1
|
Lange C, Madry H, Venkatesan JK, Schmitt G, Speicher-Mentges S, Zurakowski D, Menger MD, Laschke MW, Cucchiarini M. rAAV-Mediated sox9 Overexpression Improves the Repair of Osteochondral Defects in a Clinically Relevant Large Animal Model Over Time In Vivo and Reduces Perifocal Osteoarthritic Changes. Am J Sports Med 2021; 49:3696-3707. [PMID: 34643471 DOI: 10.1177/03635465211049414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Gene transfer of the transcription factor SOX9 with clinically adapted recombinant adeno-associated virus (rAAV) vectors offers a powerful tool to durably enhance the repair process at sites of osteochondral injuries and counteract the development of perifocal osteoarthritis (OA) in the adjacent articular cartilage. PURPOSE To examine the ability of an rAAV sox9 construct to improve the repair of focal osteochondral defects and oppose perifocal OA development over time in a large translational model relative to control gene transfer. STUDY DESIGN Controlled laboratory study. METHODS Standardized osteochondral defects created in the knee joints of adult sheep were treated with rAAV-FLAG-hsox9 relative to control (reporter) rAAV-lacZ gene transfer. Osteochondral repair and degenerative changes in the adjacent cartilage were monitored using macroscopic, histological, immunohistological, and biochemical evaluations after 6 months. The microarchitecture of the subchondral bone was assessed by micro-computed tomography. RESULTS Effective, prolonged sox9 overexpression via rAAV was significantly achieved in the defects after 6 months versus rAAV-lacZ treatment. The application of rAAV-FLAG-hsox9 improved the individual parameters of defect filling, matrix staining, cellular morphology, defect architecture, surface architecture, subchondral bone, and tidemark as well as the overall score of cartilage repair in the defects compared with rAAV-lacZ. The overexpression of sox9 led to higher levels of proteoglycan production, stronger type II collagen deposition, and reduced type I collagen immunoreactivity in the sox9- versus lacZ-treated defects, together with decreased cell densities and DNA content. rAAV-FLAG-hsox9 enhanced semiquantitative histological subchondral bone repair, while the microstructure of the incompletely restored subchondral bone in the sox9 defects was not different from that in the lacZ defects. The articular cartilage adjacent to the sox9-treated defects showed reduced histological signs of perifocal OA changes versus rAAV-lacZ. CONCLUSION rAAV-mediated sox9 gene transfer enhanced osteochondral repair in sheep after 6 months and reduced perifocal OA changes. These results underline the potential of rAAV-FLAG-hsox9 as a therapeutic tool to treat cartilage defects and afford protection against OA. CLINICAL RELEVANCE The delivery of therapeutic rAAV sox9 to sites of focal injuries may offer a novel, convenient tool to enhance the repair of osteochondral defects involving both the articular cartilage and the underlying subchondral bone and provide a protective role by reducing the extent of perifocal OA.
Collapse
Affiliation(s)
- Cliff Lange
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | | | - David Zurakowski
- Departments of Anesthesia and Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
2
|
Rilo-Alvarez H, Ledo AM, Vidal A, Garcia-Fuentes M. Delivery of transcription factors as modulators of cell differentiation. Drug Deliv Transl Res 2021; 11:426-444. [PMID: 33611769 DOI: 10.1007/s13346-021-00931-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Fundamental studies performed during the last decades have shown that cell fate is much more plastic than previously considered, and technologies for its manipulation are a keystone for many new tissue regeneration therapies. Transcription factors (TFs) are DNA-binding proteins that control gene expression, and they have critical roles in the control of cell fate and other cellular behavior. TF-based therapies have much medical potential, but their use as drugs depends on the development of suitable delivery technologies that can help them reach their action site inside of the cells. TFs can be used either as proteins or encoded in polynucleotides. When used in protein form, many TFs require to be associated to a cell-penetrating peptide or another transduction domain. As polynucleotides, they can be delivered either by viral carriers or by non-viral systems such as polyplexes and lipoplexes. TF-based therapies have extensively shown their potential to solve many tissue-engineering problems, including bone, cartilage and cardiac regeneration. Yet, their use has expanded beyond regenerative medicine to other prominent disease areas such as cancer therapy and immunomodulation. This review summarizes some of the delivery options for effective TF-based therapies and their current main applications.
Collapse
Affiliation(s)
- Héctor Rilo-Alvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, IDIS Research Institute, CiMUS Research Institute, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Adriana M Ledo
- Respiratory Therapeutic Area, Novartis Institutes for BioMedical Research, Inc, 700 Main Street, Cambridge, MA, 02139, USA
| | - Anxo Vidal
- Department of Physiology, IDIS Research Institute, CiMUS Research Institute, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Marcos Garcia-Fuentes
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, IDIS Research Institute, CiMUS Research Institute, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
3
|
Saghati S, Nasrabadi HT, Khoshfetrat AB, Moharamzadeh K, Hassani A, Mohammadi SM, Rahbarghazi R, Fathi Karkan S. Tissue Engineering Strategies to Increase Osteochondral Regeneration of Stem Cells; a Close Look at Different Modalities. Stem Cell Rev Rep 2021; 17:1294-1311. [PMID: 33547591 DOI: 10.1007/s12015-021-10130-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
The homeostasis of osteochondral tissue is tightly controlled by articular cartilage chondrocytes and underlying subchondral bone osteoblasts via different internal and external clues. As a correlate, the osteochondral region is frequently exposed to physical forces and mechanical pressure. On this basis, distinct sets of substrates and physicochemical properties of the surrounding matrix affect the regeneration capacity of chondrocytes and osteoblasts. Stem cells are touted as an alternative cell source for the alleviation of osteochondral diseases. These cells appropriately respond to the physicochemical properties of different biomaterials. This review aimed to address some of the essential factors which participate in the chondrogenic and osteogenic capacity of stem cells. Elements consisted of biomechanical forces, electrical fields, and biochemical and physical properties of the extracellular matrix are the major determinant of stem cell differentiation capacity. It is suggested that an additional certain mechanism related to signal-transduction pathways could also mediate the chondro-osteogenic differentiation of stem cells. The discovery of these clues can enable us to modulate the regeneration capacity of stem cells in osteochondral injuries and lead to the improvement of more operative approaches using tissue engineering modalities.
Collapse
Affiliation(s)
- Sepideh Saghati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Baradar Khoshfetrat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Keyvan Moharamzadeh
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Ayla Hassani
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Seyedeh Momeneh Mohammadi
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sonia Fathi Karkan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Madry H, Venkatesan JK, Carballo-Pedrares N, Rey-Rico A, Cucchiarini M. Scaffold-Mediated Gene Delivery for Osteochondral Repair. Pharmaceutics 2020; 12:pharmaceutics12100930. [PMID: 33003607 PMCID: PMC7601511 DOI: 10.3390/pharmaceutics12100930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Osteochondral defects involve both the articular cartilage and the underlying subchondral bone. If left untreated, they may lead to osteoarthritis. Advanced biomaterial-guided delivery of gene vectors has recently emerged as an attractive therapeutic concept for osteochondral repair. The goal of this review is to provide an overview of the variety of biomaterials employed as nonviral or viral gene carriers for osteochondral repair approaches both in vitro and in vivo, including hydrogels, solid scaffolds, and hybrid materials. The data show that a site-specific delivery of therapeutic gene vectors in the context of acellular or cellular strategies allows for a spatial and temporal control of osteochondral neotissue composition in vitro. In vivo, implantation of acellular hydrogels loaded with nonviral or viral vectors has been reported to significantly improve osteochondral repair in translational defect models. These advances support the concept of scaffold-mediated gene delivery for osteochondral repair.
Collapse
Affiliation(s)
- Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany; (H.M.); (J.K.V.)
| | - Jagadeesh Kumar Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany; (H.M.); (J.K.V.)
| | - Natalia Carballo-Pedrares
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, S-15071 A Coruña, Spain; (N.C.-P.); (A.R.-R.)
| | - Ana Rey-Rico
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, S-15071 A Coruña, Spain; (N.C.-P.); (A.R.-R.)
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany; (H.M.); (J.K.V.)
- Correspondence: ; Tel.: +49-684-1162-4987; Fax: +49-684-1162-4988
| |
Collapse
|
5
|
Effects of rAAV-Mediated sox9 Overexpression on the Biological Activities of Human Osteoarthritic Articular Chondrocytes in Their Intrinsic Three-Dimensional Environment. J Clin Med 2019; 8:jcm8101637. [PMID: 31591319 PMCID: PMC6832991 DOI: 10.3390/jcm8101637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Gene therapy for osteoarthritis offers powerful, long-lasting tools that are well adapted to treat such a slow, progressive disorder, especially those therapies based on the clinically adapted recombinant adeno-associated viral (rAAV) vectors. Here, we examined the ability of an rAAV construct carrying a therapeutic sequence for the cartilage-specific SOX9 transcription factor to modulate the phenotype of human osteoarthritic articular chondrocytes compared with normal chondrocytes in a three-dimensional environment where the cells are embedded in their extracellular matrix. Successful sox9 overexpression via rAAV was noted for at least 21 days, leading to the significant production of major matrix components (proteoglycans, type-II collagen) without affecting the proliferation of the cells, while the cells contained premature hypertrophic processes relative to control conditions (reporter rAAV-lacZ application, absence of vector treatment). These findings show the value of using rAAV to adjust the osteoarthritic phenotype when the chondrocytes are confined in their inherently altered environment and the possibility of impacting key cellular processes via gene therapy to remodel human osteoarthritic cartilage lesions.
Collapse
|
6
|
Wang J, Liu H, Zhang Q. IGF-1 polymorphisms modulate the susceptibility to osteonecrosis of the femoral head among Chinese Han population. Medicine (Baltimore) 2019; 98:e15921. [PMID: 31169709 PMCID: PMC6571255 DOI: 10.1097/md.0000000000015921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The study was performed to investigate the genetic associations of IGF-1 polymorphisms rs35767, rs5742714, and rs972936 with susceptibility to osteonecrosis of the femoral head (ONFH) among Chinese Han population.Totally, 101 ONFH patients and 128 healthy controls were enrolled. Hardy-Weinberg equilibrium (HWE) was detected with chi-square test in control group. Odds ratios (ORs) with 95% confidence intervals (95% CIs) were calculated to estimate the relationship between IGF-1 polymorphisms and ONFH risk. Besides, hyplotype analysis was performed to examine linkage disequilibrium between the studied polymorphisms.Genotype AA and allele A of polymorphism rs35767 were more frequent in control group, and offered protection for ONFH onset (AA: OR = 0.382, 95% CI = 0.158-0.923; A: OR = 0.650, 95% CI = 0.442-0.956). Furthermore, the negative relationship was also observed between ONFH risk and polymorphism rs5742714 under the comparisons CG vs CC, and G vs C (OR = 0.395, 95%CI = 0.199-0.787; OR = 0.346, 95%CI = 0.191-0.627). While the polymorphism rs972936 significantly enhanced the disease risk (CT vs CC: OR = 2.434, 95% CI = 1.184-5.003; TT vs CC: OR = 2.497, 95% CI = 1.040-5.990). Furthermore, haplotype analysis demonstrated that C-T (rs5742714-rs972936) could increase ONFH risk (OR = 2.177, 95% CI = 1.444-3.283), while G-T might be a protective factor for ONFH (OR = 0.472, 95% CI = 0.254-0.878).IGF-1 polymorphisms rs35767, rs5742714, and rs972936 show significant association with ONFH risk.
Collapse
Affiliation(s)
- Jun Wang
- Department of Joint Surgery, Laiyang Central Hospital, Yantai
| | - Hongyun Liu
- Department of Pathology, Qingdao Municipal Hospital, Qingdao
| | - Qiliang Zhang
- Department of Orthopedics and Sports Medicine and Joint Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China
| |
Collapse
|
7
|
Zhao R, Wang S, Jia L, Li Q, Qiao J, Peng X. Interleukin-1 receptor antagonist protein (IL-1Ra) and miR-140 overexpression via pNNS-conjugated chitosan-mediated gene transfer enhances the repair of full-thickness cartilage defects in a rabbit model. Bone Joint Res 2019; 8:165-178. [PMID: 30997042 PMCID: PMC6444021 DOI: 10.1302/2046-3758.83.bjr-2018-0222.r1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objectives Previously, we reported the improved transfection efficiency of a plasmid DNA-chitosan (pDNA-CS) complex using a phosphorylatable nuclear localization signal-linked nucleic kinase substrate short peptide (pNNS) conjugated to chitosan (pNNS-CS). This study investigated the effects of pNNS-CS-mediated miR-140 and interleukin-1 receptor antagonist protein (IL-1Ra) gene transfection both in rabbit chondrocytes and a cartilage defect model. Methods The pBudCE4.1-miR-140, pBudCE4.1-IL-1Ra, and negative control pBudCE4.1 plasmids were constructed and combined with pNNS-CS to form pDNA/pNNS-CS complexes. These complexes were transfected into chondrocytes or injected into the knee joint cavity. Results High IL-1Ra and miR-140 expression levels were detected both in vitro and in vivo. In vitro, compared with the pBudCE4.1 group, the transgenic group presented with significantly increased chondrocyte proliferation and glycosaminoglycan (GAG) synthesis, as well as increased collagen type II alpha 1 chain (COL2A1), aggrecan (ACAN), and TIMP metallopeptidase inhibitor 1 (TIMP-1) levels. Nitric oxide (NO) synthesis was reduced, as were a disintegrin and metalloproteinase with thrombospondin type 1 motif 5 (ADAMTS-5) and matrix metalloproteinase (MMP)-13 levels. In vivo, the exogenous genes reduced the synovial fluid GAG and NO concentrations and the ADAMTS-5 and MMP-13 levels in cartilage. In contrast, COL2A1, ACAN, and TIMP-1 levels were increased, and the cartilage Mankin score was decreased in the transgenic group compared with the pBudCE4.1 group. Double gene combination produced greater efficacies than each single gene, both in vitro and in vivo. Conclusion This study suggests that pNNS-CS is a good candidate for treating cartilage defects via gene therapy, and that IL-1Ra in combination with miR-140 produces promising biological effects on cartilage defects. Cite this article: R. Zhao, S. Wang, L. Jia, Q. Li, J. Qiao, X. Peng. Interleukin-1 receptor antagonist protein (IL-1Ra) and miR-140 overexpression via pNNS-conjugated chitosan-mediated gene transfer enhances the repair of full-thickness cartilage defects in a rabbit model. Bone Joint Res 2019;8:165–178. DOI: 10.1302/2046-3758.83.BJR-2018-0222.R1.
Collapse
Affiliation(s)
- R Zhao
- Institute of Nanomedicine Technology, Department of Laboratory Medicine, Weifang Medical University, Weifang, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China; Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - S Wang
- Department of Cardiovascular Medicine, Weifang Peoples Hospital, Weifang, China
| | - L Jia
- Institute of Nanomedicine Technology, Department of Laboratory Medicine, Weifang Medical University, Weifang, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China; Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Q Li
- Institute of Nanomedicine Technology, Department of Laboratory Medicine, Weifang Medical University, Weifang, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China; Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - J Qiao
- Institute of Nanomedicine Technology, Department of Laboratory Medicine, Weifang Medical University, Weifang, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China; Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - X Peng
- Institute of Nanomedicine Technology, Department of Laboratory Medicine, Weifang Medical University, Weifang, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, China; Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
8
|
pNNS-Conjugated Chitosan Mediated IGF-1 and miR-140 Overexpression in Articular Chondrocytes Improves Cartilage Repair. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2761241. [PMID: 31016187 PMCID: PMC6448336 DOI: 10.1155/2019/2761241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 12/21/2022]
Abstract
The aim of the present study was to investigate the effects of phosphorylatable nucleus localization signal linked nucleic kinase substrate short peptide (pNNS)-conjugated chitosan (pNNS-CS) mediated miR-140 and IGF-1 in both rabbit chondrocytes and cartilage defects model. pNNS-CS was combined with pBudCE4.1-IGF-1, pBudCE4.1-miR-140, and negative control pBudCE4.1 to form pDNA/pNNS-CS complexes. Then these complexes were transfected into chondrocytes or injected intra-articularly into the knee joints. High levels of IGF-1 and miR-140 expression were detected both in vitro and in vivo. Compared with pBudCE4.1 group, in vitro, the transgenic groups significantly promoted chondrocyte proliferation, increased glycosaminoglycan (GAG) synthesis, and ACAN, COL2A1, and TIMP-1 levels, and reduced the levels of nitric oxide (NO), MMP-13, and ADAMTS-5. In vivo, the exogenous genes enhanced COL2A1, ACAN, and TIMP-1 expression in cartilage and reduced cartilage Mankin score and the contents of NO, IL-1β, TNF-α, and GAG contents in synovial fluid of rabbits, MMP-13, ADAMTS-5, COL1A2, and COL10A1 levels in cartilage. Double gene combination showed better results than single gene. This study indicate that pNNS-CS is a better gene delivery vehicle in gene therapy for cartilage defects and that miR-140 combination IGF-1 transfection has better biologic effects on cartilage defects.
Collapse
|
9
|
Rowland CR, Glass KA, Ettyreddy AR, Gloss CC, Matthews JRL, Huynh NPT, Guilak F. Regulation of decellularized tissue remodeling via scaffold-mediated lentiviral delivery in anatomically-shaped osteochondral constructs. Biomaterials 2018; 177:161-175. [PMID: 29894913 PMCID: PMC6082159 DOI: 10.1016/j.biomaterials.2018.04.049] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 01/25/2023]
Abstract
Cartilage-derived matrix (CDM) has emerged as a promising scaffold material for tissue engineering of cartilage and bone due to its native chondroinductive capacity and its ability to support endochondral ossification. Because it consists of native tissue, CDM can undergo cellular remodeling, which can promote integration with host tissue and enables it to be degraded and replaced by neotissue over time. However, enzymatic degradation of decellularized tissues can occur unpredictably and may not allow sufficient time for mechanically competent tissue to form, especially in the harsh inflammatory environment of a diseased joint. The goal of the current study was to engineer cartilage and bone constructs with the ability to inhibit aberrant inflammatory processes caused by the cytokine interleukin-1 (IL-1), through scaffold-mediated delivery of lentiviral particles containing a doxycycline-inducible IL-1 receptor antagonist (IL-1Ra) transgene on anatomically-shaped CDM constructs. Additionally, scaffold-mediated lentiviral gene delivery was used to facilitate spatial organization of simultaneous chondrogenic and osteogenic differentiation via site-specific transduction of a single mesenchymal stem cell (MSC) population to overexpress either chondrogenic, transforming growth factor-beta 3 (TGF-β3), or osteogenic, bone morphogenetic protein-2 (BMP-2), transgenes. Controlled induction of IL-1Ra expression protected CDM hemispheres from inflammation-mediated degradation, and supported robust bone and cartilage tissue formation even in the presence of IL-1. In the absence of inflammatory stimuli, controlled cellular remodeling was exploited as a mechanism for fusing concentric CDM hemispheres overexpressing BMP-2 and TGF-β3 into a single bi-layered osteochondral construct. Our findings demonstrate that site-specific delivery of inducible and tunable transgenes confers spatial and temporal control over both CDM scaffold remodeling and neotissue composition. Furthermore, these constructs provide a microphysiological in vitro joint organoid model with site-specific, tunable, and inducible protein delivery systems for examining the spatiotemporal response to pro-anabolic and/or inflammatory signaling across the osteochondral interface.
Collapse
Affiliation(s)
- Christopher R Rowland
- Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA
| | | | | | - Catherine C Gloss
- Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA
| | - Jared R L Matthews
- Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA
| | - Nguyen P T Huynh
- Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Duke University, Durham, NC 27710, USA
| | - Farshid Guilak
- Washington University in Saint Louis, Saint Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
10
|
Cucchiarini M, Asen AK, Goebel L, Venkatesan JK, Schmitt G, Zurakowski D, Menger MD, Laschke MW, Madry H. Effects of TGF-β Overexpression via rAAV Gene Transfer on the Early Repair Processes in an Osteochondral Defect Model in Minipigs. Am J Sports Med 2018; 46:1987-1996. [PMID: 29792508 DOI: 10.1177/0363546518773709] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Application of the chondrogenic transforming growth factor beta (TGF-β) is an attractive approach to enhance the intrinsic biological activities in damaged articular cartilage, especially when using direct gene transfer strategies based on the clinically relevant recombinant adeno-associated viral (rAAV) vectors. PURPOSE To evaluate the ability of an rAAV-TGF-β construct to modulate the early repair processes in sites of focal cartilage injury in minipigs in vivo relative to control (reporter lacZ gene) vector treatment. STUDY DESIGN Controlled laboratory study. METHODS Direct administration of the candidate rAAV-human TGF-β (hTGF-β) vector was performed in osteochondral defects created in the knee joint of adult minipigs for macroscopic, histological, immunohistochemical, histomorphometric, and micro-computed tomography analyses after 4 weeks relative to control (rAAV- lacZ) gene transfer. RESULTS Successful overexpression of TGF-β via rAAV at this time point and in the conditions applied here triggered the cellular and metabolic activities within the lesions relative to lacZ gene transfer but, at the same time, led to a noticeable production of type I and X collagen without further buildup on the subchondral bone. CONCLUSION Gene therapy via direct, local rAAV-hTGF-β injection stimulates the early reparative activities in focal cartilage lesions in vivo. CLINICAL RELEVANCE Local delivery of therapeutic (TGF-β) rAAV vectors in focal defects may provide new, off-the-shelf treatments for cartilage repair in patients in the near future.
Collapse
Affiliation(s)
- Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Ann-Kathrin Asen
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Lars Goebel
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany
| | - David Zurakowski
- Department of Anesthesia, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
11
|
Gabner S, Ertl R, Velde K, Renner M, Jenner F, Egerbacher M, Hlavaty J. Cytokine-induced interleukin-1 receptor antagonist protein expression in genetically engineered equine mesenchymal stem cells for osteoarthritis treatment. J Gene Med 2018; 20:e3021. [PMID: 29608232 PMCID: PMC6001542 DOI: 10.1002/jgm.3021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A combination of tissue engineering methods employing mesenchymal stem cells (MSCs) together with gene transfer takes advantage of innovative strategies and highlights a new approach for targeting osteoarthritis (OA) and other cartilage defects. Furthermore, the development of systems allowing tunable transgene expression as regulated by natural disease-induced substances is highly desirable. METHODS Bone marrow-derived equine MSCs were transduced with a lentiviral vector expressing interleukin-1 receptor antagonist (IL-1Ra) gene under the control of an inducible nuclear factor-kappa B-responsive promoter and IL-1Ra production upon pro-inflammatory cytokine stimulation [tumor necrosis factor (TNF)α, interleukin (IL)-1β] was analysed. To assess the biological activity of the IL-1Ra protein that was produced and the therapeutic effect of IL-1Ra-expressing MSCs (MSC/IL-1Ra), cytokine-based two- and three-dimensional in vitro models of osteoarthritis using equine chondrocytes were established and quantitative real-time polymerase chain reaction (PCR) analysis was used to measure the gene expression of aggrecan, collagen IIA1, interleukin-1β, interleukin-6, interleukin-8, matrix metalloproteinase-1 and matrix metalloproteinase-13. RESULTS A dose-dependent increase in IL-1Ra expression was found in MSC/IL-1Ra cells upon TNFα administration, whereas stimulation using IL-1β did not lead to IL-1Ra production above the basal level observed in nonstimulated cells as a result of the existing feedback loop. Repeated cycles of induction allowed on/off modulation of transgene expression. In vitro analyses revealed that IL-1Ra protein present in the conditioned medium from MSC/IL-1Ra cells blocks OA onset in cytokine-treated equine chondrocytes and co-cultivation of MSC/IL-1Ra cells with osteoarthritic spheroids alleviates the severity of the osteoarthritic changes. CONCLUSIONS Thus, pro-inflammatory cytokine induced IL-1Ra protein expression from genetically modified MSCs might represent a promising strategy for osteoarthritis treatment.
Collapse
Affiliation(s)
- Simone Gabner
- Institute of Pathology and Forensic Veterinary Medicine, Working Group Histology and EmbryologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Reinhard Ertl
- VetCORE, Facility for ResearchUniversity of Veterinary MedicineViennaAustria
| | - Karsten Velde
- Equine University HospitalUniversity of Veterinary Medicine ViennaViennaAustria
| | - Matthias Renner
- Division of Medical BiotechnologyPaul‐Ehrlich‐InstitutLangenGermany
| | - Florien Jenner
- Equine University HospitalUniversity of Veterinary Medicine ViennaViennaAustria
| | - Monika Egerbacher
- Institute of Pathology and Forensic Veterinary Medicine, Working Group Histology and EmbryologyUniversity of Veterinary Medicine ViennaViennaAustria
| | - Juraj Hlavaty
- Institute of Pathology and Forensic Veterinary Medicine, Working Group Histology and EmbryologyUniversity of Veterinary Medicine ViennaViennaAustria
| |
Collapse
|
12
|
Grol MW, Stone A, Ruan MZ, Guse K, Lee BH. Prospects of Gene Therapy for Skeletal Diseases. GENETICS OF BONE BIOLOGY AND SKELETAL DISEASE 2018:119-137. [DOI: 10.1016/b978-0-12-804182-6.00008-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Zhang Y, Peng X, Song W, Sun Y, Wang L, Li Q, Zhao R. [Effects of microRNA-140 gene transfection with nucleus localization signal linked nucleic kinase substrate short peptide conjugated chitosan on rabbit articular chondrocytes]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:1256-1261. [PMID: 29806331 PMCID: PMC8498133 DOI: 10.7507/1002-1892.201705088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/07/2017] [Indexed: 12/16/2022]
Abstract
Objective To investigate the effects of nucleus localization signal linked nucleic kinase substrate short peptide (NNS) conjugated chitosan (CS) ( NNSCS) mediated the transfection of microRNA-140 (miR-140) in rabbit articular chondrocytes in vitro. Methods Recombinant plasmid GV268-miR-140 and empty plasmid GV268 were combined with NNSCS to form NNSCS/pDNA complexes, respectively. Chondrocytes were isolated and cultured through trypsin and collagenase digestion from articular cartilage of newborn New Zealand white rabbits. The second generation chondrocytes were divided into 3 intervention groups: normal cell control group (group A), NNSCS/GV268 empty plasmid transfection group (group B), and NNSCS/GV268-miR-140 transfection group (group C). NNSCS/GV268 and NNSCS/GV268-miR- 140 complexes were transiently transfected into cells of groups B and C. After transfection, real-time fluorescent quantitative PCR (RT-qPCR) was used to detect the expressions of exogenous miR-140; Annexin Ⅴ-FITC/PI double staining and MTT assay were used to detect the effect of exogenous miR-140 on apoptosis and proliferation of transfected chondrocytes; the expressions of Sox9, Aggrecan, and histone deacetylase 4 (Hdac4) were detected by RT-qPCR. Results RT-qPCR showed that the expression of miR-140 in group C was significantly higher than that in groups A and B ( P<0.05). Compared with groups A and B, the apoptosis rate in group C was decreased and the proliferation activity was improved, Sox9 and Aggrecan gene expressions were significantly up-regulated, and Hdac4 gene expression was significantly down-regulated ( P<0.05). There was no significant difference in above indexes between groups A and B ( P>0.05). Conclusion Exogenous gene can be carried into the chondrocytes by NNSCS and expressed efficiently, the high expression of miR-140 can improve the biological activity of chondrocytes cultured in vitro, which provides important experimental basis for the treatment of cartilage damage diseases.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Medical Laboratory, Weifang Medical University & Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, WeifangMedical University & Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang Shangdong, 261053, P.R.China
| | - Xiaoxiang Peng
- Department of Medical Laboratory, Weifang Medical University & Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, WeifangMedical University & Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang Shangdong, 261053, P.R.China
| | - Wei Song
- Department of Medical Laboratory, Weifang Medical University & Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, WeifangMedical University & Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang Shangdong, 261053, P.R.China
| | - Yanli Sun
- Department of Medical Laboratory, Weifang Medical University & Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, WeifangMedical University & Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang Shangdong, 261053, P.R.China
| | - Lujuan Wang
- Department of Medical Laboratory, Weifang Medical University & Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, WeifangMedical University & Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang Shangdong, 261053, P.R.China
| | - Qian Li
- Department of Medical Laboratory, Weifang Medical University & Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, WeifangMedical University & Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang Shangdong, 261053, P.R.China
| | - Ronglan Zhao
- Department of Medical Laboratory, Weifang Medical University & Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, WeifangMedical University & Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang Shangdong, 261053,
| |
Collapse
|
14
|
Venkatesan JK, Frisch J, Rey-Rico A, Schmitt G, Madry H, Cucchiarini M. Impact of mechanical stimulation on the chondrogenic processes in human bone marrow aspirates modified to overexpress sox9 via rAAV vectors. J Exp Orthop 2017. [PMID: 28634835 PMCID: PMC5478551 DOI: 10.1186/s40634-017-0097-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Evaluation of gene-based approaches to target human bone marrow aspirates in conditions of mechanical stimulation that aim at reproducing the natural joint environment may allow to develop improved treatments for articular cartilage injuries. In the present study, we investigated the potential of rAAV-mediated sox9 gene transfer to enhance the chondrogenic differentiation processes in human bone marrow aspirates under established hydrodynamic conditions compared with the more commonly employed static culture conditions. Methods Fresh human bone marrow aspirates were transduced with rAAV-FLAG-hsox9 (40 μl) and maintained for up to 28 days in chondrogenic medium under mechanically-induced conditions in dynamic flow rotating bioreactors that permit tissue growth and matrix deposition relative to static culture conditions. The samples were then processed to examine the potential effects of sox9 overexpression on the cellular activities (matrix synthesis, proliferation) and on the chondrogenic differentiation potency compared with control treatments (absence of rAAV vector; reporter rAAV-lacZ, rAAV-RFP, and rAAV-luc gene transfer). Results Prolonged, significant sox9 overexpression via rAAV was achieved in the aspirates for at least 28 days when applying the rAAV-FLAG-hsox9 construct, leading to higher, prolonged levels of matrix biosynthesis and to enhanced chondrogenic activities relative to control treatments especially when maintaining the samples under mechanical stimulation. Administration of sox9 however did not impact the indices of proliferation in the aspirates. Remarkably, sox9 gene transfer also durably delayed hypertrophic and osteogenic differentiation in the samples regardless of the conditions of culture applied versus control treatments. Conclusions The current observations show the value of genetically modifying human bone marrow aspirates upon mechanical stimulation by rAAV sox9 as a promising strategy for future treatments to improve cartilage repair by implantation in lesions where the tissue is submitted to natural mechanical forces.
Collapse
Affiliation(s)
- Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Janina Frisch
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany.
| |
Collapse
|
15
|
Bone Marrow Aspirate Concentrate-Enhanced Marrow Stimulation of Chondral Defects. Stem Cells Int 2017; 2017:1609685. [PMID: 28607559 PMCID: PMC5451778 DOI: 10.1155/2017/1609685] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/15/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) from bone marrow play a critical role in osteochondral repair. A bone marrow clot forms within the cartilage defect either as a result of marrow stimulation or during the course of the spontaneous repair of osteochondral defects. Mobilized pluripotent MSCs from the subchondral bone migrate into the defect filled with the clot, differentiate into chondrocytes and osteoblasts, and form a repair tissue over time. The additional application of a bone marrow aspirate (BMA) to the procedure of marrow stimulation is thought to enhance cartilage repair as it may provide both an additional cell population capable of chondrogenesis and a source of growth factors stimulating cartilage repair. Moreover, the BMA clot provides a three-dimensional environment, possibly further supporting chondrogenesis and protecting the subchondral bone from structural alterations. The purpose of this review is to bridge the gap in our understanding between the basic science knowledge on MSCs and BMA and the clinical and technical aspects of marrow stimulation-based cartilage repair by examining available data on the role and mechanisms of MSCs and BMA in osteochondral repair. Implications of findings from both translational and clinical studies using BMA concentrate-enhanced marrow stimulation are discussed.
Collapse
|
16
|
Armbruster N, Krieg J, Weißenberger M, Scheller C, Steinert AF. Rescued Chondrogenesis of Mesenchymal Stem Cells under Interleukin 1 Challenge by Foamyviral Interleukin 1 Receptor Antagonist Gene Transfer. Front Pharmacol 2017; 8:255. [PMID: 28536528 PMCID: PMC5422547 DOI: 10.3389/fphar.2017.00255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/24/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) and their chondrogenic differentiation have been extensively investigated in vitro as MSCs provide an attractive source besides chondrocytes for cartilage repair therapies. Here we established prototype foamyviral vectors (FVV) that are derived from apathogenic parent viruses and are characterized by a broad host range and a favorable integration pattern into the cellular genome. As the inflammatory cytokine interleukin 1 beta (IL1β) is frequently present in diseased joints, the protective effects of FVV expressing the human interleukin 1 receptor antagonist protein (IL1RA) were studied in an established in vitro model (aggregate culture system) of chondrogenesis in the presence of IL1β. Materials and Methods: We generated different recombinant FVVs encoding enhanced green fluorescent protein (EGFP) or IL1RA and examined their transduction efficiencies and transgene expression profiles using different cell lines and human primary MSCs derived from bone marrow-aspirates. Transgene expression was evaluated by fluorescence microscopy (EGFP), flow cytometry (EGFP), and ELISA (IL1RA). For evaluation of the functionality of the IL1RA transgene to block the inhibitory effects of IL1β on chondrogenesis of primary MSCs and an immortalized MSC cell line (TERT4 cells), the cells were maintained following transduction as aggregate cultures in standard chondrogenic media in the presence or absence of IL1β. After 3 weeks of culture, pellets were harvested and analyzed by histology and immunohistochemistry for chondrogenic phenotypes. Results: The different FVV efficiently transduced cell lines as well as primary MSCs, thereby reaching high transgene expression levels in 6-well plates with levels of around 100 ng/ml IL1RA. MSC aggregate cultures which were maintained in chondrogenic media without IL1β supplementation revealed a chondrogenic phenotype by means of strong positive staining for collagen type II and matrix proteoglycan (Alcian blue). Addition of IL1β was inhibitory to chondrogenesis in untreated control pellets. In contrast, foamyviral mediated IL1RA expression rescued the chondrogenesis in pellets cultured in the presence of IL1β. Transduced MSC pellets reached thereby very high IL1RA transgene expression levels with a peak of 1087 ng/ml after day 7, followed by a decrease to 194 ng/ml after day 21, while IL1RA concentrations of controls were permanently below 200 pg/ml. Conclusion: Our results indicate that FVV are capable of efficient gene transfer to MSCs, while reaching IL1RA transgene expression levels, that were able to efficiently block the impacts of IL1β in vitro. FVV merit further investigation as a means to study the potential as a gene transfer tool for MSC based therapies for cartilage repair.
Collapse
Affiliation(s)
- Nicole Armbruster
- Institute for Virology and Immunobiology, University of WuerzburgWuerzburg, Germany.,Department of Orthopaedic Surgery, Klinik König-Ludwig-Haus Würzburg - Center for Musculoskeletal Research, University of WuerzburgWuerzburg, Germany
| | - Jennifer Krieg
- Institute for Virology and Immunobiology, University of WuerzburgWuerzburg, Germany.,Department of Orthopaedic Surgery, Klinik König-Ludwig-Haus Würzburg - Center for Musculoskeletal Research, University of WuerzburgWuerzburg, Germany
| | - Manuel Weißenberger
- Department of Orthopaedic Surgery, Klinik König-Ludwig-Haus Würzburg - Center for Musculoskeletal Research, University of WuerzburgWuerzburg, Germany
| | - Carsten Scheller
- Institute for Virology and Immunobiology, University of WuerzburgWuerzburg, Germany
| | - Andre F Steinert
- Department of Orthopaedic Surgery, Klinik König-Ludwig-Haus Würzburg - Center for Musculoskeletal Research, University of WuerzburgWuerzburg, Germany
| |
Collapse
|
17
|
Cucchiarini M. New cell engineering approaches for cartilage regenerative medicine. Biomed Mater Eng 2017; 28:S201-S207. [DOI: 10.3233/bme-171642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr, Bldg 37, D-66421 Homburg/Saar, Germany
| |
Collapse
|
18
|
Rey-Rico A, Cucchiarini M. Recent tissue engineering-based advances for effective rAAV-mediated gene transfer in the musculoskeletal system. Bioengineered 2017; 7:175-88. [PMID: 27221233 DOI: 10.1080/21655979.2016.1187347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Musculoskeletal tissues are diverse and significantly different in their ability to repair upon injury. Current treatments often fail to reproduce the natural functions of the native tissue, leading to an imperfect healing. Gene therapy might improve the repair of tissues by providing a temporarily and spatially defined expression of the therapeutic gene(s) at the site of the injury. Several gene transfer vehicles have been developed to modify various human cells and tissues from musculoskeletal system among which the non-pathogenic, effective, and relatively safe recombinant adeno-associated viral (rAAV) vectors that have emerged as the preferred gene delivery system to treat human disorders. Adapting tissue engineering platforms to gene transfer approaches mediated by rAAV vectors is an attractive tool to circumvent both the limitations of the current therapeutic options to promote an effective healing of the tissue and the natural obstacles from these clinically adapted vectors to achieve an efficient and durable gene expression of the therapeutic sequences within the lesions.
Collapse
Affiliation(s)
- Ana Rey-Rico
- a Center of Experimental Orthopaedics , Saarland University Medical Center , Homburg/Saar , Germany
| | - Magali Cucchiarini
- a Center of Experimental Orthopaedics , Saarland University Medical Center , Homburg/Saar , Germany
| |
Collapse
|
19
|
Adipose-Derived Stem Cells Cocultured with Chondrocytes Promote the Proliferation of Chondrocytes. Stem Cells Int 2017; 2017:1709582. [PMID: 28133485 PMCID: PMC5241498 DOI: 10.1155/2017/1709582] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023] Open
Abstract
Articular cartilage injury and defect caused by trauma and chronic osteoarthritis vascularity are very common, while the repair of injured cartilage remains a great challenge due to its limited healing capacity. Stem cell-based tissue engineering provides a promising treatment option for injured articular cartilage because of the cells potential for multiple differentiations. However, its application has been largely limited by stem cell type, number, source, proliferation, and differentiation. We hypothesized that (1) adipose-derived stem cells are ideal seed cells for articular cartilage repair because of their accessibility and abundance and (2) the microenvironment of articular cartilage could induce adipose-derived stem cells (ADSCs) to differentiate into chondrocytes. In order to test our hypotheses, we isolated stem cells from rabbit adipose tissues and cocultured these ADSCs with rabbit articular cartilage chondrocytes. We found that when ADSCs were cocultured with chondrocytes, the proliferation of articular cartilage chondrocytes was promoted, the apoptosis of chondrocytes was inhibited, and the osteogenic and chondrogenic differentiation of ADSCs was enhanced. The study on the mechanism of this coculture system indicated that the role of this coculture system is similar to the function of TGF-β1 in the promotion of chondrocytes.
Collapse
|
20
|
Frisch J, Cucchiarini M. Gene- and Stem Cell-Based Approaches to Regulate Hypertrophic Differentiation in Articular Cartilage Disorders. Stem Cells Dev 2016; 25:1495-1512. [DOI: 10.1089/scd.2016.0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Janina Frisch
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| |
Collapse
|