1
|
Peterson CW, Adair JE, Wohlfahrt ME, Deleage C, Radtke S, Rust B, Norman KK, Norgaard ZK, Schefter LE, Sghia-Hughes GM, Repetto A, Baldessari A, Murnane RD, Estes JD, Kiem HP. Autologous, Gene-Modified Hematopoietic Stem and Progenitor Cells Repopulate the Central Nervous System with Distinct Clonal Variants. Stem Cell Reports 2019; 13:91-104. [PMID: 31204301 PMCID: PMC6626873 DOI: 10.1016/j.stemcr.2019.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023] Open
Abstract
Myeloid-differentiated hematopoietic stem cells (HSCs) have contributed to a number of novel treatment approaches for lysosomal storage diseases of the central nervous system (CNS), and may also be applied to patients infected with HIV. We quantified hematopoietic stem and progenitor cell (HSPC) trafficking to 20 tissues including lymph nodes, spleen, liver, gastrointestinal tract, CNS, and reproductive tissues. We observed efficient marking of multiple macrophage subsets, including CNS-associated myeloid cells, suggesting that HSPC-derived macrophages are a viable approach to target gene-modified cells to tissues. Gene-marked cells in the CNS were unique from gene-marked cells at any other physiological sites including peripheral blood. This novel finding suggests that these cells were derived from HSPCs, migrated to the brain, were compartmentalized, established myeloid progeny, and could be targeted for lifelong delivery of therapeutic molecules. Our findings have highly relevant implications for the development of novel therapies for genetic and infectious diseases of the CNS.
Collapse
Affiliation(s)
- Christopher W Peterson
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Mail Stop D1-100, PO Box 19024, Seattle, WA 98109-1024, USA; Department of Medicine, University of Washington, Seattle WA 98195, USA
| | - Jennifer E Adair
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Mail Stop D1-100, PO Box 19024, Seattle, WA 98109-1024, USA; Department of Medicine, University of Washington, Seattle WA 98195, USA
| | - Martin E Wohlfahrt
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Mail Stop D1-100, PO Box 19024, Seattle, WA 98109-1024, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21704, USA
| | - Stefan Radtke
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Mail Stop D1-100, PO Box 19024, Seattle, WA 98109-1024, USA
| | - Blake Rust
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Mail Stop D1-100, PO Box 19024, Seattle, WA 98109-1024, USA
| | - Krystin K Norman
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Mail Stop D1-100, PO Box 19024, Seattle, WA 98109-1024, USA
| | - Zachary K Norgaard
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Mail Stop D1-100, PO Box 19024, Seattle, WA 98109-1024, USA
| | - Lauren E Schefter
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Mail Stop D1-100, PO Box 19024, Seattle, WA 98109-1024, USA
| | - Gabriella M Sghia-Hughes
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Mail Stop D1-100, PO Box 19024, Seattle, WA 98109-1024, USA
| | - Andrea Repetto
- Division of Vaccine and Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | - Robert D Murnane
- Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21704, USA
| | - Hans-Peter Kiem
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Mail Stop D1-100, PO Box 19024, Seattle, WA 98109-1024, USA; Department of Medicine, University of Washington, Seattle WA 98195, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Paul B, Ibarra GSR, Hubbard N, Einhaus T, Astrakhan A, Rawlings DJ, Kiem HP, Peterson CW. Efficient Enrichment of Gene-Modified Primary T Cells via CCR5-Targeted Integration of Mutant Dihydrofolate Reductase. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 9:347-357. [PMID: 30038938 PMCID: PMC6054698 DOI: 10.1016/j.omtm.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/01/2018] [Indexed: 12/19/2022]
Abstract
Targeted gene therapy strategies utilizing homology-driven repair (HDR) allow for greater control over transgene integration site, copy number, and expression-significant advantages over traditional vector-mediated gene therapy with random genome integration. However, the relatively low efficiency of HDR-based strategies limits their clinical application. Here, we used HDR to knock in a mutant dihydrofolate reductase (mDHFR) selection gene at the gene-edited CCR5 locus in primary human CD4+ T cells and selected for mDHFR-modified cells in the presence of methotrexate (MTX). Cells were transfected with CCR5-megaTAL nuclease mRNA and transduced with adeno-associated virus containing an mDHFR donor template flanked by CCR5 homology arms, leading to up to 40% targeted gene insertion. Clinically relevant concentrations of MTX led to a greater than 5-fold enrichment for mDHFR-modified cells, which maintained a diverse TCR repertoire over the course of expansion and drug selection. Our results demonstrate that mDHFR/MTX-based selection can be used to enrich for gene-modified T cells ex vivo, paving the way for analogous approaches to increase the percentage of HIV-resistant, autologous CD4+ T cells infused into HIV+ patients, and/or for in vivo selection of gene-edited T cells for the treatment of cancer.
Collapse
Affiliation(s)
- Biswajit Paul
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Guillermo S Romano Ibarra
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nicholas Hubbard
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA, USA
| | - Teresa Einhaus
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - David J Rawlings
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA.,Department of Immunology, University of Washington, Seattle, WA, USA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Christopher W Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW The introduction of effective antiretroviral therapy (ART) has transformed HIV infection from a deadly to a chronic infection. Despite its successes in reducing mortality, ART fails to cure HIV allowing HIV to persist in vivo. HIV persistence under ART is thought to be mediated by a combination of latent infection of long-lived cells, homeostatic proliferation of latently infected cells, anatomic sanctuaries, and low-level virus replication. To understand the contribution of specific cell types and anatomic sites to virus persistence in vivo animal models are necessary. RECENT FINDINGS The advancements in ART and our understanding of animal models have facilitated the development of models of HIV persistence in nonhuman primates and mice. Simian immunodeficiency virus (SIV) or simian/HIV infection (SHIV) of rhesus and pigtail macaques followed by effective ART represents the most faithful animal model of HIV persistence. HIV infection of humanized mice also provides a useful model for answering specific questions regarding virus persistence in a uniquely mutable system. SUMMARY In this review, we describe the most recent findings using animal models of HIV persistence. We will first describe the important aspects of HIV infection that SIV/SHIV infection of nonhuman primates are able to recapitulate, then we will discuss some recent studies that have used these models to understand viral persistence.
Collapse
|