1
|
Budhiparama NC, Putramega D, Lumban-Gaol I. Orthobiologics in knee osteoarthritis, dream or reality? Arch Orthop Trauma Surg 2024; 144:3937-3946. [PMID: 38630251 PMCID: PMC11564396 DOI: 10.1007/s00402-024-05310-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/24/2024] [Indexed: 11/15/2024]
Abstract
Cartilage restoration or repair, also known as orthobiologic therapy, is indicated after the failure of conservative or supportive treatment. However, there is paucity in evidence supporting the efficacy of orthobiologic therapy. The blood-derived products, such as platelet-rich plasma (PRP), is one of the commonly used orthobiologic therapy for knee osteoarthritis. Several studies have shown that PRP is superior to other treatments, but the anatomic changes are scarce. Treatment with mesenchymal stem cells (MSCs) offers the greatest potential for curing degenerative disease due to their self-renewal ability, ability to migrate towards injured tissues (homing/trafficking), and ability to promote repair and regeneration of osteochondral defects. However, ethical concerns and high costs remain major challenges associated with MSC therapy. Gene therapy, another promising orthobiologic therapy, is currently in phase II clinical trial and has shown promising results. The key factors for successful orthobiologic therapy include patient selection, appropriate dosing, treatment of underlying mechanical problems, age, severity, and cost-effectiveness.
Collapse
Affiliation(s)
- Nicolaas Cyrillus Budhiparama
- Department of Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Orthopaedic and Traumatology, Faculty of Medicine, Universitas Airlangga, Jl. Mayjend. Prof. Dr. Moestopo 6-8, Surabaya, 60286, Indonesia.
- Nicolaas Institute of Constructive Orthopaedic Research & Education Foundation for Arthroplasty & Sports Medicine at Medistra Hospital, Jl. Jend. Gatot Subroto Kav. 59, Jakarta, 12950, Indonesia.
| | - Dananjaya Putramega
- Nicolaas Institute of Constructive Orthopaedic Research & Education Foundation for Arthroplasty & Sports Medicine at Medistra Hospital, Jl. Jend. Gatot Subroto Kav. 59, Jakarta, 12950, Indonesia
- Academic Hospital Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Imelda Lumban-Gaol
- Nicolaas Institute of Constructive Orthopaedic Research & Education Foundation for Arthroplasty & Sports Medicine at Medistra Hospital, Jl. Jend. Gatot Subroto Kav. 59, Jakarta, 12950, Indonesia
| |
Collapse
|
2
|
Primorac D, Molnar V, Tsoukas D, Uzieliene I, Tremolada C, Brlek P, Klarić E, Vidović D, Zekušić M, Pachaleva J, Bernotiene E, Wilson A, Mobasheri A. Tissue engineering and future directions in regenerative medicine for knee cartilage repair: a comprehensive review. Croat Med J 2024; 65:268-287. [PMID: 38868973 PMCID: PMC11157252 DOI: 10.3325/cmj.2024.65.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/26/2024] [Indexed: 01/06/2025] Open
Abstract
This review evaluates the current landscape and future directions of regenerative medicine for knee cartilage repair, with a particular focus on tissue engineering strategies. In this context, scaffold-based approaches have emerged as promising solutions for cartilage regeneration. Synthetic scaffolds, while offering superior mechanical properties, often lack the biological cues necessary for effective tissue integration. Natural scaffolds, though biocompatible and biodegradable, frequently suffer from inadequate mechanical strength. Hybrid scaffolds, combining elements of both synthetic and natural materials, present a balanced approach, enhancing both mechanical support and biological functionality. Advances in decellularized extracellular matrix scaffolds have shown potential in promoting cell infiltration and integration with native tissues. Additionally, bioprinting technologies have enabled the creation of complex, bioactive scaffolds that closely mimic the zonal organization of native cartilage, providing an optimal environment for cell growth and differentiation. The review also explores the potential of gene therapy and gene editing techniques, including CRISPR-Cas9, to enhance cartilage repair by targeting specific genetic pathways involved in tissue regeneration. The integration of these advanced therapies with tissue engineering approaches holds promise for developing personalized and durable treatments for knee cartilage injuries and osteoarthritis. In conclusion, this review underscores the importance of continued multidisciplinary collaboration to advance these innovative therapies from bench to bedside and improve outcomes for patients with knee cartilage damage.
Collapse
Affiliation(s)
- Dragan Primorac
- Dragan Primorac, Poliklinika Sv. Katarina, Branimirova 71E, 10000 Zagreb, Croatia,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Defois A, Bon N, Mével M, Deniaud D, Maugars Y, Guicheux J, Adjali O, Vinatier C. Gene therapies for osteoarthritis: progress and prospects. JOURNAL OF CARTILAGE & JOINT PRESERVATION 2024; 4:100186. [DOI: 10.1016/j.jcjp.2024.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Hollander JM, Goraltchouk A, Rawal M, Liu J, Luppino F, Zeng L, Seregin A. Adeno-Associated Virus-Delivered Fibroblast Growth Factor 18 Gene Therapy Promotes Cartilage Anabolism. Cartilage 2023; 14:492-505. [PMID: 36879540 PMCID: PMC10807742 DOI: 10.1177/19476035231158774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVE To determine the characterization of chondrogenic properties of adeno-associated virus type 2 (AAV2)-delivered hFGF18, via analysis of effects on primary human chondrocyte proliferation, gene expression, and in vivo cartilage thickness changes in the tibia and meniscus. DESIGN Chondrogenic properties of AAV2-FGF18 were compared with recombinant human FGF18 (rhFGF18) in vitro relative to phosphate-buffered saline (PBS) and AAV2-GFP negative controls. Transcriptome analysis was performed using RNA-seq on primary human chondrocytes treated with rhFGF18 and AAV2-FGF18, relative to PBS. Durability of gene expression was assessed using AAV2-nLuc and in vivo imaging. Chondrogenesis was evaluated by measuring weight-normalized thickness in the tibial plateau and the white zone of the anterior horn of the medial meniscus in Sprague-Dawley rats. RESULTS AAV2-FGF18 elicits chondrogenesis by promoting proliferation and upregulation of hyaline cartilage-associated genes, including COL2A1 and HAS2, while downregulating fibrocartilage-associated COL1A1. This activity translates to statistically significant, dose-dependent increases in cartilage thickness in vivo within the area of the tibial plateau, following a single intra-articular injection of the AAV2-FGF18 or a regimen of 6 twice-weekly injections of rhFGF18 protein relative to AAV2-GFP. In addition, we observed AAV2-FGF18-induced and rhFGF18-induced increases in cartilage thickness of the anterior horn of the medial meniscus. Finally, the single-injection AAV2-delivered hFGF18 offers a potential safety advantage over the multi-injection protein treatment as evidenced by reduced joint swelling over the study period. CONCLUSION AAV2-delivered hFGF18 represents a promising strategy for the restoration of hyaline cartilage by promoting extracellular matrix production, chondrocyte proliferation, and increasing articular and meniscal cartilage thickness in vivo after a single intra-articular injection.
Collapse
Affiliation(s)
- Judith M. Hollander
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | | | - Miraj Rawal
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Jingshu Liu
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | | | - Li Zeng
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
5
|
Thampi P, Seabaugh KA, Pezzanite LM, Chu CR, Phillips JN, Grieger JC, McIlwraith CW, Samulski RJ, Goodrich LR. A pilot study to determine the optimal dose of scAAVIL-1ra in a large animal model of post-traumatic osteoarthritis. Gene Ther 2023; 30:792-800. [PMID: 37696981 PMCID: PMC10727982 DOI: 10.1038/s41434-023-00420-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/26/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
Gene therapy approaches using adeno-associated viral vectors have been successfully tested in the equine post-traumatic osteoarthritis (PTOA) model. Owing to differences in the levels of transgene expression and adverse tissue reactions observed in published studies, we sought to identify a safe therapeutic dose of scAAVIL-1ra in an inflamed and injured joint that would result in improved functional outcomes without any adverse events. scAAVIL-1ra was delivered intra-articularly over a 100-fold range, and horses were evaluated throughout and at the end of the 10-week study. A dose-related increase in IL-1ra levels with a decrease in PGE2 levels was observed, with the peak IL-1ra concentration being observed 7 days post-treatment in all groups. Perivascular infiltration with mononuclear cells was observed within the synovial membrane of the joint treated with the highest viral dose of 5 × 1012 vg, but this was absent in the lower-dosed joints. The second-highest dose of scAAVeqIL-1ra 5 × 1011 vg demonstrated elevated IL-1ra levels without any cellular response in the synovium. Taken together, the data suggest that the 10-fold lower dose of 5 × 1011vg scAAVIL-1ra would be a safe therapeutic dose in an equine model of PTOA.
Collapse
Affiliation(s)
- P Thampi
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
| | - K A Seabaugh
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
| | - L M Pezzanite
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
| | - C R Chu
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - J N Phillips
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
| | - J C Grieger
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA
| | - C W McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA
| | - R J Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, USA
| | - L R Goodrich
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
6
|
Assi R, Quintiens J, Monteagudo S, Lories RJ. Innovation in Targeted Intra-articular Therapies for Osteoarthritis. Drugs 2023; 83:649-663. [PMID: 37067759 DOI: 10.1007/s40265-023-01863-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 04/18/2023]
Abstract
Osteoarthritis is the most common chronic joint disease characterized by progressive damage to the joints, leading to pain and loss of function. There is currently no cure or disease-modifying therapy for osteoarthritis. Hence, the increasing disease prevalence linked with ageing and obesity represents a substantial socio-economic burden. Intra-articular therapy by injection of drugs into affected joints can optimize local drug bioavailability, while reducing risks of systemic toxicity, a concern in an ageing patient population. In this review, we investigate the current landscape of intra-articular drug therapies for osteoarthritis, including established approaches and those in clinical development. We performed a literature review using PubMed, complemented with a search for clinical trials using the ClinicalTrials.gov repository. Additionally, conference abstracts and presentations were identified and systematic snowballing was applied. Identified drugs were divided into several groups by main mechanism of action, and include drugs that reduce inflammation (anti-inflammatory), drugs aiming to prevent or reverse structural damage (structure modifying), drugs that aim to reduce the pain, and other drugs with a specific target. Most studies have been performed for osteoarthritis of the knee, a joint that is easily accessible for intra-articular treatments. Optimal therapy would provide symptomatic relief, while preventing further damage to the joint. The field of intra-articular drug therapies for osteoarthritis is rapidly evolving with clear challenges identified: definition of relevant outcome measures, optimization of clinical trial set-ups, and dealing with placebo responses. While many uncertainties persist, it appears that the innovation in drug development and improved clinical trial set-up may finally deliver successful therapies for this important disease.
Collapse
Affiliation(s)
- Reem Assi
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Jolien Quintiens
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
- Division of Rheumatology, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Silvia Monteagudo
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Rik J Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium.
- Division of Rheumatology, University Hospitals Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
7
|
Haughan J, Ortved KF, Robinson MA. Administration and detection of gene therapy in horses: A systematic review. Drug Test Anal 2023; 15:143-162. [PMID: 36269665 DOI: 10.1002/dta.3394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Abstract
Gene therapy uses genetic modification of cells to produce a therapeutic effect. Defective or missing genes can be repaired or replaced, or gene expression can be modified using a variety of technologies. Repair of defective genes can be achieved using specialized gene editing tools. Gene addition promotes gene expression by introducing synthetic copies of genes of interest (transgenes) into cells where they are transcribed and translated into therapeutic proteins. Protein production can also be modified using therapies that regulate gene expression. Gene therapy is currently prohibited in both human and equine athletes because of the potential to induce production of performance-enhancing proteins in the athlete's body, also referred to as "gene doping." Detection of gene doping is challenging and necessitates development of creative, novel analytical methods for doping control. Methods for detection of gene doping must be specific to and will vary depending on the type of gene therapy. The purpose of this paper is to present the results of a systematic review of gene editing, gene therapy, and detection of gene doping in horses. Based on the published literature, gene therapy has been administered to horses in a large number of experimental studies and a smaller number of clinical cases. Detection of gene therapy is possible using a combination of PCR and sequencing technologies. This summary can provide a basis for discussion of appropriate and inappropriate uses for gene therapy in horses by the veterinary community and guide expansion of methods to detect inappropriate uses by the regulatory community.
Collapse
Affiliation(s)
- Joanne Haughan
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - Kyla F Ortved
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - Mary A Robinson
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA.,Pennsylvania Equine Toxicology & Research Center, West Chester University, West Chester, Pennsylvania, USA
| |
Collapse
|
8
|
Serotype-specific transduction of canine joint tissue explants and cultured monolayers by self-complementary adeno-associated viral vectors. Gene Ther 2022; 30:398-404. [PMID: 36261499 DOI: 10.1038/s41434-022-00366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/04/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
A formal screening of self-complementary adeno-associated virus (scAAV) vector serotypes in canine joint tissues has not been performed to date. Selecting appropriate serotypes is crucial for successful treatment due to their varying levels of tissue tropism. The objective of this study is to identify the most optimal scAAV vector serotype that maximizes transduction efficiencies in canine cell monolayer cultures (chondrocytes, synoviocytes, and mesenchymal stem cells) and tissue explant cultures (cartilage and synovium). Transduction efficiencies of scAAV serotypes 1, 2, 2.5, 3, 4, 5, 6, 8, and 9 were evaluated in each culture type in three different vector concentrations by encoding a green fluorescent protein. It was found that scAAV2 and 2.5 showed the overall highest transduction efficiency among serotypes with dose-response. Since possible immune response against conventional AAV2 was previously reported in dogs, the chimeric scAAV2.5 may be more suitable to use. Evaluation of the safety and efficacy of the scAAV2.5 vector with an appropriate therapeutic gene in vivo is indicated.
Collapse
|
9
|
Thampi P, Samulski RJ, Grieger JC, Phillips JN, McIlwraith CW, Goodrich LR. Gene therapy approaches for equine osteoarthritis. Front Vet Sci 2022; 9:962898. [PMID: 36246316 PMCID: PMC9558289 DOI: 10.3389/fvets.2022.962898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 01/24/2023] Open
Abstract
With an intrinsically low ability for self-repair, articular cartilage injuries often progress to cartilage loss and joint degeneration resulting in osteoarthritis (OA). Osteoarthritis and the associated articular cartilage changes can be debilitating, resulting in lameness and functional disability both in human and equine patients. While articular cartilage damage plays a central role in the pathogenesis of OA, the contribution of other joint tissues to the pathogenesis of OA has increasingly been recognized thus prompting a whole organ approach for therapeutic strategies. Gene therapy methods have generated significant interest in OA therapy in recent years. These utilize viral or non-viral vectors to deliver therapeutic molecules directly into the joint space with the goal of reprogramming the cells' machinery to secrete high levels of the target protein at the site of injection. Several viral vector-based approaches have demonstrated successful gene transfer with persistent therapeutic levels of transgene expression in the equine joint. As an experimental model, horses represent the pathology of human OA more accurately compared to other animal models. The anatomical and biomechanical similarities between equine and human joints also allow for the use of similar imaging and diagnostic methods as used in humans. In addition, horses experience naturally occurring OA and undergo similar therapies as human patients and, therefore, are a clinically relevant patient population. Thus, further studies utilizing this equine model would not only help advance the field of human OA therapy but also benefit the clinical equine patients with naturally occurring joint disease. In this review, we discuss the advancements in gene therapeutic approaches for the treatment of OA with the horse as a relevant patient population as well as an effective and commonly utilized species as a translational model.
Collapse
Affiliation(s)
- Parvathy Thampi
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Research Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, United States
| | - R. Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, United States
| | - Joshua C. Grieger
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC, United States
| | - Jennifer N. Phillips
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Research Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, United States
| | - C. Wayne McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Research Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, United States
| | - Laurie R. Goodrich
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Research Institute, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, United States,*Correspondence: Laurie R. Goodrich
| |
Collapse
|
10
|
Chen T, Weng W, Liu Y, Aspera-Werz RH, Nüssler AK, Xu J. Update on Novel Non-Operative Treatment for Osteoarthritis: Current Status and Future Trends. Front Pharmacol 2021; 12:755230. [PMID: 34603064 PMCID: PMC8481638 DOI: 10.3389/fphar.2021.755230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/06/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is a leading cause of pain and disability which results in a reduced quality of life. Due to the avascular nature of cartilage, damaged cartilage has a finite capacity for healing or regeneration. To date, conservative management, including physical measures and pharmacological therapy are still the principal choices offered for OA patients. Joint arthroplasties or total replacement surgeries are served as the ultimate therapeutic option to rehabilitate the joint function of patients who withstand severe OA. However, these approaches are mainly to relieve the symptoms of OA, instead of decelerating or reversing the progress of cartilage damage. Disease-modifying osteoarthritis drugs (DMOADs) aiming to modify key structures within the OA joints are in development. Tissue engineering is a promising strategy for repairing cartilage, in which cells, genes, and biomaterials are encompassed. Here, we review the current status of preclinical investigations and clinical translations of tissue engineering in the non-operative treatment of OA. Furthermore, this review provides our perspective on the challenges and future directions of tissue engineering in cartilage regeneration.
Collapse
Affiliation(s)
- Tao Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Weidong Weng
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Yang Liu
- Department of Clinical Sciences, Orthopedics, Faculty of Medicine, Lund University, Lund, Sweden
| | - Romina H Aspera-Werz
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas K Nüssler
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jianzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Klimak M, Nims RJ, Pferdehirt L, Collins KH, Harasymowicz NS, Oswald SJ, Setton LA, Guilak F. Immunoengineering the next generation of arthritis therapies. Acta Biomater 2021; 133:74-86. [PMID: 33823324 DOI: 10.1016/j.actbio.2021.03.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/08/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
Immunoengineering continues to revolutionize healthcare, generating new approaches for treating previously intractable diseases, particularly in regard to cancer immunotherapy. In joint diseases, such as osteoarthritis (OA) and rheumatoid arthritis (RA), biomaterials and anti-cytokine treatments have previously been at that forefront of therapeutic innovation. However, while many of the existing anti-cytokine treatments are successful for a subset of patients, these treatments can also pose severe risks, adverse events and off-target effects due to continuous delivery at high dosages or a lack of disease-specific targets. The inadequacy of these current treatments has motivated the development of new immunoengineering strategies that offer safer and more efficacious alternative therapies through the precise and controlled targeting of specific upstream immune responses, including direct and mechanistically-driven immunoengineering approaches. Advances in the understanding of the immunomodulatory pathways involved in musculoskeletal disease, in combination with the growing emphasis on personalized medicine, stress the need for carefully considering the delivery strategies and therapeutic targets when designing therapeutics to better treat RA and OA. Here, we focus on recent advances in biomaterial and cell-based immunomodulation, in combination with genetic engineering, for therapeutic applications in joint diseases. The application of immunoengineering principles to the study of joint disease will not only help to elucidate the mechanisms of disease pathogenesis but will also generate novel disease-specific therapeutics by harnessing cellular and biomaterial responses. STATEMENT OF SIGNIFICANCE: It is now apparent that joint diseases such as osteoarthritis and rheumatoid arthritis involve the immune system at both local (i.e., within the joint) and systemic levels. In this regard, targeting the immune system using both biomaterial-based or cellular approaches may generate new joint-specific treatment strategies that are well-controlled, safe, and efficacious. In this review, we focus on recent advances in immunoengineering that leverage biomaterials and/or genetically engineered cells for therapeutic applications in joint diseases. The application of such approaches, especially synergistic strategies that target multiple immunoregulatory pathways, has the potential to revolutionize our understanding, treatment, and prevention of joint diseases.
Collapse
Affiliation(s)
- Molly Klimak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Robert J Nims
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Lara Pferdehirt
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Natalia S Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Sara J Oswald
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Lori A Setton
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
12
|
Yoon DS, Lee KM, Cho S, Ko EA, Kim J, Jung S, Shim JH, Gao G, Park KH, Lee JW. Cellular and Tissue Selectivity of AAV Serotypes for Gene Delivery to Chondrocytes and Cartilage. Int J Med Sci 2021; 18:3353-3360. [PMID: 34522160 PMCID: PMC8436087 DOI: 10.7150/ijms.56760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Despite several studies on the effect of adeno-associated virus (AAV)-based therapeutics on osteoarthritis (OA), information on the transduction efficiency and applicable profiles of different AAV serotypes to chondrocytes in hard cartilage tissue is still limited. Moreover, the recent discovery of additional AAV serotypes makes it necessary to screen for more suitable AAV serotypes for specific tissues. Here, we compared the transduction efficiencies of 14 conventional AAV serotypes in human chondrocytes, mouse OA models, and human cartilage explants obtained from OA patients. Methods: To compare the transduction efficiency of individual AAV serotypes, green fluorescent protein (GFP) expression was detected by fluorescence microscopy or western blotting. Likewise, to compare the transduction efficiencies of individual AAV serotypes in cartilage tissues, GFP expression was determined using fluorescence microscopy or immunohistochemistry, and GFP-positive cells were counted. Results: Only AAV2, 5, 6, and 6.2 exhibited substantial transduction efficiencies in both normal and OA chondrocytes. All AAV serotypes except AAV6 and rh43 could effectively transduce human bone marrow mesenchymal stem cells. In human and mouse OA cartilage tissues, AAV2, AAV5, AAV6.2, AAV8, and AAV rh39 showed excellent tissue specificity based on transduction efficiency. These results indicate the differences in transduction efficiencies of AAV serotypes between cellular and tissue models. Conclusions: Our findings indicate that AAV2 and AAV6.2 may be the best choices for AAV-mediated gene delivery into intra-articular cartilage tissue. These AAV vectors hold the potential to be of use in clinical applications to prevent OA progression if appropriate therapeutic genes are inserted into the vector.
Collapse
Affiliation(s)
- Dong Suk Yoon
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Kyoung-Mi Lee
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Sehee Cho
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Eun Ae Ko
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Jihyun Kim
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Sujin Jung
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Jae-Hyuck Shim
- Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kwang Hwan Park
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Jin Woo Lee
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| |
Collapse
|
13
|
Candidates for Intra-Articular Administration Therapeutics and Therapies of Osteoarthritis. Int J Mol Sci 2021; 22:ijms22073594. [PMID: 33808364 PMCID: PMC8036705 DOI: 10.3390/ijms22073594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) of the knee is a disease that significantly decreases the quality of life due to joint deformation and pain caused by degeneration of articular cartilage. Since the degeneration of cartilage is irreversible, intervention from an early stage and control throughout life is important for OA treatment. For the treatment of early OA, the development of a disease-modifying osteoarthritis drug (DMOAD) for intra-articular (IA) injection, which is attracting attention as a point-of-care therapy, is desired. In recent years, the molecular mechanisms involved in OA progression have been clarified while new types of drug development methods based on gene sequences have been established. In addition to conventional chemical compounds and protein therapeutics, the development of DMOAD from the new modalities such as gene therapy and oligonucleotide therapeutics is accelerating. In this review, we have summarized the current status and challenges of DMOAD for IA injection, especially for protein therapeutics, gene therapy, and oligonucleotide therapeutics.
Collapse
|
14
|
Chen Q, Luo H, Zhou C, Yu H, Yao S, Fu F, Seeley R, Ji X, Yang Y, Chen P, Jin H, Tong P, Chen D, Wu C, Du W, Ruan H. Comparative intra-articular gene transfer of seven adeno-associated virus serotypes reveals that AAV2 mediates the most efficient transduction to mouse arthritic chondrocytes. PLoS One 2020; 15:e0243359. [PMID: 33320893 PMCID: PMC7737971 DOI: 10.1371/journal.pone.0243359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is the most common arthropathy, characterized by progressive degeneration of the articular cartilage. Currently, there are no disease-modifying approaches for OA treatment. Adeno-associated virus (AAV)-mediated gene therapy has recently become a potential treatment for OA due to its exceptional characteristics; however, the tropism and transduction efficiency of different AAV serotypes to articular joints and the safety profile of AAV applications are still unknown. The present study aims to screen an ideal AAV serotype to efficiently transfer genes to arthritic cartilage. AAV vectors of different serotypes expressing eGFP protein were injected into the knee joint cavities of mice, with all joint tissues collected 30 days after AAV injection. The transduction efficiency of AAVs was quantified by assessing the fluorescent intensities of eGFP in the cartilage of knee joints. Structural and morphological changes were analyzed by toluidine blue staining. Changes to ECM metabolism and pyroptosis of chondrocytes were determined by immunohistochemical staining. Fluorescence analysis of eGFP showed that eGFP was expressed in the cartilage of knee joints injected with each AAV vector. Quantification of eGFP intensity indicated that AAV2, 7 and 8 had the highest transduction efficiencies. Both toluidine blue staining and Mankin score showed that AAV6 aggravated cartilage degeneration. The analysis of key molecules in ECM metabolism suggested that AAV5 and 7 significantly reduced collagen type II, while AAV9 increased ADAMTS-4 but decreased MMP-19. In addition, transduction with AAV2, 5, 7 and 8 had no obvious effect on pyroptosis of chondrocytes. Comprehensive score analysis also showed that AAV2 had the highest score in intra-articular gene transfer. Collectively, our findings point to AAV2 as the best AAV serotype candidate for gene transfer on arthritic cartilage, resulting in minimal impact to ECM metabolism and pyroptosis of chondrocytes.
Collapse
Affiliation(s)
- Quan Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengcong Zhou
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huan Yu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Sai Yao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fangda Fu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Rebecca Seeley
- Translational Research Program in Pediatric Orthopedics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Xing Ji
- Translational Research Program in Pediatric Orthopedics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Yanping Yang
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peifeng Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongting Jin
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Peijian Tong
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chengliang Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- * E-mail: (HR); (WD); (CW)
| | - Weibin Du
- Research Institute of Orthopedics, the Affiliated JiangNan Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- * E-mail: (HR); (WD); (CW)
| | - Hongfeng Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (HR); (WD); (CW)
| |
Collapse
|
15
|
Haughan J, Jiang Z, Stefanovski D, Moss KL, Ortved KF, Robinson MA. Detection of intra-articular gene therapy in horses using quantitative real time PCR in synovial fluid and plasma. Drug Test Anal 2020; 12:743-751. [PMID: 32133745 DOI: 10.1002/dta.2785] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/29/2022]
Abstract
Gene therapy promotes the expression of missing or defective genes and can be curative following administration of a single dose. Gene therapy is prohibited in equine athletes by regulatory bodies due to the high potential for abuse and novel analytical methods are needed for detection. The goal of this study was to detect the administration of an experimental gene therapy: a recombinant adeno-associated viral vector (rAAV) carrying a transgene for the anti-inflammatory cytokine IL-10 (rAAV-IL10). Twelve horses were randomly assigned to receive an intra-articular injection of rAAV-IL10 or phosphate buffered saline (vehicle) into a middle carpal joint. Plasma and synovial fluid were collected on days 0, 1, 2, 4, 7, 14, 28, 56, and 84. Primer pairs were designed to detect two unique regions of rAAV. Using quantitative real time PCR, both sets of primers detected rAAV for 14-28 days in joints and up to 4 days in plasma, in all six treated horses. In synovial fluid, rAAV was detected on day 56 in 4/6 horses by both primer sets, and on day 84 in 1/6 horses by one primer set. In plasma, rAAV was detected for 7 days in 5/6 horses, 14 days in 2/6 horses, and 28 days in 1/6 horses by one primer set, and was detected for up to 14 days in 1/6 horses by the other primer set. This study is the first to validate that quantitative real time PCR can be used to systemically detect the local administration of a gene therapy product to horses.
Collapse
Affiliation(s)
- Joanne Haughan
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania
| | - Zibin Jiang
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania
| | - Darko Stefanovski
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania
| | - Kaitlyn L Moss
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania
| | - Kyla F Ortved
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania
| | - Mary A Robinson
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, New Bolton Center, Kennett Square, Pennsylvania.,Pennsylvania Equine Toxicology & Research Center, West Chester University, West Chester, PA, USA
| |
Collapse
|
16
|
Johnstone B, Stoddart MJ, Im GI. Multi-Disciplinary Approaches for Cell-Based Cartilage Regeneration. J Orthop Res 2020; 38:463-472. [PMID: 31478253 DOI: 10.1002/jor.24458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/23/2019] [Indexed: 02/04/2023]
Abstract
Articular cartilage does not regenerate in adults. A lot of time and resources have been dedicated to cartilage regeneration research. The current understanding suggests that multi-disciplinary approach including biologic, genetic, and mechanical stimulations may be needed for cell-based cartilage regeneration. This review summarizes contents of a workshop sponsored by International Combined Orthopaedic Societies during the 2019 annual meeting of the Orthopaedic Research Society held in Austin, Texas. Three approaches for cell-based cartilage regeneration were introduced, including cellular basis of chondrogenesis, gene-enhanced cartilage regeneration, and physical modulation to divert stem cells to chondrogenic cell fate. While the complicated nature of cartilage regeneration has not allowed us to achieve successful regeneration of hyaline articular cartilage so far, the utilization of multi-disciplinary approaches in various fields of biomedical engineering will provide means to achieve this goal faster. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:463-472, 2020.
Collapse
Affiliation(s)
- Brian Johnstone
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, Oregon
| | | | - Gun-Il Im
- Integrative Research Institute for Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| |
Collapse
|
17
|
Inflammation-Modulating Hydrogels for Osteoarthritis Cartilage Tissue Engineering. Cells 2020; 9:cells9020419. [PMID: 32059502 PMCID: PMC7072320 DOI: 10.3390/cells9020419] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/30/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of the joint disease associated with age, obesity, and traumatic injury. It is a disabling degenerative disease that affects synovial joints and leads to cartilage deterioration. Despite the prevalence of this disease, the understanding of OA pathophysiology is still incomplete. However, the onset and progression of OA are heavily associated with the inflammation of the joint. Therefore, studies on OA treatment have sought to intra-articularly deliver anti-inflammatory drugs, proteins, genes, or cells to locally control inflammation in OA joints. These therapeutics have been delivered alone or increasingly, in delivery vehicles for sustained release. The use of hydrogels in OA treatment can extend beyond the delivery of anti-inflammatory components to have inherent immunomodulatory function via regulating immune cell polarization and activity. Currently, such immunomodulatory biomaterials are being developed for other applications, which can be translated into OA therapy. Moreover, anabolic and proliferative levels of OA chondrocytes are low, except initially, when chondrocytes temporarily increase anabolism and proliferation in response to structural changes in their extracellular environment. Therefore, treatments need to restore matrix protein synthesis and proliferation to healthy levels to reverse OA-induced damage. In conjugation with injectable and/or adhesive hydrogels that promote cartilage tissue regeneration, immunomodulatory tissue engineering solutions will have robust potential in OA treatment. This review describes the disease, its current and future immunomodulatory therapies as well as cartilage-regenerative injectable and adhesive hydrogels.
Collapse
|
18
|
Moss KL, Jiang Z, Dodson ME, Linardi RL, Haughan J, Gale AL, Grzybowski C, Engiles JE, Stefanovski D, Robinson MA, Ortved KF. Sustained Interleukin-10 Transgene Expression Following Intra-Articular AAV5-IL-10 Administration to Horses. Hum Gene Ther 2019; 31:110-118. [PMID: 31773987 DOI: 10.1089/hum.2019.195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Joint trauma leads to post-traumatic inflammation with upregulation of inflammatory cytokines and degradative enzymes. If severe enough, this response can lead to irreversible post-traumatic osteoarthritis. Interleukin-10 (IL-10), a cytokine with potent anti-inflammatory effects, has been shown to have chondroprotective effects. A gene therapy approach using a vector to overexpress IL-10 in the joint represents a feasible method of delivering sustained high doses of IL-10 to post-traumatic joints. We hypothesized that an AAV5 vector overexpressing IL-10 would result in rapid and sustained IL-10 expression following direct intra-articular injection and that this increase would not be reflected in systemic circulation. In addition, we hypothesized that intra-articular AAV5-IL-10 injection would not induce a local inflammatory response. Twelve horses were assigned to either treatment (AAV5-IL-10-injected) or control (PBS-injected) groups. Middle carpal joints were injected with 1012 vector genomes/joint or phosphate-buffered saline (PBS) alone (3 mL). Serial synovial fluid samples were analyzed for inflammatory changes, IL-10 concentration, and vector genome copy number. Serum samples were also analyzed for IL-10 concentration and vector genome copy number. Synovial membrane was collected on day 84. Synovial fluid IL-10 was significantly increased within 48 h of AAV5-IL-10 injection and remained increased, compared to PBS-injected joints, until day 84. Serum IL-10 was not different between groups. Vector administration did not cause a significant synovial inflammatory response. Vector genomes were detectable in the plasma, synovial fluid, and synovial membrane of AAV5-IL-10-injected horses only. IL-10 has the potential to modulate the articular inflammatory response, thereby protecting cartilage from degradation and osteoarthritis. This study demonstrates the feasibility and efficiency of intra-articular AAV5-IL-10, and future studies investigating the chondroprotective effects of IL-10 in inflamed joints in vivo are warranted.
Collapse
Affiliation(s)
- Kaitlyn L Moss
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania
| | - Zibin Jiang
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania
| | - Michael E Dodson
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania
| | - Renata L Linardi
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania
| | - Joanne Haughan
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania
| | - Alexis L Gale
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania
| | - Cara Grzybowski
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania
| | - Julie E Engiles
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Darko Stefanovski
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania
| | - Mary A Robinson
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania.,Pennsylvania Equine Toxicology & Research Center, West Chester University, West Chester, Pennsylvania
| | - Kyla F Ortved
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania
| |
Collapse
|
19
|
Effects of rAAV-Mediated sox9 Overexpression on the Biological Activities of Human Osteoarthritic Articular Chondrocytes in Their Intrinsic Three-Dimensional Environment. J Clin Med 2019; 8:jcm8101637. [PMID: 31591319 PMCID: PMC6832991 DOI: 10.3390/jcm8101637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Gene therapy for osteoarthritis offers powerful, long-lasting tools that are well adapted to treat such a slow, progressive disorder, especially those therapies based on the clinically adapted recombinant adeno-associated viral (rAAV) vectors. Here, we examined the ability of an rAAV construct carrying a therapeutic sequence for the cartilage-specific SOX9 transcription factor to modulate the phenotype of human osteoarthritic articular chondrocytes compared with normal chondrocytes in a three-dimensional environment where the cells are embedded in their extracellular matrix. Successful sox9 overexpression via rAAV was noted for at least 21 days, leading to the significant production of major matrix components (proteoglycans, type-II collagen) without affecting the proliferation of the cells, while the cells contained premature hypertrophic processes relative to control conditions (reporter rAAV-lacZ application, absence of vector treatment). These findings show the value of using rAAV to adjust the osteoarthritic phenotype when the chondrocytes are confined in their inherently altered environment and the possibility of impacting key cellular processes via gene therapy to remodel human osteoarthritic cartilage lesions.
Collapse
|
20
|
Vedadghavami A, Wagner EK, Mehta S, He T, Zhang C, Bajpayee AG. Cartilage penetrating cationic peptide carriers for applications in drug delivery to avascular negatively charged tissues. Acta Biomater 2019; 93:258-269. [PMID: 30529083 DOI: 10.1016/j.actbio.2018.12.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 02/01/2023]
Abstract
Drug delivery to avascular, negatively charged tissues like cartilage remains a challenge. The constant turnover of synovial fluid results in short residence time of administered drugs in the joint space and the dense negatively charged matrix of cartilage hinders their diffusive transport. Drugs are, therefore, unable to reach their cell and matrix targets in sufficient doses, and fail to elicit relevant biological response, which has led to unsuccessful clinical trials. The high negative fixed charge density (FCD) of cartilage, however, can be used to convert cartilage from a barrier to drug entry into a depot by making drugs positively charged. Here we design cartilage penetrating and binding cationic peptide carriers (CPCs) with varying net charge, spatial distribution and hydrophobicity to deliver large-sized therapeutics and investigate their electro-diffusive transport in healthy and arthritic cartilage. We showed that CPC uptake increased with increasing net charge up to +14 but dropped as charge increased further due to stronger binding interactions that hindered CPC penetrability and uptake showing that weak-reversible binding is key to enable their penetration through full tissue thickness. Even after 90% GAG depletion, while CPC +14 uptake reduced by over 50% but still had a significantly high value of 148× showing that intra-tissue long-range charge-based binding is further stabilized by short-range H-bond and hydrophobic interactions. The work presents an approach for rational design of cationic carriers based on tissue FCD and properties of macromolecules to be delivered. These design rules can be extended to drug delivery for other avascular, negatively charged tissues. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) remains an untreatable disease partly due to short joint residence time of drugs and a lack of delivery methods that can effectively target the dense, avascular, highly negatively charged cartilage tissue. In this study, we designed cartilage penetrating and binding cationic peptide carriers (CPCs) that, due to their optimal charge provide adequate electrical driving force to rapidly transport OA drugs into cartilage and reach their cell and matrix targets in therapeutic doses before drugs exit the joint space. This way cartilage is converted from being a barrier to drug entry into a drug depot that can provide sustained drug release for several weeks. This study also investigates synergistic effects of short-range H-bond and hydrophobic interactions in combination with long-range electrostatic interactions on intra-cartilage solute transport. The work provides rules for rational design of cartilage penetrating charge-based carriers depending on the net charge of tissue (normal versus arthritic), macromolecule to be delivered and whether the application is in drug delivery or tissue imaging.
Collapse
|
21
|
Armiento AR, Alini M, Stoddart MJ. Articular fibrocartilage - Why does hyaline cartilage fail to repair? Adv Drug Deliv Rev 2019; 146:289-305. [PMID: 30605736 DOI: 10.1016/j.addr.2018.12.015] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/07/2018] [Accepted: 12/27/2018] [Indexed: 12/12/2022]
Abstract
Once damaged, articular cartilage has a limited potential to repair. Clinically, a repair tissue is formed, yet, it is often mechanically inferior fibrocartilage. The use of monolayer expanded versus naïve cells may explain one of the biggest discrepancies in mesenchymal stromal/stem cell (MSC) based cartilage regeneration. Namely, studies utilizing monolayer expanded MSCs, as indicated by numerous in vitro studies, report as a main limitation the induction of type X collagen and hypertrophy, a phenotype associated with endochondral bone formation. However, marrow stimulation and transfer studies report a mechanically inferior collagen I/II fibrocartilage as the main outcome. Therefore, this review will highlight the collagen species produced during the different therapeutic approaches. New developments in scaffold design and delivery of therapeutic molecules will be described. Potential future directions towards clinical translation will be discussed. New delivery mechanisms are being developed and they offer new hope in targeted therapeutic delivery.
Collapse
Affiliation(s)
| | - Mauro Alini
- AO Research Institute Davos, 7270 Davos Platz, Switzerland.
| | | |
Collapse
|
22
|
Watson Levings RS, Smith AD, Broome TA, Rice BL, Gibbs EP, Myara DA, Hyddmark EV, Nasri E, Zarezadeh A, Levings PP, Lu Y, White ME, Dacanay EA, Foremny GB, Evans CH, Morton AJ, Winter M, Dark MJ, Nickerson DM, Colahan PT, Ghivizzani SC. Self-Complementary Adeno-Associated Virus-Mediated Interleukin-1 Receptor Antagonist Gene Delivery for the Treatment of Osteoarthritis: Test of Efficacy in an Equine Model. HUM GENE THER CL DEV 2019; 29:101-112. [PMID: 29869535 DOI: 10.1089/humc.2017.143] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The authors are investigating self-complementary adeno-associated virus (scAAV) as a vector for intra-articular gene-delivery of interleukin-1 receptor antagonist (IL-1Ra), and its therapeutic capacity in the treatment of osteoarthritis (OA). To model gene transfer on a scale proportional to the human knee, a frequent site of OA incidence, studies were focused on the joints of the equine forelimb. Using AAV2.5 capsid and equine IL-1Ra as a homologous transgene, a functional ceiling dose of ∼5 × 1012 viral genomes was previously identified, which elevated the steady state levels of eqIL-1Ra in synovial fluids by >40-fold over endogenous production for at least 6 months. Here, using an osteochondral fragmentation model of early OA, the functional capacity of scAAV.IL-1Ra gene-delivery was examined in equine joints over a period of 12 weeks. In the disease model, transgenic eqIL-1Ra expression was several fold higher than seen previously in healthy joints, and correlated directly with the severity of joint pathology at the time of treatment. Despite wide variation in expression, the steady-state eqIL-1Ra in synovial fluids exceeded that of IL-1 by >400-fold in all animals, and a consistent treatment effect was observed. This included a 30-40% reduction in lameness and ∼25% improvement in total joint pathology by both magnetic resonance imaging and arthroscopic assessments, which included reduced joint effusion and synovitis, and improved repair of the osteochondral lesion. No vector-related increase in eqIL-1Ra levels in blood or urine was noted. Cumulatively, these studies in the equine model indicate scAAV.IL-1Ra administration is reasonably safe and capable of sustained therapeutic IL-1Ra production intra-articularly in joints of human scale. This profile supports consideration for human testing in OA.
Collapse
Affiliation(s)
| | - Andrew D Smith
- 2 Department of Large Animal Clinical Sciences, University of Florida , Gainesville, Florida
| | - Ted A Broome
- 2 Department of Large Animal Clinical Sciences, University of Florida , Gainesville, Florida
| | - Brett L Rice
- 2 Department of Large Animal Clinical Sciences, University of Florida , Gainesville, Florida
| | - Eric P Gibbs
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - David A Myara
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - E Viktoria Hyddmark
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Elham Nasri
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Ali Zarezadeh
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Padraic P Levings
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Yuan Lu
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Margaret E White
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - E Anthony Dacanay
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Gregory B Foremny
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Christopher H Evans
- 3 Rehabilitation Medicine Research Center, Mayo Clinic , Rochester, Minnesota
| | - Alison J Morton
- 2 Department of Large Animal Clinical Sciences, University of Florida , Gainesville, Florida
| | - Mathew Winter
- 4 Department of Small Animal Clinical Sciences, University of Florida , Gainesville, Florida
| | - Michael J Dark
- 5 Department of Infectious Diseases and Pathology, University of Florida , Gainesville, Florida
| | - David M Nickerson
- 6 Department of Statistics and Actuarial Science, University of Florida , Gainesville, Florida
| | - Patrick T Colahan
- 2 Department of Large Animal Clinical Sciences, University of Florida , Gainesville, Florida
| | - Steven C Ghivizzani
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| |
Collapse
|
23
|
Watson Levings RS, Broome TA, Smith AD, Rice BL, Gibbs EP, Myara DA, Hyddmark EV, Nasri E, Zarezadeh A, Levings PP, Lu Y, White ME, Dacanay EA, Foremny GB, Evans CH, Morton AJ, Winter M, Dark MJ, Nickerson DM, Colahan PT, Ghivizzani SC. Gene Therapy for Osteoarthritis: Pharmacokinetics of Intra-Articular Self-Complementary Adeno-Associated Virus Interleukin-1 Receptor Antagonist Delivery in an Equine Model. HUM GENE THER CL DEV 2019; 29:90-100. [PMID: 29869540 DOI: 10.1089/humc.2017.142] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Toward the treatment of osteoarthritis (OA), the authors have been investigating self-complementary adeno-associated virus (scAAV) for intra-articular delivery of therapeutic gene products. As OA frequently affects weight-bearing joints, pharmacokinetic studies of scAAV gene delivery were performed in the joints of the equine forelimb to identify parameters relevant to clinical translation in humans. Using interleukin-1 receptor antagonist (IL-1Ra) as a secreted therapeutic reporter, scAAV vector plasmids containing codon-optimized cDNA for equine IL-1Ra (eqIL-1Ra) were generated, which produced eqIL-1Ra at levels 30- to 50-fold higher than the native sequence. The most efficient cDNA was packaged in AAV2.5 capsid, and following characterization in vitro, the virus was injected into the carpal and metacarpophalangeal joints of horses over a 100-fold dose range. A putative ceiling dose of 5 × 1012 viral genomes was identified that elevated the steady-state eqIL-1Ra in the synovial fluids of injected joints by >40-fold over endogenous levels and was sustained for at least 6 months. No adverse effects were seen, and eqIL-1Ra in serum and urine remained at background levels throughout. Using the 5 × 1012 viral genome dose of scAAV, and green fluorescent protein as a cytologic marker, the local and systemic distribution of vector and transduced cells following intra-articular injection scAAV.GFP were compared in healthy equine joints and in those with late-stage, naturally occurring OA. In both cases, 99.7% of the vector remained within the injected joint. Strikingly, the pathologies characteristic of OA (synovitis, osteophyte formation, and cartilage erosion) were associated with a substantial increase in transgenic expression relative to tissues in healthy joints. This was most notable in regions of articular cartilage with visible damage, where foci of brilliantly fluorescent chondrocytes were observed. Overall, these data suggest that AAV-mediated gene transfer can provide relatively safe, sustained protein drug delivery to joints of human proportions.
Collapse
Affiliation(s)
| | - Ted A Broome
- 2 Department of Large Animal Clinical Sciences, University of Florida , Gainesville, Florida
| | - Andrew D Smith
- 2 Department of Large Animal Clinical Sciences, University of Florida , Gainesville, Florida
| | - Brett L Rice
- 2 Department of Large Animal Clinical Sciences, University of Florida , Gainesville, Florida
| | - Eric P Gibbs
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - David A Myara
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - E Viktoria Hyddmark
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Elham Nasri
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Ali Zarezadeh
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Padraic P Levings
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Yuan Lu
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Margaret E White
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - E Anthony Dacanay
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Gregory B Foremny
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| | - Christopher H Evans
- 3 Rehabilitation Medicine Research Center, Mayo Clinic , Rochester, Minnesota
| | - Alison J Morton
- 2 Department of Large Animal Clinical Sciences, University of Florida , Gainesville, Florida
| | - Mathew Winter
- 4 Department of Small Animal Clinical Sciences, University of Florida , Gainesville, Florida
| | - Michael J Dark
- 5 Department of Infectious Diseases and Pathology, University of Florida , Gainesville, Florida
| | - David M Nickerson
- 6 Department of Statistics and Actuarial Science, University of Central Florida , Orlando, Florida
| | - Patrick T Colahan
- 2 Department of Large Animal Clinical Sciences, University of Florida , Gainesville, Florida
| | - Steven C Ghivizzani
- 1 Department of Orthopedics and Rehabilitation, University of Florida , Gainesville, Florida
| |
Collapse
|
24
|
Evans CH, Ghivizzani SC, Robbins PD. Gene Delivery to Joints by Intra-Articular Injection. Hum Gene Ther 2019; 29:2-14. [PMID: 29160173 DOI: 10.1089/hum.2017.181] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Most forms of arthritis are incurable, difficult to treat, and a major cause of disability in Western countries. Better local treatment of arthritis is impaired by the pharmacokinetics of the joint that make it very difficult to deliver drugs to joints at sustained, therapeutic concentrations. This is especially true of biologic drugs, such as proteins and RNA, many of which show great promise in preclinical studies. Gene transfer provides a strategy for overcoming this limitation. The basic concept is to deliver cDNAs encoding therapeutic products by direct intra-articular injection, leading to sustained, endogenous synthesis of the gene products within the joint. Proof of concept has been achieved for both in vivo and ex vivo gene delivery using a variety of vectors, genes, and cells in several different animal models. There have been a small number of clinical trials for rheumatoid arthritis (RA) and osteoarthritis (OA) using retrovirus vectors for ex vivo gene delivery and adeno-associated virus (AAV) for in vivo delivery. AAV is of particular interest because, unlike other viral vectors, it is able to penetrate deep within articular cartilage and transduce chondrocytes in situ. This property is of particular importance in OA, where changes in chondrocyte metabolism are thought to be fundamental to the pathophysiology of the disease. Authorities in Korea have recently approved the world's first arthritis gene therapy. This targets OA by the injection of allogeneic chondrocytes that have been transduced with a retrovirus carrying transforming growth factor-β1 cDNA. Phase III studies are scheduled to start in the United States soon. Meanwhile, two additional Phase I trials are listed on Clinicaltrials.gov , both using AAV. One targets RA by transferring interferon-β, and the other targets OA by transferring interleukin-1 receptor antagonist. The field is thus gaining momentum and promises to improve the treatment of these common and debilitating diseases.
Collapse
Affiliation(s)
- Christopher H Evans
- 1 Rehabilitation Medicine Research Center, Mayo Clinic , Rochester, Minnesota
| | - Steven C Ghivizzani
- 2 Department of Orthopedics and Rehabilitation, University of Florida College of Medicine , Gainesville, Florida
| | - Paul D Robbins
- 3 Department of Metabolism and Aging, The Scripps Research Institute , Jupiter, Florida
| |
Collapse
|
25
|
Graceffa V, Vinatier C, Guicheux J, Evans CH, Stoddart M, Alini M, Zeugolis DI. State of art and limitations in genetic engineering to induce stable chondrogenic phenotype. Biotechnol Adv 2018; 36:1855-1869. [PMID: 30012541 DOI: 10.1016/j.biotechadv.2018.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/16/2018] [Accepted: 07/12/2018] [Indexed: 12/18/2022]
|
26
|
Martin-Pena A, Porter R, Plumton G, McCarrel T, Morton A, Guijarro M, Ghivizzani S, Sharma B, Palmer G. Lentiviral-based reporter constructs for profiling chondrogenic activity in primary equine cell populations. Eur Cell Mater 2018; 36:156-170. [PMID: 30311630 PMCID: PMC6788286 DOI: 10.22203/ecm.v036a12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Successful clinical translation of mesenchymal stem cell (MSC)-based therapies for cartilage repair will likely require the implementation of standardised protocols and broadly applicable tools to facilitate the comparisons among cell types and chondroinduction methods. The present study investigated the utility of recombinant lentiviral reporter vectors as reliable tools for comparing chondrogenic potential among primary cell populations and distinguishing cellular-level variations of chondrogenic activity in widely used three-dimensional (3D) culture systems. Primary equine MSCs and chondrocytes were transduced with vectors containing combinations of fluorescent and luciferase reporter genes under constitutive cytomeglavirus (CMV) or chondrocyte-lineage (Col2) promoters. Reporter activity was measured by fluorescence imaging and luciferase assay. In 3D cultures of MSC aggregates and polyethylene glycol-hyaluronic acid (PEG-HA) hydrogels, transforming growth factor beta 3 (TGF-β3)-mediated chondroinduction increased Col2 reporter activity, demonstrating close correlation with histology and mRNA expression levels of COL2A1 and SOX9. Comparison of chondrogenic activities among MSC populations using a secretable luciferase reporter revealed enhanced chondrogenesis in bone-marrow-derived MSCs relative to MSC populations from synovium and adipose tissues. A dual fluorescence reporter - enabling discrimination of highly chondrogenic (Col2-GFP) cells within an MSC population (CMV-tdTomato) - revealed marked heterogeneity in differentiating aggregate cultures and identified chondrogenic cells in chondrocyte-seeded PEG-HA hydrogels after 6 weeks in a subcutaneous implant model - indicating stable, long-term reporter expression in vivo. These results suggested that lentiviral reporter vectors may be used to address fundamental questions regarding chondrogenic activity in chondroprogenitor cell populations and accelerate clinical translation of cell-based cartilage repair strategies.
Collapse
Affiliation(s)
- A. Martin-Pena
- Department of Orthopaedics and Rehabilitation, University
of Florida, Gainesville, Florida USA
| | - R.M. Porter
- Department of Orthopaedics, University of Arkansas, Little
Rock, Arkansas, USA
| | - G Plumton
- Department of Biomedical Engineering, University of
Florida, Gainesville, Florida USA
| | - T.M. McCarrel
- College of Veterinary Sciences, University of Florida,
Gainesville, Florida USA
| | - A.J. Morton
- College of Veterinary Sciences, University of Florida,
Gainesville, Florida USA
| | - M.V. Guijarro
- Department of Anatomy and Cell Biology, University of
Florida, Gainesville, Florida USA
| | - S.C. Ghivizzani
- Department of Orthopaedics and Rehabilitation, University
of Florida, Gainesville, Florida USA
| | - B. Sharma
- Department of Orthopaedics, University of Arkansas, Little
Rock, Arkansas, USA
| | - G.D. Palmer
- Department of Orthopaedics and Rehabilitation, University
of Florida, Gainesville, Florida USA,Address for correspondence: Glyn Palmer, Ph.D,
Dept of Orthopaedics and Rehabilitation, University of Florida, 1600 SW Archer
Rd, MSB, M2-235, Gainesville, FL 32610, Telephone: +1 352 273 7087, Fax: +1 352
273 7427,
| |
Collapse
|
27
|
Multi-scale imaging techniques to investigate solute transport across articular cartilage. J Biomech 2018; 78:10-20. [DOI: 10.1016/j.jbiomech.2018.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022]
|
28
|
|
29
|
Gabner S, Ertl R, Velde K, Renner M, Jenner F, Egerbacher M, Hlavaty J. Cytokine-induced interleukin-1 receptor antagonist protein expression in genetically engineered equine mesenchymal stem cells for osteoarthritis treatment. J Gene Med 2018; 20:e3021. [PMID: 29608232 PMCID: PMC6001542 DOI: 10.1002/jgm.3021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A combination of tissue engineering methods employing mesenchymal stem cells (MSCs) together with gene transfer takes advantage of innovative strategies and highlights a new approach for targeting osteoarthritis (OA) and other cartilage defects. Furthermore, the development of systems allowing tunable transgene expression as regulated by natural disease-induced substances is highly desirable. METHODS Bone marrow-derived equine MSCs were transduced with a lentiviral vector expressing interleukin-1 receptor antagonist (IL-1Ra) gene under the control of an inducible nuclear factor-kappa B-responsive promoter and IL-1Ra production upon pro-inflammatory cytokine stimulation [tumor necrosis factor (TNF)α, interleukin (IL)-1β] was analysed. To assess the biological activity of the IL-1Ra protein that was produced and the therapeutic effect of IL-1Ra-expressing MSCs (MSC/IL-1Ra), cytokine-based two- and three-dimensional in vitro models of osteoarthritis using equine chondrocytes were established and quantitative real-time polymerase chain reaction (PCR) analysis was used to measure the gene expression of aggrecan, collagen IIA1, interleukin-1β, interleukin-6, interleukin-8, matrix metalloproteinase-1 and matrix metalloproteinase-13. RESULTS A dose-dependent increase in IL-1Ra expression was found in MSC/IL-1Ra cells upon TNFα administration, whereas stimulation using IL-1β did not lead to IL-1Ra production above the basal level observed in nonstimulated cells as a result of the existing feedback loop. Repeated cycles of induction allowed on/off modulation of transgene expression. In vitro analyses revealed that IL-1Ra protein present in the conditioned medium from MSC/IL-1Ra cells blocks OA onset in cytokine-treated equine chondrocytes and co-cultivation of MSC/IL-1Ra cells with osteoarthritic spheroids alleviates the severity of the osteoarthritic changes. CONCLUSIONS Thus, pro-inflammatory cytokine induced IL-1Ra protein expression from genetically modified MSCs might represent a promising strategy for osteoarthritis treatment.
Collapse
Affiliation(s)
- Simone Gabner
- Institute of Pathology and Forensic Veterinary Medicine, Working Group Histology and EmbryologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Reinhard Ertl
- VetCORE, Facility for ResearchUniversity of Veterinary MedicineViennaAustria
| | - Karsten Velde
- Equine University HospitalUniversity of Veterinary Medicine ViennaViennaAustria
| | - Matthias Renner
- Division of Medical BiotechnologyPaul‐Ehrlich‐InstitutLangenGermany
| | - Florien Jenner
- Equine University HospitalUniversity of Veterinary Medicine ViennaViennaAustria
| | - Monika Egerbacher
- Institute of Pathology and Forensic Veterinary Medicine, Working Group Histology and EmbryologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Juraj Hlavaty
- Institute of Pathology and Forensic Veterinary Medicine, Working Group Histology and EmbryologyUniversity of Veterinary Medicine ViennaViennaAustria
| |
Collapse
|
30
|
Kyostio-Moore S, Berthelette P, Cornell CS, Nambiar B, Figueiredo MD. Hyaluronic acid synthase-2 gene transfer into the joints of Beagles by use of recombinant adeno-associated viral vectors. Am J Vet Res 2018; 79:505-517. [DOI: 10.2460/ajvr.79.5.505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Gabner S, Hlavaty J, Velde K, Renner M, Jenner F, Egerbacher M. Inflammation-induced transgene expression in genetically engineered equine mesenchymal stem cells. J Gene Med 2018; 18:154-64. [PMID: 27272202 DOI: 10.1002/jgm.2888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Osteoarthritis, a chronic and progressive degenerative joint disorder, ranks amongst the top five causes of disability. Given the high incidence, associated socioeconomic costs and the absence of effective disease-modifying therapies of osteoarthritis, cell-based treatments offer a promising new approach. Owing to their paracrine, differentiation and self-renewal abilities, mesenchymal stem cells (MSCs) have great potential for regenerative medicine, which might be further enhanced by targeted gene therapy. Hence, the development of systems allowing transgene expression, particularly when regulated by natural disease-dependent occuring substances, is of high interest. METHODS Bone marrow-isolated equine MSCs were stably transduced with an HIV-1 based lentiviral vector expressing the luciferase gene under control of an inducible nuclear factor κB (NFκB)-responsive promoter. Marker gene expression was analysed by determining luciferase activity in transduced cells stimulated with different concentrations of interleukin (IL)-1β or tumour necrosis factor (TNF)α. RESULTS A dose-dependent increase in luciferase expression was observed in transduced MSCs upon cytokine stimulation. The induction effect was more potent in cells treated with TNFα compared to those treated with IL-1β. Maximum transgene expression was obtained after 48 h of stimulation and the same time was necessary to return to baseline luciferase expression levels after withdrawal of the stimulus. Repeated cycles of induction allowed on-off modulation of transgene expression without becoming refractory to induction. The NFκB-responsive promoter retained its inducibility also in chondrogenically differentiated MSC/Luc cells. CONCLUSIONS The results of the present study demonstrate that on demand transgene expression from the NFκB-responsive promoter using naturally occurring inflammatory cytokines can be induced in undifferentiated and chondrogenically differentiated equine MSCs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Simone Gabner
- Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Juraj Hlavaty
- Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karsten Velde
- Equine University Hospital, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Matthias Renner
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Florien Jenner
- Equine University Hospital, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Monika Egerbacher
- Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
32
|
Armbruster N, Krieg J, Weißenberger M, Scheller C, Steinert AF. Rescued Chondrogenesis of Mesenchymal Stem Cells under Interleukin 1 Challenge by Foamyviral Interleukin 1 Receptor Antagonist Gene Transfer. Front Pharmacol 2017; 8:255. [PMID: 28536528 PMCID: PMC5422547 DOI: 10.3389/fphar.2017.00255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/24/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) and their chondrogenic differentiation have been extensively investigated in vitro as MSCs provide an attractive source besides chondrocytes for cartilage repair therapies. Here we established prototype foamyviral vectors (FVV) that are derived from apathogenic parent viruses and are characterized by a broad host range and a favorable integration pattern into the cellular genome. As the inflammatory cytokine interleukin 1 beta (IL1β) is frequently present in diseased joints, the protective effects of FVV expressing the human interleukin 1 receptor antagonist protein (IL1RA) were studied in an established in vitro model (aggregate culture system) of chondrogenesis in the presence of IL1β. Materials and Methods: We generated different recombinant FVVs encoding enhanced green fluorescent protein (EGFP) or IL1RA and examined their transduction efficiencies and transgene expression profiles using different cell lines and human primary MSCs derived from bone marrow-aspirates. Transgene expression was evaluated by fluorescence microscopy (EGFP), flow cytometry (EGFP), and ELISA (IL1RA). For evaluation of the functionality of the IL1RA transgene to block the inhibitory effects of IL1β on chondrogenesis of primary MSCs and an immortalized MSC cell line (TERT4 cells), the cells were maintained following transduction as aggregate cultures in standard chondrogenic media in the presence or absence of IL1β. After 3 weeks of culture, pellets were harvested and analyzed by histology and immunohistochemistry for chondrogenic phenotypes. Results: The different FVV efficiently transduced cell lines as well as primary MSCs, thereby reaching high transgene expression levels in 6-well plates with levels of around 100 ng/ml IL1RA. MSC aggregate cultures which were maintained in chondrogenic media without IL1β supplementation revealed a chondrogenic phenotype by means of strong positive staining for collagen type II and matrix proteoglycan (Alcian blue). Addition of IL1β was inhibitory to chondrogenesis in untreated control pellets. In contrast, foamyviral mediated IL1RA expression rescued the chondrogenesis in pellets cultured in the presence of IL1β. Transduced MSC pellets reached thereby very high IL1RA transgene expression levels with a peak of 1087 ng/ml after day 7, followed by a decrease to 194 ng/ml after day 21, while IL1RA concentrations of controls were permanently below 200 pg/ml. Conclusion: Our results indicate that FVV are capable of efficient gene transfer to MSCs, while reaching IL1RA transgene expression levels, that were able to efficiently block the impacts of IL1β in vitro. FVV merit further investigation as a means to study the potential as a gene transfer tool for MSC based therapies for cartilage repair.
Collapse
Affiliation(s)
- Nicole Armbruster
- Institute for Virology and Immunobiology, University of WuerzburgWuerzburg, Germany.,Department of Orthopaedic Surgery, Klinik König-Ludwig-Haus Würzburg - Center for Musculoskeletal Research, University of WuerzburgWuerzburg, Germany
| | - Jennifer Krieg
- Institute for Virology and Immunobiology, University of WuerzburgWuerzburg, Germany.,Department of Orthopaedic Surgery, Klinik König-Ludwig-Haus Würzburg - Center for Musculoskeletal Research, University of WuerzburgWuerzburg, Germany
| | - Manuel Weißenberger
- Department of Orthopaedic Surgery, Klinik König-Ludwig-Haus Würzburg - Center for Musculoskeletal Research, University of WuerzburgWuerzburg, Germany
| | - Carsten Scheller
- Institute for Virology and Immunobiology, University of WuerzburgWuerzburg, Germany
| | - Andre F Steinert
- Department of Orthopaedic Surgery, Klinik König-Ludwig-Haus Würzburg - Center for Musculoskeletal Research, University of WuerzburgWuerzburg, Germany
| |
Collapse
|
33
|
Anatomically shaped tissue-engineered cartilage with tunable and inducible anticytokine delivery for biological joint resurfacing. Proc Natl Acad Sci U S A 2016; 113:E4513-22. [PMID: 27432980 DOI: 10.1073/pnas.1601639113] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Biological resurfacing of entire articular surfaces represents an important but challenging strategy for treatment of cartilage degeneration that occurs in osteoarthritis. Not only does this approach require anatomically sized and functional engineered cartilage, but the inflammatory environment within an arthritic joint may also inhibit chondrogenesis and induce degradation of native and engineered cartilage. The goal of this study was to use adult stem cells to engineer anatomically shaped, functional cartilage constructs capable of tunable and inducible expression of antiinflammatory molecules, specifically IL-1 receptor antagonist (IL-1Ra). Large (22-mm-diameter) hemispherical scaffolds were fabricated from 3D woven poly(ε-caprolactone) (PCL) fibers into two different configurations and seeded with human adipose-derived stem cells (ASCs). Doxycycline (dox)-inducible lentiviral vectors containing eGFP or IL-1Ra transgenes were immobilized to the PCL to transduce ASCs upon seeding, and constructs were cultured in chondrogenic conditions for 28 d. Constructs showed biomimetic cartilage properties and uniform tissue growth while maintaining their anatomic shape throughout culture. IL-1Ra-expressing constructs produced nearly 1 µg/mL of IL-1Ra upon controlled induction with dox. Treatment with IL-1 significantly increased matrix metalloprotease activity in the conditioned media of eGFP-expressing constructs but not in IL-1Ra-expressing constructs. Our findings show that advanced textile manufacturing combined with scaffold-mediated gene delivery can be used to tissue engineer large anatomically shaped cartilage constructs that possess controlled delivery of anticytokine therapy. Importantly, these cartilage constructs have the potential to provide mechanical functionality immediately upon implantation, as they will need to replace a majority, if not the entire joint surface to restore function.
Collapse
|
34
|
Roman-Blas JA, Bizzi E, Largo R, Migliore A, Herrero-Beaumont G. An update on the up and coming therapies to treat osteoarthritis, a multifaceted disease. Expert Opin Pharmacother 2016; 17:1745-56. [DOI: 10.1080/14656566.2016.1201070] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jorge A. Roman-Blas
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Emanuele Bizzi
- UOS of Rheumatology, S. Pietro Fatebenefratelli Hospital, Rome, Italy
| | - Raquel Largo
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Alberto Migliore
- UOS of Rheumatology, S. Pietro Fatebenefratelli Hospital, Rome, Italy
| | - Gabriel Herrero-Beaumont
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
35
|
Interleukin-1 Receptor Antagonist and Interleukin-1 Beta Levels in Equine Synovial Fluid of Normal and Osteoarthritic Joints: Influence of Anatomic Joint Location and Repeated Arthrocentesis. J Equine Vet Sci 2016. [DOI: 10.1016/j.jevs.2016.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Wang G, Evans CH, Benson JM, Hutt JA, Seagrave J, Wilder JA, Grieger JC, Samulski RJ, Terse PS. Safety and biodistribution assessment of sc-rAAV2.5IL-1Ra administered via intra-articular injection in a mono-iodoacetate-induced osteoarthritis rat model. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:15052. [PMID: 26817025 PMCID: PMC4714526 DOI: 10.1038/mtm.2015.52] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/12/2015] [Accepted: 11/15/2015] [Indexed: 12/19/2022]
Abstract
Interleukin-1 (IL-1) plays an important role in the pathophysiology of osteoarthritis (OA), and gene transfer of IL-1 receptor antagonist (IL-1Ra) holds promise for OA treatment. A preclinical safety and biodistribution study evaluated a self-complementary adeno-associated viral vector carrying rat IL-1Ra transgene (sc-rAAV2.5rIL-1Ra) at 5 × 108, 5 × 109, or 5 × 1010 vg/knee, or human IL-1Ra transgene (sc-rAAV2.5hIL-1Ra) at 5 × 1010 vg/knee, in Wistar rats with mono-iodoacetate (MIA)–induced OA at days 7, 26, 91, 180, and 364 following intra-articular injection. The MIA-induced OA lesions were consistent with the published data on this model. The vector genomes persisted in the injected knees for up to a year with only limited vector leakage to systemic circulation and uptake in tissues outside the knee. Low levels of IL-1Ra expression and mitigation of OA lesions were observed in the vector-injected knees, albeit inconsistently. Neutralizing antibodies against the vector capsid developed in a dose-dependent manner, but only the human vector induced a small splenic T-cell immune response to the vector capsid. No local or systemic toxicity attributable to vector administration was identified in the rats as indicated by clinical signs, body weight, feed consumption, clinical pathology, and gross and microscopic pathology through day 364. Taken together, the gene therapy vector demonstrated a favorable safety profile.
Collapse
Affiliation(s)
- Gensheng Wang
- Applied Toxicology and Gene Therapy Pharmacology/Toxicology Program, Lovelace Respiratory Research Institute , Albuquerque, New Mexico, USA
| | - Christopher H Evans
- Rehabilitation Medicine Research Center, Mayo Clinic , Rochester, Minnesota, USA
| | - Janet M Benson
- Applied Toxicology and Gene Therapy Pharmacology/Toxicology Program, Lovelace Respiratory Research Institute , Albuquerque, New Mexico, USA
| | - Julie A Hutt
- Applied Toxicology and Gene Therapy Pharmacology/Toxicology Program, Lovelace Respiratory Research Institute , Albuquerque, New Mexico, USA
| | - JeanClare Seagrave
- Applied Toxicology and Gene Therapy Pharmacology/Toxicology Program, Lovelace Respiratory Research Institute , Albuquerque, New Mexico, USA
| | - Julie A Wilder
- Applied Toxicology and Gene Therapy Pharmacology/Toxicology Program, Lovelace Respiratory Research Institute , Albuquerque, New Mexico, USA
| | - Joshua C Grieger
- Gene Therapy Center, University of North Carolina , Chapel Hill, North Carolina, USA
| | - R Jude Samulski
- Gene Therapy Center, University of North Carolina , Chapel Hill, North Carolina, USA
| | - Pramod S Terse
- Division of Pre-Clinical Innovations, National Center for Advancing Translational Sciences, NIH , Bethesda, Maryland, USA
| |
Collapse
|
37
|
Sun Z, Yin H, Yu X, Sun X, Xiao B, Xu Y, Yuan Z, Meng H, Peng J, Yu C, Wang Y, Guo Q, Wang A, Lu S. Inhibition of Osteoarthritis in Rats by Electroporation with Interleukin-1 Receptor Antagonist. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jbise.2016.97027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Madry H, Cucchiarini M. Gene therapy for human osteoarthritis: principles and clinical translation. Expert Opin Biol Ther 2015; 16:331-46. [PMID: 26593049 DOI: 10.1517/14712598.2016.1124084] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Osteoarthritis (OA) is the most prevalent chronic joint disease. Its key feature is a progressive articular cartilage loss. Gene therapy for OA aims at delivering gene-based therapeutic agents to the osteoarthritic cartilage, resulting in a controlled, site-specific, long-term presence to rebuild the damaged cartilage. AREAS COVERED An overview is provided of the principles of gene therapy for OA based on a PubMed literature search. Gene transfer to normal and osteoarthritic cartilage in vitro and in animal models in vivo is reviewed. Results from recent clinical gene therapy trials for OA are discussed and placed into perspective. EXPERT OPINION Recombinant adeno-associated viral (rAAV) vectors enable to directly transfer candidate sequences in human articular chondrocytes in situ, providing a potent tool to modulate the structure of osteoarthritic cartilage. However, few preclinical animal studies in OA models have been performed thus far. Noteworthy, several gene therapy clinical trials have been carried out in patients with end-stage knee OA based on the intraarticular injection of human juvenile allogeneic chondrocytes overexpressing a cDNA encoding transforming growth factor-beta-1 via retroviral vectors. In a recent placebo-controlled randomized trial, clinical scores were improved compared with placebo. These translational results provide sufficient reason to proceed with further clinical testing of gene transfer protocols for the treatment of OA.
Collapse
Affiliation(s)
- Henning Madry
- a Center of Experimental Orthopaedics , Saarland University , Homburg/Saar , Germany
| | - Magali Cucchiarini
- a Center of Experimental Orthopaedics , Saarland University , Homburg/Saar , Germany
| |
Collapse
|
39
|
Aalbers CJ, Bevaart L, Loiler S, de Cortie K, Wright JF, Mingozzi F, Tak PP, Vervoordeldonk MJ. Preclinical Potency and Biodistribution Studies of an AAV 5 Vector Expressing Human Interferon-β (ART-I02) for Local Treatment of Patients with Rheumatoid Arthritis. PLoS One 2015; 10:e0130612. [PMID: 26107769 PMCID: PMC4479517 DOI: 10.1371/journal.pone.0130612] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 05/21/2015] [Indexed: 01/09/2023] Open
Abstract
Introduction Proof of concept for local gene therapy for the treatment of arthritis with immunomodulatory cytokine interferon beta (IFN-β) has shown promising results in animal models of rheumatoid arthritis (RA). For the treatment of RA patients, we engineered a recombinant adeno-associated serotype 5 vector (rAAV5) encoding human (h)IFN-β under control of a nuclear factor κB promoter (ART-I02). Methods The potency of ART-I02 in vitro as well as biodistribution in vivo in arthritic animals was evaluated to characterize the vector prior to clinical application. ART-I02 expression and bioactivity after transduction was evaluated in fibroblast-like synoviocytes (FLS) from different species. Biodistribution of the vector after local injection was assessed in a rat adjuvant arthritis model through qPCR analysis of vector DNA. In vivo imaging was used to investigate transgene expression and kinetics in a mouse collagen induced arthritis model. Results Transduction of RA FLS in vitro with ART-I02 resulted in high expression levels of bioactive hIFN-β. Transduction of FLS from rhesus monkeys, rodents and rabbits with ART-I02 showed high transgene expression, and hIFN-β proved bioactive in FLS from rhesus monkeys. Transgene expression and bioactivity in RA FLS were unaltered in the presence of methotrexate. In vivo, vector biodistribution analysis in rats after intra-articular injection of ART-I02 demonstrated that the majority of vector DNA remained in the joint (>93%). In vivo imaging in mice confirmed local expression of rAAV5 in the knee joint region and demonstrated rapid detectable and sustained expression up until 7 weeks. Conclusions These data show that hIFN-β produced by RA FLS transduced with ART-I02 is bioactive and that intra-articular delivery of rAAV5 drives expression of a therapeutic transgene in the joint, with only limited biodistribution of vector DNA to other tissues, supporting progress towards a phase 1 clinical trial for the local treatment of arthritis in patients with RA.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/therapy
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/therapy
- Cells, Cultured
- Cytokines/biosynthesis
- Dependovirus/genetics
- Gene Expression/drug effects
- Genes, Synthetic
- Genetic Therapy
- Genetic Vectors/administration & dosage
- Genetic Vectors/genetics
- Genetic Vectors/pharmacokinetics
- Genetic Vectors/therapeutic use
- Humans
- Injections, Intra-Articular
- Interferon-beta/genetics
- Macaca mulatta
- Male
- Methotrexate/pharmacology
- Methotrexate/therapeutic use
- Mice
- Mice, Inbred DBA
- NF-kappa B/genetics
- Promoter Regions, Genetic/genetics
- Rabbits
- Rats
- Rats, Inbred Lew
- Specific Pathogen-Free Organisms
- Synovial Membrane/cytology
- Synovial Membrane/virology
- Tissue Distribution
- Transduction, Genetic
Collapse
Affiliation(s)
- Caroline J. Aalbers
- Arthrogen B.V., Amsterdam, the Netherlands
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands
- * E-mail:
| | - Lisette Bevaart
- Arthrogen B.V., Amsterdam, the Netherlands
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands
| | - Scott Loiler
- Arthrogen B.V., Amsterdam, the Netherlands
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands
| | - Karin de Cortie
- Arthrogen B.V., Amsterdam, the Netherlands
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands
| | - J. Fraser Wright
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Federico Mingozzi
- University Pierre & Marie Curie, Paris, France
- Genethon, Evry, France
| | - Paul P. Tak
- Arthrogen B.V., Amsterdam, the Netherlands
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands
| | - Margriet J. Vervoordeldonk
- Arthrogen B.V., Amsterdam, the Netherlands
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
40
|
Li KC, Hu YC. Cartilage tissue engineering: recent advances and perspectives from gene regulation/therapy. Adv Healthc Mater 2015; 4:948-68. [PMID: 25656682 DOI: 10.1002/adhm.201400773] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/10/2015] [Indexed: 12/16/2022]
Abstract
Diseases in articular cartilages affect millions of people. Despite the relatively simple biochemical and cellular composition of articular cartilages, the self-repair ability of cartilage is limited. Successful cartilage tissue engineering requires intricately coordinated interactions between matrerials, cells, biological factors, and phycial/mechanical factors, and still faces a multitude of challenges. This article presents an overview of the cartilage biology, current treatments, recent advances in the materials, biological factors, and cells used in cartilage tissue engineering/regeneration, with strong emphasis on the perspectives of gene regulation (e.g., microRNA) and gene therapy.
Collapse
Affiliation(s)
- Kuei-Chang Li
- Department of Chemical Engineering; National Tsing Hua University; Hsinchu Taiwan 300
| | - Yu-Chen Hu
- Department of Chemical Engineering; National Tsing Hua University; Hsinchu Taiwan 300
| |
Collapse
|
41
|
Goodrich LR, Grieger JC, Phillips JN, Khan N, Gray SJ, McIlwraith CW, Samulski RJ. scAAVIL-1ra dosing trial in a large animal model and validation of long-term expression with repeat administration for osteoarthritis therapy. Gene Ther 2015; 22:536-45. [PMID: 25902762 DOI: 10.1038/gt.2015.21] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/22/2015] [Indexed: 11/09/2022]
Abstract
A gene therapeutic approach to treat osteoarthritis (OA) appears to be on the horizon for millions of people who suffer from this disease. Previously we described optimization of a scAAVIL-1ra gene therapeutic vector and initially tested this in an equine model verifying long-term intrasynovial IL-1ra protein at therapeutic levels. Using this vector, we carried out a dosing trial in six horses to verify protein levels and establish a dose that would express relevant levels of therapeutic protein for extended periods of time (8 months). A novel arthroscopic procedure used to detect green fluorescence protein (GFP) fluorescence intrasynovially confirmed successful transduction of the scAAVGFP vector in both the synovial and cartilage tissues. No evidence of intra-articular toxicity was detected. Immune responses to vector revealed development of neutralizing antibodies (Nabs) within 2 weeks of administration, which persisted for the duration of the study but did not lower protein expression intra-articularly. Re-dosing with a different serotype to attain therapeutic levels of protein confirmed establishment of successful transduction. This is the first study in an equine model to establish a dosing/redosing protocol, as well as examine the Nab response to capsid and supports further clinical investigation to determine the clinical efficacy of scAAVIL-1ra to treat OA.
Collapse
Affiliation(s)
- L R Goodrich
- Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, USA
| | - J C Grieger
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J N Phillips
- Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, USA
| | - N Khan
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S J Gray
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C W McIlwraith
- Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, USA
| | - R J Samulski
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
42
|
Abstract
Injuries to the musculoskeletal system are common, debilitating and expensive. In many cases, healing is imperfect, which leads to chronic impairment. Gene transfer might improve repair and regeneration at sites of injury by enabling the local, sustained and potentially regulated expression of therapeutic gene products; such products include morphogens, growth factors and anti-inflammatory agents. Proteins produced endogenously as a result of gene transfer are nascent molecules that have undergone post-translational modification. In addition, gene transfer offers particular advantages for the delivery of products with an intracellular site of action, such as transcription factors and noncoding RNAs, and proteins that need to be inserted into a cell compartment, such as a membrane. Transgenes can be delivered by viral or nonviral vectors via in vivo or ex vivo protocols using progenitor or differentiated cells. The first gene transfer clinical trials for osteoarthritis and cartilage repair have already been completed. Various bone-healing protocols are at an advanced stage of development, including studies with large animals that could lead to human trials. Other applications in the repair and regeneration of skeletal muscle, intervertebral disc, meniscus, ligament and tendon are in preclinical development. In addition to scientific, medical and safety considerations, clinical translation is constrained by social, financial and logistical issues.
Collapse
|
43
|
Madeira C, Santhagunam A, Salgueiro JB, Cabral JM. Advanced cell therapies for articular cartilage regeneration. Trends Biotechnol 2015; 33:35-42. [DOI: 10.1016/j.tibtech.2014.11.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/29/2014] [Accepted: 11/07/2014] [Indexed: 01/25/2023]
|
44
|
Zhao R, Peng X, Li Q, Song W. Effects of phosphorylatable short peptide-conjugated chitosan-mediated IL-1Ra and igf-1 gene transfer on articular cartilage defects in rabbits. PLoS One 2014; 9:e112284. [PMID: 25390659 PMCID: PMC4229204 DOI: 10.1371/journal.pone.0112284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/10/2014] [Indexed: 11/25/2022] Open
Abstract
Previously, we reported an improvement in the transfection efficiency of the plasmid DNA-chitosan (pDNA/CS) complex by the utilization of phosphorylatable short peptide-conjugated chitosan (pSP-CS). In this study, we investigated the effects of pSP-CS-mediated gene transfection of interleukin-1 receptor antagonist protein (IL-1Ra) combined with insulin-like growth factor-1 (IGF-1) in rabbit chondrocytes and in a rabbit model of cartilage defects. pBudCE4.1-IL-1Ra+igf-1, pBudCE4.1-IL-1Ra and pBudCE4.1-igf-1 were constructed and combined with pSP-CS to form pDNA/pSP-CS complexes. These complexes were transfected into rabbit primary chondrocytes or injected into the joint cavity. Seven weeks after treatment, all rabbits were sacrificed and analyzed. High levels of IL-1Ra and igf-1 expression were detected both in the cell culture supernatant and in the synovial fluid. In vitro, the transgenic complexes caused significant proliferation of chondrocytes, promotion of glycosaminoglycan (GAG) and collagen II synthesis, and inhibition of chondrocyte apoptosis and nitric oxide (NO) synthesis. In vivo, the exogenous genes resulted in increased collagen II synthesis and reduced NO and GAG concentrations in the synovial fluid; histological studies revealed that pDNA/pSP-CS treatment resulted in varying degrees of hyaline-like cartilage repair and Mankin score decrease. The co-expression of both genes produced greater effects than each single gene alone both in vitro and in vivo. The results suggest that pSP-CS is a good candidate for use in gene therapy for the treatment of cartilage defects and that igf-1 and IL-1Ra co-expression produces promising biologic effects on cartilage defects.
Collapse
Affiliation(s)
- Ronglan Zhao
- Department of Medical Laboratory, Shandong Provincial Key Laboratory of Clinical Laboratory Diagnostics, Weifang Medical University, Weifang, Shandong, China
| | - Xiaoxiang Peng
- Department of Medical Laboratory, Shandong Provincial Key Laboratory of Clinical Laboratory Diagnostics, Weifang Medical University, Weifang, Shandong, China
- * E-mail:
| | - Qian Li
- Department of Medical Laboratory, Shandong Provincial Key Laboratory of Clinical Laboratory Diagnostics, Weifang Medical University, Weifang, Shandong, China
| | - Wei Song
- Department of Medical Laboratory, Shandong Provincial Key Laboratory of Clinical Laboratory Diagnostics, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
45
|
Use of Tissue Engineering Strategies to Repair Joint Tissues in Osteoarthritis: Viral Gene Transfer Approaches. Curr Rheumatol Rep 2014; 16:449. [DOI: 10.1007/s11926-014-0449-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Evans C. Using genes to facilitate the endogenous repair and regeneration of orthopaedic tissues. INTERNATIONAL ORTHOPAEDICS 2014; 38:1761-9. [PMID: 25038968 DOI: 10.1007/s00264-014-2423-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
Traditional tissue engineering approaches to the restoration of orthopaedic tissues promise to be expensive and not well suited to treating large numbers of patients. Advances in gene transfer technology offer the prospect of developing expedited techniques in which all manipulations can be performed percutaneously or in a single operation. This rests on the ability of gene delivery to provoke the sustained synthesis of relevant gene products in situ without further intervention. Regulated gene expression is also possible, but its urgency is reduced by our ignorance of exactly what levels and periods of expression are needed for specific gene products. This review describes various strategies by which gene therapy can be used to expedite the repair and regeneration of orthopaedic tissues. Strategies include the direct injection of vectors into sites of injury, the use of genetically modified, allogeneic cell lines and the intra-operative harvest of autologous tissues that are quickly transduced and returned to the body, either intact or following rapid cell isolation. Data obtained from pre-clinical experiments in animal models have provided much encouragement that such approaches may eventually find clinical application in human and veterinary medicine.
Collapse
Affiliation(s)
- Christopher Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA,
| |
Collapse
|
47
|
Gene modification of mesenchymal stem cells and articular chondrocytes to enhance chondrogenesis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:369528. [PMID: 24963479 PMCID: PMC4052490 DOI: 10.1155/2014/369528] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/27/2014] [Indexed: 01/14/2023]
Abstract
Current cell based treatment for articular cartilage and osteochondral defects are hampered by issues such as cellular dedifferentiation and hypertrophy of the resident or transplanted cells. The reduced expression of chondrogenic signalling molecules and transcription factors is a major contributing factor to changes in cell phenotype. Gene modification of chondrocytes may be one approach to redirect cells to their primary phenotype and recent advances in nonviral and viral gene delivery technologies have enabled the expression of these lost factors at high efficiency and specificity to regain chondrocyte function. This review focuses on the various candidate genes that encode signalling molecules and transcription factors that are specific for the enhancement of the chondrogenic phenotype and also how epigenetic regulators of chondrogenesis in the form of microRNA may also play an important role.
Collapse
|
48
|
Madry H, Cucchiarini M. Advances and challenges in gene-based approaches for osteoarthritis. J Gene Med 2014; 15:343-55. [PMID: 24006099 DOI: 10.1002/jgm.2741] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/06/2013] [Accepted: 08/30/2013] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA), a paramount cause of physical disability for which there is no definitive cure, is mainly characterized by the gradual loss of the articular cartilage. Current nonsurgical and reconstructive surgical therapies have not met success in reversing the OA phenotype so far. Gene transfer approaches allow for a long-term and site-specific presence of a therapeutic agent to re-equilibrate the metabolic balance in OA cartilage and may consequently be suited to treat this slow and irreversible disorder. The distinct stages of OA need to be respected in individual gene therapy strategies. In this context, molecular therapy appears to be most effective for early OA. A critical step forward has been made by directly transferring candidate sequences into human articular chondrocytes embedded within their native extracellular matrix via recombinant adeno-associated viral vectors. Although extensive studies in vitro attest to a growing interest in this approach, data from animal models of OA are sparse. A phase I dose-escalating trial was recently performed in patients with advanced knee OA to examine the safety and activity of chondrocytes modified to produce the transforming growth factor β1 via intra-articular injection, showing a dose-dependent trend toward efficacy. Proof-of-concept studies in patients prior to undergoing total knee replacement may be privileged in the future to identify the best mode of translating this approach to clinical application, followed by randomized controlled trials.
Collapse
Affiliation(s)
- Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Saarland University, Homburg, Saar, Germany
| | | |
Collapse
|
49
|
Glass KA, Link JM, Brunger JM, Moutos FT, Gersbach CA, Guilak F. Tissue-engineered cartilage with inducible and tunable immunomodulatory properties. Biomaterials 2014; 35:5921-31. [PMID: 24767790 DOI: 10.1016/j.biomaterials.2014.03.073] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/27/2014] [Indexed: 11/25/2022]
Abstract
The pathogenesis of osteoarthritis is mediated in part by inflammatory cytokines including interleukin-1 (IL-1), which promote degradation of articular cartilage and prevent human mesenchymal stem cell (MSC) chondrogenesis. In this study, we combined gene therapy and functional tissue engineering to develop engineered cartilage with immunomodulatory properties that allow chondrogenesis in the presence of pathologic levels of IL-1 by inducing overexpression of IL-1 receptor antagonist (IL-1Ra) in MSCs via scaffold-mediated lentiviral gene delivery. A doxycycline-inducible vector was used to transduce MSCs in monolayer or within 3D woven PCL scaffolds to enable tunable IL-1Ra production. In the presence of IL-1, IL-1Ra-expressing engineered cartilage produced cartilage-specific extracellular matrix, while resisting IL-1-induced upregulation of matrix metalloproteinases and maintaining mechanical properties similar to native articular cartilage. The ability of functional engineered cartilage to deliver tunable anti-inflammatory cytokines to the joint may enhance the long-term success of therapies for cartilage injuries or osteoarthritis.
Collapse
Affiliation(s)
- Katherine A Glass
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jarrett M Link
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jonathan M Brunger
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Franklin T Moutos
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Charles A Gersbach
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
50
|
Roubille C, Pelletier JP, Martel-Pelletier J. New and emerging treatments for osteoarthritis management: will the dream come true with personalized medicine? Expert Opin Pharmacother 2014; 14:2059-77. [PMID: 24044485 DOI: 10.1517/14656566.2013.825606] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Osteoarthritis (OA) is a dynamic process involving the main tissues of the joint for which a global approach should be considered. No disease-modifying OA drug (DMOAD) has yet been approved. New therapeutic strategies are needed that would be cost effective by reducing the need for pharmacological interventions and surgical management while targeting specific pathways leading to OA. The treatment landscape of OA is about to change based on new agents having shown some structural effects and emerging therapies with DMOAD effects. AREAS COVERED In this review based on a Medline (via PubMed) search, promising new and emerging therapies with a potential structural effect (DMOAD) will be discussed including growth factors, platelet-rich plasma, autologous stem cells, bone remodeling modulators, cytokine inhibition, gene therapy, and RNA interference. EXPERT OPINION DMOAD development should focus on targeting some phenotypes of OA patients evidenced with sensitive techniques such as magnetic resonance imaging, as a single treatment will unlikely be appropriate for all OA patients. This will allow the development of DMOADs based on personalized medicine. An exciting new era in DMOAD development is within reach, provided future clinical trials are sufficiently powered, systematically designed, use the appropriate evaluation tools, and target the appropriate categories of OA patients.
Collapse
Affiliation(s)
- Camille Roubille
- University of Montreal Hospital Research Centre (CRCHUM), Osteoarthritis Research Unit , 1560 Sherbrooke Street East, Montreal, Quebec , Canada
| | | | | |
Collapse
|