1
|
Kmiec EB, Bloh K. A toolmaker's perspective on CRISPR-directed gene editing as a therapeutic strategy for leukemia and beyond. Expert Rev Hematol 2021; 14:587-592. [PMID: 34047246 DOI: 10.1080/17474086.2021.1935853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Eric B Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, USA
| | - Kevin Bloh
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, USA.,University of Delaware, Department of Medical and Molecular Sciences, College of Health Sciences, Newark, USA
| |
Collapse
|
2
|
Bloh K, Rivera-Torres N. A Consensus Model of Homology-Directed Repair Initiated by CRISPR/Cas Activity. Int J Mol Sci 2021; 22:3834. [PMID: 33917142 PMCID: PMC8067812 DOI: 10.3390/ijms22083834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/26/2022] Open
Abstract
The mechanism of action of ssODN-directed gene editing has been a topic of discussion within the field of CRISPR gene editing since its inception. Multiple comparable, but distinct, pathways have been discovered for DNA repair both with and without a repair template oligonucleotide. We have previously described the ExACT pathway for oligo-driven DNA repair, which consisted of a two-step DNA synthesis-driven repair catalyzed by the simultaneous binding of the repair oligonucleotide (ssODN) upstream and downstream of the double-strand break. In order to better elucidate the mechanism of ExACT-based repair, we have challenged the assumptions of the pathway with those outlines in other similar non-ssODN-based DNA repair mechanisms. This more comprehensive iteration of the ExACT pathway better described the many different ways where DNA repair can occur in the presence of a repair oligonucleotide after CRISPR cleavage, as well as how these previously distinct pathways can overlap and lead to even more unique repair outcomes.
Collapse
Affiliation(s)
- Kevin Bloh
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, ChristianaCare, 4701 Ogletown-Stanton Road, Newark, DE 19710, USA;
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19710, USA
| | - Natalia Rivera-Torres
- Gene Editing Institute, Helen F. Graham Cancer Center & Research Institute, ChristianaCare, 4701 Ogletown-Stanton Road, Newark, DE 19710, USA;
| |
Collapse
|
3
|
On the Origins of Homology Directed Repair in Mammalian Cells. Int J Mol Sci 2021; 22:ijms22073348. [PMID: 33805897 PMCID: PMC8037881 DOI: 10.3390/ijms22073348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/22/2021] [Indexed: 11/26/2022] Open
Abstract
Over the course of the last five years, expectations surrounding our capacity to selectively modify the human genome have never been higher. The reduction to practice site-specific nucleases designed to cleave at a unique site within the DNA is now centerstage in the development of effective molecular therapies. Once viewed as being impossible, this technology now has great potential and, while cellular and molecular barriers persist to clinical implementations, there is little doubt that these barriers will be crossed, and human beings will soon be treated with gene editing tools. The most ambitious of these desires is the correction of genetic mutations resident within the human genome that are responsible for oncogenesis and a wide range of inherited diseases. The process by which gene editing activity could act to reverse these mutations to wild-type and restore normal protein function has been generally categorized as homology directed repair. This is a catch-all basket term that includes the insertion of short fragments of DNA, the replacement of long fragments of DNA, and the surgical exchange of single bases in the correction of point mutations. The foundation of homology directed repair lies in pioneering work that unravel the mystery surrounding genetic exchange using single-stranded DNA oligonucleotides as the sole gene editing agent. Single agent gene editing has provided guidance on how to build combinatorial approaches to human gene editing using the remarkable programmable nuclease complexes known as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and their closely associated (Cas) nucleases. In this manuscript, we outline the historical pathway that has helped evolve the current molecular toolbox being utilized for the genetic re-engineering of the human genome.
Collapse
|
4
|
Karapurkar JK, Antao AM, Kim KS, Ramakrishna S. CRISPR-Cas9 based genome editing for defective gene correction in humans and other mammals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:185-229. [PMID: 34127194 DOI: 10.1016/bs.pmbts.2021.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR/Cas9), derived from bacterial and archean immune systems, has received much attention from the scientific community as a powerful, targeted gene editing tool. The CRISPR/Cas9 system enables a simple, relatively effortless and highly specific gene targeting strategy through temporary or permanent genome regulation or editing. This endonuclease has enabled gene correction by taking advantage of the endogenous homology directed repair (HDR) pathway to successfully target and correct disease-causing gene mutations. Numerous studies using CRISPR support the promise of efficient and simple genome manipulation, and the technique has been validated in in vivo and in vitro experiments, indicating its potential for efficient gene correction at any genomic loci. In this chapter, we detailed various strategies related to gene editing using the CRISPR/Cas9 system. We also outlined strategies to improve the efficiency of gene correction via the HDR pathway and to improve viral and non-viral mediated gene delivery methods, with an emphasis on their therapeutic potential for correcting genetic disorder in humans and other mammals.
Collapse
Affiliation(s)
| | - Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
5
|
Lau CH, Tin C, Suh Y. CRISPR-based strategies for targeted transgene knock-in and gene correction. Fac Rev 2020; 9:20. [PMID: 33659952 PMCID: PMC7886068 DOI: 10.12703/r/9-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The last few years have seen tremendous advances in CRISPR-mediated genome editing. Great efforts have been made to improve the efficiency, specificity, editing window, and targeting scope of CRISPR/Cas9-mediated transgene knock-in and gene correction. In this article, we comprehensively review recent progress in CRISPR-based strategies for targeted transgene knock-in and gene correction in both homology-dependent and homology-independent approaches. We cover homology-directed repair (HDR), synthesis-dependent strand annealing (SDSA), microhomology-mediated end joining (MMEJ), and homology-mediated end joining (HMEJ) pathways for a homology-dependent strategy and alternative DNA repair pathways such as non-homologous end joining (NHEJ), base excision repair (BER), and mismatch repair (MMR) for a homology-independent strategy. We also discuss base editing and prime editing that enable direct conversion of nucleotides in genomic DNA without damaging the DNA or requiring donor DNA. Notably, we illustrate the key mechanisms and design principles for each strategy, providing design guidelines for multiplex, flexible, scarless gene insertion and replacement at high efficiency and specificity. In addition, we highlight next-generation base editors that provide higher editing efficiency, fewer undesired by-products, and broader targeting scope.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biomedical Engineering, Academic 1, 83 Tat Chee Avenue, City University of Hong Kong, Hong Kong
| | - Chung Tin
- Department of Biomedical Engineering, Academic 1, 83 Tat Chee Avenue, City University of Hong Kong, Hong Kong
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
6
|
van Ravesteyn TW, Arranz Dols M, Pieters W, Dekker M, te Riele H. Extensive trimming of short single-stranded DNA oligonucleotides during replication-coupled gene editing in mammalian cells. PLoS Genet 2020; 16:e1009041. [PMID: 33119594 PMCID: PMC7595315 DOI: 10.1371/journal.pgen.1009041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 08/10/2020] [Indexed: 11/19/2022] Open
Abstract
Through transfection of short single-stranded oligodeoxyribonucleotides (ssODNs) small genomic alterations can be introduced into mammalian cells with high precision. ssODNs integrate into the genome during DNA replication, but the resulting heteroduplex is prone to detection by DNA mismatch repair (MMR), which prevents effective gene modification. We have previously demonstrated that the suppressive action of MMR can be avoided when the mismatching nucleotide in the ssODN is a locked nucleic acid (LNA). Here, we reveal that LNA-modified ssODNs (LMOs) are not integrated as intact entities in mammalian cells, but are severely truncated before and after target hybridization. We found that single additional (non-LNA-modified) mutations in the 5’-arm of LMOs influenced targeting efficiencies negatively and activated the MMR pathway. In contrast, additional mutations in the 3’-arm did not affect targeting efficiencies and were not subject to MMR. Even more strikingly, homology in the 3’-arm was largely dispensable for effective targeting, suggestive for extensive 3’-end trimming. We propose a refined model for LMO-directed gene modification in mammalian cells that includes LMO degradation. The first step of many gene editing approaches in mammalian cells is to generate a targeted DNA lesion. By administering a repair template as second step, endogenous DNA repair mechanisms can be misled to introduce specific gene variants. However, subtle gene modification can also be achieved with high precision through a one-action protocol in the absence of DNA breaks. We have shown before that short single-stranded DNA molecules (LMOs) are very useful to introduce and study genetic variants that may predispose patients to cancer. While LMOs are known to integrate into the genome during DNA replication, the precise mechanism is poorly understood. We targeted mouse embryonic stem cells with differently designed LMOs to examine their effectiveness and editing outcomes. Based on these results we conclude that the two LMO termini are processed at different moments during the gene editing process. While the 3’-arm is degraded prior to LMO binding to the target site, the 5’-arm is degraded afterwards. Counterintuitively we also observe that partial degradation of the 3’-arm increases targeting efficiencies. Taken together our data provides novel mechanistic insight into our understanding of replication-coupled gene editing and may guide future LMO design strategies.
Collapse
Affiliation(s)
- Thomas W. van Ravesteyn
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Marcos Arranz Dols
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Wietske Pieters
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Marleen Dekker
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Hein te Riele
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
7
|
Pöhler M, Guttmann S, Nadzemova O, Lenders M, Brand E, Zibert A, Schmidt HH, Sandfort V. CRISPR/Cas9-mediated correction of mutated copper transporter ATP7B. PLoS One 2020; 15:e0239411. [PMID: 32997714 PMCID: PMC7526882 DOI: 10.1371/journal.pone.0239411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/05/2020] [Indexed: 01/14/2023] Open
Abstract
Wilson's disease (WD) is a monogenetic liver disease that is based on a mutation of the ATP7B gene and leads to a functional deterioration in copper (Cu) excretion in the liver. The excess Cu accumulates in various organs such as the liver and brain. WD patients show clinical heterogeneity, which can range from acute or chronic liver failure to neurological symptoms. The course of the disease can be improved by a life-long treatment with zinc or chelators such as D-penicillamine in a majority of patients, but serious side effects have been observed in a significant portion of patients, e.g. neurological deterioration and nephrotoxicity, so that a liver transplant would be inevitable. An alternative therapy option would be the genetic correction of the ATP7B gene. The novel gene therapy method CRISPR/Cas9, which has recently been used in the clinic, may represent a suitable therapeutic opportunity. In this study, we first initiated an artificial ATP7B point mutation in a human cell line using CRISPR/Cas9 gene editing, and corrected this mutation by the additional use of single-stranded oligo DNA nucleotides (ssODNs), simulating a gene correction of a WD point mutation in vitro. By the addition of 0.5 mM of Cu three days after lipofection, a high yield of CRISPR/Cas9-mediated ATP7B repaired cell clones was achieved (60%). Moreover, the repair efficiency was enhanced using ssODNs that incorporated three blocking mutations. The repaired cell clones showed a high resistance to Cu after exposure to increasing Cu concentrations. Our findings indicate that CRISPR/Cas9-mediated correction of ATP7B point mutations is feasible and may have the potential to be transferred to the clinic.
Collapse
Affiliation(s)
- Michael Pöhler
- Medizinische Klinik B, Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie, Universitätsklinikum Münster, Münster, Germany
| | - Sarah Guttmann
- Medizinische Klinik B, Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie, Universitätsklinikum Münster, Münster, Germany
| | - Oksana Nadzemova
- Medizinische Klinik B, Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie, Universitätsklinikum Münster, Münster, Germany
| | - Malte Lenders
- Medizinische Klinik D, Allgemeine Innere Medizin und Notaufnahme sowie Nieren- und Hochdruckkrankheiten und Rheumatologie, Universitätsklinikum Münster, Münster, Germany
| | - Eva Brand
- Medizinische Klinik D, Allgemeine Innere Medizin und Notaufnahme sowie Nieren- und Hochdruckkrankheiten und Rheumatologie, Universitätsklinikum Münster, Münster, Germany
| | - Andree Zibert
- Medizinische Klinik B, Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie, Universitätsklinikum Münster, Münster, Germany
| | - Hartmut H. Schmidt
- Medizinische Klinik B, Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie, Universitätsklinikum Münster, Münster, Germany
| | - Vanessa Sandfort
- Medizinische Klinik B, Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie, Universitätsklinikum Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
8
|
Bastola P, Song L, Gilger BC, Hirsch ML. Adeno-Associated Virus Mediated Gene Therapy for Corneal Diseases. Pharmaceutics 2020; 12:pharmaceutics12080767. [PMID: 32823625 PMCID: PMC7464341 DOI: 10.3390/pharmaceutics12080767] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
According to the World Health Organization, corneal diseases are the fourth leading cause of blindness worldwide accounting for 5.1% of all ocular deficiencies. Current therapies for corneal diseases, which include eye drops, oral medications, corrective surgeries, and corneal transplantation are largely inadequate, have undesirable side effects including blindness, and can require life-long applications. Adeno-associated virus (AAV) mediated gene therapy is an optimistic strategy that involves the delivery of genetic material to target human diseases through gene augmentation, gene deletion, and/or gene editing. With two therapies already approved by the United States Food and Drug Administration and 200 ongoing clinical trials, recombinant AAV (rAAV) has emerged as the in vivo viral vector-of-choice to deliver genetic material to target human diseases. Likewise, the relative ease of applications through targeted delivery and its compartmental nature makes the cornea an enticing tissue for AAV mediated gene therapy applications. This current review seeks to summarize the development of AAV gene therapy, highlight preclinical efficacy studies, and discuss potential applications and challenges of this technology for targeting corneal diseases.
Collapse
Affiliation(s)
- Prabhakar Bastola
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Liujiang Song
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brian C. Gilger
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Clinical Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Matthew L. Hirsch
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +1-919-966-0696
| |
Collapse
|
9
|
Saha SK, Saikot FK, Rahman MS, Jamal MAHM, Rahman SMK, Islam SMR, Kim KH. Programmable Molecular Scissors: Applications of a New Tool for Genome Editing in Biotech. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:212-238. [PMID: 30641475 PMCID: PMC6330515 DOI: 10.1016/j.omtn.2018.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/04/2023]
Abstract
Targeted genome editing is an advanced technique that enables precise modification of the nucleic acid sequences in a genome. Genome editing is typically performed using tools, such as molecular scissors, to cut a defined location in a specific gene. Genome editing has impacted various fields of biotechnology, such as agriculture; biopharmaceutical production; studies on the structure, regulation, and function of the genome; and the creation of transgenic organisms and cell lines. Although genome editing is used frequently, it has several limitations. Here, we provide an overview of well-studied genome-editing nucleases, including single-stranded oligodeoxynucleotides (ssODNs), transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs), and CRISPR-Cas9 RNA-guided nucleases (CRISPR-Cas9). To this end, we describe the progress toward editable nuclease-based therapies and discuss the minimization of off-target mutagenesis. Future prospects of this challenging scientific field are also discussed.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, 120 Neungdong-Ro, Seoul 05029, Republic of Korea.
| | - Forhad Karim Saikot
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | | | - S M Khaledur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - S M Riazul Islam
- Department of Computer Science and Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
10
|
New Turns for High Efficiency Knock-In of Large DNA in Human Pluripotent Stem Cells. Stem Cells Int 2018; 2018:9465028. [PMID: 30057628 PMCID: PMC6051061 DOI: 10.1155/2018/9465028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 04/22/2018] [Accepted: 05/13/2018] [Indexed: 12/26/2022] Open
Abstract
The groundbreaking CRISPR technology is revolutionizing biomedical research with its superior simplicity, high efficiency, and robust accuracy. Recent technological advances by a coupling CRISPR system with various DNA repair mechanisms have further opened up new opportunities to overcome existing challenges in knocking-in foreign DNA in human pluripotent stem cells, including embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC). In this review, we summarized the very recent development of CRISPR-based knock-in strategies and discussed the results obtained as well as potential applications in human ESC and iPSC.
Collapse
|
11
|
Gong L. Analysis of oligonucleotides by ion-pairing hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:2125-2134. [PMID: 28972295 DOI: 10.1002/rcm.8004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry (HILIC-LC/ESI-MS) has been proved to be useful for the quality control of oligonucleotides. However, the lack of separation for some oligonucleotides using HILIC-LC/MS has proved problematic. This study aimed to improve the resolving ability of HILIC-LC/MS. METHODS The study was performed on a Waters UPLC® system coupled to a Waters LCT premier XE ESI-TOF mass spectrometer using a Zorbax® RRHD HILIC column (2.1 mm × 100 mm, 1.8 μm). Buffer systems contained triethylammonium acetate (TEAA) and acetonitrile. The effects of the concentration of TEAA and the type of organic modifiers on the separation of oligonucleotides were investigated. RESULTS The results showed that the optimum concentration of TEAA is 10 mM and acetonitrile is a better organic solvent than methanol. The addition of TEAA in the HILIC mobile phase improved the separation of N from N + A significantly compared to the HILIC method buffered with ammonium acetate. The IP-HILIC chromatography has demonstrated that the separation of oligonucleotides is sequence dependent. In addition, the IP-HILIC method produces a much simpler mass spectrum of an oligonucleotide with very efficient desalting. CONCLUSIONS The HILIC-LC/MS method with the addition of TEAA at a MS-compatible concentration has improved the separation of oligonucleotides. The IP-HILIC-LC/MS method also produces very simple mass spectra with high desalting efficiency.
Collapse
Affiliation(s)
- Lingzhi Gong
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
12
|
Lee HJ, Lee KY, Jung KM, Park KJ, Lee KO, Suh JY, Yao Y, Nair V, Han JY. Precise gene editing of chicken Na+/H+ exchange type 1 (chNHE1) confers resistance to avian leukosis virus subgroup J (ALV-J). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:340-349. [PMID: 28899753 DOI: 10.1016/j.dci.2017.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Avian leukosis virus subgroup J (ALV-J), first isolated in the late 1980s, has caused economic losses to the poultry industry in many countries. As all chicken lines studied to date are susceptible to ALV infection, there is enormous interest in developing resistant chicken lines. The ALV-J receptor, chicken Na+/H+ exchange 1 (chNHE1) and the critical amino acid sequences involved in viral attachment and entry have already been characterized. However, there are no reported attempts to induce resistance to the virus by targeted genome modification of the receptor sequences. In an attempt to induce resistance to ALV-J infection, we used clustered regularly interspaced short palindromic repeats (CRISPR)-associated (CRISPR/Cas9)-based genome editing approaches to modify critical residues of the chNHE1 receptor in chicken cells. The susceptibility of the modified cell lines to ALV-J infection was examined using enhanced green fluorescent protein (EGFP)-expressing marker viruses. We showed that modifying the chNHE1 receptor by artificially generating a premature stop codon induced absolute resistance to viral infection, with mutations of the tryptophan residue at position 38 (Trp38) being very critical. Single-stranded oligodeoxynucleotide (ssODN)-mediated targeted recombination of the Trp38 region revealed that deletions involving the Trp38 residue were most effective in conferring resistance to ALV-J. Moreover, protein structure analysis of the chNHE1 receptor sequence suggested that its intrinsically disordered region undergoes local conformational changes through genetic alteration. Collectively, these results demonstrate that targeted mutations on chNHE1 alter the susceptibility to ALV-J and the technique is expected to contribute to develop disease-resistant chicken lines.
Collapse
Affiliation(s)
- Hong Jo Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| | - Kyung Youn Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| | - Kyung Min Jung
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| | - Kyung Je Park
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| | - Ko On Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Institute for Biomedical Sciences, Shinshu University, Nagano, Japan.
| | - Yongxiu Yao
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom.
| | - Venugopal Nair
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom.
| | - Jae Yong Han
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Institute for Biomedical Sciences, Shinshu University, Nagano, Japan.
| |
Collapse
|
13
|
Rivera-Torres N, Banas K, Bialk P, Bloh KM, Kmiec EB. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides. PLoS One 2017; 12:e0169350. [PMID: 28052104 PMCID: PMC5214427 DOI: 10.1371/journal.pone.0169350] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022] Open
Abstract
CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex.
Collapse
Affiliation(s)
- Natalia Rivera-Torres
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America
- Department of Medical Sciences University of Delaware, Newark, Delaware, United States of America
| | - Kelly Banas
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America
- Department of Medical Sciences University of Delaware, Newark, Delaware, United States of America
| | - Pawel Bialk
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America
| | - Kevin M. Bloh
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America
- Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Eric B. Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America
- Department of Medical Sciences University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|
14
|
Yi L, Li J. CRISPR-Cas9 therapeutics in cancer: promising strategies and present challenges. Biochim Biophys Acta Rev Cancer 2016; 1866:197-207. [PMID: 27641687 DOI: 10.1016/j.bbcan.2016.09.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 01/05/2023]
Abstract
Cancer is characterized by multiple genetic and epigenetic alterations that drive malignant cell proliferation and confer chemoresistance. The ability to correct or ablate such mutations holds immense promise for combating cancer. Recently, because of its high efficiency and accuracy, the CRISPR-Cas9 genome editing technique has been widely used in cancer therapeutic explorations. Several studies used CRISPR-Cas9 to directly target cancer cell genomic DNA in cellular and animal cancer models which have shown therapeutic potential in expanding our anticancer protocols. Moreover, CRISPR-Cas9 can also be employed to fight oncogenic infections, explore anticancer drugs, and engineer immune cells and oncolytic viruses for cancer immunotherapeutic applications. Here, we summarize these preclinical CRISPR-Cas9-based therapeutic strategies against cancer, and discuss the challenges and improvements in translating therapeutic CRISPR-Cas9 into clinical use, which will facilitate better application of this technique in cancer research. Further, we propose potential directions of the CRISPR-Cas9 system in cancer therapy.
Collapse
Affiliation(s)
- Lang Yi
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China.
| |
Collapse
|
15
|
Bialk P, Sansbury B, Rivera-Torres N, Bloh K, Man D, Kmiec EB. Analyses of point mutation repair and allelic heterogeneity generated by CRISPR/Cas9 and single-stranded DNA oligonucleotides. Sci Rep 2016; 6:32681. [PMID: 27609304 PMCID: PMC5016854 DOI: 10.1038/srep32681] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/10/2016] [Indexed: 11/25/2022] Open
Abstract
The repair of a point mutation can be facilitated by combined activity of a single-stranded oligonucleotide and a CRISPR/Cas9 system. While the mechanism of action of combinatorial gene editing remains to be elucidated, the regulatory circuitry of nucleotide exchange executed by oligonucleotides alone has been largely defined. The presence of the appropriate CRISPR/Cas9 system leads to an enhancement in the frequency of gene editing directed by single-stranded DNA oligonucleotides. While CRISPR/Cas9 executes double-stranded DNA cleavage efficiently, closure of the broken chromosomes is dynamic, as varying degrees of heterogeneity of the cleavage products appear to accompany the emergence of the corrected base pair. We provide a detailed analysis of allelic variance at and surrounding the target site. In one particular case, we report sequence alteration directed by a distinct member of the same gene family. Our data suggests that single-stranded DNA molecules may influence DNA junction heterogeneity created by CRISPR/Cas9.
Collapse
Affiliation(s)
- Pawel Bialk
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America
| | - Brett Sansbury
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America.,Department of Medical Laboratory Science, College of Health Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Natalia Rivera-Torres
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America.,Department of Medical Laboratory Science, College of Health Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Kevin Bloh
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America.,Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Dula Man
- Department of Chemistry, Delaware State University, Dover, Delaware, United States of America
| | - Eric B Kmiec
- Gene Editing Institute, Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, United States of America.,Department of Medical Laboratory Science, College of Health Sciences, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
16
|
Nelissen FHT, Tessari M, Wijmenga SS, Heus HA. Stable isotope labeling methods for DNA. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 96:89-108. [PMID: 27573183 DOI: 10.1016/j.pnmrs.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
NMR is a powerful method for studying proteins and nucleic acids in solution. The study of nucleic acids by NMR is far more challenging than for proteins, which is mainly due to the limited number of building blocks and unfavorable spectral properties. For NMR studies of DNA molecules, (site specific) isotope enrichment is required to facilitate specific NMR experiments and applications. Here, we provide a comprehensive review of isotope-labeling strategies for obtaining stable isotope labeled DNA as well as specifically stable isotope labeled building blocks required for enzymatic DNA synthesis.
Collapse
Affiliation(s)
- Frank H T Nelissen
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Marco Tessari
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Sybren S Wijmenga
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| | - Hans A Heus
- Institute for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
17
|
LNA modification of single-stranded DNA oligonucleotides allows subtle gene modification in mismatch-repair-proficient cells. Proc Natl Acad Sci U S A 2016; 113:4122-7. [PMID: 26951689 DOI: 10.1073/pnas.1513315113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Synthetic single-stranded DNA oligonucleotides (ssODNs) can be used to generate subtle genetic modifications in eukaryotic and prokaryotic cells without the requirement for prior generation of DNA double-stranded breaks. However, DNA mismatch repair (MMR) suppresses the efficiency of gene modification by >100-fold. Here we present a commercially available ssODN design that evades MMR and enables subtle gene modification in MMR-proficient cells. The presence of locked nucleic acids (LNAs) in the ssODNs at mismatching bases, or also at directly adjacent bases, allowed 1-, 2-, or 3-bp substitutions in MMR-proficient mouse embryonic stem cells as effectively as in MMR-deficient cells. Additionally, in MMR-proficient Escherichia coli, LNA modification of the ssODNs enabled effective single-base-pair substitution. In vitro, LNA modification of mismatches precluded binding of purified E. coli MMR protein MutS. These findings make ssODN-directed gene modification particularly well suited for applications that require the evaluation of a large number of sequence variants with an easy selectable phenotype.
Collapse
|
18
|
Turan S, Farruggio AP, Srifa W, Day JW, Calos MP. Precise Correction of Disease Mutations in Induced Pluripotent Stem Cells Derived From Patients With Limb Girdle Muscular Dystrophy. MOLECULAR THERAPY : THE JOURNAL OF THE AMERICAN SOCIETY OF GENE THERAPY 2016. [PMID: 26916285 DOI: 10.1038/mt.2016.40.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Limb girdle muscular dystrophies types 2B (LGMD2B) and 2D (LGMD2D) are degenerative muscle diseases caused by mutations in the dysferlin and alpha-sarcoglycan genes, respectively. Using patient-derived induced pluripotent stem cells (iPSC), we corrected the dysferlin nonsense mutation c.5713C>T; p.R1905X and the most common alpha-sarcoglycan mutation, missense c.229C>T; p.R77C, by single-stranded oligonucleotide-mediated gene editing, using the CRISPR/Cas9 gene-editing system to enhance the frequency of homology-directed repair. We demonstrated seamless, allele-specific correction at efficiencies of 0.7-1.5%. As an alternative, we also carried out precise gene addition strategies for correction of the LGMD2B iPSC by integration of wild-type dysferlin cDNA into the H11 safe harbor locus on chromosome 22, using dual integrase cassette exchange (DICE) or TALEN-assisted homologous recombination for insertion precise (THRIP). These methods employed TALENs and homologous recombination, and DICE also utilized site-specific recombinases. With DICE and THRIP, we obtained targeting efficiencies after selection of ~20%. We purified iPSC corrected by all methods and verified rescue of appropriate levels of dysferlin and alpha-sarcoglycan protein expression and correct localization, as shown by immunoblot and immunocytochemistry. In summary, we demonstrate for the first time precise correction of LGMD iPSC and validation of expression, opening the possibility of cell therapy utilizing these corrected iPSC.
Collapse
Affiliation(s)
- Soeren Turan
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Alfonso P Farruggio
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Waracharee Srifa
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - John W Day
- Department of Neurology, Stanford University School of Medicine, Stanford, California, USA
| | - Michele P Calos
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
19
|
Turan S, Farruggio AP, Srifa W, Day JW, Calos MP. Precise Correction of Disease Mutations in Induced Pluripotent Stem Cells Derived From Patients With Limb Girdle Muscular Dystrophy. Mol Ther 2016; 24:685-96. [PMID: 26916285 DOI: 10.1038/mt.2016.40] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/09/2016] [Indexed: 12/22/2022] Open
Abstract
Limb girdle muscular dystrophies types 2B (LGMD2B) and 2D (LGMD2D) are degenerative muscle diseases caused by mutations in the dysferlin and alpha-sarcoglycan genes, respectively. Using patient-derived induced pluripotent stem cells (iPSC), we corrected the dysferlin nonsense mutation c.5713C>T; p.R1905X and the most common alpha-sarcoglycan mutation, missense c.229C>T; p.R77C, by single-stranded oligonucleotide-mediated gene editing, using the CRISPR/Cas9 gene-editing system to enhance the frequency of homology-directed repair. We demonstrated seamless, allele-specific correction at efficiencies of 0.7-1.5%. As an alternative, we also carried out precise gene addition strategies for correction of the LGMD2B iPSC by integration of wild-type dysferlin cDNA into the H11 safe harbor locus on chromosome 22, using dual integrase cassette exchange (DICE) or TALEN-assisted homologous recombination for insertion precise (THRIP). These methods employed TALENs and homologous recombination, and DICE also utilized site-specific recombinases. With DICE and THRIP, we obtained targeting efficiencies after selection of ~20%. We purified iPSC corrected by all methods and verified rescue of appropriate levels of dysferlin and alpha-sarcoglycan protein expression and correct localization, as shown by immunoblot and immunocytochemistry. In summary, we demonstrate for the first time precise correction of LGMD iPSC and validation of expression, opening the possibility of cell therapy utilizing these corrected iPSC.
Collapse
Affiliation(s)
- Soeren Turan
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Alfonso P Farruggio
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Waracharee Srifa
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - John W Day
- Department of Neurology, Stanford University School of Medicine, Stanford, California, USA
| | - Michele P Calos
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
20
|
Rivera-Torres N, Kmiec EB. Genetic spell-checking: gene editing using single-stranded DNA oligonucleotides. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:463-70. [PMID: 26402400 PMCID: PMC11388886 DOI: 10.1111/pbi.12473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/07/2015] [Accepted: 08/12/2015] [Indexed: 06/05/2023]
Abstract
Single-stranded oligonucleotides (ssODNs) can be used to direct the exchange of a single nucleotide or the repair of a single base within the coding region of a gene in a process that is known, generically, as gene editing. These molecules are composed of either all DNA residues or a mixture of RNA and DNA bases and utilize inherent metabolic functions to execute the genetic alteration within the context of a chromosome. The mechanism of action of gene editing is now being elucidated as well as an understanding of its regulatory circuitry, work that has been particularly important in establishing a foundation for designing effective gene editing strategies in plants. Double-strand DNA breakage and the activation of the DNA damage response pathway play key roles in determining the frequency with which gene editing activity takes place. Cellular regulators respond to such damage and their action impacts the success or failure of a particular nucleotide exchange reaction. A consequence of such activation is the natural slowing of replication fork progression, which naturally creates a more open chromatin configuration, thereby increasing access of the oligonucleotide to the DNA template. Herein, how critical reaction parameters influence the effectiveness of gene editing is discussed. Functional interrelationships between DNA damage, the activation of DNA response pathways and the stalling of replication forks are presented in detail as potential targets for increasing the frequency of gene editing by ssODNs in plants and plant cells.
Collapse
Affiliation(s)
- Natalia Rivera-Torres
- Gene Editing Institute, Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA
| | - Eric B Kmiec
- Gene Editing Institute, Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE, USA
| |
Collapse
|
21
|
Gravells P, Ahrabi S, Vangala RK, Tomita K, Brash JT, Brustle LA, Chung C, Hong JM, Kaloudi A, Humphrey TC, Porter ACG. Use of the HPRT gene to study nuclease-induced DNA double-strand break repair. Hum Mol Genet 2015; 24:7097-110. [PMID: 26423459 PMCID: PMC4654060 DOI: 10.1093/hmg/ddv409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/23/2015] [Indexed: 12/17/2022] Open
Abstract
Understanding the mechanisms of chromosomal double-strand break repair (DSBR) provides insight into genome instability, oncogenesis and genome engineering, including disease gene correction. Research into DSBR exploits rare-cutting endonucleases to cleave exogenous reporter constructs integrated into the genome. Multiple reporter constructs have been developed to detect various DSBR pathways. Here, using a single endogenous reporter gene, the X-chromosomal disease gene encoding hypoxanthine phosphoribosyltransferase (HPRT), we monitor the relative utilization of three DSBR pathways following cleavage by I-SceI or CRISPR/Cas9 nucleases. For I-SceI, our estimated frequencies of accurate or mutagenic non-homologous end-joining and gene correction by homologous recombination are 4.1, 1.5 and 0.16%, respectively. Unexpectedly, I-SceI and Cas9 induced markedly different DSBR profiles. Also, using an I-SceI-sensitive HPRT minigene, we show that gene correction is more efficient when using long double-stranded DNA than single- or double-stranded oligonucleotides. Finally, using both endogenous HPRT and exogenous reporters, we validate novel cell cycle phase-specific I-SceI derivatives for investigating cell cycle variations in DSBR. The results obtained using these novel approaches provide new insights into template design for gene correction and the relationships between multiple DSBR pathways at a single endogenous disease gene.
Collapse
Affiliation(s)
- Polly Gravells
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Sara Ahrabi
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Rajani K Vangala
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Kazunori Tomita
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - James T Brash
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Lena A Brustle
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Christopher Chung
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Julia M Hong
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Aikaterini Kaloudi
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| | - Timothy C Humphrey
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Andrew C G Porter
- Gene Targeting Group, Centre for Haematology, Imperial College Faculty of Medicine, London W120NN, UK and
| |
Collapse
|
22
|
Velho RV, Sperb-Ludwig F, Schwartz IVD. New approaches to the treatment of orphan genetic disorders: Mitigating molecular pathologies using chemicals. AN ACAD BRAS CIENC 2015; 87:1375-88. [PMID: 26247150 DOI: 10.1590/0001-3765201520140711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
With the advance and popularization of molecular techniques, the identification of genetic mutations that cause diseases has increased dramatically. Thus, the number of laboratories available to investigate a given disorder and the number of subsequent diagnosis have increased over time. Although it is necessary to identify mutations and provide diagnosis, it is also critical to develop specific therapeutic approaches based on this information. This review aims to highlight recent advances in mutation-targeted therapies with chemicals that mitigate mutational pathology at the molecular level, for disorders that, for the most part, have no effective treatment. Currently, there are several strategies being used to correct different types of mutations, including the following: the identification and characterization of translational readthrough compounds; antisense oligonucleotide-mediated splicing redirection; mismatch repair; and exon skipping. These therapies and other approaches are reviewed in this paper.
Collapse
Affiliation(s)
- Renata V Velho
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, BR
| | | | | |
Collapse
|
23
|
Bialk P, Rivera-Torres N, Strouse B, Kmiec EB. Regulation of Gene Editing Activity Directed by Single-Stranded Oligonucleotides and CRISPR/Cas9 Systems. PLoS One 2015; 10:e0129308. [PMID: 26053390 PMCID: PMC4459703 DOI: 10.1371/journal.pone.0129308] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/07/2015] [Indexed: 02/01/2023] Open
Abstract
Single-stranded DNA oligonucleotides (ssODNs) can direct the repair of a single base mutation in human genes. While the regulation of this gene editing reaction has been partially elucidated, the low frequency with which repair occurs has hampered development toward clinical application. In this work a CRISPR/Cas9 complex is employed to induce double strand DNA breakage at specific sites surrounding the nucleotide designated for exchange. The result is a significant elevation in ssODN-directed gene repair, validated by a phenotypic readout. By analysing reaction parameters, we have uncovered restrictions on gene editing activity involving CRISPR/Cas9 complexes. First, ssODNs that hybridize to the non-transcribed strand direct a higher level of gene repair than those that hybridize to the transcribed strand. Second, cleavage must be proximal to the targeted mutant base to enable higher levels of gene editing. Third, DNA cleavage enables a higher level of gene editing activity as compared to single-stranded DNA nicks, created by modified Cas9 (Nickases). Fourth, we calculated the hybridization potential and free energy levels of ssODNs that are complementary to the guide RNA sequences of CRISPRs used in this study. We find a correlation between free energy potential and the capacity of single-stranded oligonucleotides to inhibit specific DNA cleavage activity, thereby indirectly reducing gene editing activity. Our data provide novel information that might be taken into consideration in the design and usage of CRISPR/Cas9 systems with ssODNs for gene editing.
Collapse
Affiliation(s)
- Pawel Bialk
- Department of Chemistry, Delaware State University, Dover, Delaware, United States of America
- Gene Editing Institute, Helen F. Graham Cancer Center, Newark, Delaware, United States of America
| | - Natalia Rivera-Torres
- Department of Chemistry, Delaware State University, Dover, Delaware, United States of America
| | - Bryan Strouse
- Department of Chemistry, Delaware State University, Dover, Delaware, United States of America
| | - Eric B. Kmiec
- Department of Chemistry, Delaware State University, Dover, Delaware, United States of America
| |
Collapse
|
24
|
Kmiec EB. Is the age of genetic surgery finally upon us? Surg Oncol 2015; 24:95-9. [PMID: 25936245 DOI: 10.1016/j.suronc.2015.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/04/2015] [Indexed: 12/12/2022]
Abstract
This review discusses gene editing and its potential in oncology. Gene editing has not evolved faster towards clinical application because of its difficulty in implementation. There have been many limitations of the tools thought to be useful in therapeutic gene editing. However, recently the combinatorial use of multiple biological tools appears to have broken the barrier impending clinical development. This review gives a short primer on gene editing followed by some of the foundational work in gene editing and subsequently a discussion of programmable nucleases leading to a description of Zinc Finger Nuclease, TALENs and CRISPRs. Gene editing tools are now being used routinely to re-engineer the human genome. Theoretically, any gene or chromosomal sequence for which a targeting site can be identified could be rendered nonfunctional by the chromosomal breakage activity of Zinc Finger Nucleases, TALENs or a CRISPR/Cas9 system. Since the initial work started on the mechanism and regulation of gene editing, investigators have been searching for a way to develop these technologies as a treatment for cancer. The issue is finding a practical application of gene editing in oncology. However, progressive ideas are working their way through the research arena which may have an impact on cancer treatment.
Collapse
Affiliation(s)
- Eric B Kmiec
- Gene Editing Institute, Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Road, Suite 4300, Newark, DE, 19713, USA.
| |
Collapse
|
25
|
Replicative DNA polymerase δ but not ε proofreads errors in Cis and in Trans. PLoS Genet 2015; 11:e1005049. [PMID: 25742645 PMCID: PMC4351087 DOI: 10.1371/journal.pgen.1005049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/02/2015] [Indexed: 01/18/2023] Open
Abstract
It is now well established that in yeast, and likely most eukaryotic organisms, initial DNA replication of the leading strand is by DNA polymerase ε and of the lagging strand by DNA polymerase δ. However, the role of Pol δ in replication of the leading strand is uncertain. In this work, we use a reporter system in Saccharomyces cerevisiae to measure mutation rates at specific base pairs in order to determine the effect of heterozygous or homozygous proofreading-defective mutants of either Pol ε or Pol δ in diploid strains. We find that wild-type Pol ε molecules cannot proofread errors created by proofreading-defective Pol ε molecules, whereas Pol δ can not only proofread errors created by proofreading-defective Pol δ molecules, but can also proofread errors created by Pol ε-defective molecules. These results suggest that any interruption in DNA synthesis on the leading strand is likely to result in completion by Pol δ and also explain the higher mutation rates observed in Pol δ-proofreading mutants compared to Pol ε-proofreading defective mutants. For strains reverting via AT→GC, TA→GC, CG→AT, and GC→AT mutations, we find in addition a strong effect of gene orientation on mutation rate in proofreading-defective strains and demonstrate that much of this orientation dependence is due to differential efficiencies of mispair elongation. We also find that a 3′-terminal 8 oxoG, unlike a 3′-terminal G, is efficiently extended opposite an A and is not subject to proofreading. Proofreading mutations have been shown to result in tumor formation in both mice and humans; the results presented here can help explain the properties exhibited by those proofreading mutants. Many DNA polymerases are able to proofread their errors: after incorporation of a wrong base, the resulting mispair invokes an exonuclease activity of the polymerase that removes the mispaired base and allows replication to continue. Elimination of the proofreading activity thus results in much higher mutation rates. We demonstrate that the two major replicative DNA polymerases in yeast, Pol δ and Pol ε, have different proofreading abilities. In diploid cells, Pol ε is not able to proofread errors created by other Pol ε molecules, whereas Pol δ can proofread not only errors created by other Pol δ molecules but also errors created by Pol ε molecules. We also find that mispaired bases not corrected by proofreading have much different likelihoods of being extended, depending on the particular base-base mismatch. In humans, defects in Pol δ or Pol ε proofreading can lead to cancer, and these results help explain the formation of those tumors and the finding that Pol ε mutants seem to be found as frequently, or more so, in human tumors as Pol δ mutants.
Collapse
|
26
|
Xu K, Stewart AF, Porter AC. Stimulation of oligonucleotide-directed gene correction by Redβ expression and MSH2 depletion in human HT1080 cells. Mol Cells 2015; 38:33-9. [PMID: 25431426 PMCID: PMC4314130 DOI: 10.14348/molcells.2015.2163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 01/30/2023] Open
Abstract
The correction of disease-causing mutations by single-strand oligonucleotide-templated DNA repair (ssOR) is an attractive approach to gene therapy, but major improvements in ssOR efficiency and consistency are needed. The mechanism of ssOR is poorly understood but may involve annealing of oligonucleotides to transiently exposed single-stranded regions in the target duplex. In bacteria and yeast it has been shown that ssOR is promoted by expression of Redβ, a single-strand DNA annealing protein from bacteriophage lambda. Here we show that Redβ expression is well tolerated in a human cell line where it consistently promotes ssOR. By use of short interfering RNA, we also show that ssOR is stimulated by the transient depletion of the endogenous DNA mismatch repair protein MSH2. Furthermore, we find that the effects of Redβ expression and MSH2 depletion on ssOR can be combined with a degree of cooperativity. These results suggest that oligonucleotide annealing and mismatch recognition are distinct but interdependent events in ssOR that can be usefully modulated in gene correction strategies.
Collapse
Affiliation(s)
- Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenviroment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052,
China
- Gene Targeting Group, Department of Hematology, Faculty of Medicine, Imperial College London, London W12 0NN,
UK
| | - A. Francis Stewart
- Genomics, Bio Innovations Zentrum, Technische Universitaet Dresden, 01307 Dresden,
Germany
| | - Andrew C.G. Porter
- Gene Targeting Group, Department of Hematology, Faculty of Medicine, Imperial College London, London W12 0NN,
UK
| |
Collapse
|
27
|
Rivera-Torres N, Strouse B, Bialk P, Niamat RA, Kmiec EB. The position of DNA cleavage by TALENs and cell synchronization influences the frequency of gene editing directed by single-stranded oligonucleotides. PLoS One 2014; 9:e96483. [PMID: 24788536 PMCID: PMC4006861 DOI: 10.1371/journal.pone.0096483] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 04/08/2014] [Indexed: 11/21/2022] Open
Abstract
With recent technological advances that enable DNA cleavage at specific sites in the human genome, it may now be possible to reverse inborn errors, thereby correcting a mutation, at levels that could have an impact in a clinical setting. We have been developing gene editing, using single-stranded DNA oligonucleotides (ssODNs), as a tool to direct site specific single base changes. Successful application of this technique has been demonstrated in many systems ranging from bacteria to human (ES and somatic) cells. While the frequency of gene editing can vary widely, it is often at a level that does not enable clinical application. As such, a number of stimulatory factors such as double-stranded breaks are known to elevate the frequency significantly. The majority of these results have been discovered using a validated HCT116 mammalian cell model system where credible genetic and biochemical readouts are available. Here, we couple TAL-Effector Nucleases (TALENs) that execute specific ds DNA breaks with ssODNs, designed specifically to repair a missense mutation, in an integrated single copy eGFP gene. We find that proximal cleavage, relative to the mutant base, is key for enabling high frequencies of editing. A directionality of correction is also observed with TALEN activity upstream from the target base being more effective in promoting gene editing than activity downstream. We also find that cells progressing through S phase are more amenable to combinatorial gene editing activity. Thus, we identify novel aspects of gene editing that will help in the design of more effective protocols for genome modification and gene therapy in natural genes.
Collapse
Affiliation(s)
- Natalia Rivera-Torres
- Delaware State University, Department of Chemistry, Dover, Delaware, United States of America
| | - Bryan Strouse
- Delaware State University, Department of Chemistry, Dover, Delaware, United States of America
| | - Pawel Bialk
- Delaware State University, Department of Chemistry, Dover, Delaware, United States of America
| | - Rohina A. Niamat
- Delaware State University, Department of Chemistry, Dover, Delaware, United States of America
| | - Eric B. Kmiec
- Delaware State University, Department of Chemistry, Dover, Delaware, United States of America
| |
Collapse
|
28
|
Kan Y, Ruis B, Lin S, Hendrickson EA. The mechanism of gene targeting in human somatic cells. PLoS Genet 2014; 10:e1004251. [PMID: 24699519 PMCID: PMC3974634 DOI: 10.1371/journal.pgen.1004251] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/03/2014] [Indexed: 12/24/2022] Open
Abstract
Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB) repair known as homologous recombination (HR). The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells. Gene targeting is important for basic research and clinical applications. In the laboratory, gene targeting is used to knockout genes so that loss-of-function phenotypes can be assessed. In the clinic, gene targeting is the gold standard to which most gene therapy approaches aspire. One of the most promising tools for gene targeting in humans is recombinant adeno-associated virus (rAAV). The mechanism by which rAAV performs gene targeting has, however, remained obscure. Here, we surprisingly demonstrate that the normally single-stranded rAAV performs gene targeting via double-stranded intermediates, which are mechanistically indistinguishable from standard plasmid-mediated gene targeting. Moreover, we establish the double-strand break (DSB) repair model as the paradigm to describe human gene targeting, and delineate the dynamics of crossovers in this model. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted such that the chromosome becomes the “attacker” instead of the “attackee”. Finally, we confirm that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations advance our understanding of the mechanism of human gene targeting and should readily lend themselves to developing improvements to existing methodologies.
Collapse
Affiliation(s)
- Yinan Kan
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Brian Ruis
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Sherry Lin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Eric A. Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
29
|
Gong L, McCullagh JSO. Comparing ion-pairing reagents and sample dissolution solvents for ion-pairing reversed-phase liquid chromatography/electrospray ionization mass spectrometry analysis of oligonucleotides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:339-350. [PMID: 24395501 DOI: 10.1002/rcm.6773] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/19/2013] [Accepted: 10/20/2013] [Indexed: 06/03/2023]
Abstract
RATIONALE A sensitive and selective liquid chromatography/mass spectrometry (LC/MS) method is essential for quality control of synthetic oligonucleotides. However, researchers are still searching for improvements to ion-pairing reagents for ion-pairing reversed-phase LC/MS. This study performed a comprehensive comparison of six ion-pairing reagents to determine their performance as mobile phase modifiers for oligonucleotide LC/MS. METHODS The study was performed using a Waters ultra-performance liquid chromatography (UPLC®) system coupled to a Waters LCT premier XE ESI-TOF mass spectrometer by using a UPLC® OST column (2.1 mm × 100 mm, 1.7 µm). Buffer systems containing ion-pairing reagents (triethylamine, tripropylamine, hexylamine, N,N-dimethylbutylamine, dibutylamine, N,N-diisopropylethylamine) and hexafluoro-2-propanol were compared by measuring the adduct ion formation, chromatographic separation, and MS signal intensity of four oligonucleotides (10mer to 40mer). The effect of dissolution solvents on MS signal intensity and adduct ion formation was also investigated. RESULTS Results showed that the type of dissolution solvent can have a signficiant impact on adduct ion formation with oligonucleotides. Results also showed that the maximum separation for small, medium and large oligonucleotides occured when using tripropylamine, N,N-dimethylbutylamine, and dibutylamine, respectively. However, on average 15 mM hexylamine and 50 mM hexafluoro-2-propanol provided the best chromtatographic performance (resolution values: 14.1 ± 0.34, 11.0 ± 0.17, and 6.4 ± 0.11 for the pairs of oligonucleotides T10 & T15, T15 & T25, and T25 & T40, respectively (3 replicates)). CONCLUSIONS The impact of dissolution solvent on the MS signal of oligonucleotides depends on the type of ion-pairing reagent. Buffer combining 15 mM hexylamine and 50 mM hexafluoro-2-propanol produced the highest overall performance for oligonucleotides (10mer to 40mer) with respect to chromatographic resolution and mass detection.
Collapse
Affiliation(s)
- Lingzhi Gong
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | | |
Collapse
|
30
|
Strouse B, Bialk P, Niamat RA, Rivera-Torres N, Kmiec EB. Combinatorial gene editing in mammalian cells using ssODNs and TALENs. Sci Rep 2014; 4:3791. [PMID: 24445749 PMCID: PMC3896902 DOI: 10.1038/srep03791] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/24/2013] [Indexed: 11/09/2022] Open
Abstract
The regulation of gene editing is being elucidated in mammalian cells and its potential as well as its limitations are becoming evident. ssODNs carry out gene editing by annealing to their complimentary sequence at the target site and acting as primers for replication fork extension. To effect a genetic change, a large amount of ssODN molecules must be introduced into cells and as such induce a Reduced Proliferation Phenotype (RPP), a phenomenon in which corrected cells do not proliferate. To overcome this limitation, we have used TAL-Effector Nucleases (TALENs) to increase the frequency, while reducing the amount of ssODN required to direct gene correction. This strategy resolves the problem and averts the serious effects of RPP. The efficiency of gene editing can be increased significantly if cells are targeted while they progress through S phase. Our studies define new reaction parameters that will help guide experimental strategies of gene editing.
Collapse
Affiliation(s)
- Bryan Strouse
- Department of Chemistry, Delaware State University, 1200 N. DuPont Highway Dover, DE 19901
| | - Pawel Bialk
- Department of Chemistry, Delaware State University, 1200 N. DuPont Highway Dover, DE 19901
| | - Rohina A Niamat
- Department of Chemistry, Delaware State University, 1200 N. DuPont Highway Dover, DE 19901
| | - Natalia Rivera-Torres
- Department of Chemistry, Delaware State University, 1200 N. DuPont Highway Dover, DE 19901
| | - Eric B Kmiec
- Department of Chemistry, Delaware State University, 1200 N. DuPont Highway Dover, DE 19901
| |
Collapse
|
31
|
Ma S, Wang X, Liu Y, Gao J, Zhang S, Shi R, Chang J, Zhao P, Xia Q. Multiplex genomic structure variation mediated by TALEN and ssODN. BMC Genomics 2014; 15:41. [PMID: 24438544 PMCID: PMC3933007 DOI: 10.1186/1471-2164-15-41] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/13/2014] [Indexed: 11/19/2022] Open
Abstract
Background Genomic structure variation (GSV) is widely distributed in various organisms and is an important contributor to human diversity and disease susceptibility. Efficient approaches to induce targeted genomic structure variation are crucial for both analytic and therapeutic studies of GSV. Here, we presented an efficient strategy to induce targeted GSV including chromosomal deletions, duplications and inversions in a precise manner. Results Utilizing Transcription Activator-Like Effector Nucleases (TALEN) designed to target two distinct sites, we demonstrated targeted deletions, duplications and inversions of an 8.9 Mb chromosomal segment, which is about one third of the entire chromosome. We developed a novel method by combining TALEN-induced GSV and single stranded oligodeoxynucleotide (ssODN) mediated gene modifications to reduce unwanted mutations occurring during the targeted GSV using TALEN or Zinc finger nuclease (ZFN). Furthermore, we showed that co-introduction of TALEN and ssODN generated unwanted complex structure variation other than the expected chromosomal deletion. Conclusions We demonstrated the ability of TALEN to induce targeted GSV and provided an efficient strategy to perform GSV precisely. Furthermore, it is the first time to show that co-introduction of TALEN and ssODN generated unwanted complex structure variation. It is plausible to believe that the strategies developed in this study can be applied to other organisms, and will help understand the biological roles of GSV and therapeutic applications of TALEN and ssODN. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-41) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.
| |
Collapse
|
32
|
Abstract
Recent advances in the burgeoning field of genome engineering are accelerating the realization of personalized therapeutics for cardiovascular disease. In the postgenomic era, sequence-specific gene-editing tools enable the functional analysis of genetic alterations implicated in disease. In partnership with high-throughput model systems, efficient gene manipulation provides an increasingly powerful toolkit to study phenotypes associated with patient-specific genetic defects. Herein, this review emphasizes the latest developments in genome engineering and how applications within the field are transforming our understanding of personalized medicine with an emphasis on cardiovascular diseases.
Collapse
Affiliation(s)
- Jarryd M Campbell
- Center for Translational Science Activities, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
34
|
Proliferation of genetically modified human cells on electrospun nanofiber scaffolds. MOLECULAR THERAPY-NUCLEIC ACIDS 2012; 1:e59. [PMID: 23212298 PMCID: PMC3530926 DOI: 10.1038/mtna.2012.51] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gene editing is a process by which single base mutations can be corrected, in the context
of the chromosome, using single-stranded oligodeoxynucleotides (ssODNs). The survival and
proliferation of the corrected cells bearing modified genes, however, are impeded by a
phenomenon known as reduced proliferation phenotype (RPP); this is a barrier to practical
implementation. To overcome the RPP problem, we utilized nanofiber scaffolds as templates
on which modified cells were allowed to recover, grow, and expand after gene editing.
Here, we present evidence that some HCT116-19, bearing an integrated, mutated enhanced
green fluorescent protein (eGFP) gene and corrected by gene editing, proliferate on
polylysine or fibronectin-coated polycaprolactone (PCL) nanofiber scaffolds. In contrast,
no cells from the same reaction protocol plated on both regular dish surfaces and
polylysine (or fibronectin)-coated dish surfaces proliferate. Therefore, growing
genetically modified (edited) cells on electrospun nanofiber scaffolds promotes the
reversal of the RPP and increases the potential of gene editing as an ex vivo
gene therapy application.
Collapse
|
35
|
Oligodeoxynucleotide binding to (CTG) · (CAG) microsatellite repeats inhibits replication fork stalling, hairpin formation, and genome instability. Mol Cell Biol 2012; 33:571-81. [PMID: 23166299 DOI: 10.1128/mcb.01265-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
(CTG)(n) · (CAG)(n) trinucleotide repeat (TNR) expansion in the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene causes myotonic dystrophy type 1. However, a direct link between TNR instability, the formation of noncanonical (CTG)(n) · (CAG)(n) structures, and replication stress has not been demonstrated. In a human cell model, we found that (CTG)(45) · (CAG)(45) causes local replication fork stalling, DNA hairpin formation, and TNR instability. Oligodeoxynucleotides (ODNs) complementary to the (CTG)(45) · (CAG)(45) lagging-strand template eliminated DNA hairpin formation on leading- and lagging-strand templates and relieved fork stalling. Prolonged cell culture, emetine inhibition of lagging-strand synthesis, or slowing of DNA synthesis by low-dose aphidicolin induced (CTG)(45) · (CAG)(45) expansions and contractions. ODNs targeting the lagging-strand template blocked the time-dependent or emetine-induced instability but did not eliminate aphidicolin-induced instability. These results show directly that TNR replication stalling, replication stress, hairpin formation, and instability are mechanistically linked in vivo.
Collapse
|
36
|
Livingston P, Strouse B, Perry H, Borjigin M, Bialk P, Kmiec EB. Oligonucleotide delivery by nucleofection does not rescue the reduced proliferation phenotype of gene-edited cells. Nucleic Acid Ther 2012; 22:405-13. [PMID: 23072627 DOI: 10.1089/nat.2012.0374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Gene editing using single-stranded oligonucleotides (ODNs) can be used to reverse or create a single base mutation in mammalian cells. This approach could be used to treat genetic diseases caused, at least in part, by a nucleotide substitution. The technique could also be used as a tool to establish single base polymorphisms at multiple sites and thus aid in creating cell lines that can be used to define the basis for drug resistance in human cells. A troubling outcome of the gene-editing reaction is the effect on normal growth of cells that have undergone nucleotide exchange. In this work, we attempt to overcome this reduced proliferation phenotype by changing the method by which the ODN is introduced into the target cell. Using a series of assays that measure gene editing, DNA damage response, and cell viability, we report that chemically modified ODNs, the most active form of ODN for gene editing, can be used successfully if introduced into the cell by the method of nucleofection. Unlike electroporation, which has been used as the standard mode of ODN delivery, one new result is that nucleofection does not induce a dramatic loss of viability within the first 24 hours after the start of gene editing. In addition, and importantly, ODNs introduced to the cell by nucleofection do not activate the DNA damage response pathway as dramatically as ODNs introduced by electroporation. These 2 novel findings are encouraging for the application of gene editing in other systems. However, reduced proliferation phenotype is still observed when the population of corrected cells is monitored out to 8 days, and thus, delivery by nucleofection does not solve the proliferation problem encountered by cells bearing an edited gene.
Collapse
Affiliation(s)
- Paula Livingston
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, USA
| | | | | | | | | | | |
Collapse
|
37
|
Rodriguez GP, Song JB, Crouse GF. Transformation with oligonucleotides creating clustered changes in the yeast genome. PLoS One 2012; 7:e42905. [PMID: 22916177 PMCID: PMC3422593 DOI: 10.1371/journal.pone.0042905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/12/2012] [Indexed: 12/17/2022] Open
Abstract
We have studied single-strand oligonucleotide (oligo) transformation of yeast by using 40-nt long oligos that create multiple base changes to the yeast genome spread throughout the length of the oligos, making it possible to measure the portions of an oligo that are incorporated during transformation. Although the transformation process is greatly inhibited by DNA mismatch repair (MMR), the pattern of incorporation is essentially the same in the presence or absence of MMR, whether the oligo anneals to the leading or lagging strand of DNA replication, or whether phosphorothioate linkages are used at either end. A central core of approximately 15 nt is incorporated with a frequency of >90%; the ends are incorporated with a lower frequency, and loss of the two ends appears to be by different mechanisms. Bases that are 5–10 nt from the 5′ end are generally lost with a frequency of >95%, likely through a process involving flap excision. On the 3′ end, bases 5–10 nt from the 3′ end are lost about 1/3 of the time. These results indicate that oligos can be used to create multiple simultaneous changes to the yeast genome, even in the presence of MMR.
Collapse
Affiliation(s)
- Gina P. Rodriguez
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Joseph B. Song
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Gray F. Crouse
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
38
|
Rios X, Briggs AW, Christodoulou D, Gorham JM, Seidman JG, Church GM. Stable gene targeting in human cells using single-strand oligonucleotides with modified bases. PLoS One 2012; 7:e36697. [PMID: 22615794 PMCID: PMC3351460 DOI: 10.1371/journal.pone.0036697] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/09/2012] [Indexed: 11/19/2022] Open
Abstract
Recent advances allow multiplexed genome engineering in E. coli, employing easily designed oligonucleotides to edit multiple loci simultaneously. A similar technology in human cells would greatly expedite functional genomics, both by enhancing our ability to test how individual variants such as single nucleotide polymorphisms (SNPs) are related to specific phenotypes, and potentially allowing simultaneous mutation of multiple loci. However, oligo-mediated targeting of human cells is currently limited by low targeting efficiencies and low survival of modified cells. Using a HeLa-based EGFP-rescue reporter system we show that use of modified base analogs can increase targeting efficiency, in part by avoiding the mismatch repair machinery. We investigate the effects of oligonucleotide toxicity and find a strong correlation between the number of phosphorothioate bonds and toxicity. Stably EGFP-corrected cells were generated at a frequency of ~0.05% with an optimized oligonucleotide design combining modified bases and reduced number of phosphorothioate bonds. We provide evidence from comparative RNA-seq analysis suggesting cellular immunity induced by the oligonucleotides might contribute to the low viability of oligo-corrected cells. Further optimization of this method should allow rapid and scalable genome engineering in human cells.
Collapse
Affiliation(s)
- Xavier Rios
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Adrian W. Briggs
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Danos Christodoulou
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Josh M. Gorham
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan G. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
39
|
Abstract
Many devastating human diseases are caused by mutations in a single gene that prevent a somatic cell from carrying out its essential functions, or by genetic changes acquired as a result of infectious disease or in the course of cell transformation. Targeted gene therapies have emerged as potential strategies for treatment of such diseases. These therapies depend upon rare-cutting endonucleases to cleave at specific sites in or near disease genes. Targeted gene correction provides a template for homology-directed repair, enabling the cell's own repair pathways to erase the mutation and replace it with the correct sequence. Targeted gene disruption ablates the disease gene, disabling its function. Gene targeting can also promote other kinds of genome engineering, including mutation, insertion, or gene deletion. Targeted gene therapies present significant advantages compared to approaches to gene therapy that depend upon delivery of stably expressing transgenes. Recent progress has been fueled by advances in nuclease discovery and design, and by new strategies that maximize efficiency of targeting and minimize off-target damage. Future progress will build on deeper mechanistic understanding of critical factors and pathways.
Collapse
Affiliation(s)
- Olivier Humbert
- Departments of Immunology and Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | |
Collapse
|
40
|
DNA damage response pathway and replication fork stress during oligonucleotide directed gene editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e18. [PMID: 23343929 PMCID: PMC3381643 DOI: 10.1038/mtna.2012.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Single-stranded DNA oligonucleotides (ODNs) can be used to direct the exchange of nucleotides in the genome of mammalian cells in a process known as gene editing. Once refined, gene editing should become a viable option for gene therapy and molecular medicine. Gene editing is regulated by a number of DNA recombination and repair pathways whose natural activities often lead to single- and double-stranded DNA breaks. It has been previously shown that introduction of a phosphorotioated ODN, designed to direct a gene-editing event, into cells results in the activation of γH2AX, a well-recognized protein biomarker for double-stranded DNA breakage. Using a single copy, integrated mutant enhanced green fluorescent protein (eGFP) gene as our target, we now demonstrate that several types of ODNs, capable of directing gene editing, also activate the DNA damage response and the post-translational modification of proliferating cell nuclear antigen (PCNA), a signature modification of replication stress. We find that the gene editing reaction itself leads to transient DNA breakage, perhaps through replication fork collapse. Unmodified specific ODNs elicit a lesser degree of replication stress than their chemically modified counterparts, but are also less active in gene editing. Modified phosphothioate oligonucleotides (PTOs) are detrimental irrespective of the DNA sequence. Such collateral damage may prove problematic for proliferation of human cells genetically modified by gene editing.
Collapse
|
41
|
Abstract
Many new therapies are emerging that use hematopoietic stem and progenitor cells. In this review, we focus on five promising emerging trends that are altering stem cell usage in pediatrics: (i) The use of hematopoietic stem cell (HSC) transplantation, autologous or allogeneic, in the treatment of autoimmune disorders is one. (ii) The use of cord blood transplantation in patients with inherited metabolic disorders such as Hurler syndrome shows great benefit, even more so than replacement enzyme therapy. (iii) Experience with the delivery of gene therapy through stem cells is increasing, redefining the potential and limitations of this therapy. (iv) It has recently been shown that human immunodeficiency virus (HIV) infection can be cured by the use of selected stem cells. (v) Finally, it has long been postulated that HSC-transplantation can be used to induce tolerance in solid-organ transplant recipients. A new approach to tolerance induction using myeloid progenitor cells will be described.
Collapse
|
42
|
Papaioannou I, Simons JP, Owen JS. Oligonucleotide-directed gene-editing technology: mechanisms and future prospects. Expert Opin Biol Ther 2012; 12:329-42. [PMID: 22321001 DOI: 10.1517/14712598.2012.660522] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Gene editing, as defined here, uses short synthetic oligonucleotides to introduce small, site-specific changes into mammalian genomes, including repair of genetic point mutations. Early RNA-DNA oligonucleotides (chimeraplasts) were problematic, but application of single-stranded all-DNA molecules (ssODNs) has matured the technology into a reproducible tool with therapeutic potential. AREAS COVERED The review illustrates how gene-editing mechanisms are linked to DNA repair systems and DNA replication, and explains that while homologous recombination (HR) and nucleotide excision repair (NER) are implicated, the mismatch repair (MMR) system is inhibitory. Although edited cells often arrest in late S-phase or G2-phase, alternative ssODN chemistries can improve editing efficiency and cell viability. The final section focuses on the exciting tandem use of ssODNs with zinc finger nucleases to achieve high frequency genome editing. EXPERT OPINION For a decade, changing the genetic code of cells via ssODNs was largely done in reporter gene systems to optimize methods and as proof-of-principle. Today, editing endogenous genes is advancing, driven by a clearer understanding of mechanisms, by effective ssODN designs and by combination with engineered endonuclease technologies. Success is becoming routine in vitro and ex vivo, which includes editing embryonic stem (ES) and induced pluripotent stem (iPS) cells, suggesting that in vivo organ gene editing is a future option.
Collapse
Affiliation(s)
- Ioannis Papaioannou
- UCL Medical School, Division of Medicine (Upper 3rd Floor), Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | | | | |
Collapse
|
43
|
Efficient and accurate homologous recombination in hESCs and hiPSCs using helper-dependent adenoviral vectors. Mol Ther 2011; 20:424-31. [PMID: 22146343 DOI: 10.1038/mt.2011.266] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Low efficiencies of gene targeting via homologous recombination (HR) have limited basic research and applications using human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Here, we show highly and equally efficient gene knockout and knock-in at both transcriptionally active (HPRT1, KU80, LIG1, LIG3) and inactive (HB9) loci in these cells using high-capacity helper-dependent adenoviral vectors (HDAdVs). Without the necessity of introducing artificial DNA double-strand breaks, 7-81% of drug-resistant colonies were gene-targeted by accurate HR, which were not accompanied with additional ectopic integrations. Even at the motor neuron-specific HB9 locus, the enhanced green fluorescent protein (EGFP) gene was accurately knocked in in 23-57% of drug-resistant colonies. In these clones, induced differentiation into the HB9-positive motor neuron correlated with EGFP expression. Furthermore, HDAdV infection had no detectable adverse effects on the undifferentiated state and pluripotency of hESCs and hiPSCs. These results suggest that HDAdV is one of the best methods for efficient and accurate gene targeting in hESCs and hiPSCs and might be especially useful for therapeutic applications.
Collapse
|
44
|
Towards artificial metallonucleases for gene therapy: recent advances and new perspectives. Future Med Chem 2011; 3:1935-66. [DOI: 10.4155/fmc.11.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The process of DNA targeting or repair of mutated genes within the cell, induced by specifically positioned double-strand cleavage of DNA near the mutated sequence, can be applied for gene therapy of monogenic diseases. For this purpose, highly specific artificial metallonucleases are developed. They are expected to be important future tools of modern genetics. The present state of art and strategies of research are summarized, including protein engineering and artificial ‘chemical’ nucleases. From the results, we learn about the basic role of the metal ions and the various ligands, and about the DNA binding and cleavage mechanism. The results collected provide useful guidance for engineering highly controlled enzymes for use in gene therapy.
Collapse
|
45
|
Abstract
Large-scale projects are providing rapid global access to a wealth of mouse genetic resources to help discover disease genes and to manipulate their function.
Collapse
Affiliation(s)
| | | | - David J Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
46
|
Gong L, McCullagh JSO. Analysis of oligonucleotides by hydrophilic interaction liquid chromatography coupled to negative ion electrospray ionization mass spectrometry. J Chromatogr A 2011; 1218:5480-6. [PMID: 21741051 DOI: 10.1016/j.chroma.2011.06.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/31/2011] [Accepted: 06/09/2011] [Indexed: 01/08/2023]
Abstract
Hydrophilic interaction liquid chromatography (HILIC) is here successfully coupled to negative-ion electrospray ionization time-of-flight mass spectrometry (ESI-TOFMS) for the analysis of synthetic and chemically modified oligonucleotides. Separation was performed on a 2.1 mm × 100 mm PEEK ZIC HILIC column packed with hydrophilic stationary phase with a permanent zwitterionic functional group and a particle size of 3.5 μm with an average pore diameter of 200Å. A method was developed to separate homogeneous and heterogeneous oligonucleotides as well as methylated oligonucleotides using a quaternary pumping system containing ammonium acetate and water with an acetonitrile gradient. Analyses of oligonucleotides were performed by LC/MS with a detection limit of 2.5 picomole (20 mer) with signal to noise ratio (S/N) of 4.12. The influence of the eluent composition, type of buffer and its concentration, and organic modifier were also evaluated. The HILIC LC/MS method presented in this paper used common, 'MS friendly', mobile phases achieving sensitive and selective oligonucleotide analysis.
Collapse
Affiliation(s)
- Lingzhi Gong
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | | |
Collapse
|