1
|
Komel T, Bosnjak M, Sersa G, Cemazar M. Expression of GFP and DsRed fluorescent proteins after gene electrotransfer of tumour cells in vitro. Bioelectrochemistry 2023; 153:108490. [PMID: 37356264 DOI: 10.1016/j.bioelechem.2023.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Fluorescent reporter genes are widely used to study the transfection of various types of primary cells and cell lines. The aim of our research was to investigate the expression dynamics of GFP and DsRed reporter genes individually and combined after gene electrotransfer of plasmids with two different electroporation protocols in B16F10 and CT26 cells in vitro. The cytotoxicity after gene electrotransfer of both plasmids was first determined. Second, the intensity of fluorescence and the percentage of cells transfected with both plasmids individually and in combination were monitored in real time. The results show that the percentage of viability after gene electrotransfer of plasmids using the EP2 pulses was significantly higher compared to the EP1 pulses. In contrast, the percentage of transfected cells and fluorescence intensity were higher after gene electrotransfer with the EP1 pulse protocol. Moreover, the percentage of transfected cells was higher and started earlier in the B16F10 cell line than in the CT26 cell line. However, fluorescence intensity was higher in CT26 cells. Co-expression of fluorescent proteins was achieved only in a small number of cells. In conclusion, this study elucidated some of the dynamics of reporter gene expression in cancer cell lines after gene electrotransfer.
Collapse
Affiliation(s)
- Tilen Komel
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Masa Bosnjak
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, SI - 1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Primorska, Faculty of Health Sciences, Polje 42, SI - 6310 Izola, Slovenia.
| |
Collapse
|
2
|
Komel T, Omerzel M, Kamensek U, Znidar K, Lampreht Tratar U, Kranjc Brezar S, Dolinar K, Pirkmajer S, Sersa G, Cemazar M. Gene Immunotherapy of Colon Carcinoma with IL-2 and IL-12 Using Gene Electrotransfer. Int J Mol Sci 2023; 24:12900. [PMID: 37629081 PMCID: PMC10454179 DOI: 10.3390/ijms241612900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Gene immunotherapy has become an important approach in the treatment of cancer. One example is the introduction of genes encoding immunostimulatory cytokines, such as interleukin 2 and interleukin 12, which stimulate immune cells in tumours. The aim of our study was to determine the effects of gene electrotransfer of plasmids encoding interleukin 2 and interleukin 12 individually and in combination in the CT26 murine colon carcinoma cell line in mice. In the in vitro experiment, the pulse protocol that resulted in the highest expression of IL-2 and IL-12 mRNA and proteins was used for the in vivo part. In vivo, tumour growth delay and also complete response were observed in the group treated with the plasmid combination. Compared to the control group, the highest levels of various immunostimulatory cytokines and increased immune infiltration were observed in the combination group. Long-term anti-tumour immunity was observed in the combination group after tumour re-challenge. In conclusion, our combination therapy efficiently eradicated CT26 colon carcinoma in mice and also generated strong anti-tumour immune memory.
Collapse
Affiliation(s)
- Tilen Komel
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (T.K.); (M.O.); (U.K.); (K.Z.); (U.L.T.); (S.K.B.); (G.S.)
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Masa Omerzel
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (T.K.); (M.O.); (U.K.); (K.Z.); (U.L.T.); (S.K.B.); (G.S.)
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (T.K.); (M.O.); (U.K.); (K.Z.); (U.L.T.); (S.K.B.); (G.S.)
| | - Katarina Znidar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (T.K.); (M.O.); (U.K.); (K.Z.); (U.L.T.); (S.K.B.); (G.S.)
| | - Ursa Lampreht Tratar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (T.K.); (M.O.); (U.K.); (K.Z.); (U.L.T.); (S.K.B.); (G.S.)
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (T.K.); (M.O.); (U.K.); (K.Z.); (U.L.T.); (S.K.B.); (G.S.)
| | - Klemen Dolinar
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia; (K.D.); (S.P.)
| | - Sergej Pirkmajer
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia; (K.D.); (S.P.)
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (T.K.); (M.O.); (U.K.); (K.Z.); (U.L.T.); (S.K.B.); (G.S.)
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia; (T.K.); (M.O.); (U.K.); (K.Z.); (U.L.T.); (S.K.B.); (G.S.)
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
| |
Collapse
|
3
|
Sutherland M, Gordon A, Al-Shammari FOFO, Throup A, Cilia La Corte A, Philippou H, Shnyder SD, Patterson LH, Sheldrake HM. Synthesis and Biological Evaluation of Cyclobutane-Based β3 Integrin Antagonists: A Novel Approach to Targeting Integrins for Cancer Therapy. Cancers (Basel) 2023; 15:4023. [PMID: 37627051 PMCID: PMC10452181 DOI: 10.3390/cancers15164023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The Arg-Gly-Asp (RGD)-binding family of integrin receptors, and notably the β3 subfamily, are key to multiple physiological processes involved in tissue development, cancer proliferation, and metastatic dissemination. While there is compelling preclinical evidence that both αvβ3 and αIIbβ3 are important anticancer targets, most integrin antagonists developed to target the β3 integrins are highly selective for αvβ3 or αIIbβ3. We report the design, synthesis, and biological evaluation of a new structural class of ligand-mimetic β3 integrin antagonist. These new antagonists combine a high activity against αvβ3 with a moderate affinity for αIIbβ3, providing the first evidence for a new approach to integrin targeting in cancer.
Collapse
Affiliation(s)
- Mark Sutherland
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | - Andrew Gordon
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | | | - Adam Throup
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | - Amy Cilia La Corte
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Helen Philippou
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Steven D. Shnyder
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| | | | - Helen M. Sheldrake
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK
| |
Collapse
|
4
|
Kamensek U, Cemazar M, Kranjc Brezar S, Jesenko T, Kos S, Znidar K, Markelc B, Modic Z, Komel T, Gorse T, Rebersek E, Jakopic H, Sersa G. What We Learned about the Feasibility of Gene Electrotransfer for Vaccination on a Model of COVID-19 Vaccine. Pharmaceutics 2023; 15:1981. [PMID: 37514166 PMCID: PMC10385748 DOI: 10.3390/pharmaceutics15071981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
DNA vaccination is one of the emerging approaches for a wide range of applications, including prophylactic vaccination against infectious diseases and therapeutic vaccination against cancer. The aim of this study was to evaluate the feasibility of our previously optimized protocols for gene electrotransfer (GET)-mediated delivery of plasmid DNA into skin and muscle tissues on a model of COVID-19 vaccine. Plasmids encoding the SARS-CoV-2 proteins spike (S) and nucleocapsid (N) were used as the antigen source, and a plasmid encoding interleukin 12 (IL-12) was used as an adjuvant. Vaccination was performed in the skin or muscle tissue of C57BL/6J mice on days 0 and 14 (boost). Two weeks after the boost, blood, spleen, and transfected tissues were collected to determine the expression of S, N, IL-12, serum interferon-γ, the induction of antigen-specific IgG antibodies, and cytotoxic T-cells. In accordance with prior in vitro experiments that indicated problems with proper expression of the S protein, vaccination with S did not induce S-specific antibodies, whereas significant induction of N-specific antibodies was detected after vaccination with N. Intramuscular vaccination outperformed skin vaccination and resulted in significant induction of humoral and cell-mediated immunity. Moreover, both boost and adjuvant were found to be redundant for the induction of an immune response. Overall, the study confirmed the feasibility of the GET for DNA vaccination and provided valuable insights into this approach.
Collapse
Affiliation(s)
- Urska Kamensek
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, SI-1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
| | | | - Tanja Jesenko
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia
| | - Spela Kos
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
| | - Katarina Znidar
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
| | - Bostjan Markelc
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena Pot 5, SI-1000 Ljubljana, Slovenia
| | - Ziva Modic
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia
| | - Tilen Komel
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia
| | - Tim Gorse
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, SI-1000 Ljubljana, Slovenia
| | - Eva Rebersek
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, SI-1000 Ljubljana, Slovenia
| | - Helena Jakopic
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, SI-1000 Ljubljana, Slovenia
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena Pot 5, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Popova NA, Nikolin VP, Kaledin VI, Serova IA, Matyunina EA, Bakarev MA, Lushnikova EL, Vologodskii AN. Experimental Study of Antitumor Activity of Pefagtal Addressed to αvβ3 Integrins. Bull Exp Biol Med 2022; 173:105-109. [PMID: 35618966 DOI: 10.1007/s10517-022-05502-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 11/30/2022]
Abstract
We studied the effect of a new targeted drug Pefagtal that represents a conjugate in which the MS2 phage filled with a substance toxic to cells (thallium salts) is covalently linked to peptides containing the RGD motif. The antitumor and pronounced antimetastatic effects of Pefagtal were demonstrated on transplanted mouse tumors differing in histological type and status of metastasis: Krebs-2 ascites adenocarcinoma of the mammary gland, Lewis lung adenocarcinoma, hepatoma-29, and lung adenocarcinoma. It is assumed that the RGD motif mediates primary binding of the construct to αvβ3 and αvβ5 integrins that are predominantly overexpressed in the endothelial cells of tumor blood vessels and in tumor and metastatic cells.
Collapse
Affiliation(s)
- N A Popova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk National Research State University, Novosibirsk, Russia
| | - V P Nikolin
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V I Kaledin
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I A Serova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - M A Bakarev
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - E L Lushnikova
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia.
| | | |
Collapse
|
6
|
Kranjc M, Kranjc Brezar S, Serša G, Miklavčič D. Contactless delivery of plasmid encoding EGFP in vivo by high-intensity pulsed electromagnetic field. Bioelectrochemistry 2021; 141:107847. [PMID: 34058542 DOI: 10.1016/j.bioelechem.2021.107847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 11/28/2022]
Abstract
High-Intensity Pulsed Electromagnetic Fields (HI-PEMF) treatment is an emerging noninvasive and contactless alternative to conventional electroporation, since the electric field inside the tissue is induced remotely by external pulsed magnetic field. Recently, HI-PEMF was applied for delivering siRNA molecules to silence enhanced green fluorescent protein (EGFP) in tumors in vivo. Still, delivered siRNA molecules were 21 base pairs long, which is 200-times smaller compared to nucleic acids such as plasmid DNA (pDNA) that are delivered in gene therapies to various targets to generate therapeutic effect. In our study, we demonstrate the use HI-PEMF treatment as a feasible noninvasive approach to achieve in vivo transfection by enabling the transport of larger molecules such as pDNA encoding EGFP into muscle and skin. We obtained a long-term expression of EGFP in the muscle and skin after HI-PEMF, in some mice even up to 230 days and up to 190 days, respectively. Histological analysis showed significantly less infiltration of inflammatory mononuclear cells in muscle tissue after the delivery of pEGFP using HI-PEMF compared to conventional gene electrotransfer. Furthermore, the antitumor effectiveness using HI-PEMF for electrotransfer of therapeutic plasmid, i.e., silencing MCAM was demonstrated. In conclusion, feasibility of HI-PEMF was demonstrated for transfection of different tissues (muscle, skin, tumor) and could have great potential in gene therapy and in DNA vaccination.
Collapse
Affiliation(s)
- Matej Kranjc
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Gregor Serša
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, SI - 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Komel T, Bosnjak M, Kranjc Brezar S, De Robertis M, Mastrodonato M, Scillitani G, Pesole G, Signori E, Sersa G, Cemazar M. Gene electrotransfer of IL-2 and IL-12 plasmids effectively eradicated murine B16.F10 melanoma. Bioelectrochemistry 2021; 141:107843. [PMID: 34139572 DOI: 10.1016/j.bioelechem.2021.107843] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022]
Abstract
Gene therapy has become an important approach for treating cancer, and electroporation represents a technology for introducing therapeutic genes into a cell. An example of cancer gene therapy relying on gene electrotransfer is the use of immunomodulatory cytokines, such as interleukin 2 (IL-2) and 12 (IL-12), which directly stimulate immune cells at the tumour site. The aim of our study was to determine the effects of gene electrotransfer with two plasmids encoding IL-2 and IL-12 in vitro and in vivo. Two different pulse protocols, known as EP1 (600 V/cm, 5 ms, 1 Hz, 8 pulses) and EP2 (1300 V/cm, 100 µs, 1 Hz, 8 pulses), were assessed in vitro for application in subsequent in vivo experiments. In the in vivo experiment, gene electrotransfer of pIL-2 and pIL-12 using the EP1 protocol was performed in B16.F10 murine melanoma. Combined treatment of tumours using pIL2 and pIL12 induced significant tumour growth delay and 71% complete tumour regression. Furthermore, in tumours coexpressing IL-2 and IL-12, increased accumulation of dendritic cells and M1 macrophages was obtained along with the activation of proinflammatory signals, resulting in CD4 + and CD8 + T-lymphocyte recruitment and immune memory development in the mice. In conclusion, we demonstrated high antitumour efficacy of combined IL-2 and IL-12 gene electrotransfer protocols in low-immunogenicity murine B16.F10 melanoma.
Collapse
Affiliation(s)
- T Komel
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - M Bosnjak
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - S Kranjc Brezar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - M De Robertis
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - M Mastrodonato
- Department of Biology, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - G Scillitani
- Department of Biology, University of Bari, Via Orabona 4, 70126 Bari, Italy
| | - G Pesole
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Orabona 4, 70126 Bari, Italy; National Research Council-Institute of Biomembrane, Bioenergetics, and Molecular Biotechnology (CNR-IBIOM), Via Amendola 122 O, 70126, Bari, Italy
| | - E Signori
- National Research Council-Institute of Translational Pharmacology (CNR-IFT), Via Fosso del Cavaliere 100, Rome, Italy
| | - G Sersa
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, SI - 1000 Ljubljana, Slovenia
| | - M Cemazar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Primorska, Faculty of Health Sciences, Polje 42, SI - 6310 Izola, Slovenia.
| |
Collapse
|
8
|
Hou J, Yan D, Liu Y, Huang P, Cui H. The Roles of Integrin α5β1 in Human Cancer. Onco Targets Ther 2020; 13:13329-13344. [PMID: 33408483 PMCID: PMC7781020 DOI: 10.2147/ott.s273803] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cell adhesion to the extracellular matrix has important roles in tissue integrity and human health. Integrins are heterodimeric cell surface receptors that are composed by two non-covalently linked alpha and beta subunits that mainly participate in the interaction of cell-cell adhesion and cell-extracellular matrix and regulate cell motility, adhesion, differentiation, migration, proliferation, etc. In mammals, there have been eighteen α subunits and 8 β subunits and so far 24 distinct types of αβ integrin heterodimers have been identified in humans. Integrin α5β1, also known as the fibronectin receptor, is a heterodimer with α5 and β1 subunits and has emerged as an essential mediator in many human carcinomas. Integrin α5β1 alteration is closely linked to the progression of several types of human cancers, including cell proliferation, angiogenesis, tumor metastasis, and cancerogenesis. In this review, we will introduce the functions of integrin α5β1 in cancer progression and also explore its regulatory mechanisms. Additionally, the potential clinical applications as a target for cancer imaging and therapy are discussed. Collectively, the information reviewed here may increase the understanding of integrin α5β1 as a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| | - Du Yan
- Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400716, People's Republic of China
| | - Yudong Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| | - Pan Huang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| |
Collapse
|
9
|
Pasquet L, Bellard E, Chabot S, Markelc B, Rols MP, Teissie J, Golzio M. Pre-clinical investigation of the synergy effect of interleukin-12 gene-electro-transfer during partially irreversible electropermeabilization against melanoma. J Immunother Cancer 2019; 7:161. [PMID: 31242938 PMCID: PMC6595571 DOI: 10.1186/s40425-019-0638-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Melanoma is a very aggressive skin tumor that can be cured when diagnosed and treated in its early stages. However, at the time of identification, the tumor is frequently in a metastatic stage. Intensive research is currently ongoing to improve the efficacy of the immune system in eliminating cancer cells. One approach is to boost the activation of cytotoxic T cells by IL-12 cytokine that plays a central role in the activation of the immune system. In parallel, physical methods such as electropermeabilization-based treatments are currently under investigation and show promising results. METHODS In this study, we set electrical parameters to induce a partial-irreversible electropermeabilization (pIRE) of melanoma to induce a sufficient cell death and potential release of tumor antigens able to activate immune cells. This protocol mimics the situation where irreversible electropermeabilization is not fully completed. Then, a peritumoral plasmid IL-12 electrotransfer was combined with pIRE treatment. Evaluation of the tumor growth and survival was performed in mouse strains having a different immunological background (C57Bl/6 (WT), nude and C57Bl6 (TLR9-/-)). RESULTS pIRE treatment induced apoptotic cell death and a temporary tumor growth delay in all mouse strains. In C57Bl/6 mice, we showed that peritumoral plasmid IL-12 electrotransfer combined with tumor pIRE treatment induced tumor regression correlating with a local secretion of IL-12 and IFN-γ. This combined treatment induced a growth delay of distant tumors and prevented the emergence of a second tumor in 50% of immunocompetent mice. CONCLUSIONS The combination of pIL-12 GET and pIRE not only enhanced survival but could bring a curative effect in wild type mice. This two-step treatment, named Immune-Gene Electro-Therapy (IGET), led to a systemic activation of the adaptive immune system and the development of an anti-tumor immune memory.
Collapse
Affiliation(s)
- Lise Pasquet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, UMR 5089, 205 Route de Narbonne, F-31077, Toulouse Cedex, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, UMR 5089, 205 Route de Narbonne, F-31077, Toulouse Cedex, France
| | - Sophie Chabot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, UMR 5089, 205 Route de Narbonne, F-31077, Toulouse Cedex, France
| | - Bostjan Markelc
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, UMR 5089, 205 Route de Narbonne, F-31077, Toulouse Cedex, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, UMR 5089, 205 Route de Narbonne, F-31077, Toulouse Cedex, France
| | - Justin Teissie
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, UMR 5089, 205 Route de Narbonne, F-31077, Toulouse Cedex, France.
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, UMR 5089, 205 Route de Narbonne, F-31077, Toulouse Cedex, France.
| |
Collapse
|
10
|
Savarin M, Prevc A, Rzek M, Bosnjak M, Vojvodic I, Cemazar M, Jarm T, Sersa G. Intravital Monitoring of Vasculature After Targeted Gene Therapy Alone or Combined With Tumor Irradiation. Technol Cancer Res Treat 2018; 17:1533033818784208. [PMID: 29969947 PMCID: PMC6048615 DOI: 10.1177/1533033818784208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Vascular-targeted therapies exhibit radiosensitizing effects by remodeling tumor
vasculature, thus facilitating the increased oxygenation of the remaining tumor tissue. To
examine these phenomena, the effects of antiendoglin gene therapy alone and in combination
with irradiation were monitored for 5 consecutive days on a murine mammary adenocarcinoma
(TS/A) tumor model growing in a dorsal window chamber. The vascularization of the tumors
was assessed by the determination of the tumor vascular area and by measurement of tumor
perfusion by using laser Doppler flowmetry to provide insight into intratumoral gene
electrotransfer effects. The changes in the vascular area after this specific therapy
correlated with laser Doppler measurements, indicating that either of the methods can be
used to demonstrate the induced changes in the vascularization and perfusion of tumors.
Gene electrotransfer with an endothelial-specific promoter resulted in a vascular-targeted
effect on tumor vasculature within the first 24 hours and did not restore within 5 days.
The combination with the irradiation did not result in a more pronounced vascular effect,
and irradiation alone only abrogated the formation of new vessels and prevented an
increase in the tumor perfusion over time. The results indicate that tumors grown in a
dorsal window chamber facilitate intravital measurements of the vascularization of tumors
and blood perfusion, enabling the monitoring of the antiangiogenic or vascular disruptive
effects of different therapies.
Collapse
Affiliation(s)
- Monika Savarin
- 1 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Ajda Prevc
- 1 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Matic Rzek
- 2 Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Masa Bosnjak
- 1 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Ilija Vojvodic
- 3 Division of Radiotherapy, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- 1 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.,4 Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Tomaz Jarm
- 2 Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Sersa
- 1 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.,5 Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Kaneda T, Matsumoto M, Sotozono Y, Fukami S, Nugroho AE, Hirasawa Y, Hamid A HA, Morita H. Cycloartane triterpenoid (23R, 24E)-23-acetoxymangiferonic acid inhibited proliferation and migration in B16-F10 melanoma via MITF downregulation caused by inhibition of both β-catenin and c-Raf-MEK1-ERK signaling axis. J Nat Med 2018; 73:47-58. [PMID: 30084054 PMCID: PMC7188735 DOI: 10.1007/s11418-018-1233-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/27/2018] [Indexed: 11/24/2022]
Abstract
We recently reported that (23R, 24E)-23-acetoxymangiferonic acid (23R-AMA), a cycloartane triterpenoid isolated by activity-guided separation from a methanol extract of Garcinia sp. bark, inhibited melanin production via inhibition of tyrosinase (TYR) expression in the B16-F10 melanoma cell line. Since 23R-AMA also inhibited microphthalmia-associated transcription factor (MITF) expression, an upstream factor of TYR, these features of 23R-AMA were thought to be appropriate for development of whitening cosmetics. However, 23R-AMA exhibited growth inhibition other than inhibition of melanin production in B16-F10 cells. Therefore, we investigated biological activities of 23R-AMA in detail, focused on its application as an anti-melanoma compound. In this study, we demonstrated that 23R-AMA inhibited cell proliferation and basic FGF (bFGF)-induced migration in B16-F10 cells. Furthermore, 23R-AMA promoted ser45/thr41 phosphorylation of β-catenin and suppressed its intranuclear accumulation, which was suggested to be related to inhibition of MITF expression. The transcriptional activity of MITF is known to be regulated by phosphorylation via activated ERK. Further investigation revealed that 23R-AMA inhibited phosphorylation of c-Raf, MEK-1, and ERK, and also that of upstream molecules including FAK and c-Src. These results suggested that 23R-AMA inhibited growth and migration of B16-F10 melanoma by regulating both MITF expression and its activity. The activities of 23R-AMA reported in this study are new aspects of cycloartane triterpenoids.
Collapse
Affiliation(s)
- Toshio Kaneda
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Misaki Matsumoto
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yayoi Sotozono
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Satoshi Fukami
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Alfarius Eko Nugroho
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Yusuke Hirasawa
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Hadi A Hamid A
- Department of Chemistry, Faculty of Science, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hiroshi Morita
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
12
|
Li T, Kang G, Wang T, Huang H. Tumor angiogenesis and anti-angiogenic gene therapy for cancer. Oncol Lett 2018; 16:687-702. [PMID: 29963134 PMCID: PMC6019900 DOI: 10.3892/ol.2018.8733] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
When Folkman first suggested a theory about the association between angiogenesis and tumor growth in 1971, the hypothesis of targeting angiogenesis to treat cancer was formed. Since then, various studies conducted across the world have additionally confirmed the theory of Folkman, and numerous efforts have been made to explore the possibilities of curing cancer by targeting angiogenesis. Among them, anti-angiogenic gene therapy has received attention due to its apparent advantages. Although specific problems remain prior to cancer being fully curable using anti-angiogenic gene therapy, several methods have been explored, and progress has been made in pre-clinical and clinical settings over previous decades. The present review aimed to provide up-to-date information concerning tumor angiogenesis and gene delivery systems in anti-angiogenic gene therapy, with a focus on recent developments in the study and application of the most commonly studied and newly identified anti-angiogenic candidates for anti-angiogenesis gene therapy, including interleukin-12, angiostatin, endostatin, tumstatin, anti-angiogenic metargidin peptide and endoglin silencing.
Collapse
Affiliation(s)
- Tinglu Li
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P.R. China
| | - Guangbo Kang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P.R. China
| | - Tingyue Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P.R. China
| | - He Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P.R. China
| |
Collapse
|
13
|
Tumor cell death after electrotransfer of plasmid DNA is associated with cytosolic DNA sensor upregulation. Oncotarget 2018; 9:18665-18681. [PMID: 29721152 PMCID: PMC5922346 DOI: 10.18632/oncotarget.24816] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/27/2018] [Indexed: 12/19/2022] Open
Abstract
Cytosolic DNA sensors are a subgroup of pattern recognition receptors (PRRs) and are activated by the abnormal presence of the DNA in the cytosol. Their activation leads to the upregulation of pro-inflammatory cytokines and chemokines and can also induce cell death. The presence of cytosolic DNA sensors and inflammatory cytokines in TS/A murine mammary adenocarcinoma and WEHI 164 fibrosarcoma cells was demonstrated using real time reverse transcription polymerase chain reaction (RT-PCR), western blotting and enzyme-linked immunosorbent assay (ELISA). After electrotransfer of plasmid DNA (pDNA) using two pulse protocols, the upregulation of DNA-depended activator of interferon regulatory factor or Z-DNA binding protein 1 (DAI/ZBP1), DEAD (Asp-Glu-Ala-Asp) box polypeptide 60 (DDX60) and interferon-inducible protein 204 (p204) mRNAs was observed in both tumor cell lines, but their expression was pulse protocol dependent. A decrease in cell survival was also observed; it was cell type, DNA concentration and pulse protocol dependent. Furthermore, the different protocols of electrotransfer led to different cell death outcomes, necrosis and apoptosis, as indicated by an annexin V and 7AAD assays. The obtained data provide new insights on the presence of cytosolic DNA sensors in tumor cells and the activation of different types of cells death after electrotransfer of pDNA. These observations have important implications on the planning of gene therapy or DNA vaccination protocols.
Collapse
|
14
|
Kamensek U, Cemazar M, Lampreht Tratar U, Ursic K, Sersa G. Antitumor in situ vaccination effect of TNFα and IL-12 plasmid DNA electrotransfer in a murine melanoma model. Cancer Immunol Immunother 2018; 67:785-795. [PMID: 29468364 PMCID: PMC5928174 DOI: 10.1007/s00262-018-2133-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
Abstract
Gene electrotransfer (GET) is one of the most efficient non-viral gene therapy approaches for the localized transfer of multiple genes into tumors in vivo; therefore, it is especially promising for delivering different cytokines that are toxic if administered systemically. In this study, we used concomitant intratumoral GET of two cytokines: tumor necrosis factor alpha (TNFα), a potent cytotoxic cytokine to induce in situ vaccination, and interleukin 12 (IL-12), an immunostimulatory cytokine to boost the primed local immune response into a systemic one. After performing GET in murine melanoma tumors, both TNFα and IL-12 mRNA levels were significantly increased, which resulted in a pronounced delay in tumor growth of 27 days and a prolonged survival time of mice. An antitumor immune response was confirmed by extensive infiltration of immune cells in the tumor site, and expansion of the effector immune cells in the sentinel lymph nodes. Furthermore, the effect of in situ vaccination was indicated by the presence of vitiligo localized to the treatment area and resistance of the mice to secondary challenge with tumor cells. Intratumoral GET of two cytokines, one for in situ vaccination and one for an immune boost, proved feasible and effective in eliciting a potent and durable antitumor response; therefore, further studies of this approach are warranted.
Collapse
Affiliation(s)
- Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia.
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Polje 42, Izola, Slovenia
| | - Ursa Lampreht Tratar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | - Katja Ursic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| |
Collapse
|
15
|
Electrotransfer of Different Control Plasmids Elicits Different Antitumor Effectiveness in B16.F10 Melanoma. Cancers (Basel) 2018; 10:cancers10020037. [PMID: 29382170 PMCID: PMC5836069 DOI: 10.3390/cancers10020037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 02/08/2023] Open
Abstract
Several studies have shown that different control plasmids may cause antitumor action in different murine tumor models after gene electrotransfer (GET). Due to the differences in GET protocols, plasmid vectors, and experimental models, the observed antitumor effects were incomparable. Therefore, the current study was conducted comparing antitumor effectiveness of three different control plasmids using the same GET parameters. We followed cytotoxicity in vitro and the antitumor effect in vivo after GET of control plasmids pControl, pENTR/U6 scr and pVAX1 in B16.F10 murine melanoma cells and tumors. Types of cell death and upregulation of selected cytosolic DNA sensors and cytokines were determined. GET of all three plasmids caused significant growth delay in melanoma tumors; nevertheless, the effect of pVAX1 was significantly greater than pControl. While DNA sensors in vivo were not upregulated significantly, cytokines IFN β and TNF α were upregulated after GET of pVAX1. In vitro, the mRNAs of some cytosolic DNA sensors were overexpressed after GET; however, with no significant difference among the three plasmids. In summary, although differences in antitumor effects were observed among control plasmids in vivo, no differences in cellular responses to plasmid GET were detected in tumor cells in vitro. Thus, the tumor microenvironment as well as some plasmid properties are most probably responsible for the antitumor effectiveness.
Collapse
|
16
|
Spanggaard I, Dahlstroem K, Laessoee L, Hansen RH, Johannesen HH, Hendel HW, Bouquet C, Attali P, Gehl J. Gene therapy for patients with advanced solid tumors: a phase I study using gene electrotransfer to muscle with the integrin inhibitor plasmid AMEP. Acta Oncol 2017; 56:909-916. [PMID: 28438067 DOI: 10.1080/0284186x.2017.1315171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Gene electrotrotransfer describes the use of electric pulses to transfer DNA to cells. Particularly skeletal muscle has potential for systemic secretion of therapeutic proteins. Gene electrotransfer to muscle using the integrin inhibitor plasmid AMEP (Antiangiogenic MEtargidin Peptide) was investigated in a phase I dose escalation study. Primary objective was safety. MATERIAL AND METHODS Patients with metastatic or locally advanced solid tumors, without further standard treatments available, were treated with once-only gene electrotransfer of plasmid AMEP to the femoral muscle. Safety was monitored by adverse events registration, visual analog scale (VAS) after procedure and magnetic resonance imaging (MRI) of treated muscles. Pharmacokinetics of plasmid AMEP in plasma and urine was determined by quantitative polymerase chain reaction. Response was evaluated by positron emission tomography-computed tomography (PET-CT) scans. RESULTS Seven patients were enrolled and treated at dose levels from 50 to 250 μg of plasmid AMEP, the study was terminated early due to cessation of plasmid production. Minimal systemic toxicity was observed and only transient mild pain was associated with the delivery of the electric pulses. MRI of the treated muscles revealed discrete intramuscular edema 24 h after treatment. The changes in the muscle tissue resolved within 2 weeks after treatment. Peak concentrations of plasmid AMEP was detected only in plasma within the first 24 hours after injection. Protein AMEP could not be detected, which could be due to the limit of detection. No objective responses were seen. CONCLUSIONS Gene electrotransfer of plasmid AMEP was found to be safe and tolerable. No objective responses were observed but other DNA drugs may be tested in the future using this procedure.
Collapse
Affiliation(s)
- Iben Spanggaard
- Center for Experimental Drug and Gene Electrotransfer, Department of Oncology, Copenhagen University Hospitals Herlev, Herlev, Denmark
| | - Karin Dahlstroem
- Department of Plastic Surgery, Copenhagen University Hospitals Herlev, Herlev, Denmark
| | - Line Laessoee
- Department of Plastic Surgery, Copenhagen University Hospitals Herlev, Herlev, Denmark
| | - Rasmus Hvass Hansen
- Department of Radiology, Copenhagen University Hospitals Herlev, Herlev, Denmark
| | | | - Helle Westergren Hendel
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospitals Herlev, Herlev, Denmark
| | | | | | - Julie Gehl
- Center for Experimental Drug and Gene Electrotransfer, Department of Oncology, Copenhagen University Hospitals Herlev, Herlev, Denmark
| |
Collapse
|
17
|
Savarin M, Kamensek U, Cemazar M, Heller R, Sersa G. Electrotransfer of plasmid DNA radiosensitizes B16F10 tumors through activation of immune response. Radiol Oncol 2017; 51:30-39. [PMID: 28265230 PMCID: PMC5330176 DOI: 10.1515/raon-2017-0011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/18/2017] [Indexed: 01/14/2023] Open
Abstract
Background Tumor irradiation combined with adjuvant treatments, either vascular targeted or immunomodulatory, is under intense investigation. Gene electrotransfer of therapeutic genes is one of these approaches. The aim of this study was to determine, whether gene electrotransfer of plasmid encoding shRNA for silencing endoglin, with vascular targeted effectiveness, can radiosensitize melanoma B16F10 tumors. Materials and methods The murine melanoma B16F10 tumors, growing on the back of C57Bl/6 mice, were treated by triple gene electrotransfer and irradiation. The antitumor effect was evaluated by determination of tumor growth delay and proportion of tumor free mice. Furthermore, histological analysis of tumors (necrosis, apoptosis, proliferation, vascularization, presence of hypoxia and infiltration of immune cells,) was used to evaluate the therapeutic mechanisms. Results Gene electrotransfer of plasmid silencing endoglin predominantly indicated vascular targeted effects of the therapy, since significant tumor growth delay and 44% of tumor free mice were obtained. In addition, irradiation had minor effects on radioresistant melanoma, with 11% of mice tumor free. The combined treatment resulted in excellent effectiveness with 88% of mice tumor free, with more than half resistant to secondary tumor challenge, which was observed also with the plasmid devoid of the therapeutic gene. Histological analysis of tumors in the combined treatment group, demonstrated similar mode of action of the gene electrotransfer of plasmid encoding shRNA for silencing endoglin and devoid of it, both through the induction of an immune response. Conclusions The results of this study indicate that irradiation can in radioresistant melanoma tumors, by release of tumor associated antigens, serve as activator of the immune response, besides directly affecting tumor cells and vasculature. The primed antitumor immune response can be further boosted by gene electrotransfer of plasmid, regardless of presence of the therapeutic gene, which was confirmed by the high radiosensitization, resulting in prolonged tumor growth delay and 89% of tumor free mice that were up to 63% resistant to secondary challenge of tumor. In addition, gene electrotransfer of therapeutic plasmid for silencing endoglin has also a direct effect on tumor vasculature and tumors cells; however in combination with radiotherapy this effect was masked by pronounced immune response.
Collapse
Affiliation(s)
- Monika Savarin
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Richard Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, USA
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
18
|
Electrotransfer parameters as a tool for controlled and targeted gene expression in skin. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e356. [PMID: 27574782 PMCID: PMC5023408 DOI: 10.1038/mtna.2016.65] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/07/2016] [Indexed: 12/25/2022]
Abstract
Skin is an attractive target for gene electrotransfer. It consists of different cell types that can be transfected, leading to various responses to gene electrotransfer. We demonstrate that these responses could be controlled by selecting the appropriate electrotransfer parameters. Specifically, the application of low or high electric pulses, applied by multi-electrode array, provided the possibility to control the depth of the transfection in the skin, the duration and the level of gene expression, as well as the local or systemic distribution of the transgene. The influence of electric pulse type was first studied using a plasmid encoding a reporter gene (DsRed). Then, plasmids encoding therapeutic genes (IL-12, shRNA against endoglin, shRNA against melanoma cell adhesion molecule) were used, and their effects on wound healing and cutaneous B16F10 melanoma tumors were investigated. The high-voltage pulses resulted in gene expression that was restricted to superficial skin layers and induced a local response. In contrast, the low-voltage electric pulses promoted transfection into the deeper skin layers, resulting in prolonged gene expression and higher transgene production, possibly with systemic distribution. Therefore, in the translation into the clinics, it will be of the utmost importance to adjust the electrotransfer parameters for different therapeutic approaches and specific mode of action of the therapeutic gene.
Collapse
|
19
|
Abstract
INTRODUCTION This review presents recent developments in the use of nonviral vectors and transfer technologies in cancer gene therapy. Tremendous progress has been made in developing cancer gene therapy in ways that could be applicable to treatments. Numerous efforts are focused on methods of attacking known and novel targets more efficiently and specifically. In parallel to progress in nonviral vector design and delivery technologies, important achievements have been accomplished for suicide, gene replacement, gene suppression and immunostimulatory therapies. New nonviral cancer gene therapies have been developed based on emerging RNAi (si/shRNA-, miRNA) or ODN. AREAS COVERED This review provides an overview of recent gene therapeutic strategies in which nonviral vectors have been used experimentally and in clinical trials. Furthermore, we present current developments in nonviral vector systems in association with important chemical and physical gene delivery technologies and their potential for the future. EXPERT OPINION Nonviral gene therapy has maintained its position as an approach for treating cancer. This is reflected by the fact that more than 17% of all gene therapy trials employ nonviral approaches. Thus, nonviral vectors have emerged as a clinical alternative to viral vectors for the appropriate expression and delivery of therapeutic genes.
Collapse
Affiliation(s)
- Jessica Pahle
- a Experimental and Clinical Research Center , Charité University Medicine Berlin and Max-Delbrück-Center for Moelcular Medicine , Berlin , Germany
| | - Wolfgang Walther
- a Experimental and Clinical Research Center , Charité University Medicine Berlin and Max-Delbrück-Center for Moelcular Medicine , Berlin , Germany
| |
Collapse
|
20
|
Dolinsek T, Sersa G, Prosen L, Bosnjak M, Stimac M, Razborsek U, Cemazar M. Electrotransfer of Plasmid DNA Encoding an Anti-Mouse Endoglin (CD105) shRNA to B16 Melanoma Tumors with Low and High Metastatic Potential Results in Pronounced Anti-Tumor Effects. Cancers (Basel) 2015; 8:cancers8010003. [PMID: 26712792 PMCID: PMC4728450 DOI: 10.3390/cancers8010003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022] Open
Abstract
Endoglin overexpression is associated with highly proliferative tumor endothelium and also with some tumors, including melanoma. Its targeting has anti-tumor effectiveness, which can also be obtained by RNA interference. The aim of our study was to explore the anti-tumor effectiveness of endoglin silencing by electrotransfer of plasmid DNA encoding short hairpin RNA against endoglin in two murine B16 melanoma variants with different metastatic potential on cells, spheroids and subcutaneous tumors in mice. The results demonstrate that endoglin silencing with gene electrotransfer reduces the proliferation, survival and migration of melanoma cells and also has anti-tumor effectiveness, as the therapy resulted in a high percentage of tumor cures (23% and 58% on B16F1 and B16F10 tumors, respectively). The effectiveness of the therapy correlated with endoglin expression in melanoma cells; in vitro the effects were more pronounced in B16F1 cells, which express more endoglin than B16F10. However, the opposite was observed in vivo in tumors, where there was a higher expression of endoglin and better anti-tumor effectiveness in the B16F10 tumor. In conclusion, targeting endoglin for the treatment of melanoma seems to be a concept worthy of further exploration due to the increased therapeutic effect of the therapy based on simultaneous vascular targeting and its direct effect on tumor cells.
Collapse
Affiliation(s)
- Tanja Dolinsek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Lara Prosen
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Masa Bosnjak
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Monika Stimac
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Urska Razborsek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia.
| |
Collapse
|