1
|
Romanovsky D, Scherk H, Föhr B, Babutzka S, Bogedein J, Lu Y, Reschigna A, Michalakis S. Heparan Sulfate Proteoglycan Affinity of Adeno-Associated Virus Vectors: Implications for Retinal Gene Delivery. Eur J Pharm Sci 2025:107012. [PMID: 39805508 DOI: 10.1016/j.ejps.2025.107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/24/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Adeno-associated virus (AAV)-based vectors have emerged as an effective and widely used technology for somatic gene therapy approaches, including those targeting the retina. A major advantage of the AAV technology is the availability of a large number of serotypes that have either been isolated from nature or produced in the laboratory. These serotypes have different properties in terms of sensitivity to neutralizing antibodies, cellular transduction profile and efficiency. The infectivity of AAV vectors depends on the affinity to certain molecules on the cell surface, in particular to cellular glycosaminoglycans (GAGs) such as heparan sulfate proteoglycans (HSPGs). Here, we tested how altering HSPG affinity in AAV vectors affects cellular tropism and transduction efficiency. The previously developed AAV2.GL variant was used as a starting variant to alter or disrupt HSPG affinity. The HSPG-independent AAV9 serotype was used to introduce different HSPG binding sites. As an indicator of HSPG affinity, we measured the binding strength of the vector variant on a heparin chromatography column. We show that modification of capsid-exposed residues has a strong impact on HSPG affinity, cellular tropism and transduction efficiency in HeLa cells and in vivo in mouse retina. Our study shows that key properties of AAV vectors can be tailored in different directions and used to improve tropism and efficiency.
Collapse
Affiliation(s)
- Dimitri Romanovsky
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Hanna Scherk
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Bastian Föhr
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Babutzka
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jacqueline Bogedein
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Yi Lu
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Alice Reschigna
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
2
|
Zhou X, Liu J, Xiao S, Liang X, Li Y, Mo F, Xin X, Yang Y, Gao C. Adeno-Associated Virus Engineering and Load Strategy for Tropism Modification, Immune Evasion and Enhanced Transgene Expression. Int J Nanomedicine 2024; 19:7691-7708. [PMID: 39099791 PMCID: PMC11296317 DOI: 10.2147/ijn.s459905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/21/2024] [Indexed: 08/06/2024] Open
Abstract
Gene therapy aims to add, replace or turn off genes to help treat disease. To date, the US Food and Drug Administration (FDA) has approved 14 gene therapy products. With the increasing interest in gene therapy, feasible gene delivery vectors are necessary for inserting new genes into cells. There are different kinds of gene delivery vectors including viral vectors like lentivirus, adenovirus, retrovirus, adeno-associated virus et al, and non-viral vectors like naked DNA, lipid vectors, polymer nanoparticles, exosomes et al, with viruses being the most commonly used. Among them, the most concerned vector is adeno-associated virus (AAV) because of its safety, natural ability to efficiently deliver gene into cells and sustained transgene expression in multiple tissues. In addition, the AAV genome can be engineered to generate recombinant AAV (rAAV) containing transgene sequences of interest and has been proven to be a safe gene vector. Recently, rAAV vectors have been approved for the treatment of various rare diseases. Despite these approvals, some major limitations of rAAV remain, namely nonspecific tissue targeting and host immune response. Additional problems include neutralizing antibodies that block transgene delivery, a finite transgene packaging capacity, high viral titer used for per dose and high cost. To deal with these challenges, several techniques have been developed. Based on differences in engineering methods, this review proposes three strategies: gene engineering-based capsid modification (capsid modification), capsid surface tethering through chemical conjugation (surface tethering), and other formulations loaded with AAV (virus load). In addition, the major advantages and limitations encountered in rAAV engineering strategies are summarized.
Collapse
Affiliation(s)
- Xun Zhou
- School of Pharmacy, Henan University, Kaifeng, People’s Republic of China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Jingzhou Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Shuang Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
- School of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Xiaoqing Liang
- School of Pharmacy, Henan University, Kaifeng, People’s Republic of China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Yi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Fengzhen Mo
- School of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Xin Xin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Chunsheng Gao
- School of Pharmacy, Henan University, Kaifeng, People’s Republic of China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Tejero M, Duzenli OF, Caine C, Kuoch H, Aslanidi G. Bioengineered Hybrid Rep 2/6 Gene Improves Encapsulation of a Single-Stranded Expression Cassette into AAV6 Vectors. Genes (Basel) 2023; 14:1866. [PMID: 37895215 PMCID: PMC10606878 DOI: 10.3390/genes14101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The production of clinical-grade recombinant adeno-associated viral (AAV) vectors for gene therapy trials remains a major hurdle in the further advancement of the gene therapy field. During the past decades, AAV research has been predominantly focused on the development of new capsid modifications, vector-associated immunogenicity, and the scale-up vector production. However, limited studies have examined the possibility to manipulate non-structural components of AAV such as the Rep genes. Historically, naturally isolated, or recombinant library-derived AAV capsids have been produced using the AAV serotype 2 Rep gene to package ITR2-flanked vector genomes. In the current study, we mutated four variable amino acids in the conservative part of the binding domain in AAV serotype 6 Rep to generate a Rep2/6 hybrid gene. This newly generated Rep2/6 hybrid had improved packaging ability over wild-type Rep6. AAV vectors produced with Rep2/6 exhibited similar in vivo activity as standard AAV6 vectors. Furthermore, we show that this Rep2/6 hybrid also improves full/empty capsid ratios, suggesting that Rep bioengineering can be used to improve the ratio of fully encapsulated AAV vectors during upstream manufacturing processes.
Collapse
Affiliation(s)
- Marcos Tejero
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55455, USA; (M.T.)
| | - Ozgun F. Duzenli
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55455, USA; (M.T.)
| | - Colin Caine
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55455, USA; (M.T.)
| | - Hisae Kuoch
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55455, USA; (M.T.)
| | - George Aslanidi
- Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55455, USA; (M.T.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Kok CY, Tsurusaki S, Cabanes-Creus M, Igoor S, Rao R, Skelton R, Liao SH, Ginn SL, Knight M, Scott S, Mietzsch M, Fitzsimmons R, Miller J, Mohamed TM, McKenna R, Chong JJ, Hill AP, Hudson JE, Alexander IE, Lisowski L, Kizana E. Development of new adeno-associated virus capsid variants for targeted gene delivery to human cardiomyocytes. Mol Ther Methods Clin Dev 2023; 30:459-473. [PMID: 37674904 PMCID: PMC10477751 DOI: 10.1016/j.omtm.2023.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
Recombinant adeno-associated viruses (rAAVs) have emerged as one of the most promising gene therapy vectors that have been successfully used in pre-clinical models of heart disease. However, this has not translated well to humans due to species differences in rAAV transduction efficiency. As a result, the search for human cardiotropic capsids is a major contemporary challenge. We used a capsid-shuffled rAAV library to perform directed evolution in human iPSC-derived cardiomyocytes (hiPSC-CMs). Five candidates emerged, with four presenting high sequence identity to AAV6, while a fifth divergent variant was related to AAV3b. Functional analysis of the variants was performed in vitro using hiPSC-CMs, cardiac organoids, human cardiac slices, non-human primate and porcine cardiac slices, as well as mouse heart and liver in vivo. We showed that cell entry was not the best predictor of transgene expression efficiency. The novel variant rAAV.KK04 was the best-performing vector in human-based screening platforms, exceeding the benchmark rAAV6. None of the novel capsids demonstrate a significant transduction of liver in vivo. The range of experimental models used revealed the value of testing for tropism differences under the conditions of human specificity, bona fide, myocardium and cell type of interest.
Collapse
Affiliation(s)
- Cindy Y. Kok
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
- Westmead Clinical School, the Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Shinya Tsurusaki
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Marti Cabanes-Creus
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sindhu Igoor
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Renuka Rao
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Rhys Skelton
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sophia H.Y. Liao
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Samantha L. Ginn
- Gene Therapy Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children’s Hospital Network, Westmead, NSW 2145, Australia
| | - Maddison Knight
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Suzanne Scott
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, USA
| | - Rebecca Fitzsimmons
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Jessica Miller
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Tamer M.A. Mohamed
- Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Institute of Cardiovascular Sciences, University of Manchester, Manchester M13 9NT, UK
- Surgery Department, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, USA
| | - James J.H. Chong
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
- Westmead Clinical School, the Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Adam P. Hill
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW, Sydney, NSW 2052, Australia
| | - James E. Hudson
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Ian E. Alexander
- Gene Therapy Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children’s Hospital Network, Westmead, NSW 2145, Australia
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney Medical School, Faculty of Medicine and Health, Westmead, NSW 2145, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Centre, 24-100 Pulawy, Poland
| | - Eddy Kizana
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
- Westmead Clinical School, the Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
5
|
Yang TY, Braun M, Lembke W, McBlane F, Kamerud J, DeWall S, Tarcsa E, Fang X, Hofer L, Kavita U, Upreti VV, Gupta S, Loo L, Johnson AJ, Chandode RK, Stubenrauch KG, Vinzing M, Xia CQ, Jawa V. Immunogenicity assessment of AAV-based gene therapies: An IQ consortium industry white paper. Mol Ther Methods Clin Dev 2022; 26:471-494. [PMID: 36092368 PMCID: PMC9418752 DOI: 10.1016/j.omtm.2022.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immunogenicity has imposed a challenge to efficacy and safety evaluation of adeno-associated virus (AAV) vector-based gene therapies. Mild to severe adverse events observed in clinical development have been implicated with host immune responses against AAV gene therapies, resulting in comprehensive evaluation of immunogenicity during nonclinical and clinical studies mandated by health authorities. Immunogenicity of AAV gene therapies is complex due to the number of risk factors associated with product components and pre-existing immunity in human subjects. Different clinical mitigation strategies have been employed to alleviate treatment-induced or -boosted immunogenicity in order to achieve desired efficacy, reduce toxicity, or treat more patients who are seropositive to AAV vectors. In this review, the immunogenicity risk assessment, manifestation of immunogenicity and its impact in nonclinical and clinical studies, and various clinical mitigation strategies are summarized. Last, we present bioanalytical strategies, methodologies, and assay validation applied to appropriately monitor immunogenicity in AAV gene therapy-treated subjects.
Collapse
|
6
|
Belova L, Kochergin‐Nikitsky K, Erofeeva A, Lavrov A, Smirnikhina S. Approaches to purification and concentration of rAAV vectors for gene therapy. Bioessays 2022; 44:e2200019. [DOI: 10.1002/bies.202200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/11/2022]
|
7
|
Effects of Altering HSPG Binding and Capsid Hydrophilicity on Retinal Transduction by AAV. J Virol 2021; 95:JVI.02440-20. [PMID: 33658343 PMCID: PMC8139652 DOI: 10.1128/jvi.02440-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated viruses (AAVs) have recently emerged as the leading vector for retinal gene therapy. However, AAV vectors which are capable of achieving clinically relevant levels of transgene expression and widespread retinal transduction are still an unmet need. Using rationally designed AAV2-based capsid variants, we investigate the role of capsid hydrophilicity and hydrophobicity as it relates to retinal transduction. We show that hydrophilic, single amino acid (aa) mutations (V387R, W502H, E530K, L583R) in AAV2 negatively impact retinal transduction when heparan sulfate proteoglycan (HSPG) binding remains intact. Conversely, addition of hydrophobic point mutations to an HSPG binding deficient capsid (AAV2ΔHS) lead to increased retinal transduction in both mouse and macaque. Our top performing vector, AAV2(4pMut)ΔHS, achieved robust rod and cone photoreceptor (PR) transduction in macaque, especially in the fovea, and demonstrates the ability to spread laterally beyond the borders of the subretinal injection (SRI) bleb. This study both evaluates biophysical properties of AAV capsids that influence retinal transduction, and assesses the transduction and tropism of a novel capsid variant in a clinically relevant animal model.ImportanceRationally guided engineering of AAV capsids aims to create new generations of vectors with enhanced potential for human gene therapy. By applying rational design principles to AAV2-based capsids, we evaluated the influence of hydrophilic and hydrophobic amino acid (aa) mutations on retinal transduction as it relates to vector administration route. Through this approach we identified a largely deleterious relationship between hydrophilic aa mutations and canonical HSPG binding by AAV2-based capsids. Conversely, the inclusion of hydrophobic aa substitutions on a HSPG binding deficient capsid (AAV2ΔHS), generated a vector capable of robust rod and cone photoreceptor (PR) transduction. This vector AAV2(4pMut)ΔHS also demonstrates a remarkable ability to spread laterally beyond the initial subretinal injection (SRI) bleb, making it an ideal candidate for the treatment of retinal diseases which require a large area of transduction.
Collapse
|
8
|
Weber-Adrian D, Kofoed RH, Silburt J, Noroozian Z, Shah K, Burgess A, Rideout S, Kügler S, Hynynen K, Aubert I. Systemic AAV6-synapsin-GFP administration results in lower liver biodistribution, compared to AAV1&2 and AAV9, with neuronal expression following ultrasound-mediated brain delivery. Sci Rep 2021; 11:1934. [PMID: 33479314 PMCID: PMC7820310 DOI: 10.1038/s41598-021-81046-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
Non-surgical gene delivery to the brain can be achieved following intravenous injection of viral vectors coupled with transcranial MRI-guided focused ultrasound (MRIgFUS) to temporarily and locally permeabilize the blood-brain barrier. Vector and promoter selection can provide neuronal expression in the brain, while limiting biodistribution and expression in peripheral organs. To date, the biodistribution of adeno-associated viruses (AAVs) within peripheral organs had not been quantified following intravenous injection and MRIgFUS delivery to the brain. We evaluated the quantity of viral DNA from the serotypes AAV9, AAV6, and a mosaic AAV1&2, expressing green fluorescent protein (GFP) under the neuron-specific synapsin promoter (syn). AAVs were administered intravenously during MRIgFUS targeting to the striatum and hippocampus in mice. The syn promoter led to undetectable levels of GFP expression in peripheral organs. In the liver, the biodistribution of AAV9 and AAV1&2 was 12.9- and 4.4-fold higher, respectively, compared to AAV6. The percentage of GFP-positive neurons in the FUS-targeted areas of the brain was comparable for AAV6-syn-GFP and AAV1&2-syn-GFP. In summary, MRIgFUS-mediated gene delivery with AAV6-syn-GFP had lower off-target biodistribution in the liver compared to AAV9 and AAV1&2, while providing neuronal GFP expression in the striatum and hippocampus.
Collapse
Affiliation(s)
- Danielle Weber-Adrian
- grid.410356.50000 0004 1936 8331Present Address: Faculty of Health Sciences, School of Medicine, Queen′s University, Kingston, ON Canada ,grid.17063.330000 0001 2157 2938Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Rikke Hahn Kofoed
- grid.17063.330000 0001 2157 2938Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Joseph Silburt
- grid.17063.330000 0001 2157 2938Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Zeinab Noroozian
- grid.17063.330000 0001 2157 2938Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Kairavi Shah
- grid.17063.330000 0001 2157 2938Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Alison Burgess
- grid.17063.330000 0001 2157 2938Physical Sciences, Sunnybrook Research Institute, Toronto, ON Canada
| | - Shawna Rideout
- grid.17063.330000 0001 2157 2938Physical Sciences, Sunnybrook Research Institute, Toronto, ON Canada
| | - Sebastian Kügler
- grid.411984.10000 0001 0482 5331Department of Neurology, Center Nanoscale Microscopy and Physiology of the Brain (CNMPB) at University Medical Center Göttingen, Göttingen, Germany
| | - Kullervo Hynynen
- grid.17063.330000 0001 2157 2938Physical Sciences, Sunnybrook Research Institute, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| | - Isabelle Aubert
- grid.17063.330000 0001 2157 2938Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON Canada
| |
Collapse
|
9
|
Meisen WH, Nejad ZB, Hardy M, Zhao H, Oliverio O, Wang S, Hale C, Ollmann MM, Collins PJ. Pooled Screens Identify GPR108 and TM9SF2 as Host Cell Factors Critical for AAV Transduction. Mol Ther Methods Clin Dev 2020; 17:601-611. [PMID: 32280726 PMCID: PMC7139131 DOI: 10.1016/j.omtm.2020.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/12/2020] [Indexed: 12/19/2022]
Abstract
Adeno-associated virus (AAV) has been used extensively as a vector for gene therapy. Despite its widespread use, the mechanisms by which AAV enters the cell and is trafficked to the nucleus are poorly understood. In this study, we performed two pooled, genome-wide screens to identify positive and negative factors modulating AAV2 transduction. Genome-wide libraries directed against all human genes with four designs per gene or eight designs per gene were transduced into U-2 OS cells. These pools were transduced with AAV2 encoding EGFP and sorted based on the intensity of EGFP expression. Analysis of enriched and depleted barcodes in the sorted samples identified several genes that putatively decreased AAV2 transduction. A subset of screen hits was validated in flow cytometry and imaging studies. In addition to KIAA0319L (AAVR), we confirmed the role of two genes, GPR108 and TM9SF2, in mediating viral transduction in eight different AAV serotypes. Interestingly, GPR108 displayed serotype selectivity and was not required for AAV5 transduction. Follow-up studies suggested that GPR108 localized primarily to the Golgi, where it may interact with AAV and play a critical role in mediating virus escape or trafficking. Cumulatively, these results expand our understanding of the process of AAV transduction in different cell types and serotypes.
Collapse
Affiliation(s)
- W. Hans Meisen
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | | | - Miki Hardy
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Huiren Zhao
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Oliver Oliverio
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Songli Wang
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Christopher Hale
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | | | | |
Collapse
|
10
|
Stanek LM, Bu J, Shihabuddin LS. Astrocyte transduction is required for rescue of behavioral phenotypes in the YAC128 mouse model with AAV-RNAi mediated HTT lowering therapeutics. Neurobiol Dis 2019; 129:29-37. [DOI: 10.1016/j.nbd.2019.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/14/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
|
11
|
Liu SH, Hong Y, Markowiak S, Sanchez R, Creeden J, Nemunaitis J, Kalinoski A, Willey J, Erhardt P, Lee J, van Dam M, Brunicardi FC. BIRC5 is a target for molecular imaging and detection of human pancreatic cancer. Cancer Lett 2019; 457:10-19. [PMID: 31059751 DOI: 10.1016/j.canlet.2019.04.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer mortality with a dismal overall survival rate and an urgent need for detection of minute tumors. Current diagnostic modalities have high sensitivity and specificity for larger tumors, but not for minute PDAC. In this study, we test the feasibility of a precision diagnostic platform for detecting and localizing minute human PDAC in mice. This platform includes: 1) defining BIRC5 as an early PDAC-upregulated gene and utilizing an enhanced BIRC5 super-promoter to drive expression of dual Gaussia luciferase (GLuc) and sr39 thymidine kinase (sr39TK) reporter genes exponentially and specifically in PDAC; 2) utilizing a genetically-engineered AAV2RGD to ensure targeted delivery of GLuc and sr39TK specifically to PDAC; 3) using serologic GLuc and sr39TK microPET/CT imaging to detect and localize minute human PDAC in mice. The study demonstrates feasibility of a precision diagnostic platform using an integrated technology through a multiple-stage amplification strategy of dual reporter genes to enhance the specificity and sensitivity of detection and localization of minute PDAC tumors and currently undetectable disease.
Collapse
Affiliation(s)
- Shi-He Liu
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Yeahwa Hong
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Stephen Markowiak
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Robbi Sanchez
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Justin Creeden
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - John Nemunaitis
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Andrea Kalinoski
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - James Willey
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Paul Erhardt
- Department of Pharmacology-Medicinal/Biological Chemistry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Jason Lee
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, 90095, USA; Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael van Dam
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, 90095, USA; Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - F Charles Brunicardi
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| |
Collapse
|
12
|
Sullivan JA, Stanek LM, Lukason MJ, Bu J, Osmond SR, Barry EA, O'Riordan CR, Shihabuddin LS, Cheng SH, Scaria A. Rationally designed AAV2 and AAVrh8R capsids provide improved transduction in the retina and brain. Gene Ther 2018; 25:205-219. [PMID: 29785047 DOI: 10.1038/s41434-018-0017-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 01/18/2023]
Abstract
The successful application of adeno-associated virus (AAV) gene delivery vectors as a therapeutic paradigm will require efficient gene delivery to the appropriate cells in affected organs. In this study, we utilized a rational design approach to introduce modifications to the AAV2 and AAVrh8R capsids and the resulting variants were evaluated for transduction activity in the retina and brain. The modifications disrupted either capsid/receptor binding or altered capsid surface charge. Specifically, we mutated AAV2 amino acids R585A and R588A, which are required for binding to its receptor, heparan sulfate proteoglycans, to generate a variant referred to as AAV2-HBKO. In contrast to parental AAV2, the AAV2-HBKO vector displayed low-transduction activity following intravitreal delivery to the mouse eye; however, following its subretinal delivery, AAV2-HBKO resulted in significantly greater photoreceptor transduction. Intrastriatal delivery of AAV2-HBKO to mice facilitated widespread striatal and cortical expression, in contrast to the restricted transduction pattern of the parental AAV2 vector. Furthermore, we found that altering the surface charge on the AAVrh8R capsid by modifying the number of arginine residues on the capsid surface had a profound impact on subretinal transduction. The data further validate the potential of capsid engineering to improve AAV gene therapy vectors for clinical applications.
Collapse
Affiliation(s)
| | - Lisa M Stanek
- Sanofi, 49 New York Avenue, Framingham, MA, 01701-9322, USA
| | | | - Jie Bu
- Sanofi, 49 New York Avenue, Framingham, MA, 01701-9322, USA
| | | | | | | | | | - Seng H Cheng
- Sanofi, 49 New York Avenue, Framingham, MA, 01701-9322, USA
| | - Abraham Scaria
- Sanofi, 49 New York Avenue, Framingham, MA, 01701-9322, USA
| |
Collapse
|
13
|
Halbert CL, Allen JM, Chamberlain JS. AAV6 Vector Production and Purification for Muscle Gene Therapy. Methods Mol Biol 2018; 1687:257-266. [PMID: 29067669 DOI: 10.1007/978-1-4939-7374-3_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Vectors derived from adeno-associated viruses (AAV) have been generated using numerous naturally occurring and synthetic serotypes of the virus. Such vectors have proven to be extremely useful for a variety of gene transfer studies, both in vitro and in vivo, and are increasingly being used in gene therapy protocols for a variety of human disorders. Methods to produce AAV vectors typically rely on co-transfection of several different plasmid vectors that carry the transgene of interest (the gene to be delivered , in a "transfer plasmid") and helper genes needed for AAV vector replication and packaging (helper plasmids). While the methods used to generate AAV are conceptually simple, minor variations in a variety of steps can result in significant differences in the overall yield of vector. Here we describe protocols for generating vectors derived from AAV6, which are particularly useful for gene transfer to muscle tissues.
Collapse
Affiliation(s)
- Christine L Halbert
- Department of Neurology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, WA, 98195-7720, USA
| | - James M Allen
- Department of Neurology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, WA, 98195-7720, USA
| | - Jeffrey S Chamberlain
- Department of Neurology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, Seattle, WA, 98195-7720, USA.
| |
Collapse
|
14
|
Teichman SL, Thomson KS, Regnier M. Cardiac Myosin Activation with Gene Therapy Produces Sustained Inotropic Effects and May Treat Heart Failure with Reduced Ejection Fraction. Handb Exp Pharmacol 2017; 243:447-464. [PMID: 27590227 DOI: 10.1007/164_2016_31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic inotropic therapy is effective for the treatment of heart failure with reduced ejection fraction, but has been limited by adverse long-term safety profiles, development of tolerance, and the need for chronic parenteral administration. A safe and convenient therapeutic agent that produces sustained inotropic effects could improve symptoms, functional capacity, and quality of life. Small amounts of 2-deoxy-adenosine triphosphate (dATP) activate cardiac myosin leading to enhanced contractility in normal and failing heart muscle. Cardiac myosin activation triggers faster myosin crossbridge cycling with greater force generation during each contraction. This paper describes the rationale and results of a translational medicine effort to increase dATP levels using a gene therapy strategy to deliver and upregulate ribonucleotide reductase (R1R2), the enzyme responsible for dATP synthesis, selectively in cardiomyocytes. In small and large animal models of heart failure, a single dose of this gene therapy has led to sustained inotropic effects with a benign safety profile. Further animal studies are appropriate with the goal of testing this agent in patients with heart failure.
Collapse
Affiliation(s)
- Sam L Teichman
- BEAT Biotherapeutics Corp, 1380 112th Ave., NE, Suite 200, Seattle, WA, 98004, USA.
| | | | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Davey MG, Riley JS, Andrews A, Tyminski A, Limberis M, Pogoriler JE, Partridge E, Olive A, Hedrick HL, Flake AW, Peranteau WH. Induction of Immune Tolerance to Foreign Protein via Adeno-Associated Viral Vector Gene Transfer in Mid-Gestation Fetal Sheep. PLoS One 2017; 12:e0171132. [PMID: 28141818 PMCID: PMC5283730 DOI: 10.1371/journal.pone.0171132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/16/2017] [Indexed: 11/18/2022] Open
Abstract
A major limitation to adeno-associated virus (AAV) gene therapy is the generation of host immune responses to viral vector antigens and the transgene product. The ability to induce immune tolerance to foreign protein has the potential to overcome this host immunity. Acquisition and maintenance of tolerance to viral vector antigens and transgene products may also permit repeat administration thereby enhancing therapeutic efficacy. In utero gene transfer (IUGT) takes advantage of the immunologic immaturity of the fetus to induce immune tolerance to foreign antigens. In this large animal study, in utero administration of AAV6.2, AAV8 and AAV9 expressing green fluorescent protein (GFP) to ~60 day fetal sheep (term: ~150 days) was performed. Transgene expression and postnatal immune tolerance to GFP and viral antigens were assessed. We demonstrate 1) hepatic expression of GFP 1 month following in utero administration of AAV6.2.GFP and AAV8.GFP, 2) in utero recipients of either AAV6.2.GFP or AAV8.GFP fail to mount an anti-GFP antibody response following postnatal GFP challenge and lack inflammatory cellular infiltrates at the intramuscular site of immunization, 3) a serotype specific anti-AAV neutralizing antibody response is elicited following postnatal challenge of in utero recipients of AAV6.2 or AAV8 with the corresponding AAV serotype, and 4) durable hepatic GFP expression was observed up to 6 months after birth in recipients of AAV8.GFP but expression was lost between 1 and 6 months of age in recipients of AAV6.2.GFP. The current study demonstrates, in a preclinical large animal model, the potential of IUGT to achieve host immune tolerance to the viral vector transgene product but also suggests that a single exposure to the vector capsid proteins at the time of IUGT is inadequate to induce tolerance to viral vector antigens.
Collapse
Affiliation(s)
- Marcus G. Davey
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - John S. Riley
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Abigail Andrews
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Alec Tyminski
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Maria Limberis
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jennifer E. Pogoriler
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Emily Partridge
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Aliza Olive
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Holly L. Hedrick
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Alan W. Flake
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - William H. Peranteau
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
Translation of Cardiac Myosin Activation with 2-deoxy-ATP to Treat Heart Failure via an Experimental Ribonucleotide Reductase-Based Gene Therapy. JACC Basic Transl Sci 2016; 1:666-679. [PMID: 28553667 PMCID: PMC5444879 DOI: 10.1016/j.jacbts.2016.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite recent advances, chronic heart failure remains a significant and growing unmet medical need, reaching epidemic proportions carrying substantial morbidity, mortality, and costs. A safe and convenient therapeutic agent that produces sustained inotropic effects could ameliorate symptoms and improve functional capacity and quality of life. The authors discovered that small amounts of 2-deoxy-ATP (dATP) activate cardiac myosin leading to enhanced contractility in normal and failing heart muscle. Cardiac myosin activation triggers faster myosin cross-bridge cycling with greater force generation during each contraction. They describe the rationale and results of a translational medicine effort to increase dATP levels using a gene therapy strategy that up-regulates ribonucleotide reductase, the rate-limiting enzyme for dATP synthesis, selectively in cardiomyocytes. In small and large animal models of heart failure, a single dose of this gene therapy has led to sustained inotropic effects with no toxicity or safety concerns identified to date. Further animal studies are being conducted with the goal of testing this agent in patients with heart failure.
Collapse
|
17
|
Tervo DGR, Hwang BY, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, Michael S, Kuleshova E, Ojala D, Huang CC, Gerfen CR, Schiller J, Dudman JT, Hantman AW, Looger LL, Schaffer DV, Karpova AY. A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons. Neuron 2016; 92:372-382. [PMID: 27720486 PMCID: PMC5872824 DOI: 10.1016/j.neuron.2016.09.021] [Citation(s) in RCA: 853] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/26/2016] [Accepted: 09/09/2016] [Indexed: 12/25/2022]
Abstract
Efficient retrograde access to projection neurons for the delivery of sensors and effectors constitutes an important and enabling capability for neural circuit dissection. Such an approach would also be useful for gene therapy, including the treatment of neurodegenerative disorders characterized by pathological spread through functionally connected and highly distributed networks. Viral vectors, in particular, are powerful gene delivery vehicles for the nervous system, but all available tools suffer from inefficient retrograde transport or limited clinical potential. To address this need, we applied in vivo directed evolution to engineer potent retrograde functionality into the capsid of adeno-associated virus (AAV), a vector that has shown promise in neuroscience research and the clinic. A newly evolved variant, rAAV2-retro, permits robust retrograde access to projection neurons with efficiency comparable to classical synthetic retrograde tracers and enables sufficient sensor/effector expression for functional circuit interrogation and in vivo genome editing in targeted neuronal populations. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- D Gowanlock R Tervo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Bum-Yeol Hwang
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarada Viswanathan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Thomas Gaj
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Maria Lavzin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Physiology, Technion Medical School, Bat-Galim, Haifa 3525433, Israel
| | - Kimberly D Ritola
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Sarah Lindo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Susan Michael
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Elena Kuleshova
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia
| | - David Ojala
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cheng-Chiu Huang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Charles R Gerfen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Jackie Schiller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Physiology, Technion Medical School, Bat-Galim, Haifa 3525433, Israel
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Adam W Hantman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - David V Schaffer
- Department of Chemical Engineering and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Alla Y Karpova
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
18
|
Abstract
Efficient retrograde access to projection neurons for the delivery of sensors and effectors constitutes an important and enabling capability for neural circuit dissection. Such an approach would also be useful for gene therapy, including the treatment of neurodegenerative disorders characterized by pathological spread through functionally connected and highly distributed networks. Viral vectors, in particular, are powerful gene delivery vehicles for the nervous system, but all available tools suffer from inefficient retrograde transport or limited clinical potential. To address this need, we applied in vivo directed evolution to engineer potent retrograde functionality into the capsid of adeno-associated virus (AAV), a vector that has shown promise in neuroscience research and the clinic. A newly evolved variant, rAAV2-retro, permits robust retrograde access to projection neurons with efficiency comparable to classical synthetic retrograde tracers and enables sufficient sensor/effector expression for functional circuit interrogation and in vivo genome editing in targeted neuronal populations. VIDEO ABSTRACT.
Collapse
|
19
|
Heparan Sulfate Binding Promotes Accumulation of Intravitreally Delivered Adeno-associated Viral Vectors at the Retina for Enhanced Transduction but Weakly Influences Tropism. J Virol 2016; 90:9878-9888. [PMID: 27558418 DOI: 10.1128/jvi.01568-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022] Open
Abstract
Many adeno-associated virus (AAV) serotypes efficiently transduce the retina when delivered to the subretinal space but show limited success when delivered to the vitreous due to the inner limiting membrane (ILM). Subretinal delivery of AAV serotype 2 (AAV2) and its heparan sulfate (HS)-binding-deficient capsid led to similar expression, indicating transduction of the outer retina occurred by HS-independent mechanisms. However, intravitreal delivery of HS-ablated recombinant AAV2 (rAAV2) led to a 300-fold decrease in transduction compared to AAV2. Fluorescence in situ hybridization of AAV transgenes was used to identify differences in retinal trafficking and revealed that HS binding was responsible for AAV2 accumulation at the ILM. This mechanism was tested on human ex vivo retinas and showed similar accumulation with HS-binding AAV2 capsid only. To evaluate if HS binding could be applied to other AAV serotypes to enhance their transduction, AAV1 and AAV8 were modified to bind HS with a single-amino-acid mutation and tested in mice. Both HS-binding mutants of AAV1 and AAV8 had higher intravitreal transduction than their non-HS-binding parent capsid due to increased retinal accumulation. To understand the influence that HS binding has on tropism, chimeric AAV2 capsids with dual-glycan usage were tested intravitreally in mice. Compared to HS binding alone, these chimeric capsids displayed enhanced transduction that was correlated with a change in tropism. Taken together, these data indicate that HS binding serves to sequester AAV capsids from the vitreous to the ILM but does not influence retinal tropism. The enhanced retinal transduction of HS-binding capsids provides a rational design strategy for engineering capsids for intravitreal delivery. IMPORTANCE Adeno-associated virus (AAV) has become the vector of choice for viral gene transfer and has shown great promise in clinical trials. The need for development of an easy, less invasive injection route for ocular gene therapy is met by intravitreal delivery, but delivery of AAV by this route results in poor transduction outcomes. The inner limiting membrane (ILM) creates a barrier separating the vitreous and the retina. Binding of AAV to heparan sulfate proteoglycan (HSPG) at the ILM may allow the virus to traverse this barrier for better retinal transduction. We show that HSPG binding is correlated with greater accumulation and penetration of AAV in the retina. We demonstrated that this accumulation is conserved across mouse and human retinas and that the addition of HSPG binding to other AAV capsids can increase the number of vectors accumulating at the ILM without dictating tropism.
Collapse
|
20
|
Khabou H, Desrosiers M, Winckler C, Fouquet S, Auregan G, Bemelmans AP, Sahel JA, Dalkara D. Insight into the mechanisms of enhanced retinal transduction by the engineered AAV2 capsid variant -7m8. Biotechnol Bioeng 2016; 113:2712-2724. [PMID: 27259396 DOI: 10.1002/bit.26031] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/26/2016] [Accepted: 05/29/2016] [Indexed: 01/20/2023]
Abstract
Recently, we described a modified AAV2 vector-AAV2-7m8-having a capsid-displayed peptide insertion of 10 amino acids with enhanced retinal transduction properties. The insertion of the peptide referred to as 7m8 is responsible for high-level gene delivery into deep layers of the retina when virus is delivered into the eye's vitreous. Here, we further characterize AAV2-7m8 mediated gene delivery to neural tissue and investigate the mechanisms by which the inserted peptide provides better transduction away from the injection site. First, in order to understand if the peptide exerts its effect on its own or in conjunction with the neighboring amino acids, we inserted the 7m8 peptide at equivalent positions on three other AAV capsids, AAV5, AAV8, and AAV9, and evaluated its effect on their infectivity. Intravitreal delivery of these peptide insertion vectors revealed that only AAV9 benefited from 7m8 insertion in the context of the retina. We then investigated AAV2-7m8 and AAV9-7m8 properties in the brain, to better evaluate the spread and efficacy of viral transduction in view of the peptide insertion. While 7m8 insertion led to higher intensity gene expression, the spread of gene expression remained unchanged compared to the parental serotypes. Our results indicate that the 7m8 peptide insertion acts by increasing efficacy of cellular entry, with little effect on the spread of viral particles in neural tissue. The effects of peptide insertion are capsid and tissue dependent, highlighting the importance of the microenvironment in gene delivery using AAV. Biotechnol. Bioeng. 2016;113: 2712-2724. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hanen Khabou
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France
| | - Mélissa Desrosiers
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France
| | - Céline Winckler
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France
| | - Stéphane Fouquet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France
| | - Gwenaëlle Auregan
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), F-92260 Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| | - Alexis-Pierre Bemelmans
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), F-92260 Fontenay-aux-Roses, France.,Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| | - José-Alain Sahel
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC, 28 rue de Charenton, Paris, France
| | - Deniz Dalkara
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris 75012, France.
| |
Collapse
|
21
|
Su W, Kang J, Sopher B, Gillespie J, Aloi MS, Odom GL, Hopkins S, Case A, Wang DB, Chamberlain JS, Garden GA. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia. J Neurochem 2016; 136 Suppl 1:49-62. [PMID: 25708596 PMCID: PMC4547919 DOI: 10.1111/jnc.13081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 12/20/2022]
Abstract
Microglia are a specialized population of myeloid cells that mediate CNS innate immune responses. Efforts to identify the cellular and molecular mechanisms that regulate microglia behaviors have been hampered by the lack of effective tools for manipulating gene expression. Cultured microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation. Recombinant adeno-associated viral (rAAVs) vectors are non-enveloped, single-stranded DNA vectors commonly used to transduce many primary cell types and tissues. In this study, we evaluated the feasibility and efficiency of utilizing rAAV serotype 2 (rAAV2) to modulate gene expression in cultured microglia. rAAV2 yields high transduction and causes minimal toxicity or inflammatory response in both neonatal and adult microglia. To demonstrate that rAAV transduction can induce functional protein expression, we used rAAV2 expressing Cre recombinase to successfully excise a LoxP-flanked miR155 gene in cultured microglia. We further evaluated rAAV serotypes 5, 6, 8, and 9, and observed that all efficiently transduced cultured microglia to varying degrees of success and caused little or no alteration in inflammatory gene expression. These results provide strong encouragement for the application of rAAV-mediated gene expression in microglia for mechanistic and therapeutic purposes. Neonatal microglia are functionally distinct from adult microglia, although the majority of in vitro studies utilize rodent neonatal microglia cultures because of difficulties of culturing adult cells. In addition, cultured microglia are refractory to most methods for modifying gene expression. Here, we developed a novel protocol for culturing adult microglia and evaluated the feasibility and efficiency of utilizing Recombinant Adeno-Associated Virus (rAAV) to modulate gene expression in cultured microglia.
Collapse
Affiliation(s)
- Wei Su
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - John Kang
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Bryce Sopher
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - James Gillespie
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Macarena S. Aloi
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Guy L. Odom
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Stephanie Hopkins
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Amanda Case
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - David B. Wang
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | | | - Gwenn A. Garden
- Department of Neurology, University of Washington, Seattle, Washington, USA
- Department of Pathology, University of Washington, Seattle, Washington, USA
- Center on Human Development and Disability
| |
Collapse
|
22
|
Unique glycan signatures regulate adeno-associated virus tropism in the developing brain. J Virol 2015; 89:3976-87. [PMID: 25631075 DOI: 10.1128/jvi.02951-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Adeno-associated viruses (AAV) are thought to spread through the central nervous system (CNS) by exploiting cerebrospinal fluid (CSF) flux and hijacking axonal transport pathways. The role of host receptors that mediate these processes is not well understood. In the current study, we utilized AAV serotype 4 (AAV4) as a model to evaluate whether ubiquitously expressed 2,3-linked sialic acid and the developmentally regulated marker 2,8-linked polysialic acid (PSA) regulate viral transport and tropism in the neonatal brain. Modulation of the levels of SA and PSA in cell culture studies using specific neuraminidases revealed possibly opposing roles of the two glycans in AAV4 transduction. Interestingly, upon intracranial injection into lateral ventricles of the neonatal mouse brain, a low-affinity AAV4 mutant (AAV4.18) displayed a striking shift in cellular tropism from 2,3-linked SA(+) ependymal lining to 2,8-linked PSA(+) migrating progenitors in the rostral migratory stream and olfactory bulb. In addition, this gain-of-function phenotype correlated with robust CNS spread of AAV4.18 through paravascular transport pathways. Consistent with these observations, altering glycan dynamics within the brain by coadministering SA- and PSA-specific neuraminidases resulted in striking changes to the cellular tropisms and transduction efficiencies of both parental and mutant vectors. We postulate that glycan signatures associated with host development can be exploited to redirect novel AAV vectors to specific cell types in the brain. IMPORTANCE Viruses invade the CNS through various mechanisms. In the current study, we utilized AAV as a model to study the dynamics of virus-carbohydrate interactions in the developing brain and their impact on viral tropism. Our findings suggest that carbohydrate content can be exploited to regulate viral transport and tropism in the brain.
Collapse
|
23
|
Boisgérault F, Mingozzi F. The Skeletal Muscle Environment and Its Role in Immunity and Tolerance to AAV Vector-Mediated Gene Transfer. Curr Gene Ther 2015; 15:381-94. [PMID: 26122097 PMCID: PMC4515578 DOI: 10.2174/1566523215666150630121750] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 02/08/2023]
Abstract
Since the early days of gene therapy, muscle has been one the most studied tissue targets for the correction of enzyme deficiencies and myopathies. Several preclinical and clinical studies have been conducted using adeno-associated virus (AAV) vectors. Exciting progress has been made in the gene delivery technologies, from the identification of novel AAV serotypes to the development of novel vector delivery techniques. In parallel, significant knowledge has been generated on the host immune system and its interaction with both the vector and the transgene at the muscle level. In particular, the role of underlying muscle inflammation, characteristic of several diseases affecting the muscle, has been defined in terms of its potential detrimental impact on gene transfer with AAV vectors. At the same time, feedback immunomodulatory mechanisms peculiar of skeletal muscle involving resident regulatory T cells have been identified, which seem to play an important role in maintaining, at least to some extent, muscle homeostasis during inflammation and regenerative processes. Devising strategies to tip this balance towards unresponsiveness may represent an avenue to improve the safety and efficacy of muscle gene transfer with AAV vectors.
Collapse
Affiliation(s)
| | - Federico Mingozzi
- Genethon, Evry, France
- University Pierre and Marie Curie, Paris, France
| |
Collapse
|
24
|
Murlidharan G, Samulski RJ, Asokan A. Biology of adeno-associated viral vectors in the central nervous system. Front Mol Neurosci 2014; 7:76. [PMID: 25285067 PMCID: PMC4168676 DOI: 10.3389/fnmol.2014.00076] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/04/2014] [Indexed: 01/11/2023] Open
Abstract
Gene therapy is a promising approach for treating a spectrum of neurological and neurodegenerative disorders by delivering corrective genes to the central nervous system (CNS). In particular, adeno-associated viruses (AAVs) have emerged as promising tools for clinical gene transfer in a broad range of genetic disorders with neurological manifestations. In the current review, we have attempted to bridge our understanding of the biology of different AAV strains with their transduction profiles, cellular tropisms, and transport mechanisms within the CNS. Continued efforts to dissect AAV-host interactions within the brain are likely to aid in the development of improved vectors for CNS-directed gene transfer applications in the clinic.
Collapse
Affiliation(s)
- Giridhar Murlidharan
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA ; Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Richard J Samulski
- Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA ; Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill NC, USA
| | - Aravind Asokan
- Gene Therapy Center, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA ; Department of Genetics and Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| |
Collapse
|
25
|
Arnett AL, Konieczny P, Ramos JN, Hall J, Odom G, Yablonka-Reuveni Z, Chamberlain JR, Chamberlain JS. Adeno-associated viral (AAV) vectors do not efficiently target muscle satellite cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:S2329-0501(16)30105-X. [PMID: 25580445 PMCID: PMC4288464 DOI: 10.1038/mtm.2014.38] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Adeno-associated viral (AAV) vectors are becoming an important tool for gene therapy of numerous genetic and other disorders. Several recombinant AAV vectors (rAAV) have the ability to transduce striated muscles in a variety of animals following intramuscular and intravascular administration, and have attracted widespread interest for therapy of muscle disorders such as the muscular dystrophies. However, most studies have focused on the ability to transduce mature muscle cells, and have not examined the ability to target myogenic stem cells such as skeletal muscle satellite cells. Here we examined the relative ability of rAAV vectors derived from AAV6 to target myoblasts, myocytes, and myotubes in culture and satellite cells and myofibers in vivo. AAV vectors are able to transduce proliferating myoblasts in culture, albeit with reduced efficiency relative to postmitotic myocytes and myotubes. In contrast, quiescent satellite cells are refractory to transduction in adult mice. These results suggest that while muscle disorders characterized by myofiber regeneration can be slowed or halted by AAV transduction, little if any vector transduction can be obtained in myogenic stems cells that might other wise support ongoing muscle regeneration.
Collapse
Affiliation(s)
- Andrea Lh Arnett
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, USA ; Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA ; Molecular and Cellular Biology Program, University of Washington School of Medicine, Seattle, WA, USA
| | - Patryk Konieczny
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Julian N Ramos
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA ; Molecular and Cellular Biology Program, University of Washington School of Medicine, Seattle, WA, USA
| | - John Hall
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Guy Odom
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, USA
| | - Joel R Chamberlain
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA ; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
26
|
C-reactive protein (CRP) is essential for efficient systemic transduction of recombinant adeno-associated virus vector 1 (rAAV-1) and rAAV-6 in mice. J Virol 2013; 87:10784-91. [PMID: 23903832 DOI: 10.1128/jvi.01813-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The clinical relevance of gene therapy using the recombinant adeno-associated virus (rAAV) vectors often requires widespread distribution of the vector, and in this case, systemic delivery is the optimal route of administration. Humoral blood factors, such as antibodies or complement, are the first barriers met by the vectors administered systemically. We have found that other blood proteins, galectin 3 binding protein (G3BP) and C-reactive protein (CRP), can interact with different AAV serotypes in a species-specific manner. While interactions of rAAV vectors with G3BP, antibodies, or complement lead to a decrease in vector efficacy, systemic transduction of the CRP-deficient mouse and its respective control clearly established that binding to mouse CRP (mCRP) boosts rAAV vector 1 (rAAV-1) and rAAV-6 transduction efficiency in skeletal muscles over 10 times. Notably, the high efficacy of rAAV-6 in CRP-deficient mice can be restored by reconstitution of the CRP-deficient mouse with mCRP. Human CRP (hCRP) does not interact with either rAAV-1 or rAAV-6, and, consequently, the high efficiency of mCRP-mediated muscle transduction by these serotypes in mice cannot be translated to humans. No interaction of mCRP or hCRP was observed with rAAV-8 and rAAV-9. We show, for the first time, that serum components can significantly enhance rAAV-mediated tissue transduction in a serotype- and species-specific manner. Bioprocessing in body fluids should be considered when transfer of a preclinical proof of concept for AAV-based gene therapy to humans is planned.
Collapse
|
27
|
Konieczny P, Swiderski K, Chamberlain JS. Gene and cell-mediated therapies for muscular dystrophy. Muscle Nerve 2013; 47:649-63. [PMID: 23553671 DOI: 10.1002/mus.23738] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2012] [Indexed: 12/29/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating muscle disorder that affects 1 in 3,500 boys. Despite years of research and considerable progress in understanding the molecular mechanism of the disease and advancement of therapeutic approaches, there is no cure for DMD. The current treatment options are limited to physiotherapy and corticosteroids, and although they provide a substantial improvement in affected children, they only slow the course of the disorder. On a more optimistic note, more recent approaches either significantly alleviate or eliminate muscular dystrophy in murine and canine models of DMD and importantly, many of them are being tested in early phase human clinical trials. This review summarizes advancements that have been made in viral and nonviral gene therapy as well as stem cell therapy for DMD with a focus on the replacement and repair of the affected dystrophin gene.
Collapse
Affiliation(s)
- Patryk Konieczny
- Department of Neurology, The University of Washington School of Medicine, Seattle, Washington 98105, USA
| | | | | |
Collapse
|