1
|
Daich Varela M, Georgiadis A, Michaelides M. Genetic treatment for autosomal dominant inherited retinal dystrophies: approaches, challenges and targeted genotypes. Br J Ophthalmol 2023; 107:1223-1230. [PMID: 36038193 DOI: 10.1136/bjo-2022-321903] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 11/04/2022]
Abstract
Inherited retinal diseases (IRDs) have been in the front line of gene therapy development for the last decade, providing a useful platform to test novel therapeutic approaches. More than 40 clinical trials have been completed or are ongoing, tackling autosomal recessive and X-linked conditions, mostly through adeno-associated viral vector delivery of a normal copy of the disease-causing gene. However, only recently has autosomal dominant (ad) disease been targeted, with the commencement of a trial for rhodopsin (RHO)-associated retinitis pigmentosa (RP), implementing antisense oligonucleotide (AON) therapy, with promising preliminary results (NCT04123626).Autosomal dominant RP represents 15%-25% of all RP, with RHO accounting for 20%-30% of these cases. Autosomal dominant macular and cone-rod dystrophies (MD/CORD) correspond to approximately 7.5% of all IRDs, and approximately 35% of all MD/CORD cases, with the main causative gene being BEST1 Autosomal dominant IRDs are not only less frequent than recessive, but also tend to be less severe and have later onset; for example, an individual with RHO-adRP would typically become severely visually impaired at an age 2-3 times older than in X-linked RPGR-RP.Gain-of-function and dominant negative aetiologies are frequently seen in the prevalent adRP genes RHO, RP1 and PRPF31 among others, which would not be effectively addressed by gene supplementation alone and need creative, novel approaches. Zinc fingers, RNA interference, AON, translational read-through therapy, and gene editing by clustered regularly interspaced short palindromic repeats/Cas are some of the strategies that are currently under investigation and will be discussed here.
Collapse
Affiliation(s)
- Malena Daich Varela
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Michel Michaelides
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
2
|
Sp S, Mitra RN, Zheng M, Chrispell JD, Wang K, Kwon YS, Weiss ER, Han Z. Gene augmentation for autosomal dominant retinitis pigmentosa using rhodopsin genomic loci nanoparticles in the P23H +/- knock-in murine model. Gene Ther 2023; 30:628-640. [PMID: 36935427 DOI: 10.1038/s41434-023-00394-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/21/2023]
Abstract
Gene therapy for autosomal dominant retinitis pigmentosa (adRP) is challenged by the dominant inheritance of the mutant genes, which would seemingly require a combination of mutant suppression and wild-type replacement of the appropriate gene. We explore the possibility that delivery of a nanoparticle (NP)-mediated full-length mouse genomic rhodopsin (gRho) or human genomic rhodopsin (gRHO) locus can overcome the dominant negative effects of the mutant rhodopsin in the clinically relevant P23H+/--knock-in heterozygous mouse model. Our results demonstrate that mice in both gRho and gRHO NP-treated groups exhibit significant structural and functional recovery of the rod photoreceptors, which lasted for 3 months post-injection, indicating a promising reduction in photoreceptor degeneration. We performed miRNA transcriptome analysis using next generation sequencing and detected differentially expressed miRNAs as a first step towards identifying miRNAs that could potentially be used as rhodopsin gene expression enhancers or suppressors for sustained photoreceptor rescue. Our results indicate that delivering an intact genomic locus as a transgene has a greater chance of success compared to the use of the cDNA for treatment of this model of adRP, emphasizing the importance of gene augmentation using a gDNA that includes regulatory elements.
Collapse
Affiliation(s)
- Simna Sp
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rajendra N Mitra
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Min Zheng
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jared D Chrispell
- Department of Cell Biology and Physiology, the University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kai Wang
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yong-Su Kwon
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ellen R Weiss
- Department of Cell Biology and Physiology, the University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Carolina Institute for NanoMedicine, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, the University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Bains S, Zhou W, Dotzler SM, Martinez K, Kim CJ, Tester DJ, Ye D, Ackerman MJ. Suppression and Replacement Gene Therapy for KCNH2-Mediated Arrhythmias. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003719. [PMID: 36252106 DOI: 10.1161/circgen.122.003719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND KCNH2-mediated arrhythmia syndromes are caused by loss-of-function (type 2 long QT syndrome [LQT2]) or gain-of-function (type 1 short QT syndrome [SQT1]) pathogenic variants in the KCNH2-encoded Kv11.1 potassium channel, which is essential for the cardiac action potential. METHODS A dual-component "suppression-and-replacement" (SupRep) KCNH2 gene therapy was created by cloning into a single construct a custom-designed KCNH2 short hairpin RNA with ~80% knockdown (suppression) and a "short hairpin RNA-immune" KCNH2 cDNA (replacement). Induced pluripotent stem cell-derived cardiomyocytes and their CRISPR-Cas9 variant-corrected isogenic control (IC) induced pluripotent stem cell-derived cardiomyocytes were made for 2 LQT2- (G604S, N633S) and 1 SQT1- (N588K) causative variants. All variant lines were treated with KCNH2-SupRep or non-targeting control short hairpin RNA (shCT). The action potential duration (APD) at 90% repolarization (APD90) was measured using FluoVolt voltage dye. RESULTS KCNH2-SupRep achieved variant-independent rescue of both pathologic phenotypes. For LQT2-causative variants, treatment with KCNH2-SupRep resulted in shortening of the pathologically prolonged APD90 to near curative (IC-like) APD90 levels (G604S IC, 471±25 ms; N633S IC, 405±55 ms) compared with treatment with shCT (G604S: SupRep-treated, 452±76 ms versus shCT-treated, 550±41 ms; P<0.0001; N633S: SupRep-treated, 399±105 ms versus shCT-treated, 577±39 ms, P<0.0001). Conversely, for the SQT1-causative variant, N588K, treatment with KCNH2-SupRep resulted in therapeutic prolongation of the pathologically shortened APD90 (IC: 429±16 ms; SupRep-treated: 396±61 ms; shCT-treated: 274±12 ms). CONCLUSIONS We provide the first proof-of-principle gene therapy for correction of both LQT2 and SQT1. KCNH2-SupRep gene therapy successfully normalized the pathologic APD90, thereby eliminating the pathognomonic feature of both LQT2 and SQT1.
Collapse
Affiliation(s)
- Sahej Bains
- Medical Scientist Training Program (S.B., S.M.D.), Mayo Clinic, Rochester, MN.,Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.B., W.Z., S.M.D., K.M., C.S.J.K., D.J.T., D.Y., M.J.A.), Mayo Clinic, Rochester, MN
| | - Wei Zhou
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.B., W.Z., S.M.D., K.M., C.S.J.K., D.J.T., D.Y., M.J.A.), Mayo Clinic, Rochester, MN
| | - Steven M Dotzler
- Medical Scientist Training Program (S.B., S.M.D.), Mayo Clinic, Rochester, MN.,Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.B., W.Z., S.M.D., K.M., C.S.J.K., D.J.T., D.Y., M.J.A.), Mayo Clinic, Rochester, MN
| | - Katherine Martinez
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.B., W.Z., S.M.D., K.M., C.S.J.K., D.J.T., D.Y., M.J.A.), Mayo Clinic, Rochester, MN
| | - Cs John Kim
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.B., W.Z., S.M.D., K.M., C.S.J.K., D.J.T., D.Y., M.J.A.), Mayo Clinic, Rochester, MN
| | - David J Tester
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.B., W.Z., S.M.D., K.M., C.S.J.K., D.J.T., D.Y., M.J.A.), Mayo Clinic, Rochester, MN.,Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology (D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| | - Dan Ye
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.B., W.Z., S.M.D., K.M., C.S.J.K., D.J.T., D.Y., M.J.A.), Mayo Clinic, Rochester, MN.,Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic (D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.B., W.Z., S.M.D., K.M., C.S.J.K., D.J.T., D.Y., M.J.A.), Mayo Clinic, Rochester, MN.,Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology (D.J.T., M.J.A.), Mayo Clinic, Rochester, MN.,Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic (D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| |
Collapse
|
4
|
Carrella S, Di Guida M, Brillante S, Piccolo D, Ciampi L, Guadagnino I, Garcia Piqueras J, Pizzo M, Marrocco E, Molinari M, Petrogiannakis G, Barbato S, Ezhova Y, Auricchio A, Franco B, De Leonibus E, Surace EM, Indrieri A, Banfi S. miR-181a/b downregulation: a mutation-independent therapeutic approach for inherited retinal diseases. EMBO Mol Med 2022; 14:e15941. [PMID: 36194668 DOI: 10.15252/emmm.202215941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a group of diseases whose common landmark is progressive photoreceptor loss. The development of gene-specific therapies for IRDs is hampered by their wide genetic heterogeneity. Mitochondrial dysfunction is proving to constitute one of the key pathogenic events in IRDs; hence, approaches that enhance mitochondrial activities have a promising therapeutic potential for these conditions. We previously reported that miR-181a/b downregulation boosts mitochondrial turnover in models of primary retinal mitochondrial diseases. Here, we show that miR-181a/b silencing has a beneficial effect also in IRDs. In particular, the injection in the subretinal space of an adeno-associated viral vector (AAV) that harbors a miR-181a/b inhibitor (sponge) sequence (AAV2/8-GFP-Sponge-miR-181a/b) improves retinal morphology and visual function both in models of autosomal dominant (RHO-P347S) and of autosomal recessive (rd10) retinitis pigmentosa. Moreover, we demonstrate that miR-181a/b downregulation modulates the level of the mitochondrial fission-related protein Drp1 and rescues the mitochondrial fragmentation in RHO-P347S photoreceptors. Overall, these data support the potential use of miR-181a/b downregulation as an innovative mutation-independent therapeutic strategy for IRDs, which can be effective both to delay disease progression and to aid gene-specific therapeutic approaches.
Collapse
Affiliation(s)
- Sabrina Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Martina Di Guida
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Simona Brillante
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Davide Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Ludovica Ciampi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Irene Guadagnino
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Jorge Garcia Piqueras
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Mariateresa Pizzo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Marta Molinari
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Georgios Petrogiannakis
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Molecular Life Science, Department of Science and Environmental, Biological and Farmaceutical Technologies, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sara Barbato
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Yulia Ezhova
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Molecular Life Science, Department of Science and Environmental, Biological and Farmaceutical Technologies, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Advanced Biomedicine, University of Naples "Federico II", Naples, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy.,Scuola Superiore Meridionale, School of Advanced Studies, Naples, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Institute of Biochemistry and Cellular Biology (IBBC), National Research Council (CNR), Monterotondo, Rome, Italy
| | - Enrico Maria Surace
- Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
5
|
Lewin AS, Smith WC. Gene Therapy for Rhodopsin Mutations. Cold Spring Harb Perspect Med 2022; 12:a041283. [PMID: 35940643 PMCID: PMC9435570 DOI: 10.1101/cshperspect.a041283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mutations in RHO, the gene for rhodopsin, account for a large fraction of autosomal-dominant retinitis pigmentosa (adRP). Patients fall into two clinical classes, those with early onset, pan retinal photoreceptor degeneration, and those who experience slowly progressive disease. The latter class of patients are candidates for photoreceptor-directed gene therapy, while former may be candidates for delivery of light-responsive proteins to interneurons or retinal ganglion cells. Gene therapy for RHO adRP may be targeted to the mutant gene at the DNA or RNA level, while other therapies preserve the viability of photoreceptors without addressing the underlying mutation. Correcting the RHO gene and replacing the mutant RNA show promise in animal models, while sustaining viable photoreceptors has the potential to delay the loss of central vision and may preserve photoreceptors for gene-directed treatments.
Collapse
Affiliation(s)
- Alfred S Lewin
- Departments of Molecular Genetics and Microbiology and Ophthalmology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | - W Clay Smith
- Departments of Molecular Genetics and Microbiology and Ophthalmology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| |
Collapse
|
6
|
Wu WH, Tsai YT, Huang IW, Cheng CH, Hsu CW, Cui X, Ryu J, Quinn PMJ, Caruso SM, Lin CS, Tsang SH. CRISPR genome surgery in a novel humanized model for autosomal dominant retinitis pigmentosa. Mol Ther 2022; 30:1407-1420. [PMID: 35150888 PMCID: PMC9077379 DOI: 10.1016/j.ymthe.2022.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Mutations in rhodopsin (RHO) are the most common causes of autosomal dominant retinitis pigmentosa (adRP), accounting for 20% to 30% of all cases worldwide. However, the high degree of genetic heterogeneity makes development of effective therapies cumbersome. To provide a universal solution to RHO-related adRP, we devised a CRISPR-based, mutation-independent gene ablation and replacement (AR) compound therapy carried by a dual AAV2/8 system. Moreover, we developed a novel hRHOC110R/hRHOWT humanized mouse model to assess the AR treatment in vivo. Results show that this humanized RHO mouse model exhibits progressive rod-cone degeneration that phenocopies hRHOC110R/hRHOWT patients. In vivo transduction of AR AAV8 dual vectors remarkably ablates endogenous RHO expression and overexpresses exogenous WT hRHO. Furthermore, the administration of AR during adulthood significantly hampers photoreceptor degeneration both histologically and functionally for at least 6 months compared with sole gene replacement or surgical trauma control. This study demonstrates the effectiveness of AR treatment of adRP in the human genomic context while revealing the feasibility of its application for other autosomal dominant disorders.
Collapse
Affiliation(s)
- Wen-Hsuan Wu
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital/Columbia University Medical Center, New York, NY 10032, USA
| | - Yi-Ting Tsai
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - I-Wen Huang
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital/Columbia University Medical Center, New York, NY 10032, USA
| | - Chia-Hua Cheng
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital/Columbia University Medical Center, New York, NY 10032, USA
| | - Chun-Wei Hsu
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital/Columbia University Medical Center, New York, NY 10032, USA
| | - Xuan Cui
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital/Columbia University Medical Center, New York, NY 10032, USA
| | - Joseph Ryu
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital/Columbia University Medical Center, New York, NY 10032, USA
| | - Peter M J Quinn
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital/Columbia University Medical Center, New York, NY 10032, USA
| | | | - Chyuang-Sheng Lin
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care and the Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Edward S. Harkness Eye Institute, New York-Presbyterian Hospital/Columbia University Medical Center, New York, NY 10032, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; Department of Pathology & Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
7
|
Massengill MT, Lewin AS. Gene Therapy for Rhodopsin-associated Autosomal Dominant Retinitis Pigmentosa. Int Ophthalmol Clin 2021; 61:79-96. [PMID: 34584046 PMCID: PMC8478325 DOI: 10.1097/iio.0000000000000383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Patrizi C, Llado M, Benati D, Iodice C, Marrocco E, Guarascio R, Surace EM, Cheetham ME, Auricchio A, Recchia A. Allele-specific editing ameliorates dominant retinitis pigmentosa in a transgenic mouse model. Am J Hum Genet 2021; 108:295-308. [PMID: 33508235 PMCID: PMC7896132 DOI: 10.1016/j.ajhg.2021.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of progressive retinal degenerations of mostly monogenic inheritance, which cause blindness in about 1:3,500 individuals worldwide. Heterozygous variants in the rhodopsin (RHO) gene are the most common cause of autosomal dominant RP (adRP). Among these, missense variants at C-terminal proline 347, such as p.Pro347Ser, cause severe adRP recurrently in European affected individuals. Here, for the first time, we use CRISPR/Cas9 to selectively target the p.Pro347Ser variant while preserving the wild-type RHO allele in vitro and in a mouse model of adRP. Detailed in vitro, genomic, and biochemical characterization of the rhodopsin C-terminal editing demonstrates a safe downregulation of p.Pro347Ser expression leading to partial recovery of photoreceptor function in a transgenic mouse model treated with adeno-associated viral vectors. This study supports the safety and efficacy of CRISPR/Cas9-mediated allele-specific editing and paves the way for a permanent and precise correction of heterozygous variants in dominantly inherited retinal diseases.
Collapse
Affiliation(s)
- Clarissa Patrizi
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Manel Llado
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Daniela Benati
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Carolina Iodice
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | | | - Enrico M Surace
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; Medical Genetics, Department of Translational Medicine, Federico II University, 80125 Naples, Italy
| | | | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; Medical Genetics, Department of Advanced Biomedicine, Federico II University, 80125 Naples, Italy.
| | - Alessandra Recchia
- Centre for Regenerative Medicine, Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| |
Collapse
|
9
|
Dotzler SM, Kim CSJ, Gendron WAC, Zhou W, Ye D, Bos JM, Tester DJ, Barry MA, Ackerman MJ. Suppression-Replacement KCNQ1 Gene Therapy for Type 1 Long QT Syndrome. Circulation 2021; 143:1411-1425. [PMID: 33504163 DOI: 10.1161/circulationaha.120.051836] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Type 1 long QT syndrome (LQT1) is caused by loss-of-function variants in the KCNQ1-encoded Kv7.1 potassium channel α-subunit that is essential for cardiac repolarization, providing the slow delayed rectifier current. No current therapies target the molecular cause of LQT1. METHODS A dual-component suppression-and-replacement (SupRep) KCNQ1 gene therapy was created by cloning a KCNQ1 short hairpin RNA and a short hairpin RNA-immune KCNQ1 cDNA modified with synonymous variants in the short hairpin RNA target site, into a single construct. The ability of KCNQ1-SupRep gene therapy to suppress and replace LQT1-causative variants in KCNQ1 was evaluated by means of heterologous expression in TSA201 cells. For a human in vitro cardiac model, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated from 4 patients with LQT1 (KCNQ1-Y171X, -V254M, -I567S, and -A344A/spl) and an unrelated healthy control. CRISPR-Cas9 corrected isogenic control iPSC-CMs were made for 2 LQT1 lines (correction of KCNQ1-V254M and KCNQ1-A344A/spl). FluoVolt voltage dye was used to measure the cardiac action potential duration (APD) in iPSC-CMs treated with KCNQ1-SupRep. RESULTS In TSA201 cells, KCNQ1-SupRep achieved mutation-independent suppression of wild-type KCNQ1 and 3 LQT1-causative variants (KCNQ1-Y171X, -V254M, and -I567S) with simultaneous replacement of short hairpin RNA-immune KCNQ1 as measured by allele-specific quantitative reverse transcription polymerase chain reaction and Western blot. Using FluoVolt voltage dye to measure the cardiac APD in the 4 LQT1 patient-derived iPSC-CMs, treatment with KCNQ1-SupRep resulted in shortening of the pathologically prolonged APD at both 90% and 50% repolarization, resulting in APD values similar to those of the 2 isogenic controls. CONCLUSIONS This study provides the first proof-of-principle gene therapy for complete correction of long QT syndrome. As a dual-component gene therapy vector, KCNQ1-SupRep successfully suppressed and replaced KCNQ1 to normal wild-type levels. In TSA201 cells, cotransfection of LQT1-causative variants and KCNQ1-SupRep caused mutation-independent suppression and replacement of KCNQ1. In LQT1 iPSC-CMs, KCNQ1-SupRep gene therapy shortened the APD, thereby eliminating the pathognomonic feature of LQT1.
Collapse
Affiliation(s)
- Steven M Dotzler
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (S.M.D., C.S.J.K., W.Z., D.Y., J.M.B., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| | - C S John Kim
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (S.M.D., C.S.J.K., W.Z., D.Y., J.M.B., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| | - William A C Gendron
- Department of Virology & Gene Therapy, Vector and Vaccine Engineering Laboratory (W.A.C.G., M.A.B.), Mayo Clinic, Rochester, MN
| | - Wei Zhou
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (S.M.D., C.S.J.K., W.Z., D.Y., J.M.B., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| | - Dan Ye
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (S.M.D., C.S.J.K., W.Z., D.Y., J.M.B., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| | - J Martijn Bos
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (S.M.D., C.S.J.K., W.Z., D.Y., J.M.B., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN.,Department of Cardiovascular Medicine/Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic (J.M.B., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| | - David J Tester
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (S.M.D., C.S.J.K., W.Z., D.Y., J.M.B., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN.,Department of Cardiovascular Medicine/Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic (J.M.B., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| | - Michael A Barry
- Department of Virology & Gene Therapy, Vector and Vaccine Engineering Laboratory (W.A.C.G., M.A.B.), Mayo Clinic, Rochester, MN
| | - Michael J Ackerman
- Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory (S.M.D., C.S.J.K., W.Z., D.Y., J.M.B., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN.,Department of Cardiovascular Medicine/Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic (J.M.B., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN.,Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology (M.J.A.), Mayo Clinic, Rochester, MN
| |
Collapse
|
10
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2020; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
11
|
Orlans HO, Barnard AR, Patrício MI, McClements ME, MacLaren RE. Effect of AAV-Mediated Rhodopsin Gene Augmentation on Retinal Degeneration Caused by the Dominant P23H Rhodopsin Mutation in a Knock-In Murine Model. Hum Gene Ther 2020; 31:730-742. [DOI: 10.1089/hum.2020.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Harry O. Orlans
- Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, Oxford, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Alun R. Barnard
- Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, Oxford, United Kingdom
| | - Maria I. Patrício
- Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, Oxford, United Kingdom
| | | | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, John Radcliffe Hospital, Oxford, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
12
|
Sakamoto K, Asano D, Morita A, Mori A, Nakahara T. [Expression changes in microRNA in the retina of retinal degenerative diseases]. Nihon Yakurigaku Zasshi 2020; 155:81-86. [PMID: 32115483 DOI: 10.1254/fpj.19121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Because visual information accounts for 80-90% of sensory information that we get from our circumstance, loss of vision seriously diminishes our quality of life. According to a recent epidemiological study, glaucoma is the first, and retinitis pigmentosa (RP) is the second leading causes of acquired blindness in Japan. Degeneration of the retinal ganglion cells (RGC) and photoreceptor cells causes glaucoma and RP, respectively. Intraocular pressure-lowering therapy is an only effective treatment for glaucoma, and the agents that protect RGC directly against glaucomatous injury have not been available yet. In addition, there is no effective treatment for RP at present. microRNAs are a class of small, endogenous, non-coding RNAs comprised of approximately 20 nucleotides. It has been clarified that microRNAs reduces the stability of the target mRNAs and/or repress the translation of the target genes. A single microRNA can affect the transcription of multiple mRNAs, and almost 30% of human genes are thought to be regulated by microRNAs. Therefore, it has been considered that the expression changes of microRNAs are possible to cause various diseases, such as cancer and neurodegenerative diseases. Recently, the expression changes in microRNAs have been reported in the retina of experimental model animals for glaucoma and RP. The expressional changes of microRNAs are suggested to be related with development and progression of glaucoma and RP. Here, we will discuss about the relationship between the expressional changes of microRNAs and neuronal cell death in glaucoma and RP.
Collapse
Affiliation(s)
- Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences.,Laboratory of Medical Pharmacology, Department of Clinical & Pharmaceutical Sciences, Faculty of Pharma-Sciences, Teikyo University
| | - Daiki Asano
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| |
Collapse
|
13
|
Ahmed CM, Dwyer BT, Romashko A, Van Adestine S, Park EH, Lou Z, Welty D, Josiah S, Savinainen A, Zhang B, Lewin AS. SRD005825 Acts as a Pharmacologic Chaperone of Opsin and Promotes Survival of Photoreceptors in an Animal Model of Autosomal Dominant Retinitis Pigmentosa. Transl Vis Sci Technol 2019; 8:30. [PMID: 31857914 PMCID: PMC6910612 DOI: 10.1167/tvst.8.6.30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/11/2019] [Indexed: 01/17/2023] Open
Abstract
Purpose Mutations in RHO, the gene for a rhodopsin, are a leading cause of autosomal dominant retinitis pigmentosa. The objective of this study was to determine if a synthetic retinal analogue (SRD005825) serves as a pharmacologic chaperone to promote appropriate membrane trafficking of a mutant version of human rhodopsin. Methods A tetracycline-inducible cell line was used to produce human wild-type and T17M opsin. A cell-free assay was used to study the impact of SRD005825 on binding of 9-cis-retinal to wild-type opsin. A cell-based assay was used to measure the effect of SRD005825 on the generation of rhodopsin by spectroscopy and Western blot and the transport of rhodopsin to the cell membrane by confocal microscopy. Mice bearing T17M RHO were treated with daily oral doses of SRD005825, and retinal degeneration was measured by spectral-domain optical coherence tomography and, at the conclusion of the experiment, by electroretinography and morphometry. Results SRD005825 competed with 9-cis-retinal for binding to wild-type opsin but promoted the formation of rhodopsin in HEK293 cells and the trafficking of T17M rhodopsin to the plasma membrane of these cells. T17M transgenic mice exhibited rapid retinal degeneration, but thinning of the outer nuclear layer representative of photoreceptor cell bodies was delayed by treatment with SRD005825. Electroretinography a-wave and b-wave amplitudes were significantly improved by drug treatment. Conclusions SRD005825 promoted the reconstitution of mutant rhodopsin and its membrane localization. Because it delayed retinal degeneration in the mouse model, it has potential as a therapeutic for autosomal dominant retinitis pigmentosa. Translational Relevance SRD005825 may be useful as a treatment to delay retinal degeneration in retinitis pigmentosa patients with rhodopsin mutations causing misfolding of the protein.
Collapse
Affiliation(s)
- Chulbul M Ahmed
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Brian T Dwyer
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - All Romashko
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | | | - Eun-He Park
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - Zhe Lou
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - Devi Welty
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - Seren Josiah
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - Annel Savinainen
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - Bohon Zhang
- Shire HGT Inc., a member of the Takeda group of companies, Cambridge, MA, USA
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Mitra RN, Zheng M, Weiss ER, Han Z. Genomic form of rhodopsin DNA nanoparticles rescued autosomal dominant Retinitis pigmentosa in the P23H knock-in mouse model. Biomaterials 2017; 157:26-39. [PMID: 29232624 DOI: 10.1016/j.biomaterials.2017.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/27/2017] [Accepted: 12/02/2017] [Indexed: 12/27/2022]
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal degenerative conditions and a leading cause of irreversible blindness. 25%-30% of RP cases are caused by inherited autosomal dominant (ad) mutations in the rhodopsin (Rho) protein of the retina, which impose a barrier for developing therapeutic treatments for this genetically heterogeneous disorder, as simple gene replacement is not sufficient to overcome dominant disease alleles. Previously, we have explored using the genomic short-form of Rho (sgRho) for gene augmentation therapy of RP in a Rho knockout mouse model. We have shown improved gene expression and fewer epigenetic modifications compared with the use of a Rho cDNA expression construct. In the current study, we altered our strategy by delivering a codon-optimized genomic form of Rho (co-sgRho) (for gene replacement) in combination with an RNAi-based inactivation of endogenous Rho alleles (gene suppression of both mutant Rho alleles, but mismatched with the co-sgRho) into a homozygous RhoP23H/P23H knock-in (KI) RP mouse model, which has a severe phenotype of adRP. In addition, we have conjugated a cell penetrating TAT peptide sequence to our previously established CK30PEG10 diblock co-polymer. The DNAs were compacted with CK30PEG10-TAT diblock co-polymer to form DNA nanoparticles (NPs). These NPs were injected into the sub-retinal space of the KI mouse eyes. As a proof of concept, we demonstrated the efficiency of this strategy in the partial improvement of visual function in the RhoP23H/P23H KI mouse model.
Collapse
Affiliation(s)
| | - Min Zheng
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ellen R Weiss
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zongchao Han
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Institute for NanoMedicine, University of North Carolina, Chapel Hill, NC 27599, USA; Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Curtis HJ, Seow Y, Wood MJA, Varela MA. Knockdown and replacement therapy mediated by artificial mirtrons in spinocerebellar ataxia 7. Nucleic Acids Res 2017; 45:7870-7885. [PMID: 28575281 PMCID: PMC5569705 DOI: 10.1093/nar/gkx483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 05/26/2017] [Indexed: 12/13/2022] Open
Abstract
We evaluate a knockdown-replacement strategy mediated by mirtrons as an alternative to allele-specific silencing using spinocerebellar ataxia 7 (SCA7) as a model. Mirtrons are introns that form pre-microRNA hairpins after splicing, producing RNAi effectors not processed by Drosha. Mirtron mimics may therefore avoid saturation of the canonical processing pathway. This method combines gene silencing mediated by an artificial mirtron with delivery of a functional copy of the gene such that both elements of the therapy are always expressed concurrently, minimizing the potential for undesirable effects and preserving wild-type function. This mutation- and single nucleotide polymorphism-independent method could be crucial in dominant diseases that feature both gain- and loss-of-function pathologies or have a heterogeneous genetic background. Here we develop mirtrons against ataxin 7 with silencing efficacy comparable to shRNAs, and introduce silent mutations into an ataxin 7 transgene such that it is resistant to their effect. We successfully express the transgene and one mirtron together from a single construct. Hence, we show that this method can be used to silence the endogenous allele of ataxin 7 and replace it with an exogenous copy of the gene, highlighting the efficacy and transferability across patient genotypes of this approach.
Collapse
Affiliation(s)
- Helen J Curtis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK.,Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK
| | - Yiqi Seow
- Molecular Engineering Laboratory, Biomedical Sciences Institutes, A*STAR, Singapore
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Miguel A Varela
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
16
|
Abstract
Retinitis pigmentosa is the most common form of hereditary retinal degeneration causing blindness. Great progress has been made in the identification of the causative genes. Gene diagnosis will soon become an affordable routine clinical test because of the wide application of next-generation sequencing. Gene-based therapy provides hope for curing the disease. Investigation into the molecular pathways from mutation to rod cell death may reveal targets for developing new treatment. Related progress with existing systematic review is briefly summarized so that readers may find the relevant references for in-depth reading. Future trends in the study of retinitis pigmentosa are also discussed.
Collapse
Affiliation(s)
- Qingjiong Zhang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Rossmiller BP, Ryals RC, Lewin AS. Gene therapy to rescue retinal degeneration caused by mutations in rhodopsin. Methods Mol Biol 2015; 1271:391-410. [PMID: 25697537 PMCID: PMC4696870 DOI: 10.1007/978-1-4939-2330-4_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Retinal gene therapy has proven safe and at least partially successful in clinical trials and in numerous animal models. Gene therapy requires characterization of the progression of the disease and understanding of its genetic cause. Testing gene therapies usually requires an animal model that recapitulates the key features of the human disease, though photoreceptors and cells of the retinal pigment epithelium produced from patient-derived stem cells may provide an alternative test system for retinal gene therapy. Gene therapy also requires a delivery system that introduces the therapeutic gene to the correct cell type and does not cause unintended damage to the tissue. Current systems being tested in the eye are nanoparticles, pseudotyped lentiviruses, and adeno-associated virus (AAV) of various serotypes. Here, we describe the techniques of AAV vector design as well as the in vivo and ex vivo tests necessary for assessing the efficacy of retinal gene therapy to treat retinal degeneration caused by mutations in the rhodopsin gene.
Collapse
Affiliation(s)
- Brian P Rossmiller
- Department of Opthalmology, University of Florida, Box 100284, Gainesville, FL, 32610-0284, USA
| | | | | |
Collapse
|
18
|
Cuenca N, Fernández-Sánchez L, Campello L, Maneu V, De la Villa P, Lax P, Pinilla I. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 2014; 43:17-75. [PMID: 25038518 DOI: 10.1016/j.preteyeres.2014.07.001] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 01/17/2023]
Abstract
Retinal neurodegenerative diseases like age-related macular degeneration, glaucoma, diabetic retinopathy and retinitis pigmentosa each have a different etiology and pathogenesis. However, at the cellular and molecular level, the response to retinal injury is similar in all of them, and results in morphological and functional impairment of retinal cells. This retinal degeneration may be triggered by gene defects, increased intraocular pressure, high levels of blood glucose, other types of stress or aging, but they all frequently induce a set of cell signals that lead to well-established and similar morphological and functional changes, including controlled cell death and retinal remodeling. Interestingly, an inflammatory response, oxidative stress and activation of apoptotic pathways are common features in all these diseases. Furthermore, it is important to note the relevant role of glial cells, including astrocytes, Müller cells and microglia, because their response to injury is decisive for maintaining the health of the retina or its degeneration. Several therapeutic approaches have been developed to preserve retinal function or restore eyesight in pathological conditions. In this context, neuroprotective compounds, gene therapy, cell transplantation or artificial devices should be applied at the appropriate stage of retinal degeneration to obtain successful results. This review provides an overview of the common and distinctive features of retinal neurodegenerative diseases, including the molecular, anatomical and functional changes caused by the cellular response to damage, in order to establish appropriate treatments for these pathologies.
Collapse
Affiliation(s)
- Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain; Multidisciplinary Institute for Environmental Studies "Ramon Margalef", University of Alicante, Alicante, Spain.
| | - Laura Fernández-Sánchez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain
| | - Pedro De la Villa
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Spain
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Lozano Blesa University Hospital, Aragon Institute of Health Sciences, Zaragoza, Spain
| |
Collapse
|
19
|
Abstract
Significant advances have been made over the last decade or two in the elucidation of the molecular pathogenesis of inherited ocular disorders. In particular, remarkable successes have been achieved in exploration of gene-based medicines for these conditions, both in preclinical and in clinical studies. Progress in the development of gene therapies targeted toward correcting the primary genetic defect or focused on modulating secondary effects associated with retinal pathologies are discussed in the review. Likewise, the recent utilization of genes encoding light-sensing molecules to provide new functions to residual retinal cells in the degenerating retina is discussed. While a great deal has been learned over the last two decades, the next decade should result in an increasing number of preclinical studies progressing to human clinical trial, an exciting prospect for patients, those active in research and development and bystanders alike.
Collapse
|
20
|
Hammer DX, Ferguson RD, Mujat M, Patel A, Plumb E, Iftimia N, Chui TYP, Akula JD, Fulton AB. Multimodal adaptive optics retinal imager: design and performance. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2012; 29:2598-607. [PMID: 23455909 PMCID: PMC6360942 DOI: 10.1364/josaa.29.002598] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) and scanning laser ophthalmoscopy (SLO) are complementary imaging modalities, the combination of which can provide clinicians with a wealth of information to detect retinal diseases, monitor disease progression, or assess new therapies. Adaptive optics (AO) is a tool that enables correction of wavefront distortions from ocular aberrations. We have developed a multimodal adaptive optics system (MAOS) for high-resolution multifunctional use in a variety of research and clinical applications. The system integrates both OCT and SLO imaging channels into an AO beam path. The optics and hardware were designed with specific features for simultaneous SLO/OCT output, for high-fidelity AO correction, for use in humans, primates, and small animals, and for efficient location and orientation of retinal regions of interest. The MAOS system was tested on human subjects and rodents. The design, performance characterization, and initial representative results from the human and animal studies are presented and discussed.
Collapse
Affiliation(s)
- Daniel X Hammer
- Physical Sciences Inc., 20 New England Business Center, Andover, Massachusetts 01810, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|