1
|
Brown SJ, Yáñez-Muñoz RJ, Fuller HR. Gene therapy for spinal muscular atrophy: perspectives on the possibility of optimizing SMN1 delivery to correct all neurological and systemic perturbations. Neural Regen Res 2025; 20:2011-2012. [PMID: 39254562 DOI: 10.4103/nrr.nrr-d-24-00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/26/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Sharon J Brown
- School of Pharmacy and Bioengineering, Keele University, Keele, UK (Brown SJ, Fuller HR)
- Wolfson Center for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry, UK (Brown SJ, Fuller HR)
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Center of Gene and Cell Therapy, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UK (Yáñez-Muñoz RJ)
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Keele, UK (Brown SJ, Fuller HR)
- Wolfson Center for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry, UK (Brown SJ, Fuller HR)
| |
Collapse
|
2
|
Vale M, Prochazka J, Sedlacek R. Towards a Cure for Diamond-Blackfan Anemia: Views on Gene Therapy. Cells 2024; 13:920. [PMID: 38891052 PMCID: PMC11172175 DOI: 10.3390/cells13110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Diamond-Blackfan anemia (DBA) is a rare genetic disorder affecting the bone marrow's ability to produce red blood cells, leading to severe anemia and various physical abnormalities. Approximately 75% of DBA cases involve heterozygous mutations in ribosomal protein (RP) genes, classifying it as a ribosomopathy, with RPS19 being the most frequently mutated gene. Non-RP mutations, such as in GATA1, have also been identified. Current treatments include glucocorticosteroids, blood transfusions, and hematopoietic stem cell transplantation (HSCT), with HSCT being the only curative option, albeit with challenges like donor availability and immunological complications. Gene therapy, particularly using lentiviral vectors and CRISPR/Cas9 technology, emerges as a promising alternative. This review explores the potential of gene therapy, focusing on lentiviral vectors and CRISPR/Cas9 technology in combination with non-integrating lentiviral vectors, as a curative solution for DBA. It highlights the transformative advancements in the treatment landscape of DBA, offering hope for individuals affected by this condition.
Collapse
Affiliation(s)
- Matilde Vale
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i, 252 50 Vestec, Czech Republic; (M.V.); (J.P.)
| | - Jan Prochazka
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i, 252 50 Vestec, Czech Republic; (M.V.); (J.P.)
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i, 252 50 Vestec, Czech Republic
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i, 252 50 Vestec, Czech Republic; (M.V.); (J.P.)
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i, 252 50 Vestec, Czech Republic
| |
Collapse
|
3
|
Nafchi NAM, Chilcott EM, Brown S, Fuller HR, Bowerman M, Yáñez-Muñoz RJ. Enhanced expression of the human Survival motor neuron 1 gene from a codon-optimised cDNA transgene in vitro and in vivo. Gene Ther 2023; 30:812-825. [PMID: 37322133 DOI: 10.1038/s41434-023-00406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease particularly characterised by degeneration of ventral motor neurons. Survival motor neuron (SMN) 1 gene mutations cause SMA, and gene addition strategies to replace the faulty SMN1 copy are a therapeutic option. We have developed a novel, codon-optimised hSMN1 transgene and produced integration-proficient and integration-deficient lentiviral vectors with cytomegalovirus (CMV), human synapsin (hSYN) or human phosphoglycerate kinase (hPGK) promoters to determine the optimal expression cassette configuration. Integrating, CMV-driven and codon-optimised hSMN1 lentiviral vectors resulted in the highest production of functional SMN protein in vitro. Integration-deficient lentiviral vectors also led to significant expression of the optimised transgene and are expected to be safer than integrating vectors. Lentiviral delivery in culture led to activation of the DNA damage response, in particular elevating levels of phosphorylated ataxia telangiectasia mutated (pATM) and γH2AX, but the optimised hSMN1 transgene showed some protective effects. Neonatal delivery of adeno-associated viral vector (AAV9) vector encoding the optimised transgene to the Smn2B/- mouse model of SMA resulted in a significant increase of SMN protein levels in liver and spinal cord. This work shows the potential of a novel codon-optimised hSMN1 transgene as a therapeutic strategy for SMA.
Collapse
Affiliation(s)
- Neda A M Nafchi
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Ellie M Chilcott
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Sharon Brown
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK
| | - Melissa Bowerman
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK
- School of Medicine, Keele University, Staffordshire, ST5 5BG, UK
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, UK.
| |
Collapse
|
4
|
Gurumoorthy N, Nordin F, Tye GJ, Wan Kamarul Zaman WS, Ng MH. Non-Integrating Lentiviral Vectors in Clinical Applications: A Glance Through. Biomedicines 2022; 10:biomedicines10010107. [PMID: 35052787 PMCID: PMC8773317 DOI: 10.3390/biomedicines10010107] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Lentiviral vectors (LVs) play an important role in gene therapy and have proven successful in clinical trials. LVs are capable of integrating specific genetic materials into the target cells and allow for long-term expression of the cDNA of interest. The use of non-integrating LVs (NILVs) reduces insertional mutagenesis and the risk of malignant cell transformation over integrating lentiviral vectors. NILVs enable transient expression or sustained episomal expression, especially in non-dividing cells. Important modifications have been made to the basic human immunodeficiency virus (HIV) structures to improve the safety and efficacy of LVs. NILV-aided transient expression has led to more pre-clinical studies on primary immunodeficiencies, cytotoxic cancer therapies, and hemoglobinopathies. Recently, the third generation of self-inactivating LVs was applied in clinical trials for recombinant protein production, vaccines, gene therapy, cell imaging, and induced pluripotent stem cell (iPSC) generation. This review discusses the basic lentiviral biology and the four systems used for generating NILV designs. Mutations or modifications in LVs and their safety are addressed with reference to pre-clinical studies. The detailed application of NILVs in promising pre-clinical studies is also discussed.
Collapse
Affiliation(s)
- Narmatha Gurumoorthy
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000 Kuala Lumpur, Malaysia; (N.G.); (M.H.N.)
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000 Kuala Lumpur, Malaysia; (N.G.); (M.H.N.)
- Correspondence:
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), 11800 Gelugor, Malaysia;
| | | | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Universiti Kebangsaan Malaysia Medical Centre (UKMMC), 56000 Kuala Lumpur, Malaysia; (N.G.); (M.H.N.)
| |
Collapse
|
5
|
NeuroD1 induces microglial apoptosis and cannot induce microglia-to-neuron cross-lineage reprogramming. Neuron 2021; 109:4094-4108.e5. [PMID: 34875233 DOI: 10.1016/j.neuron.2021.11.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/28/2021] [Accepted: 09/24/2021] [Indexed: 11/21/2022]
Abstract
The regenerative capacity of neurons is limited in the central nervous system (CNS), with irreversible neuronal loss upon insult. In contrast, microglia exhibit extraordinary capacity for repopulation. Matsuda et al. (2019) recently reported NeuroD1-induced microglia-to-neuron conversion, aiming to provide an "unlimited" source to regenerate neurons. However, the extent to which NeuroD1 can exert cross-lineage reprogramming of microglia (myeloid lineage) to neurons (neuroectodermal lineage) is unclear. In this study, we unexpectedly found that NeuroD1 cannot convert microglia to neurons in mice. Instead, NeuroD1 expression induces microglial cell death. Moreover, lineage tracing reveals non-specific leakage of similar lentiviruses as previously used for microglia-to-neuron conversion, which confounds the microglia-to-neuron observation. In summary, we demonstrated that NeuroD1 cannot induce microglia-to-neuron cross-lineage reprogramming. We here propose rigid principles for verifying glia-to-neuron conversion. This Matters Arising paper is in response to Matsuda et al. (2019), published in Neuron.
Collapse
|
6
|
Gushchina S, Yip PK, Parry GA, Sivakumar H, Li J, Liu M, Bo X. Alleviation of neuropathic pain by over-expressing a soluble colony-stimulating factor 1 receptor to suppress microgliosis and macrophage accumulation. Glia 2021; 69:2963-2980. [PMID: 34472629 DOI: 10.1002/glia.24085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/06/2022]
Abstract
Microglial proliferation and activation and macrophage accumulation are implicated in neuropathic pain development. In this study, we aim to suppress microgliosis and macrophage accumulation by over-expressing a non-functional soluble colony stimulating factor-1 receptor (sCSF1R) using an adeno-associated virus 9 vector (AAV9). AAV9/sCSF1R and the control vector AAV9/GFP were intrathecally administered into the lumbar spine of adult C57BL/6 mice. Two weeks later, these mice underwent partial sciatic nerve ligation to induce neuropathic pain. GFP and sCSF1R were highly expressed in lumbar dorsal root ganglia (DRG) and spinal cord of AAV9-injected mice. A significant increase in microglia densities in the dorsal and ventral horns of lumbar spinal cords and macrophage densities in DRG and sciatic nerves were observed in the mice with either ligation alone or pre-treated with AAV9/GFP. In nerve-ligated mice pre-treated with AAV9/sCSF1R the microglia densities in the dorsal and ventral horns and macrophage densities in DRG and sciatic nerves were significantly lower compared to nerve-ligated mice pre-treated with AAV9/GFP. Behavioral tests showed that nerve-ligated mice pre-treated with AAV9/sCSF1R had a significantly higher paw withdrawal threshold, indicating the alleviation of neuropathic pain. The results implicate that viral vector-mediated expression of sCSF1R may represent a novel strategy in the alleviation of neuropathic pain.
Collapse
Affiliation(s)
- Svetlana Gushchina
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Cytology, Histology and Embryology, Ogarev Mordovia State University, Saransk, Russia
| | - Ping K Yip
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Glesni A Parry
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Haripriya Sivakumar
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jie Li
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Min Liu
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Xuenong Bo
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
7
|
Cortijo-Gutiérrez M, Sánchez-Hernández S, Tristán-Manzano M, Maldonado-Pérez N, Lopez-Onieva L, Real PJ, Herrera C, Marchal JA, Martin F, Benabdellah K. Improved Functionality of Integration-Deficient Lentiviral Vectors (IDLVs) by the Inclusion of IS 2 Protein Docks. Pharmaceutics 2021; 13:pharmaceutics13081217. [PMID: 34452178 PMCID: PMC8401568 DOI: 10.3390/pharmaceutics13081217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Integration-deficient lentiviral vectors (IDLVs) have recently generated increasing interest, not only as a tool for transient gene delivery, but also as a technique for detecting off-target cleavage in gene-editing methodologies which rely on customized endonucleases (ENs). Despite their broad potential applications, the efficacy of IDLVs has historically been limited by low transgene expression and by the reduced sensitivity to detect low-frequency off-target events. We have previously reported that the incorporation of the chimeric sequence element IS2 into the long terminal repeat (LTR) of IDLVs increases gene expression levels, while also reducing the episome yield inside transduced cells. Our study demonstrates that the effectiveness of IDLVs relies on the balance between two parameters which can be modulated by the inclusion of IS2 sequences. In the present study, we explore new IDLV configurations harboring several elements based on IS2 modifications engineered to mediate more efficient transgene expression without affecting the targeted cell load. Of all the insulators and configurations analysed, the insertion of the IS2 into the 3′LTR produced the best results. After demonstrating a DAPI-low nuclear gene repositioning of IS2-containing episomes, we determined whether, in addition to a positive effect on transcription, the IS2 could improve the capture of IDLVs on double strand breaks (DSBs). Thus, DSBs were randomly generated, using the etoposide or locus-specific CRISPR-Cas9. Our results show that the IS2 element improved the efficacy of IDLV DSB detection. Altogether, our data indicate that the insertion of IS2 into the LTR of IDLVs improved, not only their transgene expression levels, but also their ability to be inserted into existing DSBs. This could have significant implications for the development of an unbiased detection tool for off-target cleavage sites from different specific nucleases.
Collapse
Affiliation(s)
- Marina Cortijo-Gutiérrez
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - Sabina Sánchez-Hernández
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - María Tristán-Manzano
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - Noelia Maldonado-Pérez
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - Lourdes Lopez-Onieva
- GENYO, Centre for Genomics and Oncological Research, Molecular Oncology Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (L.L.-O.); (P.J.R.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Pedro J. Real
- GENYO, Centre for Genomics and Oncological Research, Molecular Oncology Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (L.L.-O.); (P.J.R.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
- Personalized Oncology Group, Bio-Health Research Institute (ibs Granada), 18016 Granada, Spain
| | - Concha Herrera
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain;
- Department of Haematology, Reina Sofía University Hospital, 14004 Cordoba, Spain
| | - Juan Antonio Marchal
- Biomedical Research Institute (ibs. Granada), 18012 Granada, Spain;
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Excellence Research Unit: Modeling Nature (MNat), University of Granada, 18016 Granada, Spain
| | - Francisco Martin
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - Karim Benabdellah
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
- Correspondence: ; Tel.: +34-958-715-500
| |
Collapse
|
8
|
Luis A. The Old and the New: Prospects for Non-Integrating Lentiviral Vector Technology. Viruses 2020; 12:v12101103. [PMID: 33003492 PMCID: PMC7600637 DOI: 10.3390/v12101103] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Lentiviral vectors have been developed and used in multiple gene and cell therapy applications. One of their main advantages over other vectors is the ability to integrate the genetic material into the genome of the host. However, this can also be a disadvantage as it may lead to insertional mutagenesis. To address this, non-integrating lentiviral vectors (NILVs) were developed. To generate NILVs, it is possible to introduce mutations in the viral enzyme integrase and/or mutations on the viral DNA recognised by integrase (the attachment sites). NILVs are able to stably express transgenes from episomal DNA in non-dividing cells or transiently if the target cells divide. It has been shown that these vectors are able to transduce multiple cell types and tissues. These characteristics make NILVs ideal vectors to use in vaccination and immunotherapies, among other applications. They also open future prospects for NILVs as tools for the delivery of CRISPR/Cas9 components, a recent revolutionary technology now widely used for gene editing and repair.
Collapse
Affiliation(s)
- Apolonia Luis
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
9
|
Uchitel J, Kantor B, Smith EC, Mikati MA. Viral-Mediated Gene Replacement Therapy in the Developing Central Nervous System: Current Status and Future Directions. Pediatr Neurol 2020; 110:5-19. [PMID: 32684374 DOI: 10.1016/j.pediatrneurol.2020.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
The past few years have witnessed rapid developments in viral-mediated gene replacement therapy for pediatric central nervous system neurogenetic disorders. Here, we provide pediatric neurologists with an up-to-date, comprehensive overview of these developments and note emerging trends for future research. This review presents the different types of viral vectors used in viral-mediated gene replacement therapy; the fundamental properties of viral-mediated gene replacement therapy; the challenges associated with the use of this therapy in the central nervous system; the pathway for therapy development, from translational basic science studies to clinical trials; and an overview of the therapies that have reached clinical trials in patients. Current viral platforms under investigation include adenovirus vectors, adeno-associated viral vectors, lentiviral/retroviral vectors, and herpes simplex virus type 1 vectors. This review also presents an in-depth analysis of numerous studies that investigated these viral platforms in cultured cells and in transgenic animal models for pediatric neurogenetic disorders. Viral vectors have been applied to clinical trials for many different pediatric neurogenetic disorders, including Canavan disease, metachromatic leukodystrophy, neuronal ceroid lipofuscinosis, mucopolysaccharidosis III, spinal muscular atrophy, and aromatic l-amino acid decarboxylase deficiency. Of these diseases, only spinal muscular atrophy has a viral-mediated gene replacement therapy approved for marketing. Despite significant progress in therapy development, many challenges remain. Surmounting these challenges is critical to advancing the current status of viral-mediated gene replacement therapy for pediatric central nervous system neurogenetic disorders.
Collapse
Affiliation(s)
- Julie Uchitel
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina
| | - Boris Kantor
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Edward C Smith
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina; Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
10
|
Blanco-Ocampo D, Cawen FA, Álamo-Pindado LA, Negro-Demontel ML, Peluffo H. Safe and neuroprotective vectors for long-term traumatic brain injury gene therapy. Gene Ther 2019; 27:96-103. [PMID: 30926962 DOI: 10.1038/s41434-019-0073-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/08/2019] [Accepted: 03/20/2019] [Indexed: 12/23/2022]
Abstract
Traumatic brain injury (TBI) is a complex and progressive brain injury with no approved treatments that needs both short- and long-term therapeutic strategies to cope with the variety of physiopathological mechanisms involved. In particular, neuroinflammation is a key process modulating TBI outcome, and the potentiation of these mechanisms by pro-inflammatory gene therapy vectors could contribute to the injury progression. Here, we evaluate in the controlled cortical impact model of TBI, the safety of integrative-deficient lentiviral vectors (IDLVs) or the non-viral HNRK recombinant modular protein/DNA nanovector. These two promising vectors display different tropisms, transduction efficiencies, short- or long-term transduction or inflammatory activation profile. We show that the brain intraparenchymal injection of these vectors overexpressing green fluorescent protein after a CCI is not neurotoxic, and interestingly, can decrease the short-term sensory neurological deficits, and diminish the brain tissue loss at 90 days post lesion (dpl). Moreover, only IDLVs were able to mitigate the memory deficits elicited by a CCI. These vectors did not alter the microglial or astroglial reactivity at 90 dpl, suggesting that they do not potentiate the on-going neuroinflammation. Taken together, these data suggest that both types of vectors could be interesting tools for the design of gene therapy strategies targeting immediate or long-term neuropathological mechanisms of TBI.
Collapse
Affiliation(s)
- Daniela Blanco-Ocampo
- Department of Histology and Embryology, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay.,Department of Physiopathology, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay
| | - Fabio Andrés Cawen
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Luis Angel Álamo-Pindado
- Department of Histology and Embryology, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay.,Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María Luciana Negro-Demontel
- Department of Histology and Embryology, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay.,Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Hugo Peluffo
- Department of Histology and Embryology, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay. .,Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
11
|
Anderson HE, Weir RFF. On the development of optical peripheral nerve interfaces. Neural Regen Res 2019; 14:425-436. [PMID: 30539808 PMCID: PMC6334609 DOI: 10.4103/1673-5374.245461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/19/2018] [Indexed: 11/04/2022] Open
Abstract
Limb loss and spinal cord injury are two debilitating conditions that continue to grow in prevalence. Prosthetic limbs and limb reanimation present two ways of providing affected individuals with means to interact in the world. These techniques are both dependent on a robust interface with the peripheral nerve. Current methods for interfacing with the peripheral nerve tend to suffer from low specificity, high latency and insufficient robustness for a chronic implant. An optical peripheral nerve interface may solve some of these problems by decreasing invasiveness and providing single axon specificity. In order to implement such an interface three elements are required: (1) a transducer capable of translating light into a neural stimulus or translating neural activity into changes in fluorescence, (2) a means for delivering said transducer and (3) a microscope for providing the stimulus light and detecting the fluorescence change. There are continued improvements in both genetically encoded calcium and voltage indicators as well as new optogenetic actuators for stimulation. Similarly, improvements in specificity of viral vectors continue to improve expression in the axons of the peripheral nerve. Our work has recently shown that it is possible to virally transduce axons of the peripheral nerve for recording from small fibers. The improvements of these components make an optical peripheral nerve interface a rapidly approaching alternative to current methods.
Collapse
Affiliation(s)
- Hans E. Anderson
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, USA
| | - Richard F. ff. Weir
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
12
|
Gushchina S, Pryce G, Yip PK, Wu D, Pallier P, Giovannoni G, Baker D, Bo X. Increased expression of colony-stimulating factor-1 in mouse spinal cord with experimental autoimmune encephalomyelitis correlates with microglial activation and neuronal loss. Glia 2018; 66:2108-2125. [PMID: 30144320 DOI: 10.1002/glia.23464] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/24/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022]
Abstract
Microglia contribute to pathophysiology at all stages of multiple sclerosis. Colony-stimulating factor-1 (CSF1) is crucial for microglial proliferation and activation. In this study we measured the CSF1 levels and studied its cellular expression in the mouse spinal cords with experimental autoimmune encephalomyelitis (EAE) to explore the potential contribution of CSF1 in neuronal death. ELISA data showed that CSF1 levels were significantly higher in the spinal cords with acute and chronic EAE than those of normal and adjuvant-injected mice. Immunohistochemical studies demonstrated that CSF1 was expressed in astrocytes and neurons in normal mouse spinal cord. In acute EAE, CSF1 expression was significantly increased, especially in astrocytes in peripheral white matter and large motoneurons. High density of activated microglia was observed in the gray matter where motoneurons expressed high-level CSF1 in acute EAE. Significant large motoneuron loss was seen in chronic EAE and the remaining motoneurons with high-level CSF1 were enwrapped by microglia. Viral vector mediated over-expression of CSF1 in spinal neurons induced profound proliferation and activation of microglia at the injection site and microglia enwrapped CSF1-transduced neurons and their neurites. Significant loss of large CSF1-transduced neurons was seen at 2 and 3 weeks post-viral injection. Demyelination in the CSF1-transduced areas was also significant. These results implicate that CSF1 upregulation in CNS may play an important role in the proliferation and activation of microglia in EAE, contributing to neuroinflammation and neurodegeneration. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Svetlana Gushchina
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom.,Department of Cytology, Histology and Embryology, Ogarev Mordovia State University, Saransk, Republic of Mordovia, 430005, Russia
| | - Gareth Pryce
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom
| | - Ping K Yip
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom
| | - Dongsheng Wu
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Patrick Pallier
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom
| | - Gavin Giovannoni
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom
| | - David Baker
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom
| | - Xuenong Bo
- Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, United Kingdom
| |
Collapse
|
13
|
Darbey A, Smith LB. Deliverable transgenics & gene therapy possibilities for the testes. Mol Cell Endocrinol 2018; 468:81-94. [PMID: 29191697 DOI: 10.1016/j.mce.2017.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 11/30/2022]
Abstract
Male infertility and hypogonadism are clinically prevalent conditions with a high socioeconomic burden and are both linked to an increased risk in cardiovascular-metabolic diseases and earlier mortality. Therefore, there is an urgent need to better understand the causes and develop new treatments for these conditions that affect millions of men. The accelerating advancement in gene editing and delivery technologies promises improvements in both diagnosis as well as affording the opportunity to develop bespoke treatment options which would both prove beneficial for the millions of individuals afflicted with these reproductive disorders. In this review, we summarise the systems developed and utilised for the delivery of gene therapy and discuss how each of these systems could be applied for the development of a gene therapy system in the testis and how they could be of use for the future diagnosis and repair of common male reproductive disorders.
Collapse
Affiliation(s)
- Annalucia Darbey
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
14
|
Lu-Nguyen NB, Broadstock M, Yáñez-Muñoz RJ. Intrastriatal Delivery of Integration-Deficient Lentiviral Vectors in a Rat Model of Parkinson's Disease. Methods Mol Biol 2018; 1448:175-84. [PMID: 27317181 DOI: 10.1007/978-1-4939-3753-0_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Standard integration-proficient lentiviral vectors (IPLVs) are effective at much lower doses than other vector systems and have shown promise in several gene therapy approaches. Their main drawback is the potential risk of insertional mutagenesis. Novel biosafety-enhanced integration-deficient lentiviral vectors (IDLVs) offer a significant improvement and comparable transduction efficacy to their integrating counterparts in some central nervous system applications. We describe here methods for (1) production of IDLVs (and IPLVs), (2) IDLV/IPLV delivery into the striatum of a rat model of Parkinson's disease, and (3) postmortem brain processing.
Collapse
Affiliation(s)
- Ngoc B Lu-Nguyen
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | - Martin Broadstock
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK.,Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Rafael J Yáñez-Muñoz
- School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK.
| |
Collapse
|
15
|
Ahmed SG, Waddington SN, Boza-Morán MG, Yáñez-Muñoz RJ. High-efficiency transduction of spinal cord motor neurons by intrauterine delivery of integration-deficient lentiviral vectors. J Control Release 2017; 273:99-107. [PMID: 29289570 PMCID: PMC5845930 DOI: 10.1016/j.jconrel.2017.12.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/24/2017] [Accepted: 12/27/2017] [Indexed: 12/21/2022]
Abstract
Integration-deficient lentiviral vectors (IDLVs) are promising gene delivery tools that retain the high transduction efficiency of standard lentiviral vectors, yet fail to integrate as proviruses and are instead converted into episomal circles. These episomes are metabolically stable and support long-term expression of transgenes in non-dividing cells, exhibiting a decreased risk of insertional mutagenesis. We have embarked on an extensive study to compare the transduction efficiency of IDLVs pseudotyped with different envelopes (vesicular stomatitis, Rabies, Mokola and Ross River viral envelopes) and self-complementary adeno-associated viral vectors, serotype-9 (scAAV-9) in spinal cord tissues after intraspinal injection of mouse embryos (E16). Our results indicate that IDLVs can transduce motor neurons (MNs) at extremely high efficiency regardless of the envelope pseudotype while scAAV9 mediates gene delivery to ~ 40% of spinal cord motor neurons, with other non-neuronal cells also transduced. Long-term expression studies revealed stable gene expression at 7 months post-injection. Taken together, the results of this study indicate that IDLVs may be efficient tools for in utero cord transduction in therapeutic strategies such as for treatment of inherited early childhood neurodegenerative diseases.
Collapse
Affiliation(s)
- Sherif G Ahmed
- AGCTlab.org, Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Egypt
| | - Simon N Waddington
- The Institute for Women's Health, University College London, London, UK; MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maria Gabriela Boza-Morán
- AGCTlab.org, Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK.
| |
Collapse
|
16
|
Athanasopoulos T, Munye MM, Yáñez-Muñoz RJ. Nonintegrating Gene Therapy Vectors. Hematol Oncol Clin North Am 2017; 31:753-770. [DOI: 10.1016/j.hoc.2017.06.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Chang MF, Hsieh JH, Chiang H, Kan HW, Huang CM, Chellis L, Lin BS, Miaw SC, Pan CL, Chao CC, Hsieh ST. Effective gene expression in the rat dorsal root ganglia with a non-viral vector delivered via spinal nerve injection. Sci Rep 2016; 6:35612. [PMID: 27748450 PMCID: PMC5066268 DOI: 10.1038/srep35612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/04/2016] [Indexed: 12/13/2022] Open
Abstract
Delivering gene constructs into the dorsal root ganglia (DRG) is a powerful but challenging therapeutic strategy for sensory disorders affecting the DRG and their peripheral processes. The current delivery methods of direct intra-DRG injection and intrathecal injection have several disadvantages, including potential injury to DRG neurons and low transfection efficiency, respectively. This study aimed to develop a spinal nerve injection strategy to deliver polyethylenimine mixed with plasmid (PEI/DNA polyplexes) containing green fluorescent protein (GFP). Using this spinal nerve injection approach, PEI/DNA polyplexes were delivered to DRG neurons without nerve injury. Within one week of the delivery, GFP expression was detected in 82.8% ± 1.70% of DRG neurons, comparable to the levels obtained by intra-DRG injection (81.3% ± 5.1%, p = 0.82) but much higher than those obtained by intrathecal injection. The degree of GFP expression by neurofilament(+) and peripherin(+) DRG neurons was similar. The safety of this approach was documented by the absence of injury marker expression, including activation transcription factor 3 and ionized calcium binding adaptor molecule 1 for neurons and glia, respectively, as well as the absence of behavioral changes. These results demonstrated the efficacy and safety of delivering PEI/DNA polyplexes to DRG neurons via spinal nerve injection.
Collapse
Affiliation(s)
- Ming-Fong Chang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Jung-Hsien Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Departments of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hao Chiang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Hung-Wei Kan
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Cho-Min Huang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Luke Chellis
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Bo-Shiou Lin
- Department of Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Shi-Chuen Miaw
- Department of Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chun-Liang Pan
- Department of Graduate Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 7 Chung-Shan South Road, Taipei, 10002, Taiwan
| | - Chi-Chao Chao
- Departments of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Graduate Institute of Brain and Mind Science, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Departments of Clinical Center for Neuroscience and Behavior, National Taiwan University Hospital, Taipei, Taiwan
- Department of Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| |
Collapse
|
18
|
Goganau I, Blesch A. Gene Therapy for Spinal Cord Injury. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
19
|
Transient Expression of Green Fluorescent Protein in Integrase-Defective Lentiviral Vector-Transduced 293T Cell Line. Methods Mol Biol 2016; 1448:159-73. [PMID: 27317180 DOI: 10.1007/978-1-4939-3753-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Non-integrating lentiviral vectors or also known as integrase-defective lentiviral (IDLV) hold a great promise for gene therapy application. They retain high transduction efficiency for efficient gene transfer in various cell types both in vitro and in vivo. IDLV is produced via a combined mutations introduced on the HIV-based lentiviral to disable their integration potency. Therefore, IDLV is considered safer than the wild-type integrase-proficient lentiviral vector as they could avoid the potential insertional mutagenesis associated with the nonspecific integration of transgene into target cell genome afforded by the wild-type vectors.Here we describe the system of IDLV which is produced through mutation in the integrase enzymes at the position of D64 located within the catalytic core domain. The efficiency of the IDLV in expressing the enhanced green fluorescent protein (GFP) reporter gene in transduced human monocyte (U937) cell lines was investigated. Expression of the transgene was driven by the spleen focus-forming virus (SFFV) LTRs. Transduction efficiency was studied using both the IDLV (ID-SFFV-GFP) and their wild-type counterparts (integrase-proficient SFFV-GFP). GFP expression was analyzed by fluorescence microscope and FACS analysis.Based on the results, the number of the GFP-positive cells in ID-SFFV-GFP-transduced U937 cells decreased rapidly over time. The percentage of GFP-positive cells decreased from ~50 % to almost 0, up to 10 days post-transduction. In wild-type SFFV-GFP-transduced cells, GFP expression is remained consistently at about 100 %. These data confirmed that the transgene expression in the ID-SFFV-GFP-transduced cells is transient in dividing cells. The lack of an origin of replication due to mutation of integrase enzymes in the ID-SFFV-GFP virus vector has caused the progressive loss of the GFP expression in dividing cells.Integrase-defective lentivirus will be a suitable choice for safer clinical applications. It preserves the advantages of the wild-type lentiviral vectors but with the benefit of transgene expression without stable integration into host genome, therefore reducing the potential risk of insertional mutagenesis.
Collapse
|
20
|
Generation of a stable packaging cell line producing high-titer PPT-deleted integration-deficient lentiviral vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15025. [PMID: 26229972 PMCID: PMC4510976 DOI: 10.1038/mtm.2015.25] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 12/29/2022]
Abstract
The risk of insertional mutagenesis inherent to all integrating exogenous expression cassettes was the impetus for the development of various integration-defective lentiviral vector (IDLV) systems. These systems were successfully employed in a plethora of preclinical applications, underscoring their clinical potential. However, current production of IDLVs by transient plasmid transfection is not optimal for large-scale production of clinical grade vectors. Here, we describe the development of the first tetracycline-inducible stable IDLV packaging cell line comprising the D64E integrase mutant and the VSV-G envelope protein. A conditional self-inactivating (cSIN) vector and a novel polypurine tract (PPT)-deleted vector were incorporated into the newly developed stable packaging cell line by transduction and stable transfection, respectively. High-titer (~10(7) infectious units (IU)/ml) cSIN vectors were routinely generated. Furthermore, screening of single-cell clones stably transfected with PPT-deleted vector DNA resulted in the identification of highly efficient producer cell lines generating IDLV titers higher than 10(8) IU/mL, which upon concentration increased to 10(10) IU/ml. IDLVs generated by stable producer lines efficiently transduce CNS tissues of rodents. Overall, the availability of high-titer IDLV lentivirus packaging cell line described here will significantly facilitate IDLV-based basic science research, as well as preclinical and clinical applications.
Collapse
|
21
|
Wertz MH, Sahin M. Developing therapies for spinal muscular atrophy. Ann N Y Acad Sci 2015; 1366:5-19. [PMID: 26173388 DOI: 10.1111/nyas.12813] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/05/2015] [Accepted: 05/18/2015] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy is an autosomal-recessive pediatric neurodegenerative disease characterized by loss of spinal motor neurons. It is caused by mutation in the gene survival of motor neuron 1 (SMN1), leading to loss of function of the full-length SMN protein. SMN has a number of functions in neurons, including RNA splicing and snRNP biogenesis in the nucleus, and RNA trafficking in neurites. The expression level of full-length SMN protein from the SMN2 locus modifies disease severity. Increasing full-length SMN protein by a small amount can lead to significant improvements in the neurological phenotype. Currently available interventions for spinal muscular atrophy patients are physical therapy and orthopedic, nutritional, and pulmonary interventions; these are palliative or supportive measures and do not address the etiology of the disease. In the past decade, there has been a push for developing therapeutics to improve motor phenotypes and increase life span of spinal muscular atrophy patients. These therapies are aimed primarily at restoration of full-length SMN protein levels, but other neuroprotective treatments have been investigated as well. Here, we discuss recent advances in basic and clinical studies toward finding safe and effective treatments of spinal muscular atrophy using gene therapy, antisense oligonucleotides, and other small molecule modulators of SMN expression.
Collapse
Affiliation(s)
- Mary H Wertz
- The F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Mustafa Sahin
- The F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
22
|
A novel non-integrative single-cycle chimeric HIV lentivector DNA vaccine. Vaccine 2015; 33:2273-2282. [PMID: 25825333 DOI: 10.1016/j.vaccine.2015.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/18/2015] [Accepted: 03/10/2015] [Indexed: 02/05/2023]
Abstract
Novel HIV vaccine vectors and strategies are needed to control HIV/AIDS epidemic in humans and eradicate the infection. DNA vaccines alone failed to induce immune responses robust enough to control HIV-1. Development of lentivirus-based DNA vaccines deficient for integration and with a limited replication capacity is an innovative and promising approach. This type of vaccine mimics the early stages of virus infection/replication like the live-attenuated viruses but lacks the inconvenient integration and persistence associated with disease. We developed a novel lentivector DNA vaccine "CAL-SHIV-IN(-)" that undergoes a single round of replication in the absence of integration resulting in augmented expression of vaccine antigens in vivo. Vaccine gene expression is under control of the LTRs of a naturally attenuated lentivirus, Caprine arthritis encephalitis virus (CAEV) the natural goat lentivirus. The safety of this vaccine prototype was increased by the removal of the integrase coding sequences from the pol gene. We examined the functional properties of this lentivector DNA in cell culture and the immunogenicity in mouse models. Viral proteins were expressed in transfected cells, assembled into viral particles that were able to transduce once target permissive cells. Unlike the parental replication-competent SHIV-KU2 that was detected in DNA samples from any of the serial passage infected cells, CAL-SHIV-IN(-) DNA was detected only in target cells of the first round of infection, hence demonstrating the single cycle replication of the vaccine. A single dose DNA immunization of humanized NOD/SCID/β2 mice showed a substantial increase of IFN-γ-ELISPOT in splenocytes compared to the former replication and integration defective Δ4SHIV-KU2 DNA vaccine.
Collapse
|
23
|
Negro-Demontel ML, Saccardo P, Giacomini C, Yáñez-Muñoz RJ, Ferrer-Miralles N, Vazquez E, Villaverde A, Peluffo H. Comparative analysis of lentiviral vectors and modular protein nanovectors for traumatic brain injury gene therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14047. [PMID: 26015985 PMCID: PMC4362363 DOI: 10.1038/mtm.2014.47] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/25/2014] [Accepted: 08/28/2014] [Indexed: 12/21/2022]
Abstract
Traumatic brain injury (TBI) remains as one of the leading causes of mortality and morbidity worldwide and there are no effective treatments currently available. Gene therapy applications have emerged as important alternatives for the treatment of diverse nervous system injuries. New strategies are evolving with the notion that each particular pathological condition may require a specific vector. Moreover, the lack of detailed comparative studies between different vectors under similar conditions hampers the selection of an ideal vector for a given pathological condition. The potential use of lentiviral vectors versus several modular protein-based nanovectors was compared using a controlled cortical impact model of TBI under the same gene therapy conditions. We show that variables such as protein/DNA ratio, incubation volume, and presence of serum or chloroquine in the transfection medium impact on both nanovector formation and transfection efficiency in vitro. While lentiviral vectors showed GFP protein 1 day after TBI and increased expression at 14 days, nanovectors showed stable and lower GFP transgene expression from 1 to 14 days. No toxicity after TBI by any of the vectors was observed as determined by resulting levels of IL-1β or using neurological sticky tape test. In fact, both vector types induced functional improvement per se.
Collapse
Affiliation(s)
- María Luciana Negro-Demontel
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo , Montevideo, Uruguay ; Departmento de Histología y Embriología, Facultad de Medicina, UDELAR , Montevideo, Uruguay
| | - Paolo Saccardo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona, Spain ; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona , Barcelona, Spain ; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Barcelona, Spain
| | - Cecilia Giacomini
- Cátedra de Bioquímica, Departamento de Biociencias, Facultad de Química, UDELAR , Montevideo, Uruguay
| | | | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona, Spain ; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona , Barcelona, Spain ; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Barcelona, Spain
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona, Spain ; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona , Barcelona, Spain ; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona , Barcelona, Spain ; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona , Barcelona, Spain ; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , Barcelona, Spain
| | - Hugo Peluffo
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo , Montevideo, Uruguay ; Departmento de Histología y Embriología, Facultad de Medicina, UDELAR , Montevideo, Uruguay
| |
Collapse
|
24
|
Lentivirus mediated siRNA against GluN2B subunit of NMDA receptor reduces nociception in a rat model of neuropathic pain. BIOMED RESEARCH INTERNATIONAL 2014; 2014:871637. [PMID: 25243192 PMCID: PMC4163390 DOI: 10.1155/2014/871637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/08/2014] [Accepted: 08/07/2014] [Indexed: 11/17/2022]
Abstract
Although neuropathic pain (NP) is still not fully understood by scientists and clinicians alike, studies suggest that N-methyl-D-aspartate (NMDA) receptors play an important role in the induction and maintenance of NP. A promising treatment for NP is through the downregulation of NMDA subunit GluN2B by RNA interference; however, naked siRNA (small interference RNA) is not effective in long-term treatments. In order to concoct a viable prolonged treatment for NP, Lv-siGluN2B (lentivirus carrying siRNA targeting GluN2B subunit) was prepared and the antinociception effects were observed in chronic constriction injury (CCI) rats in the present study. Results showed that Lv-siGluN2B was transduced into spinal cord cells after intrathecal injections and effectively reduced the nociception induced by sciatic nerve ligation while inhibiting the mRNA and protein expression of GluN2B. This antinociception effect lasted approximately 7 weeks. These findings suggest that GluN2B subunit could be a target for NP treatment and Lv-siGluN2B represents a new potential option for long-term treatment of NP.
Collapse
|
25
|
Park KW, Lin CY, Lee YS. Expression of suppressor of cytokine signaling-3 (SOCS3) and its role in neuronal death after complete spinal cord injury. Exp Neurol 2014; 261:65-75. [PMID: 24959867 DOI: 10.1016/j.expneurol.2014.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 12/20/2022]
Abstract
The present study investigates the endogenous expression of Suppressor of Cytokine Signaling-3 (SOCS3) after spinal cord injury (SCI) and its effect on SCI-induced cell death in vivo. In addition, we determined whether a reduction of SOCS3 expression induced by microinjection of short hairpin RNA (shSOCS3) carried by lentivirus into spinal cord provides cellular protection after SCI. We demonstrated that complete transection of rat T8 spinal cord induced SOCS3 expression at the mRNA and protein levels as early as 2days post-injury, which was maintained up to 14days. SOCS3 immunoreactivity was detected in neurons and activated microglia after SCI. We also demonstrated that SCI induces phosphorylation of proteins that are involved in signal transduction and transcription-3 (STAT3) in neurons, which induced SOCS3 expression. Western blot analyses and double-immunofluorescent staining showed significant up-regulation of the pro-apoptotic protein Bax, increases in the ratio of Bax to the anti-apoptotic protein Bcl-2, and up-regulation of cleaved caspase-3 in neurons. Treatment with shSOCS3 inhibited SCI-induced mRNA expression of SOCS3 2days post-injury and suppressed SCI-induced Bax expression 7days after SCI, both rostral and caudal to the lesion. Moreover, treatment with shSOCS3 inhibited SCI-induced neuronal death and protected neuronal morphology both rostral and caudal to the injury site 7days post-injury. Our results suggest that the STAT3/SOCS3 signaling pathway plays an important role in regulating neuronal death after SCI.
Collapse
Affiliation(s)
- Keun Woo Park
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ching-Yi Lin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yu-Shang Lee
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
26
|
Lu-Nguyen NB, Broadstock M, Schliesser MG, Bartholomae CC, von Kalle C, Schmidt M, Yáñez-Muñoz RJ. Transgenic expression of human glial cell line-derived neurotrophic factor from integration-deficient lentiviral vectors is neuroprotective in a rodent model of Parkinson's disease. Hum Gene Ther 2014; 25:631-41. [PMID: 24635742 DOI: 10.1089/hum.2014.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Standard integration-proficient lentiviral vectors (IPLVs) are effective at much lower doses than other vector systems and have shown promise for gene therapy of Parkinson's disease (PD). Their main drawback is the risk of insertional mutagenesis. The novel biosafety-enhanced integration-deficient lentiviral vectors (IDLVs) may offer a significant enhancement in biosafety, but have not been previously tested in a model of a major disease. We have assessed biosafety and transduction efficiency of IDLVs in a rat model of PD, using IPLVs as a reference. Genomic insertion of lentivectors injected into the lesioned striatum was studied by linear amplification-mediated polymerase chain reaction (PCR), followed by deep sequencing and insertion site analysis, demonstrating lack of significant IDLV integration. Reporter gene expression studies showed efficient, long-lived, and transcriptionally targeted expression from IDLVs injected ahead of lesioning in the rat striatum, although at somewhat lower expression levels than from IPLVs. Transgenic human glial cell line-derived neurotrophic factor (hGDNF) expression from IDLVs was used for a long-term investigation of lentivector-mediated, transcriptionally targeted neuroprotection in this PD rat model. Vectors were injected before striatal lesioning, and the results showed improvements in nigral dopaminergic neuron survival and behavioral tests regardless of lentiviral integration proficiency, although they confirmed lower expression levels of hGDNF from IDLVs. These data demonstrate the effectiveness of IDLVs in a model of a major disease and indicate that these vectors could provide long-term PD treatment at low dose, combining efficacy and biosafety for targeted central nervous system applications.
Collapse
Affiliation(s)
- Ngoc B Lu-Nguyen
- 1 School of Biological Sciences, Royal Holloway, University of London , Egham, Surrey TW20 0EX, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
27
|
Kymäläinen H, Appelt JU, Giordano FA, Davies AF, Ogilvie CM, Ahmed SG, Laufs S, Schmidt M, Bode J, Yáñez-Muñoz RJ, Dickson G. Long-term episomal transgene expression from mitotically stable integration-deficient lentiviral vectors. Hum Gene Ther 2014; 25:428-42. [PMID: 24483952 DOI: 10.1089/hum.2013.172] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nonintegrating gene delivery vectors have an improved safety profile compared with integrating vectors, but transgene retention is problematic as nonreplicating episomes are progressively and rapidly diluted out through cell division. We have developed an integration-deficient lentiviral vector (IDLV) system generating mitotically stable episomes capable of long-term transgene expression. We found that a transient cell cycle arrest at the time of transduction with IDLVs resulted in 13-45% of Chinese hamster ovary (CHO) cells expressing the transgene for over 100 cell generations in the absence of selection. The use of a scaffold/matrix attachment region did not result in improved episomal retention in this system, and episomes did not form after transduction with adeno-associated viral or minicircle vectors under the same conditions. Investigations into the episomal status of the vector genome using (1) linear amplification-mediated polymerase chain reaction followed by deep sequencing of vector-genome junctions, (2) Southern blotting, and (3) fluorescent in situ hybridization strongly suggest that the vector is not integrated in the vast majority of cells. In conclusion, we have developed an IDLV procedure generating mitotically stable episomes capable of long-term transgene expression. The application of this approach to stem cell populations could significantly improve the safety profile of a range of stem and progenitor cell gene therapies.
Collapse
Affiliation(s)
- Hanna Kymäläinen
- 1 School of Biological Sciences, Royal Holloway-University of London , Egham, Surrey TW20 0EX, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rio P, Baños R, Lombardo A, Quintana-Bustamante O, Alvarez L, Garate Z, Genovese P, Almarza E, Valeri A, Díez B, Navarro S, Torres Y, Trujillo JP, Murillas R, Segovia JC, Samper E, Surralles J, Gregory PD, Holmes MC, Naldini L, Bueren JA. Targeted gene therapy and cell reprogramming in Fanconi anemia. EMBO Mol Med 2014; 6:835-48. [PMID: 24859981 PMCID: PMC4203359 DOI: 10.15252/emmm.201303374] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gene targeting is progressively becoming a realistic therapeutic alternative in clinics. It is unknown, however, whether this technology will be suitable for the treatment of DNA repair deficiency syndromes such as Fanconi anemia (FA), with defects in homology-directed DNA repair. In this study, we used zinc finger nucleases and integrase-defective lentiviral vectors to demonstrate for the first time that FANCA can be efficiently and specifically targeted into the AAVS1 safe harbor locus in fibroblasts from FA-A patients. Strikingly, up to 40% of FA fibroblasts showed gene targeting 42 days after gene editing. Given the low number of hematopoietic precursors in the bone marrow of FA patients, gene-edited FA fibroblasts were then reprogrammed and re-differentiated toward the hematopoietic lineage. Analyses of gene-edited FA-iPSCs confirmed the specific integration of FANCA in the AAVS1 locus in all tested clones. Moreover, the hematopoietic differentiation of these iPSCs efficiently generated disease-free hematopoietic progenitors. Taken together, our results demonstrate for the first time the feasibility of correcting the phenotype of a DNA repair deficiency syndrome using gene-targeting and cell reprogramming strategies.
Collapse
Affiliation(s)
- Paula Rio
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Rocio Baños
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Oscar Quintana-Bustamante
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Lara Alvarez
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Zita Garate
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Pietro Genovese
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Elena Almarza
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Antonio Valeri
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Begoña Díez
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Susana Navarro
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | | | - Juan P Trujillo
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain Universidad Autónoma Barcelona/CIBERER, Barcelona, Spain
| | - Rodolfo Murillas
- Division of Epithelial Biomedicine, CIEMAT/CIBERER, Madrid, Spain
| | - Jose C Segovia
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | | | | | | | | | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy Vita Salute San Raffaele University, Milan, Italy
| | - Juan A Bueren
- Division of Hematopoietic Innovative Therapies, CIEMAT/CIBERER, Madrid, Spain Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|
29
|
Chen Y, Carter RL, Cho IK, Chan AWS. Cell-based therapies for Huntington's disease. Drug Discov Today 2014; 19:980-4. [PMID: 24631682 DOI: 10.1016/j.drudis.2014.02.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 02/27/2014] [Indexed: 01/31/2023]
Abstract
Cell-based therapies are a viable option for the long-term treatment of Huntington's disease (HD), which is characterized by progressive neurodegeneration predominately in the striatum and cortex. Current research focuses on genetic suppression of the mutant huntingtin (mHTT) gene and cell replacement therapy of the lost cells in HD. As we discuss here, the recent development of induced pluripotent stem (iPS) cells technology demonstrated the potential of cell-based therapy in rodent models. It was shown that iPSCs were capable of differentiating into lost neurons in HD and stem cell grafts can improve motor deficiency in HD rodent models. Altogether, these findings have shown great promise for developing the foundation of the cell-based therapy.
Collapse
Affiliation(s)
- Yiju Chen
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, 954 Gatewood Rd, NE Atlanta, GA 30329, USA; Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Atlanta, GA 30322, USA
| | - Richard L Carter
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, 954 Gatewood Rd, NE Atlanta, GA 30329, USA; Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Atlanta, GA 30322, USA; Genetics and Molecular Biology Program, Laney Graduate School, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA
| | - In K Cho
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, 954 Gatewood Rd, NE Atlanta, GA 30329, USA; Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Atlanta, GA 30322, USA; Genetics and Molecular Biology Program, Laney Graduate School, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA
| | - Anthony W S Chan
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, 954 Gatewood Rd, NE Atlanta, GA 30329, USA; Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Atlanta, GA 30322, USA; Genetics and Molecular Biology Program, Laney Graduate School, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA.
| |
Collapse
|
30
|
Shaw A, Cornetta K. Design and Potential of Non-Integrating Lentiviral Vectors. Biomedicines 2014; 2:14-35. [PMID: 28548058 PMCID: PMC5423482 DOI: 10.3390/biomedicines2010014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 01/29/2023] Open
Abstract
Lentiviral vectors have demonstrated promising results in clinical trials that target cells of the hematopoietic system. For these applications, they are the vectors of choice since they provide stable integration into cells that will undergo extensive expansion in vivo. Unfortunately, integration can have unintended consequences including dysregulated cell growth. Therefore, lentiviral vectors that do not integrate are predicted to have a safer profile compared to integrating vectors and should be considered for applications where transient expression is required or for sustained episomal expression such as in quiescent cells. In this review, the system for generating lentiviral vectors will be described and used to illustrate how alterations in the viral integrase or vector Long Terminal Repeats have been used to generate vectors that lack the ability to integrate. In addition to their safety advantages, these non-integrating lentiviral vectors can be used when persistent expression would have adverse consequences. Vectors are currently in development for use in vaccinations, cancer therapy, site-directed gene insertions, gene disruption strategies, and cell reprogramming. Preclinical work will be described that illustrates the potential of this unique vector system in human gene therapy.
Collapse
Affiliation(s)
- Aaron Shaw
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kenneth Cornetta
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
31
|
Hutson TH, Foster E, Moon LDF, Yáñez-Muñoz RJ. Lentiviral vector-mediated RNA silencing in the central nervous system. Hum Gene Ther Methods 2013; 25:14-32. [PMID: 24090197 DOI: 10.1089/hgtb.2013.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
RNA silencing is an established method for investigating gene function and has attracted particular interest because of the potential for generating RNA-based therapeutics. Using lentiviral vectors as an efficient delivery system that offers stable, long-term expression in postmitotic cells further enhances the applicability of an RNA-based gene therapy for the CNS. In this review we provide an overview of both lentiviral vectors and RNA silencing along with design considerations for generating lentiviral vectors capable of RNA silencing. We go on to describe the current preclinical data regarding lentiviral vector-mediated RNA silencing for CNS disorders and discuss the concerns of side effects associated with lentiviral vectors and small interfering RNAs and how these might be mitigated.
Collapse
Affiliation(s)
- Thomas H Hutson
- 1 Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London , Guy's Campus, London SE1 1UL, United Kingdom
| | | | | | | |
Collapse
|
32
|
Xie PW, Xie Y, Zhang XJ, Huang H, He LN, Wang XJ, Wang SQ. Inhibition of Dengue virus 2 replication by artificial micrornas targeting the conserved regions. Nucleic Acid Ther 2013; 23:244-52. [PMID: 23651254 DOI: 10.1089/nat.2012.0405] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dengue virus (DENV), a mosquito-borne flavivirus, causes serious diseases and threatens public health in tropical and subtropical areas worldwide. RNA interference (RNAi) is a prevailing strategy for antiviral therapy. In this paper, 6 single artificial microRNAs (amiRNAs) targeting the highly conserved regions of the DENV-2 genome were identified and inhibited virus replication efficiently. Then, effective tandem amiRNAs targeting 2 different DENV-2 genome regions were constructed and expressed simultaneously from a single microRNA-like polycistron to avoid virus variation or mutation escape. Finally, the most high-performance tandem amiRNA was embedded in a lenti-viral vector and inhibited DENV-2 virus replication stably and dose-dependently. Overall, these results indicated that RNAi based on multiple amiRNAs targeting viral conserved regions was an effective approach for improvements of nucleic acid inhibitors of DENV and provided a new therapeutic strategy for DENV infection in humans.
Collapse
Affiliation(s)
- Pei-wen Xie
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | | | | | | | | | | | | |
Collapse
|