1
|
Maurya R, Vikal A, Narang RK, Patel P, Kurmi BD. Recent advancements and applications of ophthalmic gene therapy strategies: A breakthrough in ocular therapeutics. Exp Eye Res 2024; 245:109983. [PMID: 38942133 DOI: 10.1016/j.exer.2024.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Over the past twenty years, ocular gene therapy has primarily focused on addressing diseases linked to various genetic factors. The eye is an ideal candidate for gene therapy due to its unique characteristics, such as easy accessibility and the ability to target both corneal and retinal conditions, including retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), age-related macular degeneration (AMD), and Stargardt disease. Currently, literature documents 33 clinical trials in this field, with the most promising results emerging from trials focused on LCA. These successes have catalyzed further research into other ocular conditions such as glaucoma, AMD, RP, and choroideremia. The effectiveness of gene therapy relies on the efficient delivery of genetic material to specific cells, ensuring sustained and optimal gene expression over time. Viral vectors have been widely used for this purpose, although concerns about potential risks such as immune reactions and genetic mutations have led to the development of non-viral vector systems. Preliminary laboratory research and clinical investigations have shown a connection between vector dosage and the intensity of immune response and inflammation in the eye. The method of administration significantly influences these reactions, with subretinal delivery resulting in a milder humoral response compared to the intravitreal route. This review discusses various ophthalmic diseases, including both corneal and retinal conditions, and their underlying mechanisms, highlighting recent advances and applications in ocular gene therapies.
Collapse
Affiliation(s)
- Rashmi Maurya
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Akash Vikal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India; ISF College of Pharmacy & Research, Rattian Road, Moga, 142048, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
2
|
Sarkar A, Junnuthula V, Dyawanapelly S. Ocular Therapeutics and Molecular Delivery Strategies for Neovascular Age-Related Macular Degeneration (nAMD). Int J Mol Sci 2021; 22:10594. [PMID: 34638935 PMCID: PMC8508687 DOI: 10.3390/ijms221910594] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in geriatric population. Intravitreal (IVT) injections are popular clinical option. Biologics and small molecules offer efficacy but relatively shorter half-life after intravitreal injections. To address these challenges, numerous technologies and therapies are under development. Most of these strategies aim to reduce the frequency of injections, thereby increasing patient compliance and reducing patient-associated burden. Unlike IVT frequent injections, molecular therapies such as cell therapy and gene therapy offer restoration ability hence gained a lot of traction. The recent approval of ocular gene therapy for inherited disease offers new hope in this direction. However, until such breakthrough therapies are available to the majority of patients, antibody therapeutics will be on the shelf, continuing to provide therapeutic benefits. The present review aims to highlight the status of pre-clinical and clinical studies of neovascular AMD treatment modalities including Anti-VEGF therapy, upcoming bispecific antibodies, small molecules, port delivery systems, photodynamic therapy, radiation therapy, gene therapy, cell therapy, and combination therapies.
Collapse
Affiliation(s)
- Aira Sarkar
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA;
| | | | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai 400019, India
| |
Collapse
|
3
|
Araújo RS, Bitoque DB, Silva GA. Development of strategies to modulate gene expression of angiogenesis-related molecules in the retina. Gene 2021; 791:145724. [PMID: 34010703 DOI: 10.1016/j.gene.2021.145724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022]
Abstract
Intravitreal anti-vascular endothelial growth factor agents are the gold standard treatment of ocular neovascular diseases. However, their short-term efficacy implies frequent intravitreal injections. Gene therapy has the ability to provide longer duration of the therapeutic effect. We have previously described the effectiveness of the self-replicating episomal vector, pEPito, in long-term gene expression in mouse retina. In this study, we evaluated different constructs to overexpress pigment epithelium-derived factor (PEDF), an angiogenesis inhibitor, and simultaneously, to silence placental growth factor (PlGF), a key player in neovascularization. We employed the human cytomegalovirus promoter to drive the expression of PEDF and PlGF shRNA, in conjunction with cis-acting ribozymes, using pEPito as expressing vector. Our results demonstrated that the non-viral systems were able to efficiently promote a sustained increase of the PEDF: PlGF ratio in the mice retina, decreased in pathological conditions. This innovative approach could open avenues for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Rute S Araújo
- iNOVA4Health, CEDOC, NOVA Medical School, Universidade Nova de, Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; Bioengineering - Cell Therapies and Regenerative Medicine PhD Program, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Diogo B Bitoque
- iNOVA4Health, CEDOC, NOVA Medical School, Universidade Nova de, Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal
| | - Gabriela A Silva
- iNOVA4Health, CEDOC, NOVA Medical School, Universidade Nova de, Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal; NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal.
| |
Collapse
|
4
|
Cho HJ, Lim SH, Kim J, Lee J, Lee DW, Kim JW. Assessing the long-term evolution of type 3 neovascularization in age-related macular degeneration using optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 2021; 259:2605-2613. [PMID: 33744984 DOI: 10.1007/s00417-021-05163-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 03/12/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To analyze the evolution of type 3 neovascularization in eyes with age-related macular degeneration during anti-vascular endothelial growth factor (VEGF) treatment using optical coherence tomography angiography (OCTA) analysis. METHODS Forty-one treatment-naïve eyes (37 patients) with type 3 neovascularization were retrospectively included in the study. The growth and morphological changes in the type 3 lesions, which were recorded using OCTA, were compared across time. RESULTS The high-flow signal of the lesion on OCTA was significantly increased at the sub-retinal pigment epithelium (RPE) and the choriocapillaris during anti-VEGF treatment. The detection rate of the flow signal in the sub-RPE increased from 50.0% at baseline and 51.2% at 12 months to 65.9% at 24 months (P = 0.013). The flow signal extending into the choriocapillaris was detected in 0% of the eyes at baseline, 9.8% of the eyes at 12 months, and 17.1% of the eyes at 24 months (P = 0.018). The presence of subretinal drusenoid deposits (SDD) was significantly more frequent in the group with extension into the choriocapillaris (100%) than in the group without (61.8%, P = 0.036). For the four eyes with extension into the choroid, the morphological feature of the lesion on en face OCTA evolved into a tangled vascular network, similar to type 1 neovascularization. CONCLUSION OCTA analysis revealed that type 3 neovascularization gradually extended downward toward the sub-RPE and choroid during anti-VEGF treatment. The extension of the lesion into the choriocapillaris, suggesting retinal-choroidal anastomosis, was significantly more frequent in eyes with SDD.
Collapse
Affiliation(s)
- Han Joo Cho
- Kim's Eye Hospital, Konyang University College of Medicine, 156, 4ga, Yeongdeungpo-dong, Yeongdeungpo-gu, Seoul, South Korea.
| | - Soo Hyun Lim
- Kim's Eye Hospital, Konyang University College of Medicine, 156, 4ga, Yeongdeungpo-dong, Yeongdeungpo-gu, Seoul, South Korea
| | - Jaemin Kim
- Kim's Eye Hospital, Konyang University College of Medicine, 156, 4ga, Yeongdeungpo-dong, Yeongdeungpo-gu, Seoul, South Korea
| | - Jihyun Lee
- Kim's Eye Hospital, Konyang University College of Medicine, 156, 4ga, Yeongdeungpo-dong, Yeongdeungpo-gu, Seoul, South Korea
| | - Dong Won Lee
- Kim's Eye Hospital, Konyang University College of Medicine, 156, 4ga, Yeongdeungpo-dong, Yeongdeungpo-gu, Seoul, South Korea
| | - Jong Woo Kim
- Kim's Eye Hospital, Konyang University College of Medicine, 156, 4ga, Yeongdeungpo-dong, Yeongdeungpo-gu, Seoul, South Korea
| |
Collapse
|
5
|
Tesoro-Cruz E, Oviedo N, Manuel-Apolinar L, Orozco-Suárez S, Pérez de la Mora M, Martínez-Pérez G, Guerra-Castillo FX, Aguirre-Alvarado C, Bekker-Méndez VC. Ophthalmic Administration of a DNA Plasmid Harboring the Murine Tph2 Gene: Evidence of Recombinant Tph2-FLAG in Brain Structures. Mol Biotechnol 2020; 62:200-209. [PMID: 32030628 DOI: 10.1007/s12033-020-00239-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tryptophan hydroxylase-type 2 (Tph2) is the first rate-limiting step in the biosynthesis of serotonin (5-HT) in the brain. The ophthalmic administration (Op-Ad) is a non-invasive method that allows delivering genetic vehicles through the eye and reaches the brain. Here, the murine Tph2 gene was cloned in a non-viral vector (pIRES-hrGFP-1a), generating pIRES-hrGFP-1a-Tph2, plus the FLAG-tag. Recombinant Tph2-FLAG was detected and tested in vitro and in vivo, where 25 μg of pIRES-hrGFP-1a-Tph2-FLAG was Op-Ad to mice. The construct was capable of expressing and producing the recombinant Tph2-FLAG in vitro and in vivo. The in vivo assays showed that the construct efficiently crossed the Hemato-Ocular Barrier and the Blood-Brain Barrier, reached brain cells, passed the optical nerves, and transcribed mRNA-Tph2-FLAG in different brain areas. The recombinant Tph2-FLAG was observed in amygdala and brainstem, mainly in raphe dorsal and medial. Relative Tph2 expression of threefold over basal level was recorded three days after Op-Ad. These results demonstrated that pIRES-hrGFP-Tph2-FLAG, administrated through the eyes was capable of reaching the brain, transcribing, and translating Tph2. In conclusion, this study showed the feasibility of delivering therapeutic genes, such as the Tph2, the first enzyme, rate-limiting step in the 5-HT biosynthesis.
Collapse
Affiliation(s)
- Emiliano Tesoro-Cruz
- Unidad de Investigación Biomédica en Infectología e Inmunología, Hospital de Infectología, Centro Médico Nacional "La Raza", IMSS, Paseo de las Jacarandas s/n esquina Calzada Vallejo, Col. La Raza, C.P. 02990, Mexico City, Mexico.
| | - Norma Oviedo
- Unidad de Investigación Biomédica en Infectología e Inmunología, Hospital de Infectología, Centro Médico Nacional "La Raza", IMSS, Paseo de las Jacarandas s/n esquina Calzada Vallejo, Col. La Raza, C.P. 02990, Mexico City, Mexico.
| | - Leticia Manuel-Apolinar
- Unidad de Investigación Médica en Enfermedades Endocrinas, UMAE, Hospital de Especialidades, Centro Médico Nacional "Siglo XXI", IMSS, Mexico City, Mexico
| | - Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, UMAE, Hospital de Especialidades, Centro Médico Nacional "Siglo XXI", IMSS, Mexico City, Mexico
| | - Miguel Pérez de la Mora
- Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, UNAM, Mexico City, Mexico
| | - Gloria Martínez-Pérez
- Unidad de Investigación Biomédica en Infectología e Inmunología, Hospital de Infectología, Centro Médico Nacional "La Raza", IMSS, Paseo de las Jacarandas s/n esquina Calzada Vallejo, Col. La Raza, C.P. 02990, Mexico City, Mexico
| | - Francisco Xavier Guerra-Castillo
- Unidad de Investigación Biomédica en Infectología e Inmunología, Hospital de Infectología, Centro Médico Nacional "La Raza", IMSS, Paseo de las Jacarandas s/n esquina Calzada Vallejo, Col. La Raza, C.P. 02990, Mexico City, Mexico
| | - Charmina Aguirre-Alvarado
- Unidad de Investigación Biomédica en Infectología e Inmunología, Hospital de Infectología, Centro Médico Nacional "La Raza", IMSS, Paseo de las Jacarandas s/n esquina Calzada Vallejo, Col. La Raza, C.P. 02990, Mexico City, Mexico
| | - Vilma Carolina Bekker-Méndez
- Unidad de Investigación Biomédica en Infectología e Inmunología, Hospital de Infectología, Centro Médico Nacional "La Raza", IMSS, Paseo de las Jacarandas s/n esquina Calzada Vallejo, Col. La Raza, C.P. 02990, Mexico City, Mexico
| |
Collapse
|
6
|
Ai J, Ma J, Chen ZQ, Sun JH, Yao K. An Endostatin-lentivirus (ES-LV)-EPC gene therapy agent for suppression of neovascularization in oxygen-induced retinopathy rat model. BMC Mol Cell Biol 2020; 21:57. [PMID: 32727534 PMCID: PMC7392664 DOI: 10.1186/s12860-020-00301-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 07/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transplantation of gene transfected endothelial progenitor cells (EPCs) has provided novel methods for tumor neovascularization therapy but not for ocular disease therapy. This study aimed to investigate the efficacy of endostatin transfected EPCs in retinal neovascularization therapy. RESULTS Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) showed the high expression of endostatin in endostatin-lentivirus-EPCs. The neovascularization leakage area and the number of preretinal neovascular cell nuclei were significantly decreased in the endostatin-lentivirus and endostatin-lentivirus-EPC groups, and the effects of these two treatments on inhibiting retinal neovascularization were almost the same. These two groups also showed the greater retinal distribution of endostatin. Intravitreal injections of endostatin-lentivirus-EPCs inhibited retinal neovascularization, vascular endothelial growth factor (VEGF) and CD31 expression, and increased endostatin expression in vivo. Endostatin-lentivirus-EPCs targeted and prevented pathologic retinal neovascularization. CONCLUSIONS Gene-combined EPCs represent a potential new therapeutic agent for the treatment of neovascular eye diseases.
Collapse
Affiliation(s)
- Jing Ai
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Jian Ma
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Zhi-Qing Chen
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Jun-Hui Sun
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang Province, China.
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China.
| |
Collapse
|
7
|
Mammadzada P, Corredoira PM, André H. The role of hypoxia-inducible factors in neovascular age-related macular degeneration: a gene therapy perspective. Cell Mol Life Sci 2020; 77:819-833. [PMID: 31893312 PMCID: PMC7058677 DOI: 10.1007/s00018-019-03422-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
Abstract
Understanding the mechanisms that underlie age-related macular degeneration (AMD) has led to the identification of key molecules. Hypoxia-inducible transcription factors (HIFs) have been associated with choroidal neovascularization and the progression of AMD into the neovascular clinical phenotype (nAMD). HIFs regulate the expression of multiple growth factors and cytokines involved in angiogenesis and inflammation, hallmarks of nAMD. This knowledge has propelled the development of a new group of therapeutic strategies focused on gene therapy. The present review provides an update on current gene therapies in ocular angiogenesis, particularly nAMD, from both basic and clinical perspectives.
Collapse
Affiliation(s)
- Parviz Mammadzada
- Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, St. Erik Eye Hospital, Stockholm, Sweden
| | - Pablo M Corredoira
- Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, St. Erik Eye Hospital, Stockholm, Sweden
| | - Helder André
- Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, St. Erik Eye Hospital, Stockholm, Sweden.
| |
Collapse
|
8
|
Mansoor N, Wahid F, Azam M, Shah K, den Hollander AI, Qamar R, Ayub H. Molecular Mechanisms of Complement System Proteins and Matrix Metalloproteinases in the Pathogenesis of Age-Related Macular Degeneration. Curr Mol Med 2019; 19:705-718. [PMID: 31456517 DOI: 10.2174/1566524019666190828150625] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Age-related macular degeneration (AMD) is an eye disorder affecting predominantly the older people above the age of 50 years in which the macular region of the retina deteriorates, resulting in the loss of central vision. The key factors associated with the pathogenesis of AMD are age, smoking, dietary, and genetic risk factors. There are few associated and plausible genes involved in AMD pathogenesis. Common genetic variants (with a minor allele frequency of >5% in the population) near the complement genes explain 40-60% of the heritability of AMD. The complement system is a group of proteins that work together to destroy foreign invaders, trigger inflammation, and remove debris from cells and tissues. Genetic changes in and around several complement system genes, including the CFH, contribute to the formation of drusen and progression of AMD. Similarly, Matrix metalloproteinases (MMPs) that are normally involved in tissue remodeling also play a critical role in the pathogenesis of AMD. MMPs are involved in the degradation of cell debris and lipid deposits beneath retina but with age their functions get affected and result in the drusen formation, succeeding to macular degeneration. In this review, AMD pathology, existing knowledge about the normal and pathological role of complement system proteins and MMPs in the eye is reviewed. The scattered data of complement system proteins, MMPs, drusenogenesis, and lipofusogenesis have been gathered and discussed in detail. This might add new dimensions to the understanding of molecular mechanisms of AMD pathophysiology and might help in finding new therapeutic options for AMD.
Collapse
Affiliation(s)
- Naima Mansoor
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Fazli Wahid
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Maleeha Azam
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Khadim Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Raheel Qamar
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Humaira Ayub
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| |
Collapse
|
9
|
Anisotropic poly(lactic-co-glycolic acid) microparticles enable sustained release of a peptide for long-term inhibition of ocular neovascularization. Acta Biomater 2019; 97:451-460. [PMID: 31374338 DOI: 10.1016/j.actbio.2019.07.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/21/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022]
Abstract
Leading causes of vision loss include neovascular age-related macular degeneration (NVAMD) and macular edema (ME), which both require frequent intravitreal injections for treatment. A safe, poly(lactic-co-glycolic acid) (PLGA)-based biodegradable polymeric microparticle (MP) delivery system was developed that encapsulates and protects a biomimetic peptide from degradation, allows sustained intraocular release through polymer hydrolysis, and demonstrates a prolonged anti-angiogenic effect in vivo in three different NVAMD animal models (a laser-induced choroidal neovascularization mouse model, a rhoVEGF transgenic mouse model, and a Tet/opsin/VEGF transgenic mouse model) following intravitreal administration. The role of copolymer composition and microparticle shape was explored and 85:15 lactide-to-glycolide PLGA formed into ellipsoidal microparticles was found to be effective at inhibiting neovascularization for at least 16 weeks in vivo. Treatments were found to not only inhibit the growth of neovascularization, but also to cause regression of the neovasculature, reduce vascular leakage, and prevent exudative retinal detachment. These particulate devices are promising for the sustained release of biologics in the eye and may be useful for treating retinal diseases. STATEMENT OF SIGNIFICANCE: Devastating retinal diseases cause blindness in millions of people around the world. Current protein-based treatments have insufficient efficacy for many patients and also necessitate frequent intravitreal injections. Here, we demonstrate a new treatment consisting of a peptide encapsulated in biodegradable microparticles. We explore the effects of copolymer composition and physical shape of polymeric microparticles and find that both modulate peptide release. Efficacy of the treatment was validated in three different mouse models and the lead formulation was determined to be effective long-term, for at least 16 weeks in vivo, following a single injection. Treatments inhibited and regressed neovascularization as well as reduced vascular leakage. Anisotropic polymeric microparticles are promising for the sustained release of biologics in the eye.
Collapse
|
10
|
Moore NA, Bracha P, Hussain RM, Morral N, Ciulla TA. Gene therapy for age-related macular degeneration. Expert Opin Biol Ther 2017; 17:1235-1244. [PMID: 28726562 DOI: 10.1080/14712598.2017.1356817] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION In neovascular age related macular degeneration (nAMD), gene therapy to chronically express anti-vascular endothelial growth factor (VEGF) proteins could ameliorate the treatment burden of chronic intravitreal therapy and improve limited visual outcomes associated with 'real world' undertreatment. Areas covered: In this review, the authors assess the evolution of gene therapy for AMD. Adeno-associated virus (AAV) vectors can transduce retinal pigment epithelium; one such early application was a phase I trial of AAV2-delivered pigment epithelium derived factor gene in advanced nAMD. Subsequently, gene therapy for AMD shifted to the investigation of soluble fms-like tyrosine kinase-1 (sFLT-1), an endogenously expressed VEGF inhibitor, binding and neutralizing VEGF-A. After some disappointing results, research has centered on novel vectors, including optimized AAV2, AAV8 and lentivirus, as well as genes encoding other anti-angiogenic proteins, including ranibizumab, aflibercept, angiostatin and endostatin. Also, gene therapy targeting the complement system is being investigated for geographic atrophy due to non-neovascular AMD. Expert opinion: The success of gene therapy for AMD will depend on the selection of the most appropriate therapeutic protein and its level of chronic expression. Future investigations will center on optimizing vector, promoter and delivery methods, and evaluating the risks of the chronic expression of anti-angiogenic or anti-complement proteins.
Collapse
Affiliation(s)
- Nicholas A Moore
- a Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Peter Bracha
- a Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Rehan M Hussain
- a Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Nuria Morral
- c Department of Medical and Molecular Genetics , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Thomas A Ciulla
- a Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA.,b Retina Service , Midwest Eye Institute , Indianapolis , IN , USA
| |
Collapse
|
11
|
Gene Transfer of Prolyl Hydroxylase Domain 2 Inhibits Hypoxia-inducible Angiogenesis in a Model of Choroidal Neovascularization. Sci Rep 2017; 7:42546. [PMID: 28186209 PMCID: PMC5301234 DOI: 10.1038/srep42546] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/12/2017] [Indexed: 11/09/2022] Open
Abstract
Cellular responses to hypoxia are mediated by the hypoxia-inducible factors (HIF). In normoxia, HIF-α proteins are regulated by a family of dioxygenases, through prolyl and asparagyl hydroxylation, culminating in proteasomal degradation and transcriptional inactivation. In hypoxia, the dioxygenases become inactive and allow formation of HIF transcription factor, responsible for upregulation of hypoxia genes. In ocular neoangiogenic diseases, such as neovascular age-related macular degeneration (nAMD), hypoxia seems pivotal. Here, we investigate the effects of HIF regulatory proteins on the hypoxia pathway in retinal pigment epithelium (RPE) cells, critically involved in nAMD pathogenesis. Our data indicates that, in ARPE-19 cells, prolyl hydroxylase domain (PHD)2 is the most potent negative-regulator of the HIF pathway. The negative effects of PHD2 on the hypoxia pathway were associated with decreased HIF-1α protein levels, and concomitant decrease in angiogenic factors. ARPE-19 cells stably expressing PHD2 impaired angiogenesis in vitro by wound healing, tubulogenesis, and sprouting assays, as well as in vivo by iris-induced angiogenesis. Gene transfer of PHD2 in vivo resulted in mitigation of HIF-mediated angiogenesis in a mouse model of nAMD. These results may have implications for the clinical treatment of nAMD patients, particularly regarding the use of gene therapy to negatively regulate neoangiogenesis.
Collapse
|
12
|
Wang JH, Ling D, Tu L, van Wijngaarden P, Dusting GJ, Liu GS. Gene therapy for diabetic retinopathy: Are we ready to make the leap from bench to bedside? Pharmacol Ther 2017; 173:1-18. [PMID: 28132907 DOI: 10.1016/j.pharmthera.2017.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy (DR), a chronic and progressive complication of diabetes mellitus, is a sight-threatening disease characterized in the early stages by neuronal and vascular dysfunction in the retina, and later by neovascularization that further damages vision. A major contributor to the pathology is excess production of vascular endothelial growth factor (VEGF), a growth factor that induces formation of new blood vessels and increases permeability of existing vessels. Despite the recent availability of effective treatments for the disease, including laser photocoagulation and therapeutic VEGF antibodies, DR remains a significant cause of vision loss worldwide. Existing anti-VEGF agents, though generally effective, are limited by their short therapeutic half-lives, necessitating frequent intravitreal injections and the risk of attendant adverse events. Management of DR with gene therapies has been proposed for several years, and pre-clinical studies have yielded enticing findings. Gene therapy holds several advantages over conventional treatments for DR, such as a longer duration of therapeutic effect, simpler administration, the ability to intervene at an earlier stage of the disease, and potentially fewer side-effects. In this review, we summarize the current understanding of the pathophysiology of DR and provide an overview of research into DR gene therapies. We also examine current barriers to the clinical application of gene therapy for DR and evaluate future prospects for this approach.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Damien Ling
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Discipline of Ophthalmology, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Leilei Tu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia; Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia.
| |
Collapse
|
13
|
Büning H, Hacker UT. Inhibitors of Angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 917:261-85. [DOI: 10.1007/978-3-319-32805-8_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Gene Therapy with Endogenous Inhibitors of Angiogenesis for Neovascular Age-Related Macular Degeneration: Beyond Anti-VEGF Therapy. J Ophthalmol 2015; 2015:201726. [PMID: 25821585 PMCID: PMC4363820 DOI: 10.1155/2015/201726] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/08/2014] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of substantial and irreversible vision loss amongst elderly populations in industrialized countries. The advanced neovascular (or “wet”) form of the disease is responsible for severe and aggressive loss of central vision. Current treatments aim to seal off leaky blood vessels via laser therapy or to suppress vessel leakage and neovascular growth through intraocular injections of antibodies that target vascular endothelial growth factor (VEGF). However, the long-term success of anti-VEGF therapy can be hampered by limitations such as low or variable efficacy, high frequency of administration (usually monthly), potentially serious side effects, and, most importantly, loss of efficacy with prolonged treatment. Gene transfer of endogenous antiangiogenic proteins is an alternative approach that has the potential to provide long-term suppression of neovascularization and/or excessive vascular leakage in the eye. Preclinical studies of gene transfer in a large animal model have provided impressive preliminary results with a number of transgenes. In addition, a clinical trial in patients suffering from advanced neovascular AMD has provided proof-of-concept for successful gene transfer. In this mini review, we summarize current theories pertaining to the application of gene therapy for neovascular AMD and the potential benefits when used in conjunction with endogenous antiangiogenic proteins.
Collapse
|
15
|
Renaud-Gabardos E, Hantelys F, Morfoisse F, Chaufour X, Garmy-Susini B, Prats AC. Internal ribosome entry site-based vectors for combined gene therapy. World J Exp Med 2015; 5:11-20. [PMID: 25699230 PMCID: PMC4308528 DOI: 10.5493/wjem.v5.i1.11] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 11/25/2014] [Accepted: 12/19/2014] [Indexed: 02/06/2023] Open
Abstract
Gene therapy appears as a promising strategy to treat incurable diseases. In particular, combined gene therapy has shown improved therapeutic efficiency. Internal ribosome entry sites (IRESs), RNA elements naturally present in the 5’ untranslated regions of a few mRNAs, constitute a powerful tool to co-express several genes of interest. IRESs are translational enhancers allowing the translational machinery to start protein synthesis by internal initiation. This feature allowed the design of multi-cistronic vectors expressing several genes from a single mRNA. IRESs exhibit tissue specificity, and drive translation in stress conditions when the global cell translation is blocked, which renders them useful for gene transfer in hypoxic conditions occurring in ischemic diseases and cancer. IRES-based viral and non viral vectors have been used successfully in preclinical and clinical assays of combined gene therapy and resulted in therapeutic benefits for various pathologies including cancers, cardiovascular diseases and degenerative diseases.
Collapse
|
16
|
Abstract
Efforts to use gene therapy to create a biological pacemaker as an adjunct or replacement of electronic pacemakers have been ongoing for about 15 years. For the past decade, most of these efforts have focused on the hyperpolarization-activated cyclic nucleotide gated-(HCN) gene family of channels alone or in combination with other genes. The HCN gene family is the molecular correlate of the cardiac pacemaker current, If. It is a suitable basis for a biological pacemaker because it generates a depolarizing inward current primarily during diastole and is directly regulated by cyclic adenosine monophosphate (cAMP), thereby incorporating autonomic responsiveness. However, biological pacemakers based either on native HCN channels or on mutated HCN channels designed to optimize biophysical characteristics have failed to attain the desired basal and maximal physiological heart rates in large animals. More recent work has explored dual gene therapy approaches, combining an HCN variant with another gene to reduce outward current, increase an additional inward current, or enhance cAMP synthesis. Several of these dual gene therapy approaches have demonstrated appropriate basal and maximal heart rates with little or no reliance on a backup electronic pacemaker during the period of study. Future research, besides examining the efficacy of other gene combinations, will need to consider the additional issues of safety and persistence of the viral vectors often used to deliver these genes to a specific cardiac region.
Collapse
Affiliation(s)
- Gerard J. J. Boink
- Heart Center, Department of Clinical & Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Netherlands Heart Institute, ICIN, Utrecht, the Netherlands
| | - Richard B. Robinson
- Department of Pharmacology, Center for Molecular Therapeutics, Columbia University, New York, NY, USA
| |
Collapse
|
17
|
Shastry BS. Genetics of familial exudative vitreoretinopathy and its implications for management. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.12.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Schwartz SG, Scott IU, Flynn HW, Stewart MW. Drug delivery techniques for treating age-related macular degeneration. Expert Opin Drug Deliv 2013; 11:61-8. [DOI: 10.1517/17425247.2013.859135] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Prats AC, Van den Berghe L, Rayssac A, Ainaoui N, Morfoisse F, Pujol F, Legonidec S, Bikfalvi A, Prats H, Pyronnet S, Garmy-Susini B. CXCL4L1-fibstatin cooperation inhibits tumor angiogenesis, lymphangiogenesis and metastasis. Microvasc Res 2013; 89:25-33. [PMID: 23747987 DOI: 10.1016/j.mvr.2013.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/28/2013] [Accepted: 05/20/2013] [Indexed: 01/12/2023]
Abstract
Anti-angiogenic and anti-lymphangiogenic drugs slow tumor progression and dissemination. However, an important difficulty is that a tumor reacts and compensates to obtain the blood supply needed for tumor growth and lymphatic vessels to escape to distant loci. Therefore, there is a growing consensus on the requirement of multiple anti-(lymph)angiogenic molecules to stop cell invasion efficiently. Here we studied the cooperation between endogenous anti-angiogenic molecules, endostatin and fibstatin, and a chemokine, the Platelet Factor-4 variant 1, CXCL4L1. Anti-angiogenic factors were co-expressed by IRES-based bicistronic vectors and their cooperation was analyzed either by local delivery following transduction of pancreatic adenocarcinoma cells with lentivectors, or by distant delivery resulting from intramuscular administration in vivo of adeno-associated virus derived vectors followed by tumor subcutaneous injection. In this study, fibstatin and CXCL4L1 cooperate to inhibit endothelial cell proliferation, migration and tubulogenesis in vitro. No synergistic effect was found for fibstatin-endostatin combination. Importantly, we demonstrated for the first time that fibstatin and CXCL4L1 not only inhibit in vivo angiogenesis, but also lymphangiogenesis and tumor spread to the lymph nodes, whereas no beneficial effect was found on tumor growth inhibition using molecule combinations compared to molecules alone. These data reveal the synergy of CXCL4L1 and fibstatin in inhibition of tumor angiogenesis, lymphangiogenesis and metastasis and highlight the potential of IRES-based vectors to develop anti-metastasis combined gene therapies.
Collapse
Affiliation(s)
- A C Prats
- Université de Toulouse, UPS, TRADGENE, EA4554, F-31432 Toulouse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Campochiaro PA. Ocular neovascularization. J Mol Med (Berl) 2013; 91:311-21. [PMID: 23329331 DOI: 10.1007/s00109-013-0993-5] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 12/22/2012] [Accepted: 01/02/2013] [Indexed: 01/18/2023]
Abstract
Retinal and choroidal vascular diseases constitute the most common causes of moderate and severe vision loss in developed countries. They can be divided into retinal vascular diseases, in which there is leakage and/or neovascularization (NV) from retinal vessels, and subretinal NV, in which new vessels grow into the normally avascular outer retina and subretinal space. The first category of diseases includes diabetic retinopathy, retinal vein occlusions, and retinopathy of prematurity, and the second category includes neovascular age-related macular degeneration (AMD), ocular histoplasmosis, pathologic myopia, and other related diseases. Retinal hypoxia is a key feature of the first category of diseases resulting in elevated levels of hypoxia-inducible factor-1 (HIF-1) which stimulates expression of vascular endothelial growth factor (VEGF), platelet-derived growth factor-B (PDGF-B), placental growth factor, stromal-derived growth factor-1 and their receptors, as well as other hypoxia-regulated gene products such as angiopoietin-2. Although hypoxia has not been demonstrated as part of the second category of diseases, HIF-1 is elevated and thus the same group of hypoxia-regulated gene products plays a role. Clinical trials have shown that VEGF antagonists provide major benefits for patients with subretinal NV due to AMD and even greater benefits are seen by combining antagonists of VEGF and PDGF-B. It is likely that addition of antagonists of other agents listed above will be tested in the future. Other appealing strategies are to directly target HIF-1 or to use gene transfer to express endogenous or engineered anti-angiogenic proteins. While substantial progress has been made, the future looks even brighter for patients with retinal and choroidal vascular diseases.
Collapse
Affiliation(s)
- Peter A Campochiaro
- Departments of Ophthalmology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287-9277, USA.
| |
Collapse
|
21
|
Kurosaki T, Uematsu M, Shimoda K, Suzuma K, Nakai M, Nakamura T, Kitahara T, Kitaoka T, Sasaki H. Ocular Gene Delivery Systems Using Ternary Complexes of Plasmid DNA, Polyethylenimine, and Anionic Polymers. Biol Pharm Bull 2013; 36:96-101. [DOI: 10.1248/bpb.b12-00728] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomoaki Kurosaki
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
- The Japan Society for the Promotion of Science (JSPS)
| | - Masafumi Uematsu
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University
| | | | - Kiyoshi Suzuma
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University
| | - Masato Nakai
- Department of Hospital Pharmacy, Nagasaki University Hospital
| | | | | | - Takashi Kitaoka
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University
| | - Hitoshi Sasaki
- Department of Hospital Pharmacy, Nagasaki University Hospital
- Global COE Program, Nagasaki University
| |
Collapse
|
22
|
Miller JW. Age-related macular degeneration revisited--piecing the puzzle: the LXIX Edward Jackson memorial lecture. Am J Ophthalmol 2013; 155:1-35.e13. [PMID: 23245386 DOI: 10.1016/j.ajo.2012.10.018] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 12/11/2022]
Abstract
PURPOSE To present the current understanding of age-related macular degeneration (AMD) pathogenesis, based on clinical evidence, epidemiologic data, histopathologic examination, and genetic data; to provide an update on current and emerging therapies; and to propose an integrated model of the pathogenesis of AMD. DESIGN Review of published clinical and experimental studies. METHODS Analysis and synthesis of clinical and experimental data. RESULTS We are closer to a complete understanding of the pathogenesis of AMD, having progressed from clinical observations to epidemiologic observations and clinical pathologic correlation. More recently, modern genetic and genomic studies have facilitated the exploration of molecular pathways. It seems that AMD is a complex disease that results from the interaction of genetic susceptibility with aging and environmental factors. Disease progression also seems to be driven by a combination of genetic and environmental factors. CONCLUSIONS Therapies based on pathophysiologic features have changed the paradigm for treating neovascular AMD. With improved understanding of the underlying genetic susceptibility, we can identify targets to halt early disease and to prevent progression and vision loss.
Collapse
|
23
|
Farley DC, Bannister R, Leroux-Carlucci MA, Evans NE, Miskin JE, Mitrophanous KA. Development of an equine-tropic replication-competent lentivirus assay for equine infectious anemia virus-based lentiviral vectors. Hum Gene Ther Methods 2012; 23:309-23. [PMID: 23121195 DOI: 10.1089/hgtb.2012.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The release of lentiviral vectors for clinical use requires the testing of vector material, production cells, and, if applicable, ex vivo-transduced cells for the presence of replication-competent lentivirus (RCL). Vectors derived from the nonprimate lentivirus equine infectious anemia virus (EIAV) have been directly administered to patients in several clinical trials, with no toxicity observed to date. Because EIAV does not replicate in human cells, and because putative RCLs derived from vector components within human vector production cells would most likely be human cell-tropic, we previously developed an RCL assay using amphotropic murine leukemia virus (MLV) as a surrogate positive control and human cells as RCL amplification/indicator cells. Here we report an additional RCL assay that tests for the presence of theoretical "equine-tropic" RCLs. This approach provides further assurance of safety by detecting putative RCLs with an equine cell-specific tropism that might not be efficiently amplified by the human cell-based RCL assay. We tested the ability of accessory gene-deficient EIAV mutant viruses to replicate in a highly permissive equine cell line to direct our choice of a suitable EIAV-derived positive control. In addition, we report for the first time the mathematical rationale for use of the Poisson distribution to calculate minimal infectious dose of positive control virus and for use in monitoring assay positive/spike control failures in accumulating data sets. No RCLs have been detected in Good Manufacturing Practice (GMP)-compliant RCL assays to date, further demonstrating that RCL formation is highly unlikely in contemporary minimal lentiviral vector systems.
Collapse
|
24
|
Farley DC, Bannister R, Leroux-Carlucci MA, Evans NE, Miskin JE, Mitrophanous K. Development of an equine-tropic replication competent lentivirus assay for equine infectious anaemia virus based lentiviral vectors. Hum Gene Ther Methods 2012. [DOI: 10.1089/hum.2012.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
25
|
|
26
|
Abstract
Proliferative diabetic retinopathy (PDR), characterized by pathologic retinal angiogenesis, is a major cause of blindness in the USA and globally. Treatments targeting vascular endothelial growth factor (VEGF) have emerged as a beneficial part of the therapeutic armamentarium for this condition, highlighting the utility of identifying and targeting specific pathogenic molecules. There continues to be active research into the molecular players regulating retinal angiogenesis, including pro-angiogenic factors, anti-angiogenic factors, and integrins and matrix proteinases. New insights have been especially prominent regarding molecules which regulate specialized endothelial cells called tip cells, which play a lead role in endothelial sprouting. Together, these research efforts are uncovering new, important molecular regulators of retinal angiogenesis, which provide fertile areas for therapeutic exploration. This review discusses potential molecular targets, with an emphasis towards newer targets.
Collapse
Affiliation(s)
- Shuang Wang
- Ophthalmologic Department, China-Japan Union Hospital, Changchun City, Jilin Province, China.
| | | | | |
Collapse
|
27
|
Gene delivery nanoparticles specific for human microvasculature and macrovasculature. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:1200-7. [PMID: 22306159 DOI: 10.1016/j.nano.2012.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 12/22/2011] [Accepted: 01/16/2012] [Indexed: 12/31/2022]
Abstract
UNLABELLED Endothelial cell dysfunction is a critical component of ocular diseases such as age-related macular degeneration and diabetic retinopathy. An important limitation in endothelial cell research is the difficulty in achieving efficient transfection of these cells. A new polymer library was here synthesized and utilized to find polymeric nanoparticles that can transfect macrovascular (human umbilical vein, HUVECs) and microvascular (human retinal, HRECs) endothelial cells. Nanoparticles were synthesized that can achieve transfection efficiency of up to 85% for HRECs and 65% for HUVECs. These nanoparticle systems enable high levels of expression while avoiding problems associated with viral gene delivery. The polymeric nanoparticles also show cell-specific behavior, with a high correlation between microvascular and macrovascular transfection (R(2) = 0.81) but low correlation between retinal endothelial and retinal epithelial transfection (R(2) = 0.21). These polymeric nanoparticles can be used in vitro as experimental tools and potentially in vivo to target and treat vascular-specific diseases. FROM THE CLINICAL EDITOR Polymeric nanoparticles were synthesized with the goal of transfecting endothelial cells, which are commonly considered difficult targets. The authors report excellent transfection efficiency of up to 85% for human retinal and 65% for human umbilical vein endothelial cells. These NPs can be used in vitro as experimental tools and potentially in vivo to target and treat vascular-specific diseases.
Collapse
|