1
|
Kwon SY, Thi-Thu Ngo H, Son J, Hong Y, Min JJ. Exploiting bacteria for cancer immunotherapy. Nat Rev Clin Oncol 2024; 21:569-589. [PMID: 38840029 DOI: 10.1038/s41571-024-00908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Immunotherapy has revolutionized the treatment of cancer but continues to be constrained by limited response rates, acquired resistance, toxicities and high costs, which necessitates the development of new, innovative strategies. The discovery of a connection between the human microbiota and cancer dates back 4,000 years, when local infection was observed to result in tumour eradication in some individuals. However, the true oncological relevance of the intratumoural microbiota was not recognized until the turn of the twentieth century. The intratumoural microbiota can have pivotal roles in both the pathogenesis and treatment of cancer. In particular, intratumoural bacteria can either promote or inhibit cancer growth via remodelling of the tumour microenvironment. Over the past two decades, remarkable progress has been made preclinically in engineering bacteria as agents for cancer immunotherapy; some of these bacterial products have successfully reached the clinical stages of development. In this Review, we discuss the characteristics of intratumoural bacteria and their intricate interactions with the tumour microenvironment. We also describe the many strategies used to engineer bacteria for use in the treatment of cancer, summarizing contemporary data from completed and ongoing clinical trials. The work described herein highlights the potential of bacteria to transform the landscape of cancer therapy, bridging ancient wisdom with modern scientific innovation.
Collapse
Affiliation(s)
- Seong-Young Kwon
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
| | - Hien Thi-Thu Ngo
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea
- Department of Biochemistry, Hanoi Medical University, Hanoi, Vietnam
| | - Jinbae Son
- CNCure Biotech, Jeonnam, Republic of Korea
| | - Yeongjin Hong
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea
- CNCure Biotech, Jeonnam, Republic of Korea
- Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, Republic of Korea
- National Immunotherapy Innovation Center, Chonnam National University, Jeonnam, Republic of Korea
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea.
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- CNCure Biotech, Jeonnam, Republic of Korea.
- Department of Microbiology and Immunology, Chonnam National University Medical School, Jeonnam, Republic of Korea.
- National Immunotherapy Innovation Center, Chonnam National University, Jeonnam, Republic of Korea.
| |
Collapse
|
2
|
Tadic S, Martínez A. Nucleic acid cancer vaccines targeting tumor related angiogenesis. Could mRNA vaccines constitute a game changer? Front Immunol 2024; 15:1433185. [PMID: 39081320 PMCID: PMC11286457 DOI: 10.3389/fimmu.2024.1433185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Tumor related angiogenesis is an attractive target in cancer therapeutic research due to its crucial role in tumor growth, invasion, and metastasis. Different agents were developed aiming to inhibit this process; however they had limited success. Cancer vaccines could be a promising tool in anti-cancer/anti-angiogenic therapy. Cancer vaccines aim to initiate an immune response against cancer cells upon presentation of tumor antigens which hopefully will result in the eradication of disease and prevention of its recurrence by inducing an efficient and long-lasting immune response. Different vaccine constructs have been developed to achieve this and they could include either protein-based or nucleic acid-based vaccines. Nucleic acid vaccines are simple and relatively easy to produce, with high efficiency and safety, thus prompting a high interest in the field. Different DNA vaccines have been developed to target crucial regulators of tumor angiogenesis. Most of them were successful in pre-clinical studies, mostly when used in combination with other therapeutics, but had limited success in the clinic. Apparently, different tumor evasion mechanisms and reduced immunogenicity still limit the potential of these vaccines and there is plenty of room for improvement. Nowadays, mRNA cancer vaccines are making remarkable progress due to improvements in the manufacturing technology and represent a powerful potential alternative. Apart from their efficiency, mRNA vaccines are simple and cheap to produce, can encompass multiple targets simultaneously, and can be quickly transferred from bench to bedside. mRNA vaccines have already accomplished amazing results in cancer clinical trials, thus ensuring a bright future in the field, although no anti-angiogenic mRNA vaccines have been described yet. This review aims to describe recent advances in anti-angiogenic DNA vaccine therapy and to provide perspectives for use of revolutionary approaches such are mRNA vaccines for anti-angiogenic treatments.
Collapse
Affiliation(s)
| | - Alfredo Martínez
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
3
|
King-Lyons ND, Bhati AS, Hu JC, Mandell LM, Shenoy GN, Willison HJ, Connell TD. A Novel Cytotoxic Mechanism for Triple-Negative Breast Cancer Cells Induced by the Type II Heat-Labile Enterotoxin LT-IIc through Ganglioside Ligation. Toxins (Basel) 2024; 16:311. [PMID: 39057951 PMCID: PMC11281474 DOI: 10.3390/toxins16070311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC), which constitutes 10-20 percent of all breast cancers, is aggressive, has high metastatic potential, and carries a poor prognosis due to limited treatment options. LT-IIc, a member of the type II subfamily of ADP-ribosylating-heat-labile enterotoxins that bind to a distinctive set of cell-surface ganglioside receptors-is cytotoxic toward TNBC cell lines, but has no cytotoxic activity for non-transformed breast epithelial cells. Here, primary TNBC cells, isolated from resected human tumors, showed an enhanced cytotoxic response specifically toward LT-IIc, in contrast to other enterotoxins that were tested. MDA-MB-231 cells, a model for TNBC, were used to evaluate potential mechanisms of cytotoxicity by LT-IIc, which induced elevated intracellular cAMP and stimulated the cAMP response element-binding protein (CREB) signaling pathway. To dissect the role of ADP-ribosylation, cAMP induction, and ganglioside ligation in the cytotoxic response, MDA-MB-231 cells were exposed to wild-type LT-IIc, the recombinant B-pentamer of LT-IIc that lacks the ADP-ribosylating A polypeptide, or mutants of LT-IIc with an enzymatically inactivated A1-domain. These experiments revealed that the ADP-ribosyltransferase activity of LT-IIc was nonessential for inducing the lethality of MDA-MB-231 cells. In contrast, a mutant LT-IIc with an altered ganglioside binding activity failed to trigger a cytotoxic response in MDA-MB-231 cells. Furthermore, the pharmacological inhibition of ganglioside expression protected MDA-MB-231 cells from the cytotoxic effects of LT-IIc. These data establish that ganglioside ligation, but not the induction of cAMP production nor ADP-ribosyltransferase activity, is essential to initiating the LT-IIc-dependent cell death of MDA-MB-231 cells. These experiments unveiled previously unknown properties of LT-IIc and gangliosides in signal transduction, offering the potential for the targeted treatment of TNBC, an option that is desperately needed.
Collapse
Affiliation(s)
- Natalie D. King-Lyons
- Department of Microbiology and Immunology, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (N.D.K.-L.); (A.S.B.); (L.M.M.); (G.N.S.)
| | - Aryana S. Bhati
- Department of Microbiology and Immunology, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (N.D.K.-L.); (A.S.B.); (L.M.M.); (G.N.S.)
| | - John C. Hu
- The Witebsky Center for Microbiology and Immunology, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
- Department of Medicine, Division of Infectious Disease, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA
- VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Lorrie M. Mandell
- Department of Microbiology and Immunology, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (N.D.K.-L.); (A.S.B.); (L.M.M.); (G.N.S.)
| | - Gautam N. Shenoy
- Department of Microbiology and Immunology, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (N.D.K.-L.); (A.S.B.); (L.M.M.); (G.N.S.)
- The Witebsky Center for Microbiology and Immunology, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
| | - Hugh J. Willison
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK;
| | - Terry D. Connell
- Department of Microbiology and Immunology, The Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA; (N.D.K.-L.); (A.S.B.); (L.M.M.); (G.N.S.)
- The Witebsky Center for Microbiology and Immunology, The University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
| |
Collapse
|
4
|
Oladejo M, Nguyen HM, Silwal A, Reese B, Paulishak W, Markiewski MM, Wood LM. Listeria-based immunotherapy directed against CD105 exerts anti-angiogenic and anti-tumor efficacy in renal cell carcinoma. Front Immunol 2022; 13:1038807. [PMID: 36439126 PMCID: PMC9692019 DOI: 10.3389/fimmu.2022.1038807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 07/29/2023] Open
Abstract
Targeting tumor-associated angiogenesis is currently at the forefront of renal cell carcinoma (RCC) therapy, with sunitinib and bevacizumab leading to increased survival in patients with metastatic RCC (mRCC). However, resistance often occurs shortly after initiation of therapy, suggesting that targeting the tumor-associated vascular endothelium may not be sufficient to eradicate RCC. This study reports the therapeutic efficacy of a Listeria (Lm)-based vaccine encoding an antigenic fragment of CD105 (Lm-LLO-CD105A) that targets both RCC tumor cells and the tumor-associated vasculature. Lm-LLO-CD105A treatment reduced primary tumor growth in both subcutaneous and orthotopic models of murine RCC. The vaccine conferred anti-tumor immunity and remodeled the tumor microenvironment (TME), resulting in increased infiltration of polyfunctional CD8+ and CD4+ T cells and reduced infiltration of immunosuppressive cell types within the TME. We further provide evidence that the therapeutic efficacy of Lm-LLO-CD105A is mediated by CD8+ T cells and is dependent on the robust antigenic expression of CD105 by RCC tumor cells. The result from this study demonstrates the safety and promising therapeutic efficacy of targeting RCC-associated CD105 expression with Lm-based immunotherapy.
Collapse
|
5
|
Chen W, Zhu Y, Zhang Z, Sun X. Advances in Salmonella Typhimurium-based drug delivery system for cancer therapy. Adv Drug Deliv Rev 2022; 185:114295. [PMID: 35429576 DOI: 10.1016/j.addr.2022.114295] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/14/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
Abstract
The clinical application of bacteria-mediated immune therapy dates back over a century ago. In recent years, these strategies have advanced greatly with the rapid development of synthetic biology and nanotechnology. Several bacterial therapies have been developed allowing for more effective treatments for cancers, and Salmonella is one of the most studied bacterial species. Here, we review the advances in the bioengineered and functionalized Salmonella Typhimurium strains as drug delivery carries, including the various genetic circuits for programing these bacteria, the surface modification strategies using nanoparticles or other therapeutic agents for richer and broader features, and the bacterial component-based vehicles for cancer immunotherapy. This review will include the promises and challenges of these optimized Salmonella-based delivery systems and their related clinical trials. Ultimately, we hope to provide a spark of thought in the field of drug delivery and find important crosstalk between bacteria-mediated therapy and other different forms of treatments.
Collapse
|
6
|
Howell LM, Forbes NS. Bacteria-based immune therapies for cancer treatment. Semin Cancer Biol 2021; 86:1163-1178. [PMID: 34547442 DOI: 10.1016/j.semcancer.2021.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 12/23/2022]
Abstract
Engineered bacterial therapies that target the tumor immune landscape offer a new class of cancer immunotherapy. Salmonella enterica and Listeria monocytogenes are two species of bacteria that have been engineered to specifically target tumors and serve as delivery vessels for immunotherapies. Therapeutic bacteria have been engineered to deliver cytokines, gene silencing shRNA, and tumor associated antigens that increase immune activation. Bacterial therapies stimulate both the innate and adaptive immune system, change the immune dynamics of the tumor microenvironment, and offer unique strategies for targeting tumors. Bacteria have innate adjuvant properties, which enable both the delivered molecules and the bacteria themselves to stimulate immune responses. Bacterial immunotherapies that deliver cytokines and tumor-associated antigens have demonstrated clinical efficacy. Harnessing the diverse set of mechanisms that Salmonella and Listeria use to alter the tumor-immune landscape has the potential to generate many new and effective immunotherapies.
Collapse
Affiliation(s)
- Lars M Howell
- Department of Chemical Engineering, University of Massachusetts, Amherst, United States
| | - Neil S Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, United States.
| |
Collapse
|
7
|
Kułach N, Pilny E, Cichoń T, Czapla J, Jarosz-Biej M, Rusin M, Drzyzga A, Matuszczak S, Szala S, Smolarczyk R. Mesenchymal stromal cells as carriers of IL-12 reduce primary and metastatic tumors of murine melanoma. Sci Rep 2021; 11:18335. [PMID: 34526531 PMCID: PMC8443548 DOI: 10.1038/s41598-021-97435-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/20/2021] [Indexed: 01/14/2023] Open
Abstract
Due to immunosuppressive properties and confirmed tropism towards cancer cells mesenchymal stromal cells (MSC) have been used in many trials. In our study we used these cells as carriers of IL-12 in the treatment of mice with primary and metastatic B16-F10 melanomas. IL-12 has confirmed anti-cancer activity, induces a strong immune response against cancer cells and acts as an anti-angiogenic agent. A major limitation of the use of IL-12 in therapy is its systemic toxicity. The aim of the work was to develop a system in which cytokine may be administered intravenously without toxic side effects. In this study MSC were used as carriers of the IL-12. We confirmed antitumor effectiveness of the cells secreting IL-12 (MSC/IL-12) in primary and metastatic murine melanoma models. We observed inhibition of tumor growth and a significant reduction in the number of metastases in mice after MSC/IL-12 administration. MSC/IL-12 decreased vascular density and increased the number of anticancer M1 macrophages and CD8+ cytotoxic T lymphocytes in tumors of treated mice. To summarize, we showed that MSC are an effective, safe carrier of IL-12 cytokine. Administered systemically they exert therapeutic properties of IL-12 cytokine without toxicity. Therapeutic effect may be a result of pleiotropic (proinflammatory and anti-angiogenic) properties of IL-12 released by modified MSC.
Collapse
Affiliation(s)
- Natalia Kułach
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Ewelina Pilny
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Alina Drzyzga
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Sybilla Matuszczak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Stanisław Szala
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| |
Collapse
|
8
|
Rezaei T, Davoudian E, Khalili S, Amini M, Hejazi M, de la Guardia M, Mokhtarzadeh A. Strategies in DNA vaccine for melanoma cancer. Pigment Cell Melanoma Res 2021; 34:869-891. [PMID: 33089665 DOI: 10.1111/pcmr.12933] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/05/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022]
Abstract
According to reports of the international agency for cancer on research, although malignant melanoma shows less prevalence than nonmelanoma skin cancers, it is the major cause of skin cancer mortality. Given that, the production of effective vaccines to control melanoma is eminently required. In this regard, DNA-based vaccines have been extensively investigated for melanoma therapy. DNA vaccines are capable of inducing both cellular and humoral branches of immune responses. These vaccines possess some valuable advantages such as lack of severe side effects and high stability compared to conventional vaccination methods. The ongoing studies are focused on novel strategies in the development of DNA vaccines encoding artificial polyepitope immunogens based on the multiple melanoma antigens, the inclusion of molecular adjuvants to increase the level of immune responses, and the improvement of delivery approaches. In this review, we have outlined the recent advances in the field of melanoma DNA vaccines and described their implications in clinical trials as a strong strategy in the prevention and control of melanoma.
Collapse
Affiliation(s)
- Tayebeh Rezaei
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arak, Iran
| | - Elham Davoudian
- Department of Microbiology, School of Paramedical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hejazi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Wan PKT, Ryan AJ, Seymour LW. Beyond cancer cells: Targeting the tumor microenvironment with gene therapy and armed oncolytic virus. Mol Ther 2021; 29:1668-1682. [PMID: 33845199 PMCID: PMC8116634 DOI: 10.1016/j.ymthe.2021.04.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 01/17/2023] Open
Abstract
Cancer gene therapies are usually designed either to express wild-type copies of tumor suppressor genes or to exploit tumor-associated phenotypic changes to endow selective cytotoxicity. However, these approaches become less relevant to cancers that contain many independent mutations, and the situation is made more complex by our increased understanding of clonal evolution of tumors, meaning that different metastases and even regions of the same tumor mass have distinct mutational and phenotypic profiles. In contrast, the relatively genetically stable tumor microenvironment (TME) therefore provides an appealing therapeutic target, particularly since it plays an essential role in promoting cancer growth, immune tolerance, and acquired resistance to many therapies. Recently, a variety of different TME-targeted gene therapy and armed oncolytic strategies have been explored, with particular success observed in strategies targeting the cancer stroma, reducing tumor vasculature, and repolarizing the immunosuppressive microenvironment. Herein, we review the progress of these TME-targeting approaches and try to highlight those showing the greatest promise.
Collapse
Affiliation(s)
| | - Anderson J Ryan
- Department Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | |
Collapse
|
10
|
Listik E, Horst B, Choi AS, Lee NY, Győrffy B, Mythreye K. A bioinformatic analysis of the inhibin-betaglycan-endoglin/CD105 network reveals prognostic value in multiple solid tumors. PLoS One 2021; 16:e0249558. [PMID: 33819300 PMCID: PMC8021191 DOI: 10.1371/journal.pone.0249558] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/21/2021] [Indexed: 12/13/2022] Open
Abstract
Inhibins and activins are dimeric ligands belonging to the TGFβ superfamily with emergent roles in cancer. Inhibins contain an α-subunit (INHA) and a β-subunit (either INHBA or INHBB), while activins are mainly homodimers of either βA (INHBA) or βB (INHBB) subunits. Inhibins are biomarkers in a subset of cancers and utilize the coreceptors betaglycan (TGFBR3) and endoglin (ENG) for physiological or pathological outcomes. Given the array of prior reports on inhibin, activin and the coreceptors in cancer, this study aims to provide a comprehensive analysis, assessing their functional prognostic potential in cancer using a bioinformatics approach. We identify cancer cell lines and cancer types most dependent and impacted, which included p53 mutated breast and ovarian cancers and lung adenocarcinomas. Moreover, INHA itself was dependent on TGFBR3 and ENG/CD105 in multiple cancer types. INHA, INHBA, TGFBR3, and ENG also predicted patients' response to anthracycline and taxane therapy in luminal A breast cancers. We also obtained a gene signature model that could accurately classify 96.7% of the cases based on outcomes. Lastly, we cross-compared gene correlations revealing INHA dependency to TGFBR3 or ENG influencing different pathways themselves. These results suggest that inhibins are particularly important in a subset of cancers depending on the coreceptor TGFBR3 and ENG and are of substantial prognostic value, thereby warranting further investigation.
Collapse
Affiliation(s)
- Eduardo Listik
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ben Horst
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, United States of America
| | - Alex Seok Choi
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nam. Y. Lee
- Division of Pharmacology, Chemistry and Biochemistry, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Balázs Győrffy
- TTK Cancer Biomarker Research Group, Institute of Enzymology, and Semmelweis University Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary
| | - Karthikeyan Mythreye
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
11
|
Ollauri-Ibáñez C, Ayuso-Íñigo B, Pericacho M. Hot and Cold Tumors: Is Endoglin (CD105) a Potential Target for Vessel Normalization? Cancers (Basel) 2021; 13:1552. [PMID: 33800564 PMCID: PMC8038031 DOI: 10.3390/cancers13071552] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
Tumors are complex masses formed by malignant but also by normal cells. The interaction between these cells via cytokines, chemokines, growth factors, and enzymes that remodel the extracellular matrix (ECM) constitutes the tumor microenvironment (TME). This TME can be determinant in the prognosis and the response to some treatments such as immunotherapy. Depending on their TME, two types of tumors can be defined: hot tumors, characterized by an immunosupportive TME and a good response to immunotherapy; and cold tumors, which respond poorly to this therapy and are characterized by an immunosuppressive TME. A therapeutic strategy that has been shown to be useful for the conversion of cold tumors into hot tumors is vascular normalization. In this review we propose that endoglin (CD105) may be a useful target of this strategy since it is involved in the three main processes involved in the generation of the TME: angiogenesis, inflammation, and cancer-associated fibroblast (CAF) accumulation. Moreover, the analysis of endoglin expression in tumors, which is already used in the clinic to study the microvascular density and that is associated with worse prognosis, could be used to predict a patient's response to immunotherapy.
Collapse
Affiliation(s)
| | | | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Group of Physiopathology of the Vascular Endothelium (ENDOVAS), Biomedical Research Institute of Salamanca (IBSAL), Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; (C.O.-I.); (B.A.-Í.)
| |
Collapse
|
12
|
Endoglin in the Spotlight to Treat Cancer. Int J Mol Sci 2021; 22:ijms22063186. [PMID: 33804796 PMCID: PMC8003971 DOI: 10.3390/ijms22063186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
A spotlight has been shone on endoglin in recent years due to that fact of its potential to serve as both a reliable disease biomarker and a therapeutic target. Indeed, endoglin has now been assigned many roles in both physiological and pathological processes. From a molecular point of view, endoglin mainly acts as a co-receptor in the canonical TGFβ pathway, but also it may be shed and released from the membrane, giving rise to the soluble form, which also plays important roles in cell signaling. In cancer, in particular, endoglin may contribute to either an oncogenic or a non-oncogenic phenotype depending on the cell context. The fact that endoglin is expressed by neoplastic and non-neoplastic cells within the tumor microenvironment suggests new possibilities for targeted therapies. Here, we aimed to review and discuss the many roles played by endoglin in different tumor types, as well as the strong evidence provided by pre-clinical and clinical studies that supports the therapeutic targeting of endoglin as a novel clinical strategy.
Collapse
|
13
|
Broadway KM, Scharf BE. Salmonella Typhimurium as an Anticancer Therapy: Recent Advances and Perspectives. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-00132-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Jazayeri SD, Poh CL. Recent advances in delivery of veterinary DNA vaccines against avian pathogens. Vet Res 2019; 50:78. [PMID: 31601266 PMCID: PMC6785882 DOI: 10.1186/s13567-019-0698-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022] Open
Abstract
Veterinary vaccines need to have desired characteristics, such as being effective, inexpensive, easy to administer, suitable for mass vaccination and stable under field conditions. DNA vaccines have been proposed as potential solutions for poultry diseases since they are subunit vaccines with no risk of infection or reversion to virulence. DNA vaccines can be utilized for simultaneous immunizations against multiple pathogens and are relatively easy to design and inexpensive to manufacture and store. Administration of DNA vaccines has been shown to stimulate immune responses and provide protection from challenges in different animal models. Although DNA vaccines offer advantages, setbacks including the inability to induce strong immunity, and the fact that they are not currently applicable for mass vaccination impede the use of DNA vaccines in the poultry industry. The use of either biological or physical carriers has been proposed as a solution to overcome the current delivery limitations of DNA vaccines for veterinary applications. This review presents an overview of the recent development of carriers for delivery of veterinary DNA vaccines against avian pathogens.
Collapse
Affiliation(s)
- Seyed Davoud Jazayeri
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
15
|
Abstract
Recent advances in targeted therapy and immunotherapy have once again raised the hope that a cure might be within reach for many cancer types. Yet, most late-stage cancers are either insensitive to the therapies to begin with or develop resistance later. Therapy with live tumour-targeting bacteria provides a unique option to meet these challenges. Compared with most other therapeutics, the effectiveness of tumour-targeting bacteria is not directly affected by the 'genetic makeup' of a tumour. Bacteria initiate their direct antitumour effects from deep within the tumour, followed by innate and adaptive antitumour immune responses. As microscopic 'robotic factories', bacterial vectors can be reprogrammed following simple genetic rules or sophisticated synthetic bioengineering principles to produce and deliver anticancer agents on the basis of clinical needs. Therapeutic approaches using live tumour-targeting bacteria can either be applied as a monotherapy or complement other anticancer therapies to achieve better clinical outcomes. In this Review, we summarize the potential benefits and challenges of this approach. We discuss how live bacteria selectively induce tumour regression and provide examples to illustrate different ways to engineer bacteria for improved safety and efficacy. Finally, we share our experience and insights on oncology clinical trials with tumour-targeting bacteria, including a discussion of the regulatory issues.
Collapse
Affiliation(s)
- Shibin Zhou
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Claudia Gravekamp
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Bermudes
- Department of Biology, California State University, Northridge, CA, USA
| | - Ke Liu
- Oncology Branch, Division of Clinical Evaluation, Pharmacology and Toxicology; Office of Tissues and Advanced Therapies, CBER, FDA, Silver Spring, MD, USA
| |
Collapse
|
16
|
M1-like macrophages change tumor blood vessels and microenvironment in murine melanoma. PLoS One 2018; 13:e0191012. [PMID: 29320562 PMCID: PMC5761928 DOI: 10.1371/journal.pone.0191012] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play a significant role in at least two key processes underlying neoplastic progression: angiogenesis and immune surveillance. TAMs phenotypic changes play important role in tumor vessel abnormalization/ normalization. M2-like TAMs stimulate immunosuppression and formation of defective tumor blood vessels leading to tumor progression. In contrast M1-like TAMs trigger immune response and normalize irregular tumor vascular network which should sensitize cancer cells to chemo- and radiotherapy and lead to tumor growth regression. Here, we demonstrated that combination of endoglin-based DNA vaccine with interleukin 12 repolarizes TAMs from tumor growth-promoting M2-like phenotype to tumor growth-inhibiting M1-like phenotype. Combined therapy enhances tumor infiltration by CD4+, CD8+ lymphocytes and NK cells. Depletion of TAMs as well as CD8+ lymphocytes and NK cells, but not CD4+ lymphocytes, reduces the effect of combined therapy. Furthermore, combined therapy improves tumor vessel maturation, perfusion and reduces hypoxia. It caused that suboptimal doses of doxorubicin reduced the growth of tumors in mice treated with combined therapy. To summarize, combination of antiangiogenic drug and immunostimulatory agent repolarizes TAMs phenotype from M2-like (pro-tumor) into M1-like (anti-tumor) which affects the structure of tumor blood vessels, improves the effect of chemotherapy and leads to tumor growth regression.
Collapse
|
17
|
Broadway KM, Suh S, Behkam B, Scharf BE. Optimizing the restored chemotactic behavior of anticancer agent Salmonella enterica serovar Typhimurium VNP20009. J Biotechnol 2017; 251:76-83. [PMID: 28433721 DOI: 10.1016/j.jbiotec.2017.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/17/2022]
Abstract
Bacteria, including strains of Salmonella, have been researched and applied as therapeutic cancer agents for centuries. Salmonella are particularly of interest due to their facultative anaerobic nature, facilitating colonization of differentially oxygenated tumor regions. Additionally, Salmonella can be manipulated with relative ease, resulting in the ability to attenuate the pathogen or engineer vectors for drug delivery. It was recently discovered that the anti-cancer Salmonella enterica serovar Typhimurium strain VNP20009 is lacking in chemotactic ability, due to a non-synonymous single nucleotide polymorphism in cheY. Replacing the mutated copy of cheY with the wild-type sequence restored chemotaxis to 70% of the parental strain. We aimed to investigate further if chemotaxis of VNP20009 can be optimized. By restoring the gene msbB in VNP20009 cheY+, which confers attenuation by lipid A modification, we observed a 9% increase in swimming speed, 13% increase in swim plate performance, 19% increase in microfluidic device partitioning towards the attractant at the optimum concentration gradient, and mitigation of a non-motile cell subpopulation. We conclude that chemotaxis can be enhanced further but at the cost of changing one defining characteristic of VNP20009. A less compromised strain might be needed to employ for investigating bacterial chemotaxis in tumor interactions.
Collapse
Affiliation(s)
- Katherine M Broadway
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, VA 24061, USA
| | - Seungbeum Suh
- Department of Mechanical Engineering, Kelly Hall, Virginia Tech, Blacksburg, VA 24061, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Kelly Hall, Virginia Tech, Blacksburg, VA 24061, USA; School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Birgit E Scharf
- Department of Biological Sciences, Life Sciences I, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
18
|
Zheng JH, Min JJ. Targeted Cancer Therapy Using Engineered Salmonella typhimurium. Chonnam Med J 2016; 52:173-84. [PMID: 27689027 PMCID: PMC5040766 DOI: 10.4068/cmj.2016.52.3.173] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/25/2016] [Accepted: 08/02/2016] [Indexed: 12/26/2022] Open
Abstract
Obligate or facultative anaerobic bacteria such as Bifidobacterium, Clostridium, Salmonella, or Escherichia coli specifically colonize and proliferate inside tumor tissues and inhibit tumor growth. Among them, attenuated Salmonella typhimurium (S. typhimurium) has been widely studied in animal cancer models and Phase I clinical trials in human patients. S. typhimurium genes are easily manipulated; thus diverse attenuated strains of S. typhimurium have been designed and engineered as tumor-targeting therapeutics or drug delivery vehicles that show both an excellent safety profile and therapeutic efficacy in mouse models. An attenuated strain of S. typhimurium, VNP20009, successfully targeted human metastatic melanoma and squamous cell carcinoma in Phase I clinical trials; however, the efficacy requires further refinement. Along with the characteristics of self-targeting, proliferation, and deep tissue penetration, the ease of genetic manipulation allows for the production of more attenuated strains with greater safety profiles and vector systems that deliver designable cargo molecules for cancer diagnosis and/or therapy. Here, we discuss recent progress in the field of Salmonellae-mediated cancer therapy.
Collapse
Affiliation(s)
- Jin Hai Zheng
- Laboratory of In Vivo Molecular Imaging, Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, Korea
| | - Jung-Joon Min
- Laboratory of In Vivo Molecular Imaging, Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, Korea.; Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
19
|
Abstract
The mechanisms underlying discrimination between "self" and "non-self", a central immunological principle, require careful consideration in immune oncology therapeutics where eliciting anti-cancer immunity must be weighed against the risk of autoimmunity due to the self origin of tumors. Whole cell vaccines are one promising immunotherapeutic avenue whereby a myriad of tumor antigens are introduced in an immunogenic context with the aim of eliciting tumor rejection. Despite the possibility collateral damage to healthy tissues, cancer immunotherapy can be designed such that off target autoimmunity remains limited in scope and severity or completely non-existent. Here we provide an immunological basis for reconciling the safety of cancer vaccines, focusing on tumor endothelial cell vaccines, by discussing the following topics: (a) Antigenic differences between neoplastic and healthy tissues that can be leveraged in cancer vaccine design; (b) The layers of tolerance that control T cell responses directed against antigens expressed in healthy tissues and tumors; and, (c) The hierarchy of antigenic epitope selection and display in response to whole cell vaccines, and how antigen processing and presentation can afford a degree of selectivity against tumors. We conclude with an example of early clinical data utilizing ValloVax™, an immunogenic placental endothelial cell vaccine that is being advanced to target the tumor endothelium of diverse cancers, and we report on the safety and efficacy of ValloVax™ for inducing immunity against tumor endothelial antigens.
Collapse
|
20
|
Wagner SC, Ichim TE, Ma H, Szymanski J, Perez JA, Lopez J, Bogin V, Patel AN, Marincola FM, Kesari S. Cancer anti-angiogenesis vaccines: Is the tumor vasculature antigenically unique? J Transl Med 2015; 13:340. [PMID: 26510973 PMCID: PMC4625691 DOI: 10.1186/s12967-015-0688-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 10/03/2015] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is essential for the growth and metastasis of solid tumors. The tumor endothelium exists in a state of chronic activation and proliferation, fueled by the tumor milieu where angiogenic mediators are aberrantly over-expressed. Uncontrolled tumor growth, immune evasion, and therapeutic resistance are all driven by the dysregulated and constitutive angiogenesis occurring in the vasculature. Accordingly, great efforts have been dedicated toward identifying molecular signatures of this pathological angiogenesis in order to devise selective tumor endothelium targeting therapies while minimizing potential autoimmunity against physiologically normal endothelium. Vaccination with angiogenic antigens to generate cellular and/or humoral immunity against the tumor endothelium has proven to be a promising strategy for inhibiting or normalizing tumor angiogenesis and reducing cancer growth. Here we review tumor endothelium vaccines developed to date including active immunization strategies using specific tumor endothelium-associated antigens and whole endothelial cell-based vaccines designed to elicit immune responses against diverse target antigens. Among the novel therapeutic options, we describe a placenta-derived endothelial cell vaccine, ValloVax™, a polyvalent vaccine that is antigenically similar to proliferating tumor endothelium and is supported by pre-clinical studies to be safe and efficacious against several tumor types.
Collapse
Affiliation(s)
- Samuel C Wagner
- Batu Biologics Inc., Towne Center Drive, San Diego, CA, 92121, USA.
| | - Thomas E Ichim
- Batu Biologics Inc., Towne Center Drive, San Diego, CA, 92121, USA.
| | - Hong Ma
- Batu Biologics Inc., Towne Center Drive, San Diego, CA, 92121, USA.
| | - Julia Szymanski
- Batu Biologics Inc., Towne Center Drive, San Diego, CA, 92121, USA.
| | | | - Javier Lopez
- Pan Am Cancer Treatment Center, Tijuana, Mexico.
| | - Vladimir Bogin
- Batu Biologics Inc., Towne Center Drive, San Diego, CA, 92121, USA.
| | - Amit N Patel
- Department of Surgery, University of Utah, Salt Lake City, UT, USA.
| | | | | |
Collapse
|
21
|
Jarosz-Biej M, Smolarczyk R, Cichoń T, Kułach N, Czapla J, Matuszczak S, Szala S. Combined Tumor Cell-Based Vaccination and Interleukin-12 Gene Therapy Polarizes the Tumor Microenvironment in Mice. Arch Immunol Ther Exp (Warsz) 2015; 63:451-64. [PMID: 25801067 PMCID: PMC4633448 DOI: 10.1007/s00005-015-0337-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/09/2015] [Indexed: 12/22/2022]
Abstract
Tumor progression depends on tumor milieu, which influences neovasculature formation and immunosuppression. Combining immunotherapy with antiangiogenic/antivascular therapy might be an effective therapeutic approach. The aim of our study was to elaborate an anticancer therapeutic strategy based on the induction of immune response which leads to polarization of tumor milieu. To achieve this, we developed a tumor cell-based vaccine. CAMEL peptide was used as a B16-F10 cell death-inducing agent. The lysates were used as a vaccine to immunize mice bearing B16-F10 melanoma tumors. To further improve the therapeutic effect of the vaccine, we combined it with interleukin (IL)-12 gene therapy. IL-12, a cytokine with antiangiogenic properties, activates nonspecific and specific immune responses. We observed that combined therapy is significantly more effective (as compared with monotherapies) in inhibiting tumor growth. Furthermore, the tested combination polarizes the tumor microenvironment, which results in a switch from a proangiogenic/immunosuppressive to an antiangiogenic/immunostimulatory one. The switch manifests itself as a decreased number of tumor blood vessels, increased levels of tumor-infiltrating CD4+, CD8+ and NK cells, as well as lower level of suppressor lymphocytes (Treg). Our results suggest that polarizing tumor milieu by such combined therapy does inhibit tumor growth and seems to be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland.
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Natalia Kułach
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
- Department of Animal Physiology and Ecotoxycology, University of Silesia, Katowice, Poland
| | - Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Sybilla Matuszczak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| | - Stanisław Szala
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland
| |
Collapse
|
22
|
Wentink MQ, Huijbers EJM, de Gruijl TD, Verheul HMW, Olsson AK, Griffioen AW. Vaccination approach to anti-angiogenic treatment of cancer. Biochim Biophys Acta Rev Cancer 2015; 1855:155-71. [PMID: 25641676 DOI: 10.1016/j.bbcan.2015.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/16/2015] [Accepted: 01/22/2015] [Indexed: 02/07/2023]
Abstract
Improvement of patient survival by anti-angiogenic therapy has proven limited. A vaccination approach inducing an immune response against the tumor vasculature combines the benefits of immunotherapy and anti-angiogenesis, and may overcome the limitations of current anti-angiogenic drugs. Strategies to use whole endothelial cell vaccines and DNA- or protein vaccines against key players in the VEGF signaling axis, as well as specific markers of tumor endothelial cells, have been tested in preclinical studies. Current clinical trials are now testing the promise of this specific anti-cancer vaccination approach. This review will highlight the state-of-the-art in this exciting field of cancer research.
Collapse
Affiliation(s)
- Madelon Q Wentink
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Tanja D de Gruijl
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Henk M W Verheul
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
23
|
Zhuang X, Ahmed F, Zhang Y, Ferguson HJ, Steele JC, Steven NM, Nagy Z, Heath VL, Toellner KM, Bicknell R. Robo4 vaccines induce antibodies that retard tumor growth. Angiogenesis 2014; 18:83-95. [PMID: 25348086 DOI: 10.1007/s10456-014-9448-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 10/13/2014] [Indexed: 01/24/2023]
Abstract
Tumor endothelial specific expression of Robo4 in adults identifies this plasma membrane protein as an anti-cancer target for immunotherapeutic approaches, such as vaccination. In this report, we describe how vaccination against Robo4 inhibits angiogenesis and tumor growth. To break tolerance to the auto-antigen Robo4, mice were immunised with the extracellular domain of mouse Robo4, fused to the Fc domain of human immunoglobulin within an adjuvant. Vaccinated mice show a strong antibody response to Robo4, with no objectively detectable adverse effects on health. Robo4 vaccinated mice showed impaired fibrovascular invasion and angiogenesis in a rodent sponge implantation assay, as well as a reduced growth of implanted syngeneic Lewis lung carcinoma. The anti-tumor effect of Robo4 vaccination was present in CD8 deficient mice but absent in B cell or IgG1 knockout mice, suggesting antibody dependent cell mediated cytotoxicity as the anti-vascular/anti-tumor mechanism. Finally, we show that an adjuvant free soluble Robo4-carrier conjugate can retard tumor growth in carrier primed mice. These results point to appropriate Robo4 conjugates as potential anti-angiogenic vaccines for cancer patients.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Institute for Biomedical Research, Schools of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cichoń T, Smolarczyk R, Matuszczak S, Barczyk M, Jarosz M, Szala S. D-K6L 9 peptide combination with IL-12 inhibits the recurrence of tumors in mice. Arch Immunol Ther Exp (Warsz) 2014; 62:341-51. [PMID: 24487722 PMCID: PMC4092230 DOI: 10.1007/s00005-014-0268-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 10/11/2013] [Indexed: 01/01/2023]
Abstract
D-K6L9 peptide is bound by phosphatidylserine and induces necrosis in cancer cells. In our therapeutic experience, this peptide, when administered directly into B16-F10 murine melanoma tumors, inhibited their growth. Cessation of therapy results, however, in tumor relapse. We aimed at developing a combined therapy involving D-K6L9 and additional factors that would yield complete elimination of tumor cells in experimental animals. To this purpose, we employed glycyrrhizin, an inhibitor of HMGB1 protein, BP1 peptide and interleukin (IL)-12. Glycyrrhizin or BP1, when combined with D-K6L9, inhibits growth of primary tumors only during the period of their administration. A long-term tumor growth inhibitory effect was obtained only in combining D-K6L9 with IL-12. At 2 months following therapy cessation, 60 % of animals were alive. Prolonged survival was noted in mice bearing B16-F10 tumors as well as in mice bearing C26 colon carcinoma tumors.
Collapse
Affiliation(s)
- Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101, Gliwice, Poland,
| | | | | | | | | | | |
Collapse
|
25
|
Antitumor effects of recombinant antivascular protein ABRaA-VEGF121 combined with IL-12 gene therapy. Arch Immunol Ther Exp (Warsz) 2013; 62:161-8. [PMID: 24220932 PMCID: PMC3950566 DOI: 10.1007/s00005-013-0259-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022]
Abstract
Development and neoplastic progression strongly rely on tumor microenvironment cells. Various kinds of cells that form such tumor milieu play substantial roles in angiogenesis and immunosuppression. Attempts to inhibit tumor vascularization alter tumor milieu and enhance immune response against the tumor. Anticancer therapeutic strategy bringing together antiangiogenic and immunostimulating agents has emerged as a promising approach. We here investigated whether therapy directed against preexisting vessels, combined with an immunomodulatory factor would be equally effective in arresting tumor growth. To this goal, we investigated the effectiveness of ABRaA-vascular endothelial growth factor isoform 121 (VEGF121), an antivascular drug constructed by us. It is a fusion protein composed of VEGF121, and abrin A chain (translation-inhibiting toxin). We used it in combination with interleukin (IL-12) gene therapy and tried to inhibit B16-F10 melanoma tumor growth. ABRaA-VEGF121 is a chimeric recombinant protein capable of destroying tumor vasculature and triggering necrosis in the vicinity of damaged vessels. IL-12 cytokine, in turn, activates both specific and non-specific immune responses. Our results demonstrate that combination of ABRaA-VEGF121 antivascular agent with immunostimulatory cytokine IL-12 indeed inhibits tumor growth more effectively than either agent alone, leading to complete cure of ca. 20 % mice. Post-therapeutic analysis of tumors excised from mice treated with combination therapy showed decreased numbers of blood microvessels in the tumor microenvironment, lowered numbers of regulatory T lymphocytes, as well as showed higher levels of CD4+ and CD8+ as compared to control mice. It seems that bringing together antivascular strategy and the action of immunostimulating agents indeed inhibits growth of tumors.
Collapse
|