparticle-mediated drug delivery. We then describe the benefits and drawbacks of using red blood cells, platelets, granulocytes, monocytes, macrophages, myeloid-derived suppressor cells, T cells and NK cells for tumor-targeted drug delivery. An additional section discusses the versatility of nanoparticles to load anti-cancer drugs into immune cells. Lastly, we propose increasing the circulatory half-life and development of conditional release strategies as the two main future pillars to improve the efficacy of immune cell-mediated drug delivery to tumors.
Collapse
Affiliation(s)
- Francis Combes
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Evelyne Meyer
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium.
| |
Collapse
|
9
|
TRAIL in oncology: From recombinant TRAIL to nano- and self-targeted TRAIL-based therapies. Pharmacol Res 2020; 155:104716. [PMID: 32084560 DOI: 10.1016/j.phrs.2020.104716] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) selectively induces the apoptosis pathway in tumor cells leading to tumor cell death. Because TRAIL induction can kill tumor cells, cancer researchers have developed many agents to target TRAIL and some of these agents have entered clinical trials in oncology. Unfortunately, these trials have failed for many reasons, including drug resistance, off-target toxicities, short half-life, and specifically in gene therapy due to the limited uptake of TRAIL genes by cancer cells. To address these drawbacks, translational researchers have utilized drug delivery platforms. Although, these platforms can improve TRAIL-based therapies, they are unable to sufficiently translate the full potential of TRAIL-targeting to clinically viable products. Herein, we first summarize the complex biology of TRAIL signaling, including TRAILs cross-talk with other signaling pathways and immune cells. Next, we focus on known resistant mechanisms to TRAIL-based therapies. Then, we discuss how nano-formulation has the potential to enhance the therapeutic efficacy of TRAIL protein. Finally, we specify strategies with the potential to overcome the challenges that cannot be addressed via nanotechnology alone, including the alternative methods of TRAIL-expressing circulating cells, tumor-targeting bacteria, viruses, and exosomes.
Collapse
|
10
|
Mononuclear but Not Polymorphonuclear Phagocyte Depletion Increases Circulation Times and Improves Mammary Tumor-Homing Efficiency of Donor Bone Marrow-Derived Monocytes. Cancers (Basel) 2019; 11:cancers11111752. [PMID: 31717301 PMCID: PMC6896201 DOI: 10.3390/cancers11111752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 01/05/2023] Open
Abstract
Tumor associated macrophages are an essential part of the tumor microenvironment. Consequently, bone marrow-derived monocytes (BMDMs) are continuously recruited to tumors and are therefore seen as ideal delivery vehicles with tumor-targeting properties. By using immune cell depleting agents and macroscopic in vivo fluorescence imaging, we demonstrated that removal of endogenous monocytes and macrophages (but not neutrophils) leads to an increased tumor accumulation of exogenously administered BMDMs. By means of intravital microscopy (IVM), we confirmed our macroscopic findings on a cellular level and visualized in real time the migration of the donor BMDMs in the tumors of living animals. Moreover, IVM also revealed that clodronate-mediated depletion drastically increases the circulation time of the exogenously administered BMDMs. In summary, these new insights illustrate that impairment of the mononuclear phagocyte system increases the circulation time and tumor accumulation of donor BMDMs.
Collapse
|
11
|
Shomali N, Gharibi T, Vahedi G, Mohammed RN, Mohammadi H, Salimifard S, Marofi F. Mesenchymal stem cells as carrier of the therapeutic agent in the gene therapy of blood disorders. J Cell Physiol 2019; 235:4120-4134. [PMID: 31691976 DOI: 10.1002/jcp.29324] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
Abstract
Nonhematopoietic stem cells as a delivery platform of therapeutic useful genes have attracted widespread attention in recent years, owing to gained a long lifespan, easy separation, high proliferation, and high transfection capacity. Mesenchymal stem/stromal cells (MSCs) are the choice of the cells for gene and cell therapy due to high self-renewal capacity, high migration rate to the site of the tumor, and with immune suppressive and anti-inflammatory properties. Hence, it has a high potential of safety genetic modification of MSCs for antitumor gene expression and has paved the way for the clinical application of these cells to target the therapy of cancers and other diseases. The aim of gene therapy is targeted treatment of cancers and diseases through recovery, change, or enhancement cell performance to the sustained secretion of useful therapeutic proteins and induction expression of the functional gene in intended tissue. Recent developments in the vectors designing leading to the increase and durability of expression and improvement of the safety of the vectors that overcome a lot of problems, such as durability of expression and the host immune response. Nowadays, gene therapy approach is used by MSCs as a delivery vehicle in the preclinical and the clinical trials for the secretion of erythropoietin, recombinant antibodies, coagulation factors, cytokines, as well as angiogenic inhibitors in many blood disorders like anemia, hemophilia, and malignancies. In this study, we critically discuss the status of gene therapy by MSCs as a delivery vehicle for the treatment of blood disorders. Finally, the results of clinical trial studies are assessed, highlighting promising advantages of this emerging technology in the clinical setting.
Collapse
Affiliation(s)
- Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Vahedi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Rebar N Mohammed
- Bone Marrow Transplant Center, Hiwa Cancer Hospital, Suleimanyah, Iraq.,Department of Microbiology, College of Veterinary Medicine, University of Sulaimani, Suleimanyah, Iraq
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Sevda Salimifard
- Department of Hematology and Blood Transfusion, School of Allied Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Li W, Pan H, He H, Meng X, Ren Q, Gong P, Jiang X, Liang Z, Liu L, Zheng M, Shao X, Ma Y, Cai L. Bio-Orthogonal T Cell Targeting Strategy for Robustly Enhancing Cytotoxicity against Tumor Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804383. [PMID: 30566283 DOI: 10.1002/smll.201804383] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/02/2018] [Indexed: 06/09/2023]
Abstract
T cells can kill tumor cells by cell surface immunological recognition, but low affinity for tumor-associated antigens could lead to T cell off-target effects. Herein, a universal T cell targeting strategy based on bio-orthogonal chemistry and glycol-metabolic engineering is introduced to enhance recognition and cytotoxicity of T cells in tumor immunotherapy. Three kinds of bicycle [6.1.0] nonyne (BCN)-modified sugars are designed and synthesized, in which Ac4 ManN-BCN shows efficient incorporation into wide tumor cells with a BCN motif on surface glycans. Meanwhile, activated T cells are treated with Ac4 GalNAz to introduce azide (N3 ) on the cell surface, initiating specific tumor targeting through a bio-orthogonal click reaction between N3 and BCN. This artificial targeting strategy remarkably enhances recognition and migration of T cells to tumor cells, and increases the cytotoxicity 2 to 4 times for T cells against different kinds of tumor cells. Surprisingly, based on this strategy, the T cells even exhibit similar cytotoxicity with the chimeric antigen receptor T-cell against Raji cells in vitro at the effector: target cell ratios (E:T) of 1:1. Such a universal bio-orthogonal T cell-targeting strategy might further broaden applications of T cell therapy against tumors and provide a new strategy for T cell modification.
Collapse
Affiliation(s)
- Wenjun Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huamei He
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaoqing Meng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qian Ren
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xin Jiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Zhenguo Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Lanlan Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Ximing Shao
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yifan Ma
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| |
Collapse
|
13
|
Targeting GD2-positive glioblastoma by chimeric antigen receptor empowered mesenchymal progenitors. Cancer Gene Ther 2018; 27:558-570. [PMID: 30464207 PMCID: PMC7445885 DOI: 10.1038/s41417-018-0062-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/06/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022]
Abstract
Tumor targeting by genetically modified mesenchymal stromal/stem cells (MSCs) carrying anti-cancer molecules represents a promising cell-based strategy. We previously showed that the pro-apoptotic agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can be successfully delivered by MSCs to cancer sites. While the interaction between TRAIL and its receptors is clear, more obscure is the way in which MSCs can selectively target tumors and their antigens. Several neuroectoderm-derived neoplasms, including glioblastoma (GBM), sarcomas, and neuroblastoma, express high levels of the tumor-associated antigen GD2. We have already challenged this cell surface disialoganglioside by a chimeric antigen receptor (CAR)-T cell approach against neuroblastoma. With the intent to maximize the therapeutic profile of MSCs delivering TRAIL, we here originally developed a bi-functional strategy where TRAIL is delivered by MSCs that are also gene modified with the truncated form of the anti-GD2 CAR (GD2 tCAR) to mediate an immunoselective recognition of GD2-positive tumors. These bi-functional MSCs expressed high levels of TRAIL and GD2 tCAR associated with a robust anti-tumor activity against GD2-positive GBM cells. Most importantly, the anti-cancer action was reinforced by the enhanced targeting potential of such bi-functional cells. Collectively, our results suggest that a truncated anti-GD2 CAR might be a powerful new tool to redirect MSCs carrying TRAIL against GD2-expressing tumors. This affinity-based dual targeting holds the promise to combine site-specific and prolonged retention of MSCs in GD2-expressing tumors, thereby providing a more effective delivery of TRAIL for still incurable cancers.
Collapse
|
14
|
Aizik G, Grad E, Golomb G. Monocyte-mediated drug delivery systems for the treatment of cardiovascular diseases. Drug Deliv Transl Res 2018; 8:868-882. [PMID: 29058205 DOI: 10.1007/s13346-017-0431-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Major advances have been achieved in understanding the mechanisms and risk factors leading to cardiovascular disorders and consequently developing new therapies. A strong inflammatory response occurs with a substantial recruitment of innate immunity cells in atherosclerosis, myocardial infarction, and restenosis. Monocytes and macrophages are key players in the healing process that ensues following injury. In the inflamed arterial wall, monocytes, and monocyte-derived macrophages have specific functions in the initiation and resolution of inflammation, principally through phagocytosis, and the release of inflammatory cytokines and reactive oxygen species. In this review, we will focus on delivery systems, mainly nanoparticles, for modulating circulating monocytes/monocyte-derived macrophages. We review the different strategies of depletion or modulation of circulating monocytes and monocyte subtypes, using polymeric nanoparticles and liposomes for the therapy of myocardial infarction and restenosis. We will further discuss the strategies of exploiting circulating monocytes for biological targeting of nanocarrier-based drug delivery systems for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Gil Aizik
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112001, Jerusalem, Israel
| | - Etty Grad
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112001, Jerusalem, Israel
| | - Gershon Golomb
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, 9112001, Jerusalem, Israel.
| |
Collapse
|
15
|
Kalimuthu S, Gangadaran P, Rajendran RL, Zhu L, Oh JM, Lee HW, Gopal A, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. A New Approach for Loading Anticancer Drugs Into Mesenchymal Stem Cell-Derived Exosome Mimetics for Cancer Therapy. Front Pharmacol 2018; 9:1116. [PMID: 30319428 PMCID: PMC6168623 DOI: 10.3389/fphar.2018.01116] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
Exosomes derived from mesenchymal stem cells (MSCs) have been evaluated for their potential to be used as drug delivery vehicles. Synthetically personalized exosome mimetics (EMs) could be the alternative vesicles for drug delivery. In this study, we aimed to isolate EMs from human MSCs. Cells were mixed with paclitaxel (PTX) and PTX-loaded EMs (PTX-MSC-EMs) were isolated and evaluated for their anticancer effects against breast cancer. EMs were isolated from human bone marrow-derived MSCs. MSCs (4 × 106 cells/mL) were mixed with or without PTX at different concentrations in phosphate-buffered saline (PBS) and serially extruded through 10-, 5-, and 1-μm polycarbonate membrane filters using a mini-extruder. MSCs were centrifuged to remove debris and the supernatant was filtered through a 0.22-μm filter, followed by ultracentrifugation to isolate EMs and drug-loaded EMs. EMs without encapsulated drug (MSC-EMs) and those with encapsulated PTX (PTX-MSC-EMs) were characterized by western blotting, nanoparticle tracking analysis (NTA), and transmission electron microscopy (TEM). The anticancer effects of MSC-EMs and PTX-MSC-EMs were assessed with breast cancer (MDA-MB-231) cells both in vitro and in vivo using optical imaging. EMs were isolated by the extrusion method and ultracentrifugation. The isolated vesicles were positive for membrane markers (ALIX and CD63) and negative for golgi (GM130) and endoplasmic (calnexin) marker proteins. NTA revealed the size of MSC-EM to be around 149 nm, while TEM confirmed its morphology. PTX-MSC-EMs significantly (p < 0.05) decreased the viability of MDA-MB-231 cells in vitro at increasing concentrations of EM. The in vivo tumor growth was significantly inhibited by PTX-MSC-EMs as compared to control and/or MSC-EMs. Thus, MSC-EMs were successfully isolated using simple procedures and drug-loaded MSC-EMs were shown to be therapeutically efficient for the treatment of breast cancer both in vitro and in vivo. MSC-EMs may be used as drug delivery vehicles for breast cancers.
Collapse
Affiliation(s)
- Senthilkumar Kalimuthu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Liya Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Arunnehru Gopal
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Se Hwan Baek
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
| |
Collapse
|
16
|
Zhu L, Gangadaran P, Kalimuthu S, Oh JM, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. Novel alternatives to extracellular vesicle-based immunotherapy - exosome mimetics derived from natural killer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S166-S179. [PMID: 30092165 DOI: 10.1080/21691401.2018.1489824] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exosomes are endogenous nanocarriers that can deliver biological information between cells. They are secreted by all cell types, including immune cells such as natural killer (NK) cells. However, mammalian cells release low quantities of exosomes, and the purification of exosomes is difficult. Here, nanovesicles were developed by extrusion of NK cells through filters with progressively smaller pore sizes to obtain exosome mimetics (NK-EM). The anti-tumour effect of the NK-EM was confirmed in vitro and in vivo. The morphological features of the NK-EM were revealed by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and Western blot. In vitro, the cytotoxicity of the NK-EM to cancer cells (glioblastoma, breast carcinoma, anaplastic thyroid cancer and hepatic carcinoma) was assessed using bioluminescence imaging (BLI) and CCK-8 assay. For in vivo study, a xenograft glioblastoma mouse model was established. The anti-tumour activity of NK-EM was confirmed in vivo by the significant decreases of BLI, size and weight (all p < .001) of the tumour compared with the control group. Moreover, NK-EM cytotoxicity for glioblastoma cells that related with decreased levels of the cell survival markers p-ERK and p-AKT, and increased levels of apoptosis protein markers cleaved-caspase 3, cytochrome-c and cleaved-PARP was confirmed. All those results suggest that NK-EM exert stronger killing effects to cancer cells compared with the traditional NK-Exo, at the same time, the tumour targeting ability of the NK-EM was obtained in vivo. Therefore, NK-EM might be a promising immunotherapeutic agent for treatment of cancer.
Collapse
Affiliation(s)
- Liya Zhu
- a Department of Nuclear Medicine, School of Medicine , Kyungpook National University, Kyungpook National University Hospital , Daegu , South Korea
| | - Prakash Gangadaran
- a Department of Nuclear Medicine, School of Medicine , Kyungpook National University, Kyungpook National University Hospital , Daegu , South Korea
| | - Senthilkumar Kalimuthu
- a Department of Nuclear Medicine, School of Medicine , Kyungpook National University, Kyungpook National University Hospital , Daegu , South Korea
| | - Ji Min Oh
- a Department of Nuclear Medicine, School of Medicine , Kyungpook National University, Kyungpook National University Hospital , Daegu , South Korea
| | - Se Hwan Baek
- a Department of Nuclear Medicine, School of Medicine , Kyungpook National University, Kyungpook National University Hospital , Daegu , South Korea
| | - Shin Young Jeong
- a Department of Nuclear Medicine, School of Medicine , Kyungpook National University, Kyungpook National University Hospital , Daegu , South Korea
| | - Sang-Woo Lee
- a Department of Nuclear Medicine, School of Medicine , Kyungpook National University, Kyungpook National University Hospital , Daegu , South Korea
| | - Jaetae Lee
- a Department of Nuclear Medicine, School of Medicine , Kyungpook National University, Kyungpook National University Hospital , Daegu , South Korea
| | - Byeong-Cheol Ahn
- a Department of Nuclear Medicine, School of Medicine , Kyungpook National University, Kyungpook National University Hospital , Daegu , South Korea
| |
Collapse
|
17
|
Combes F, Mc Cafferty S, Meyer E, Sanders NN. Off-Target and Tumor-Specific Accumulation of Monocytes, Macrophages and Myeloid-Derived Suppressor Cells after Systemic Injection. Neoplasia 2018; 20:848-856. [PMID: 30025228 PMCID: PMC6076377 DOI: 10.1016/j.neo.2018.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/16/2018] [Accepted: 06/19/2018] [Indexed: 01/26/2023] Open
Abstract
Solid tumors frequently coexist with a degree of local chronic inflammation. Recruited myeloid cells can therefore be considered as interesting vehicles for tumor-targeted delivery of therapeutic agents. Using in vivo imaging, the short-term accumulation of systemically injected monocytes, macrophages and myeloid-derived suppressor cells (MDSCs) was compared in mice bearing fat pad mammary carcinomas. Monocytes and macrophages demonstrated almost identical in vivo and ex vivo distribution patterns with maximal tumor-associated accumulation seen 48 hours after injection that remained stable over the 4-day follow-up period. However, a substantial accumulation of both cell types was also seen in the liver, spleen and lungs albeit decreasing over time in all three locations. The MDSCs exhibited a similar distribution pattern as the monocytes and macrophages, but demonstrated a better relative on-target fraction over time. Overall, our findings highlight off-target cell accumulation as a major obstacle in the use of myeloid cells as vehicles for therapeutic tumor-targeted agents and indicate that their short-term on-target accumulation is mainly of nonspecific nature.
Collapse
Affiliation(s)
- Francis Combes
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Séan Mc Cafferty
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Evelyne Meyer
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
18
|
Magnetically driven drug delivery systems improving targeted immunotherapy for colon-rectal cancer. J Control Release 2018; 280:76-86. [DOI: 10.1016/j.jconrel.2018.04.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 11/17/2022]
|
19
|
Goh WJ, Zou S, Lee CK, Ou YH, Wang JW, Czarny B, Pastorin G. EXOPLEXs: Chimeric Drug Delivery Platform from the Fusion of Cell-Derived Nanovesicles and Liposomes. Biomacromolecules 2017; 19:22-30. [DOI: 10.1021/acs.biomac.7b01176] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wei Jiang Goh
- NUS
Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), 28 Medical Drive, #05-01, Singapore 117456
- Department
of Pharmacy, National University of Singapore, Science Drive 2, S15#05, Singapore 117543
| | - Shui Zou
- Department
of Pharmacy, National University of Singapore, Science Drive 2, S15#05, Singapore 117543
| | - Choon Keong Lee
- Department
of Pharmacy, National University of Singapore, Science Drive 2, S15#05, Singapore 117543
| | - Yi-Hsuan Ou
- Department
of Pharmacy, National University of Singapore, Science Drive 2, S15#05, Singapore 117543
| | - Jiong-Wei Wang
- Department
of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228
- Cardiovascular
Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) and National University Health System (NUHS), Kent Ridge Road, Singapore 119074
| | - Bertrand Czarny
- Department
of Pharmacy, National University of Singapore, Science Drive 2, S15#05, Singapore 117543
| | - Giorgia Pastorin
- NUS
Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), 28 Medical Drive, #05-01, Singapore 117456
- Department
of Pharmacy, National University of Singapore, Science Drive 2, S15#05, Singapore 117543
- NUSNNI-NanoCore, National University of Singapore, T-Lab Level 11, 5A Engineering Drive 1, Singapore 117580
| |
Collapse
|
20
|
Goh WJ, Zou S, Ong WY, Torta F, Alexandra AF, Schiffelers RM, Storm G, Wang JW, Czarny B, Pastorin G. Bioinspired Cell-Derived Nanovesicles versus Exosomes as Drug Delivery Systems: a Cost-Effective Alternative. Sci Rep 2017; 7:14322. [PMID: 29085024 PMCID: PMC5662560 DOI: 10.1038/s41598-017-14725-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/16/2017] [Indexed: 01/16/2023] Open
Abstract
Cell Derived Nanovesicles (CDNs) have been developed from the rapidly expanding field of exosomes, representing a class of bioinspired Drug Delivery Systems (DDS). However, translation to clinical applications is limited by the low yield and multi-step approach in isolating naturally secreted exosomes. Here, we show the first demonstration of a simple and rapid production method of CDNs using spin cups via a cell shearing approach, which offers clear advantages in terms of yield and cost-effectiveness over both traditional exosomes isolation, and also existing CDNs fabrication techniques. The CDNs obtained were of a higher protein yield and showed similarities in terms of physical characterization, protein and lipid analysis to both exosomes and CDNs previously reported in the literature. In addition, we investigated the mechanisms of cellular uptake of CDNs in vitro and their biodistribution in an in vivo mouse tumour model. Colocalization of the CDNs at the tumour site in a cancer mouse model was demonstrated, highlighting the potential for CDNs as anti-cancer strategy. Taken together, the results suggest that CDNs could provide a cost-effective alternative to exosomes as an ideal drug nanocarrier.
Collapse
Affiliation(s)
- Wei Jiang Goh
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), Singapore, Singapore
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Shui Zou
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Wei Yi Ong
- Department of Anatomy Yong Loo Lin School of Medicine, National University Health System (NUHS), Singapore, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator (SLING), Centre for Life Sciences (CeLS), Singapore, Singapore
| | | | - Raymond M Schiffelers
- Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Gert Storm
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute (CVRI), National University Heart Centre Singapore (NUHCS) and National University Health System (NUHS), Singapore, Singapore
| | - Bertrand Czarny
- Department of Pharmacy, National University of Singapore, Singapore, Singapore.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.
| | - Giorgia Pastorin
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), Singapore, Singapore.
- Department of Pharmacy, National University of Singapore, Singapore, Singapore.
- NUSNNI-NanoCore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
21
|
Li G, Bonamici N, Dey M, Lesniak MS, Balyasnikova IV. Intranasal delivery of stem cell-based therapies for the treatment of brain malignancies. Expert Opin Drug Deliv 2017; 15:163-172. [PMID: 28895435 DOI: 10.1080/17425247.2018.1378642] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most aggressive malignant brain cancer in adults, and its poor prognosis and resistance to the existing standard of care require the development of innovative therapeutic modalities. The local delivery of stem cells as therapeutic carriers against glioma has produced encouraging results, but encounters obstacles with regards to the repeatability and invasiveness of administration. Intranasal delivery of therapeutic stem cells could overcome these obstacles, among others, as a noninvasive and easily repeatable mode of administration. AREAS COVERED This review describes nasal anatomy, routes of stem cell migration, and factors affecting stem cell delivery to hard-to-reach tumors. Furthermore, this review discusses the molecular mechanisms underlying stem cell migration following delivery, as well as possible stem cell effector functions to be considered in combination with intranasal delivery. EXPERT OPINION Further research is necessary to elucidate the dynamics of stem cell effector functions in the context of intranasal delivery and optimize their therapeutic potency. Nonetheless, the technique represents a promising tool against brain cancer and has the potential to be expanded for use against other brain pathologies.
Collapse
Affiliation(s)
- Gina Li
- a Department of Neurological Surgery , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Nicolas Bonamici
- a Department of Neurological Surgery , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Mahua Dey
- b Department of Neurological Surgery , Indiana University , Indianapolis , IN , USA
| | - Maciej S Lesniak
- a Department of Neurological Surgery , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Irina V Balyasnikova
- a Department of Neurological Surgery , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| |
Collapse
|
22
|
Goh WJ, Lee CK, Zou S, Woon EC, Czarny B, Pastorin G. Doxorubicin-loaded cell-derived nanovesicles: an alternative targeted approach for anti-tumor therapy. Int J Nanomedicine 2017; 12:2759-2767. [PMID: 28435256 PMCID: PMC5388236 DOI: 10.2147/ijn.s131786] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cell-derived nanovesicles (CDNs) are an emerging class of biological drug delivery systems (DDS) that retain the characteristics of the cells they were derived from, without the need for further surface functionalization. CDNs are also biocompatible, being derived from natural sources and also take advantage of the enhanced permeability and retention effect due to their nanodimensions. Furthermore, CDNs derived from monocytes were shown to have an in vivo targeting effect, accumulating at the tumor site in a previous study conducted in a mouse tumor model. Here, we report a systematic approach pertaining to various loading methods of the chemotherapeutic drug doxorubicin into our CDNs and examine the differential cellular uptake of drug-loaded CDNs in cancerous (HeLa) and healthy (HEK293) cell lines. Lastly, we proved that the addition of doxorubicin-loaded CDNs to the HeLa and HEK293 co-cultures showed a clear discrimination toward cancer cells at the cellular level. Our results further reinforce the intriguing potential of CDNs as an alternative targeted strategy for anticancer therapy.
Collapse
Affiliation(s)
- Wei Jiang Goh
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS).,Department of Pharmacy, National University of Singapore
| | | | - Shui Zou
- Department of Pharmacy, National University of Singapore
| | - Esther Cy Woon
- Department of Pharmacy, National University of Singapore
| | - Bertrand Czarny
- Department of Pharmacy, National University of Singapore.,School of Materials Science and Engineering (MSE) & Lee Kong Chian School of Medicine, Nanyang Technological University
| | - Giorgia Pastorin
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS).,Department of Pharmacy, National University of Singapore.,NUSNNI-NanoCore, National University of Singapore, T-Lab, Singapore, Singapore
| |
Collapse
|
23
|
Aharony I, Michowiz S, Goldenberg-Cohen N. The promise of stem cell-based therapeutics in ophthalmology. Neural Regen Res 2017; 12:173-180. [PMID: 28400789 PMCID: PMC5361491 DOI: 10.4103/1673-5374.200793] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The promising role of cellular therapies in the preservation and restoration of visual function has prompted intensive efforts to characterize embryonic, adult, and induced pluripotent stem cells for regenerative purposes. Three main approaches to the use of stem cells have been described: sustained drug delivery, immunomodulation, and differentiation into various ocular structures. Studies of the differentiation capacity of all three types of stem cells into epithelial, neural, glial and vascular phenotypes have reached proof-of-concept in culture, but the correction of vision is still in the early developmental stages, and the requirements for effective in vivo implementation are still unclear. We present an overview of some of the preclinical findings on stem-cell rescue and regeneration of the cornea and retina in acute injury and degenerative disorders.
Collapse
Affiliation(s)
- Israel Aharony
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shalom Michowiz
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Neurosurgery, Rabin Medical Center - Beilinson Hospital, Petach Tikva, Israel
| | - Nitza Goldenberg-Cohen
- The Krieger Eye Research Laboratory, Felsenstein Medical Research Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Ophthalmology, Bnai Zion Medical Center, Haifa, Israel
| |
Collapse
|
24
|
Tong HI, Kang W, Davy PMC, Shi Y, Sun S, Allsopp RC, Lu Y. Monocyte Trafficking, Engraftment, and Delivery of Nanoparticles and an Exogenous Gene into the Acutely Inflamed Brain Tissue - Evaluations on Monocyte-Based Delivery System for the Central Nervous System. PLoS One 2016; 11:e0154022. [PMID: 27115998 PMCID: PMC4846033 DOI: 10.1371/journal.pone.0154022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/07/2016] [Indexed: 11/23/2022] Open
Abstract
The ability of monocytes and monocyte-derived macrophages (MDM) to travel towards chemotactic gradient, traverse tissue barriers, and accumulate precisely at diseased sites makes them attractive candidates as drug carriers and therapeutic gene delivery vehicles targeting the brain, where treatments are often hampered by the blockade of the blood brain barrier (BBB). This study was designed to fully establish an optimized cell-based delivery system using monocytes and MDM, by evaluating their homing efficiency, engraftment potential, as well as carriage and delivery ability to transport nano-scaled particles and exogenous genes into the brain, following the non-invasive intravenous (IV) cell adoptive transfer in an acute neuroinflammation mouse model induced by intracranial injection of Escherichia coli lipopolysaccharides. We demonstrated that freshly isolated monocytes had superior inflamed-brain homing ability over MDM cultured in the presence of macrophage colony stimulating factor. In addition, brain trafficking of IV infused monocytes was positively correlated with the number of adoptive transferred cells, and could be further enhanced by transient disruption of the BBB with IV administration of Mannitol, Bradykinin or Serotonin right before cell infusion. A small portion of transmigrated cells was detected to differentiate into IBA-1 positive cells with microglia morphology in the brain. Finally, with the use of superparamagnetic iron oxide nanoparticles SHP30, the ability of nanoscale agent-carriage monocytes to enter the inflamed brain region was validated. In addition, lentiviral vector DHIV-101 was used to introduce green fluorescent protein (GFP) gene into monocytes, and the exogenous GFP gene was detected in the brain at 48 hours following IV infusion of the transduced monocytes. All together, our study has set up the optimized conditions for the more-in-depth tests and development of monocyte-mediated delivery, and our data supported the notion to use monocytes as a non-invasive cell-based delivery system for the brain.
Collapse
Affiliation(s)
- Hsin-I Tong
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, Hawaii, United Sates of America
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Wen Kang
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, Hawaii, United Sates of America
| | - Philip M. C. Davy
- Institute for Biogenesis Research, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Yingli Shi
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, Hawaii, United Sates of America
| | - Si Sun
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, Hawaii, United Sates of America
| | - Richard C. Allsopp
- Institute for Biogenesis Research, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Yuanan Lu
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, Hawaii, United Sates of America
- * E-mail:
| |
Collapse
|
25
|
Tong HI, Kang W, Shi Y, Zhou G, Lu Y. Physiological function and inflamed-brain migration of mouse monocyte-derived macrophages following cellular uptake of superparamagnetic iron oxide nanoparticles-Implication of macrophage-based drug delivery into the central nervous system. Int J Pharm 2016; 505:271-82. [PMID: 27001531 DOI: 10.1016/j.ijpharm.2016.03.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/05/2016] [Accepted: 03/18/2016] [Indexed: 02/05/2023]
Abstract
This study was designed to use superparamagnetic iron oxide nanoparticles (SPIONs) as evaluating tools to study monocyte-derived macrophages (MDM)-mediated delivery of small molecular agents into the diseased brains. MDM were tested with different-configured SPIONs at selected concentrations for their impacts on carrier cells' physiological and migratory properties, which were found to depend largely on particle size, coating, and treatment concentrations. SHP30, a SPION of 30-nm core size with oleic acids plus amphiphilic polymer coating, was identified to have high cellular uptake efficiency and cause little cytotoxic effects on MDM. At lower incubation dose (25μg/mL), few alteration was observed in carrier cells' physiological and in vivo migratory functions, as tested in a lipopolysaccharide-induced acute neuroinflammation mouse model. Nevertheless, significant increase in monocyte-to-macrophage differentiation, and decrease in in vivo carrier MDM inflamed-brain homing ability were found in groups treated with a higher dose of SHP30at 100μg/mL. Overall, our results have identified MDM treatment at 25μg/mL SHP30 resulted in little functional changes, provided valuable parameters for using SPIONs as evaluating tools to study MDM-mediated therapeutics carriage and delivery, and supported the concepts of using monocytes-macrophages as cellular vehicles to transport small molecular agents to the brain.
Collapse
Affiliation(s)
- Hsin-I Tong
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, HI 96822, USA; Department of Microbiology, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - Wen Kang
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - Yingli Shi
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - Guangzhou Zhou
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - Yuanan Lu
- Office of Public Health Studies, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
26
|
Levy O, Brennen WN, Han E, Rosen DM, Musabeyezu J, Safaee H, Ranganath S, Ngai J, Heinelt M, Milton Y, Wang H, Bhagchandani SH, Joshi N, Bhowmick N, Denmeade SR, Isaacs JT, Karp JM. A prodrug-doped cellular Trojan Horse for the potential treatment of prostate cancer. Biomaterials 2016; 91:140-150. [PMID: 27019026 DOI: 10.1016/j.biomaterials.2016.03.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/21/2016] [Accepted: 03/15/2016] [Indexed: 01/10/2023]
Abstract
Despite considerable advances in prostate cancer research, there is a major need for a systemic delivery platform that efficiently targets anti-cancer drugs to sites of disseminated prostate cancer while minimizing host toxicity. In this proof-of-principle study, human mesenchymal stem cells (MSCs) were loaded with poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) that encapsulate the macromolecule G114, a thapsigargin-based prostate specific antigen (PSA)-activated prodrug. G114-particles (∼950 nm in size) were internalized by MSCs, followed by the release of G114 as an intact prodrug from loaded cells. Moreover, G114 released from G114 MP-loaded MSCs selectively induced death of the PSA-secreting PCa cell line, LNCaP. Finally, G114 MP-loaded MSCs inhibited tumor growth when used in proof-of-concept co-inoculation studies with CWR22 PCa xenografts, suggesting that cell-based delivery of G114 did not compromise the potency of this pro-drug in-vitro or in-vivo. This study demonstrates a potentially promising approach to assemble a cell-based drug delivery platform, which inhibits cancer growth in-vivo without the need of genetic engineering. We envision that upon achieving efficient homing of systemically infused MSCs to cancer sites, this MSC-based platform may be developed into an effective, systemic 'Trojan Horse' therapy for targeted delivery of therapeutic agents to sites of metastatic PCa.
Collapse
Affiliation(s)
- Oren Levy
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - W Nathaniel Brennen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, United States
| | - Edward Han
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - David Marc Rosen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, United States
| | - Juliet Musabeyezu
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Helia Safaee
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Sudhir Ranganath
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Jessica Ngai
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Martina Heinelt
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Yuka Milton
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Hao Wang
- Department of Oncology, Division of Biostatistics at the Sidney Kimmel Comprehensive Cancer Center, United States
| | - Sachin H Bhagchandani
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Nitin Joshi
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States
| | - Neil Bhowmick
- The Samuel Oschin Comprehensive Cancer Institute at the Cedars-Sinai Medical Center, United States
| | - Samuel R Denmeade
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, United States.
| | - John T Isaacs
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, United States.
| | - Jeffrey M Karp
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, United States; Harvard Medical School, United States; Harvard Stem Cell Institute, United States; Harvard - MIT Division of Health Sciences and Technology, United States.
| |
Collapse
|
27
|
Huang B, Abraham WD, Zheng Y, Bustamante López SC, Luo SS, Irvine DJ. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci Transl Med 2016; 7:291ra94. [PMID: 26062846 DOI: 10.1126/scitranslmed.aaa5447] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tumor cells disseminate into compartments that are poorly accessible from circulation, which necessitates high doses of systemic chemotherapy. However, the effectiveness of many drugs, such as the potent topoisomerase I poison SN-38, is hampered by poor pharmacokinetics. To deliver SN-38 to lymphoma tumors in vivo, we took advantage of the fact that healthy lymphocytes can be programmed to phenocopy the biodistribution of the tumor cells. In a murine model of disseminated lymphoma, we expanded autologous polyclonal T cells ex vivo under conditions that retained homing receptors mirroring lymphoma cells, and functionalized these T cells to carry SN-38-loaded nanocapsules on their surfaces. Nanocapsule-functionalized T cells were resistant to SN-38 but mediated efficient killing of lymphoma cells in vitro. Upon adoptive transfer into tumor-bearing mice, these T cells served as active vectors to deliver the chemotherapeutic into tumor-bearing lymphoid organs. Cell-mediated delivery concentrated SN-38 in lymph nodes at levels 90-fold greater than free drug systemically administered at 10-fold higher doses. The live T cell delivery approach reduced tumor burden significantly after 2 weeks of treatment and enhanced survival under conditions where free SN-38 and SN-38-loaded nanocapsules alone were ineffective. These results suggest that tissue-homing lymphocytes can serve as specific targeting agents to deliver nanoparticles into sites difficult to access from the circulation, and thus improve the therapeutic index of chemotherapeutic drugs with unfavorable pharmacokinetics.
Collapse
Affiliation(s)
- Bonnie Huang
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Wuhbet D Abraham
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA. Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA
| | - Yiran Zheng
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Sandra C Bustamante López
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA. Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA
| | - Samantha S Luo
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA. Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA. Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA. Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
28
|
Tsai AK, Davila E. Producer T cells: Using genetically engineered T cells as vehicles to generate and deliver therapeutics to tumors. Oncoimmunology 2016; 5:e1122158. [PMID: 27467930 PMCID: PMC4910704 DOI: 10.1080/2162402x.2015.1122158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/11/2015] [Accepted: 11/14/2015] [Indexed: 12/27/2022] Open
Abstract
Adoptive cell transfer (ACT) is an emerging anticancer therapy that has shown promise in various malignancies. Redirecting antigen specificity by genetically engineering T cells to stably express receptors has become an effective variant of ACT. A novel extension of this approach is to utilize engineered T cells to produce and deliver anticancer therapeutics that enhance cytotoxic T cell function and simultaneously inhibit immunosuppressive processes. Here, we review the potential of using T cells as therapeutic-secreting vehicles for immunotherapies and present theoretical and established arguments in support of further development of this unique cell-based immunotherapy.
Collapse
Affiliation(s)
- Alexander K Tsai
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland , Baltimore, Baltimore, MD, USA
| | - Eduardo Davila
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, Baltimore, MD, USA; Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, MD, USA
| |
Collapse
|
29
|
Hitchhiking nanoparticles: Reversible coupling of lipid-based nanoparticles to cytotoxic T lymphocytes. Biomaterials 2016; 77:243-54. [DOI: 10.1016/j.biomaterials.2015.11.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 12/20/2022]
|
30
|
Huang WC, Shen MY, Chen HH, Lin SC, Chiang WH, Wu PH, Chang CW, Chiang CS, Chiu HC. Monocytic delivery of therapeutic oxygen bubbles for dual-modality treatment of tumor hypoxia. J Control Release 2015; 220:738-50. [DOI: 10.1016/j.jconrel.2015.09.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/31/2015] [Accepted: 09/09/2015] [Indexed: 01/24/2023]
|
31
|
Huang WC, Chiang WH, Cheng YH, Lin WC, Yu CF, Yen CY, Yeh CK, Chern CS, Chiang CS, Chiu HC. Tumortropic monocyte-mediated delivery of echogenic polymer bubbles and therapeutic vesicles for chemotherapy of tumor hypoxia. Biomaterials 2015; 71:71-83. [DOI: 10.1016/j.biomaterials.2015.08.033] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/14/2015] [Accepted: 08/16/2015] [Indexed: 10/23/2022]
|
32
|
He Q, Guo S, Qian Z, Chen X. Development of individualized anti-metastasis strategies by engineering nanomedicines. Chem Soc Rev 2015; 44:6258-6286. [PMID: 26056688 PMCID: PMC4540626 DOI: 10.1039/c4cs00511b] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metastasis is deadly and also tough to treat as it is much more complicated than the primary tumour. Anti-metastasis approaches available so far are far from being optimal. A variety of nanomedicine formulae provide a plethora of opportunities for developing new strategies and means for tackling metastasis. It should be noted that individualized anti-metastatic nanomedicines are different from common anti-cancer nanomedicines as they specifically target different populations of malignant cells. This review briefly introduces the features of the metastatic cascade, and proposes a series of nanomedicine-based anti-metastasis strategies aiming to block each metastatic step. Moreover, we also concisely introduce the advantages of several promising nanoparticle platforms and their potential for constructing state-of-the-art individualized anti-metastatic nanomedicines.
Collapse
Affiliation(s)
- Qianjun He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China.
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Khalin I, Alyautdin R, Kocherga G, Bakar MA. Targeted delivery of brain-derived neurotrophic factor for the treatment of blindness and deafness. Int J Nanomedicine 2015; 10:3245-67. [PMID: 25995632 PMCID: PMC4425321 DOI: 10.2147/ijn.s77480] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative causes of blindness and deafness possess a major challenge in their clinical management as proper treatment guidelines have not yet been found. Brain-derived neurotrophic factor (BDNF) has been established as a promising therapy against neurodegenerative disorders including hearing and visual loss. Unfortunately, the blood–retinal barrier and blood–cochlear barrier, which have a comparable structure to the blood–brain barrier prevent molecules of larger sizes (such as BDNF) from exiting the circulation and reaching the targeted cells. Anatomical features of the eye and ear allow use of local administration, bypassing histo-hematic barriers. This paper focuses on highlighting a variety of strategies proposed for the local administration of the BDNF, like direct delivery, viral gene therapy, and cell-based therapy, which have been shown to successfully improve development, survival, and function of spiral and retinal ganglion cells. The similarities and controversies for BDNF treatment of posterior eye diseases and inner ear diseases have been analyzed and compared. In this review, we also focus on the possibility of translation of this knowledge into clinical practice. And finally, we suggest that using nanoparticulate drug-delivery systems may substantially contribute to the development of clinically viable techniques for BDNF delivery into the cochlea or posterior eye segment, which, ultimately, can lead to a long-term or permanent rescue of auditory and optic neurons from degeneration.
Collapse
Affiliation(s)
- Igor Khalin
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Renad Alyautdin
- Scientific Centre for Expertise of Medical Application Products, Moscow, Russia
| | - Ganna Kocherga
- Ophthalmic Microsurgery Department, International Medical Center Oftalmika, Kharkiv, Ukraine
| | - Muhamad Abu Bakar
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Jang SC, Gho YS. Could bioengineered exosome-mimetic nanovesicles be an efficient strategy for the delivery of chemotherapeutics? Nanomedicine (Lond) 2014; 9:177-80. [PMID: 24552557 DOI: 10.2217/nnm.13.206] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Su Chul Jang
- Department of Life Sciences, Pohang University of Science & Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Kyungbuk, 790-784, Republic of Korea
| | | |
Collapse
|
35
|
The myeloid-binding peptide adenoviral vector enables multi-organ vascular endothelial gene targeting. J Transl Med 2014; 94:881-92. [PMID: 24955893 PMCID: PMC4117817 DOI: 10.1038/labinvest.2014.78] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/25/2014] [Accepted: 05/08/2014] [Indexed: 01/05/2023] Open
Abstract
Vascular endothelial cells (ECs) are ideal gene therapy targets as they provide widespread tissue access and are the first contact surfaces following intravenous vector administration. Human recombinant adenovirus serotype 5 (Ad5) is the most frequently used gene transfer system because of its appreciable transgene payload capacity and lack of somatic mutation risk. However, standard Ad5 vectors predominantly transduce liver but not the vasculature following intravenous administration. We recently developed an Ad5 vector with a myeloid cell-binding peptide (MBP) incorporated into the knob-deleted, T4 fibritin chimeric fiber (Ad.MBP). This vector was shown to transduce pulmonary ECs presumably via a vector handoff mechanism. Here we tested the body-wide tropism of the Ad.MBP vector, its myeloid cell necessity, and vector-EC expression dose response. Using comprehensive multi-organ co-immunofluorescence analysis, we discovered that Ad.MBP produced widespread EC transduction in the lung, heart, kidney, skeletal muscle, pancreas, small bowel, and brain. Surprisingly, Ad.MBP retained hepatocyte tropism albeit at a reduced frequency compared with the standard Ad5. While binding specifically to myeloid cells ex vivo, multi-organ Ad.MBP expression was not dependent on circulating monocytes or macrophages. Ad.MBP dose de-escalation maintained full lung-targeting capacity but drastically reduced transgene expression in other organs. Swapping the EC-specific ROBO4 for the CMV promoter/enhancer abrogated hepatocyte expression but also reduced gene expression in other organs. Collectively, our multilevel targeting strategy could enable therapeutic biological production in previously inaccessible organs that pertain to the most debilitating or lethal human diseases.
Collapse
|
36
|
A myeloid cell-binding adenovirus efficiently targets gene transfer to the lung and escapes liver tropism. Gene Ther 2012; 20:733-41. [PMID: 23171918 DOI: 10.1038/gt.2012.91] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 12/19/2022]
Abstract
Specific and efficient gene delivery to the lung has been hampered by liver sequestration of adenovirus serotype 5 (Ad5) vectors. The complexity of Ad5 liver tropism has largely been unraveled, permitting improved efficacy of Ad5 gene delivery. However, Kupffer cell (KC) scavenging and elimination of Ad5 still represent major obstacles to lung gene delivery strategies. KC uptake substantially reduces bioavailability of Ad5 for target tissues and compensatory dose escalation leads to acute hepatotoxicity and a potent innate immune response. Here, we report a novel lung-targeting strategy through redirection of Ad5 binding to the concentrated leukocyte pool within the pulmonary microvasculature. We demonstrate that this leukocyte-binding approach retargets Ad5 specifically to lung endothelial cells and prevents KC uptake and hepatocyte transduction, resulting in 165,000-fold enhanced lung targeting, compared with Ad5. In addition, myeloid cell-specific binding is preserved in single-cell lung suspensions and only Ad.MBP-coated myeloid cells achieved efficient endothelial cell transduction ex vivo. These findings demonstrate that KC sequestration of Ad5 can be prevented through more efficient uptake of virions in target tissues and suggest that endothelial transduction is achieved by leukocyte-mediated 'hand-off' of Ad.
Collapse
|
37
|
Park HYL, Kim JH, Sun Kim H, Park CK. Stem cell-based delivery of brain-derived neurotrophic factor gene in the rat retina. Brain Res 2012; 1469:10-23. [PMID: 22750585 DOI: 10.1016/j.brainres.2012.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 05/18/2012] [Accepted: 06/06/2012] [Indexed: 12/28/2022]
Abstract
As an alternative to a viral vector, the application of stem cells to transfer specific genes is under investigation in various organs. Using this strategy may provide more effective method to supply neurotrophic factor to the neurodegenerative diseases caused by neurotrophic factor deprivation. This study investigated the possibility and efficacy of stem cell-based delivery of the brain-derived neurotrophic factor (BDNF) gene to rat retina. Rat BDNF cDNA was transduced into rat bone marrow mesenchymal stem cells (rMSCs) using a retroviral vector. Its incorporation into the experimental rat retina and the expression of BDNF after intravitreal injection or subretinal injection were detected by real-time PCR, western blot analysis, and immunohistochemical staining. For the incorporated rMSCs, retinal-specific marker staining was performed to investigate the changes in morphology and the characteristics of the stem cells. Transduction of the rMSCs by retrovirus was effective, and the transduced rMSCs expressed high levels of the BDNF gene and protein. The subretinal injection of rMSCs produced rMSC migration and incorporation into the rat retina (about 15.7% incorporation rate), and retinal BDNF mRNA and protein expression was increased at 4 weeks after transplantation. When subretinal injection of rMSCs was applied to axotomized rat retina, it significantly increased the expression of BDNF until 4 weeks after transplantation. Some of the transplanted rMSCs exhibited morphological changes, but the retinal-specific marker stain was not sufficient to indicate whether neuronal differentiation had occurred. Using mesenchymal stem cells to deliver the BDNF gene to the retina may provide new treatment for glaucoma.
Collapse
Affiliation(s)
- Hae-Young Lopilly Park
- Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Seocho-ku, Seoul 137-701, Republic of Korea
| | | | | | | |
Collapse
|
38
|
Jo JI, Okazaki A, Nagane K, Yamamoto M, Tabata Y. Preparation of Cationized Polysaccharides as Gene Transfection Carrier for Bone Marrow-Derived Mesenchymal Stem Cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 21:185-204. [DOI: 10.1163/156856209x415495] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jun-ichiro Jo
- a Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Arimichi Okazaki
- b Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kentaro Nagane
- c Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masaya Yamamoto
- d Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan, PRESTO, JST, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Yasuhiko Tabata
- e Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;,
| |
Collapse
|
39
|
Abstract
As an alternative to recombinant protein administration, ex vivo gene-modified cells may provide a novel strategy for systemic delivery of therapeutic proteins. This approach has been used in preclinical and clinical studies of a plethora of pathological conditions, including anemia, hemophilia and cancer for the production of erythropoietin, coagulation factors, immunostimulatory cytokines, recombinant antibodies and angiogenesis inhibitors. Cell delivery vehicles may also be varied: autologous or allogeneic, precursor or terminally differentiated cells, with targeting properties or immobilized in immunoprotective devices. This field did not meet the expectation raised initially, mainly because of difficulties with obtaining therapeutic plasma levels and the short lifespan of producer cells that hampered clinical application. Different non-hematopoietic stem/progenitor cells have emerged as potential delivery vehicles, since they are easy to obtain, expand and transduce, and they exhibit prolonged lifespans (with mesenchymal stem cells probably being the most popular cell type, but not the only one). Special emphasis is placed on the different routes used to deliver these cellular vehicles and the controversies about their targeting abilities.
Collapse
|
40
|
Gamble LJ, Matthews QL. Current progress in the development of a prophylactic vaccine for HIV-1. DRUG DESIGN DEVELOPMENT AND THERAPY 2010; 5:9-26. [PMID: 21267356 PMCID: PMC3023272 DOI: 10.2147/dddt.s6959] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since its discovery and characterization in the early 1980s as a virus that attacks the immune system, there has been some success for the treatment of human immunodeficiency virus-1 (HIV-1) infection. However, due to the overwhelming public health impact of this virus, a vaccine is needed urgently. Despite the tireless efforts of scientist and clinicians, there is still no safe and effective vaccine that provides sterilizing immunity. A vaccine that provides sterilizing immunity against HIV infection remains elusive in part due to the following reasons: 1) degree of diversity of the virus, 2) ability of the virus to evade the hosts' immunity, and 3) lack of appropriate animal models in which to test vaccine candidates. There have been several attempts to stimulate the immune system to provide protection against HIV-infection. Here, we will discuss attempts that have been made to induce sterilizing immunity, including traditional vaccination attempts, induction of broadly neutralizing antibody production, DNA vaccines, and use of viral vectors. Some of these attempts show promise pending continued research efforts.
Collapse
Affiliation(s)
- Lena J Gamble
- Department of Medicine, The Gene Therapy Center, University of Alabama at Birmingham, 35294, USA
| | | |
Collapse
|
41
|
Dudek AZ. Endothelial lineage cell as a vehicle for systemic delivery of cancer gene therapy. Transl Res 2010; 156:136-46. [PMID: 20801410 DOI: 10.1016/j.trsl.2010.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 01/14/2023]
Abstract
A major limitation of cancer gene therapy is the difficulty of delivering a therapeutic gene to distant sites of metastatic disease. A promising strategy to address this difficulty is to use expanded ex vivo cells to produce a therapeutic protein. As with other approaches to gene therapy, this strategy is attractive when the therapeutic protein is unstable ex vivo or has a short circulating half life in vivo. The initial step to develop a cancer gene therapy using autologous cell delivery is the identification of a cell type that migrates to the tumor site, is readily available for harvesting, and is manipulated easily ex vivo. Recent evidence suggests that endothelial progenitor, precursor, and blood outgrowth endothelial cells are attracted to the tumor vasculature by its angiogenic drive. Here, we review recent advances in the study of circulating endothelial cell-mediated tumor vasculogenesis and discuss the advantages and challenges of bringing endothelial lineage-based cancer gene therapy closer to clinical application.
Collapse
Affiliation(s)
- Arkadiusz Z Dudek
- Division of Hematology, Oncologyand Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
42
|
Komarova S, Roth J, Alvarez R, Curiel DT, Pereboeva L. Targeting of mesenchymal stem cells to ovarian tumors via an artificial receptor. J Ovarian Res 2010; 3:12. [PMID: 20500878 PMCID: PMC2883983 DOI: 10.1186/1757-2215-3-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 05/25/2010] [Indexed: 02/07/2023] Open
Abstract
Background Mesenchymal Progenitor/Stem Cells (MSC) respond to homing cues providing an important mechanism to deliver therapeutics to sites of injury and tumors. This property has been confirmed by many investigators, however, the efficiency of tumor homing needs to be improved for effective therapeutic delivery. We investigated the feasibility of enhancing MSC tumor targeting by expressing an artificial tumor-binding receptor on the MSC surface. Methods Human MSC expressing an artificial receptor that binds to erbB2, a tumor cell marker, were obtained by transduction with genetically modified adenoviral vectors encoding an artificial receptor (MSC-AR). MSC-AR properties were tested in vitro in cell binding assays and in vivo using two model systems: transient transgenic mice that express human erbB2 in the lungs and ovarian xenograft tumor model. The levels of luciferase-labeled MSCs in erbB2-expressing targeted sites were evaluated by measuring luciferase activity using luciferase assay and imaging. Results The expression of AR enhanced binding of MSC-AR to erbB2-expressing cells in vitro, compared to unmodified MSCs. Furthermore, we have tested the properties of erbB2-targeted MSCs in vivo and demonstrated an increased retention of MSC-AR in lungs expressing erbB2. We have also confirmed increased numbers of erbB2-targeted MSCs in ovarian tumors, compared to unmodified MSC. The kinetic of tumor targeting by ip injected MSC was also investigated. Conclusion These data demonstrate that targeting abilities of MSCs can be enhanced via introduction of artificial receptors. The application of this strategy for tumor cell-based delivery could increase a number of cell carriers in tumors and enhance efficacy of cell-based therapy.
Collapse
Affiliation(s)
- Svetlana Komarova
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294- 2172, USA.
| | | | | | | | | |
Collapse
|
43
|
Factory neovessels: engineered human blood vessels secreting therapeutic proteins as a new drug delivery system. Gene Ther 2010; 17:745-51. [PMID: 20336155 DOI: 10.1038/gt.2010.33] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Several works have shown the feasibility of engineering functional blood vessels in vivo using human endothelial cells (ECs). Going further, we explored the therapeutic potential of neovessels after gene-modifying the ECs for the secretion of a therapeutic protein. Given that these vessels are connected with the host vascular bed, we hypothesized that systemic release of the expressed protein is immediate. As a proof of principle, we used primary human ECs transduced with a lentiviral vector for the expression of a recombinant bispecific alphaCEA/alphaCD3 antibody. These ECs, along with mesenchymal stem cells as a source of mural cells, were embedded in Matrigel and subcutaneously implanted in nude mice. High antibody levels were detected in plasma for 1 month. Furthermore, the antibody exerted a therapeutic effect in mice bearing distant carcinoembryonic-antigen (CEA)-positive tumors after inoculation of human T cells. In summary, we show for the first time the therapeutic effect of a protein locally secreted by engineered human neovessels.
Collapse
|
44
|
Li J, Fatima A, Komarova S, Ugai H, Uprety P, Roth JC, Wang M, Oster RA, Curiel DT, Matthews QL. Evaluation of adenovirus capsid labeling versus transgene expression. Virol J 2010; 7:21. [PMID: 20102632 PMCID: PMC2824641 DOI: 10.1186/1743-422x-7-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 01/26/2010] [Indexed: 02/04/2023] Open
Abstract
Adenoviral vectors have been utilized for a variety of gene therapy applications. Our group has incorporated bioluminescent, fluorographic reporters, and/or suicide genes within the adenovirus genome for analytical and/or therapeutic purposes. These molecules have also been incorporated as capsid components. Recognizing that incorporations at either locale yield potential advantages and disadvantages, our report evaluates the benefits of transgene incorporation versus capsid incorporation. To this end, we have genetically incorporated firefly luciferase within the early region 3 or at minor capsid protein IX and compared vector functionality by means of reporter readout.
Collapse
Affiliation(s)
- Jing Li
- Division of Human Gene Therapy, Department of Medicine, Gene Therapy Center, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dendritic cells transduced with lentiviral vectors expressing VIP differentiate into VIP-secreting tolerogenic-like DCs. Mol Ther 2010; 18:1035-45. [PMID: 20068554 DOI: 10.1038/mt.2009.293] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dendritic cells (DCs) initiate immune responses as well as tolerance. We showed previously that the neuropeptide vasoactive intestinal peptide (VIP) suppresses innate immune responses, modulates adaptive responses by generating regulatory T cells (Treg) through the induction of tolerogenic DCs (tDCs), and has therapeutic effects in models of autoimmune/inflammatory disorders. Systemic VIP administration is limited by its short biological half-life and by its pleiotropic effects on the cardiovascular system and gastrointestinal tract. Therefore, we used lentiviral vectors to genetically engineer VIP-expressing bone marrow-derived DC (BMDC) and characterized the transduced LentiVIP-DC in terms of phenotype and therapeutic effects in models of experimental autoimmune encephalomyelitis (EAE) and cecal ligation and puncture (CLP) sepsis. LentiVIP-DCs secrete VIP, and resemble tDCs through lack of co-stimulatory molecule upregulation, lack of proinflammatory cytokine secretion, increased interleukin (IL)-10 production, and poor stimulation of allogeneic T cells. A single inoculation of LentiVIP-DC in EAE or CLP mice had therapeutic effects, which correlated with reduced expression of proinflammatory cytokines and increased IL-10 production in spinal cord and peritoneal fluid, respectively. In contrast to systemic VIP administration that requires repeated, high-dose inoculations, local delivery of VIP by LentiVIP-DC may represent a promising therapeutic tool for the treatment of autoimmune diseases and inflammatory disorders.
Collapse
|
46
|
Tran N, Webster TJ. Magnetic nanoparticles: biomedical applications and challenges. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm00994f] [Citation(s) in RCA: 291] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Compte M, Cuesta ÁM, Sánchez-Martín D, Alonso-Camino V, Vicario JL, Sanz L, Álvarez-Vallina L. Tumor immunotherapy using gene-modified human mesenchymal stem cells loaded into synthetic extracellular matrix scaffolds. Stem Cells 2009; 27:753-60. [PMID: 19096041 PMCID: PMC2729675 DOI: 10.1634/stemcells.2008-0831] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mesenchymal stem cells (MSCs) are appealing as gene therapy cell vehicles given their ease of expansion and transduction. However, MSCs exhibit immunomodulatory and proangiogenic properties that may pose a risk in their use in anticancer therapy. For this reason, we looked for a strategy to confine MSCs to a determined location, compatible with a clinical application. Human MSCs genetically modified to express luciferase (MSCluc), seeded in a synthetic extracellular matrix (sECM) scaffold (sentinel scaffold) and injected subcutaneously in immunodeficient mice, persisted for more than 40 days, as assessed by bioluminescence imaging in vivo. MSCs modified to express a bispecific α-carcinoembryonic antigen (αCEA)/αCD3 diabody (MSCdAb) and seeded in an sECM scaffold (therapeutic scaffolds) supported the release of functional diabody into the bloodstream at detectable levels for at least 6 weeks after implantation. Furthermore, when therapeutic scaffolds were implanted into CEA-positive human colon cancer xenograft-bearing mice and human T lymphocytes were subsequently transferred, circulating αCEA/αCD3 diabody activated T cells and promoted tumor cell lysis. Reduction of tumor growth in MSCdAb-treated mice was statistically significant compared with animals that only received MSCluc. In summary, we report here for the first time that human MSCs genetically engineered to secrete a bispecific diabody, seeded in an sECM scaffold and implanted in a location distant from the primary tumor, induce an effective antitumor response and tumor regression.
Collapse
Affiliation(s)
- Marta Compte
- Molecular Immunology Unit, Hospital Universitario Puerta de HierroMadrid, Spain
| | - Ángel M Cuesta
- Molecular Immunology Unit, Hospital Universitario Puerta de HierroMadrid, Spain
| | | | | | | | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de HierroMadrid, Spain
| | | |
Collapse
|