1
|
Kumagai S, Nakajima T, Shimazaki K, Kakiuchi T, Harada N, Ohba H, Onuki Y, Takino N, Ito M, Sato M, Nakamura S, Osaka H, Yamagata T, Kawai K, Muramatsu SI. Early distribution of 18 F-labeled AAV9 vectors in the cerebrospinal fluid after intracerebroventricular or intracisternal magna infusion in non-human primates. J Gene Med 2023; 25:e3457. [PMID: 36278965 DOI: 10.1002/jgm.3457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/16/2022] [Accepted: 10/15/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The delivery of adeno-associated virus (AAV) vectors via the cerebrospinal fluid (CSF) has emerged as a valuable method for widespread transduction in the central nervous system. Although infusion into the cerebral ventricles is a common protocol in preclinical studies of small animals, the cisterna magna has been recognized as an alternative target for clinical studies because it can be reached in a less invasive manner using an intrathecal catheter via the subarachnoid space from a lumbar puncture. METHODS We evaluated the early distribution of fluorine-18-labeled AAV9 vectors infused into the lateral ventricle or cisterna magna of four non-human primates using positron emission tomography. The expression of the green fluorescent protein was immunohistochemically determined. RESULTS In both approaches, the labeled vectors diffused into the broad arachnoid space around the brain stem and cervical spinal cord within 30 min. Both infusion routes efficiently transduced neurons in the cervical spinal cord. CONCLUSIONS For gene therapy that primarily targets the cervical spinal cord and brainstem, such as amyotrophic lateral sclerosis, cisterna magna infusion would be a feasible and effective administration method.
Collapse
Affiliation(s)
- Shinichi Kumagai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Takeshi Nakajima
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Kuniko Shimazaki
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Takeharu Kakiuchi
- Central Research Laboratory, Hamamatsu Photonics K.K., Shizuoka, Japan
| | - Norihiro Harada
- Central Research Laboratory, Hamamatsu Photonics K.K., Shizuoka, Japan
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics K.K., Shizuoka, Japan
| | - Yoshiyuki Onuki
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Naomi Takino
- Division of Neurological Gene Therapy, Jichi Medical University, Tochigi, Japan
| | - Mika Ito
- Division of Neurological Gene Therapy, Jichi Medical University, Tochigi, Japan
| | - Makoto Sato
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Sachie Nakamura
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | | | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Jichi Medical University, Tochigi, Japan.,Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Flotte TR, Gessler DJ. Gene Therapy for Rare Neurological Disorders. Clin Pharmacol Ther 2022; 111:743-757. [PMID: 35102556 DOI: 10.1002/cpt.2543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 01/23/2022] [Indexed: 11/10/2022]
Abstract
There are over 7 000 diseases that are individually rare, but collectively affect missions of people worldwide. They are very commonly neurologic single-gene disorders. Recent advances in recombinant adeno-associated virus (rAAV) vectors have enabled breakthroughs, including FDA-approved gene therapies for Inherited Retinal Dystrophy due to RPE65 mutation and spinal muscular atrophy. A range of other gene therapies for rare neurologic diseases are at various stages of development. Future development of gene editing technologies promises further to broaden the potential for more patients with these disorders to benefit from innovative therapies.
Collapse
Affiliation(s)
| | - Dominic J Gessler
- University of Massachusetts Chan Medical School.,University of Minnesota
| |
Collapse
|
3
|
Seven-year follow-up of durability and safety of AAV CNS gene therapy for a lysosomal storage disorder in a large animal. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:370-389. [PMID: 34761052 PMCID: PMC8550992 DOI: 10.1016/j.omtm.2021.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Delivery of adeno-associated viral vectors (AAVs) to cerebrospinal fluid (CSF) has emerged as a promising approach to achieve widespread transduction of the central nervous system (CNS) and peripheral nervous system (PNS), with direct applicability to the treatment of a wide range of neurological diseases, particularly lysosomal storage diseases. Although studies in small animal models have provided proof of concept and experiments in large animals demonstrated feasibility in bigger brains, there is not much information on long-term safety or durability of the effect. Here, we report a 7-year study in healthy beagle dogs after intra-CSF delivery of a single, clinically relevant dose (2 × 1013 vg/dog) of AAV9 vectors carrying the canine sulfamidase, the enzyme deficient in mucopolysaccharidosis type IIIA. Periodic monitoring of CSF and blood, clinical and neurological evaluations, and magnetic resonance and ultrasound imaging of target organs demonstrated no toxicity related to treatment. AAV9-mediated gene transfer resulted in detection of sulfamidase activity in CSF throughout the study. Analysis at tissue level showed widespread sulfamidase expression and activity in the absence of histological findings in any region of encephalon, spinal cord, or dorsal root ganglia. Altogether, these results provide proof of durability of expression and long-term safety for intra-CSF delivery of AAV-based gene transfer vectors encoding therapeutic proteins to the CNS.
Collapse
|
4
|
Gross AL, Gray-Edwards HL, Bebout CN, Ta NL, Nielsen K, Brunson BL, Mercado KRL, Osterhoudt DE, Batista AR, Maitland S, Seyfried TN, Sena-Esteves M, Martin DR. Intravenous delivery of adeno-associated viral gene therapy in feline GM1 gangliosidosis. Brain 2021; 145:655-669. [PMID: 34410345 DOI: 10.1093/brain/awab309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 11/14/2022] Open
Abstract
GM1 gangliosidosis is a fatal neurodegenerative disease caused by a deficiency of lysosomal β-galactosidase. In its most severe form, GM1 gangliosidosis causes death by 4 years of age, and no effective treatments exist. Previous work has shown that injection of the brain parenchyma with an adeno-associated viral vector provides pronounced therapeutic benefit in a feline GM1 model. To develop a less invasive treatment for the brain and increase systemic biodistribution, intravenous injection of AAV9 was evaluated. AAV9 expressing feline β-galactosidase was intravenously administered at 1.5x1013 vector genomes/kilogram body weight to six GM1 cats at approximately 1 month of age. The animals were divided into two cohorts: 1) a long-term group, which was followed to humane endpoint, and 2) a short-term group, which was analyzed 16-weeks post treatment. Clinical assessments included neurological exams, cerebrospinal fluid and urine biomarkers, and 7-Telsa magnetic resonance imaging and spectroscopy. Postmortem analysis included β-galactosidase and virus distribution, histological analysis, and ganglioside content. Untreated GM1 animals survived 8.0 ± 0.6 months while intravenous treatment increased survival to an average of 3.5 years (n = 2) with substantial improvements in quality of life and neurologic function. Neurological abnormalities, which in untreated animals progress to the inability to stand and debilitating neurological disease by 8 months of age, were mild in all treated animals. Cerebrospinal fluid biomarkers were normalized, indicating decreased central nervous system cell damage in the treated animals. Urinary glycosaminoglycans decreased to normal levels in the long-term cohort. Magnetic resonance imaging and spectroscopy showed partial preservation of the brain in treated animals, which was supported by postmortem histological evaluation. β-galactosidase activity was increased throughout the central nervous system, reaching carrier levels in much of the cerebrum and normal levels in the cerebellum, spinal cord and cerebrospinal fluid. Ganglioside accumulation was significantly reduced by treatment. Peripheral tissues such as heart, skeletal muscle, and sciatic nerve also had normal β-galactosidase activity in treated GM1 cats. GM1 histopathology was largely corrected with treatment. There was no evidence of tumorigenesis or toxicity. Restoration of β-galactosidase activity in the central nervous system and peripheral organs by intravenous gene therapy led to profound increases in lifespan and quality of life in GM1 cats. This data supports the promise of intravenous gene therapy as a safe, effective treatment for GM1 gangliosidosis.
Collapse
Affiliation(s)
- Amanda L Gross
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA.,Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849 USA
| | - Heather L Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Cassie N Bebout
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Nathan L Ta
- Biology Department, Boston College, Chestnut Hill, MA 02467 USA
| | - Kayly Nielsen
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Brandon L Brunson
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849 USA
| | - Kalajan R Lopez Mercado
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Devin E Osterhoudt
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Ana Rita Batista
- Department of Neurology, University of Massachusetts Medical School, Worcester MA 01605 USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester MA 01605 USA
| | - Stacy Maitland
- Department of Neurology, University of Massachusetts Medical School, Worcester MA 01605 USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester MA 01605 USA
| | | | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Medical School, Worcester MA 01605 USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester MA 01605 USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA.,Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849 USA
| |
Collapse
|
5
|
Asahina M, Fujinawa R, Hirayama H, Tozawa R, Kajii Y, Suzuki T. Reversibility of motor dysfunction in the rat model of NGLY1 deficiency. Mol Brain 2021; 14:91. [PMID: 34120625 PMCID: PMC8201687 DOI: 10.1186/s13041-021-00806-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022] Open
Abstract
N-glycanase 1 (NGLY1) deficiency is a rare inherited disorder characterized by developmental delay, hypolacrima or alacrima, seizure, intellectual disability, motor deficits, and other neurological symptoms. The underlying mechanisms of the NGLY1 phenotype are poorly understood, and no effective therapy is currently available. Similar to human patients, the rat model of NGLY1 deficiency, Ngly1-/-, shows developmental delay, movement disorder, somatosensory impairment, scoliosis, and learning disability. Here we show that single intracerebroventricular administration of AAV9 expressing human NGLY1 cDNA (AAV9-hNGLY1) to Ngly1-/- rats during the weaning period restored NGLY1 expression in the brain and spinal cord, concomitant with increased enzymatic activity of NGLY1 in the brain. hNGLY1 protein expressed by AAV9 was found predominantly in mature neurons, but not in glial cells, of Ngly1-/- rats. Strikingly, intracerebroventricular administration of AAV9-hNGLY1 normalized the motor phenotypes of Ngly1-/- rats assessed by the rota-rod test and gait analysis. The reversibility of motor deficits in Ngly1-/- rats by central nervous system (CNS)-restricted gene delivery suggests that the CNS is the primary therapeutic target organs for NGLY1 deficiency, and that the Ngly1-/- rat model may be useful for evaluating therapeutic treatments in pre-clinical studies.
Collapse
Affiliation(s)
- Makoto Asahina
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, 2518555, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, 2518555, Japan
| | - Reiko Fujinawa
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, 2518555, Japan
| | - Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, 2518555, Japan
| | - Ryuichi Tozawa
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, 2518555, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, 2518555, Japan
| | - Yasushi Kajii
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, 2518555, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, 2518555, Japan.
| |
Collapse
|
6
|
Peelaerts W, Brito F, Van den Haute C, Barber Janer A, Steiner JA, Brundin P, Baekelandt V. Widespread, Specific, and Efficient Transgene Expression in Oligodendrocytes After Intracerebral and Intracerebroventricular Delivery of Viral Vectors in Rodent Brain. Hum Gene Ther 2021; 32:616-627. [PMID: 34006117 DOI: 10.1089/hum.2021.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Several neurodegenerative disorders are characterized by oligodendroglial pathology and myelin loss. Oligodendrogliopathies are a group of rare diseases for which there currently is no therapy. Gene delivery through viral vectors to oligodendrocytes is a potential strategy to deliver therapeutic molecules to oligodendrocytes for disease modification. However, targeting oligodendroglial cells in vivo is challenging due to their widespread distribution in white and gray matter. In this study, we aimed to address several of these difficulties by designing and testing different oligodendroglial targeting vectors in rat and mouse brain, utilizing different promoters, serotypes, and delivery routes. We found that different oligodendroglial promoters (myelin basic protein [MBP], cytomegalovirus-enhanced MBP, and myelin-associated glycoprotein [MAG]) vary considerably in their ability to drive oligodendroglial transgene expression and different viral vector serotypes (rAAV2/7, rAAV2/8, and rAAV2/9) exhibit varying efficacies in transducing oligodendrocytes. Different administration routes through intracerebral or intraventricular injection allow widespread targeting of mature oligodendrocytes. Delivery of rAAV2/9-MAG-GFP into the cerebrospinal fluid results in GFP expression along the entire rostrocaudal axis of the spinal cord. Collectively, these results show that oligodendrocytes can be targeted with high specificity and widespread expression, which will be useful for gene therapeutic interventions or disease modeling purposes.
Collapse
Affiliation(s)
- Wouter Peelaerts
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Filipa Brito
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Leuven Viral Vector Core (LVVC), Leuven, Belgium
| | - Anna Barber Janer
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Jennifer A Steiner
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Marcó S, Haurigot V, Bosch F. In Vivo Gene Therapy for Mucopolysaccharidosis Type III (Sanfilippo Syndrome): A New Treatment Horizon. Hum Gene Ther 2020; 30:1211-1221. [PMID: 31482754 DOI: 10.1089/hum.2019.217] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For most lysosomal storage diseases (LSDs), there is no cure. Gene therapy is an attractive tool for treatment of LSDs caused by deficiencies in secretable lysosomal enzymes, in which neither full restoration of normal enzymatic activity nor transduction of all cells of the affected organ is necessary. However, some LSDs, such as mucopolysaccharidosis type III (MPSIII) diseases or Sanfilippo syndrome, represent a difficult challenge because patients suffer severe neurodegeneration with mild somatic alterations. The disease's main target is the central nervous system (CNS) and enzymes do not efficiently cross the blood-brain barrier (BBB) even if present at very high concentration in circulation. No specific treatment has been approved for MPSIII. In this study, we discuss the adeno-associated virus (AAV) vector-mediated gene transfer strategies currently being developed for MPSIII disease. These strategies rely on local delivery of AAV vectors to the CNS either through direct intraparenchymal injection at several sites or through delivery to the cerebrospinal fluid (CSF), which bathes the whole CNS, or exploit the properties of certain AAV serotypes capable of crossing the BBB upon systemic administration. Although studies in small and large animal models of MPSIII diseases have provided evidence supporting the efficacy and safety of all these strategies, there are considerable differences between the different routes of administration in terms of procedure-associated risks, vector dose requirements, sensitivity to the effect of circulating neutralizing antibodies that block AAV transduction, and potential toxicity. Ongoing clinical studies should shed light on which gene transfer strategy leads to highest clinical benefits while minimizing risks. The development of all these strategies opens a new horizon for treatment of not only MPSIII and other LSDs but also of a wide range of neurological diseases.
Collapse
Affiliation(s)
- Sara Marcó
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Virginia Haurigot
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
8
|
O'Connor DM, Lutomski C, Jarrold MF, Boulis NM, Donsante A. Lot-to-Lot Variation in Adeno-Associated Virus Serotype 9 (AAV9) Preparations. Hum Gene Ther Methods 2019; 30:214-225. [PMID: 31752530 PMCID: PMC6919242 DOI: 10.1089/hgtb.2019.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Viral vectors are complex drugs that pose a particular challenge for manufacturing. Previous studies have shown that, unlike small-molecule drugs, vector preparations do not yield a collection of identical particles. Instead, a mixture of particles that vary in capsid stoichiometry and impurities is created, which may differ from lot to lot. The consequences of this are unclear, but conflicting reports regarding the biological properties of vectors, including transduction patterns, suggest that this variability may have an effect. However, other variables, including differences in animal strains and techniques, make it difficult to identify a cause. Here, we report lot-to-lot variation in spinal cord gray matter transduction following intrathecal delivery of self-complementary adeno-associated virus serotype 9 vectors. Eleven lots of vector were evaluated from six vector cores, including one preclinical/Good Laboratory Practice lot. Eight of the lots, including the preclinical lot, failed to transduce the gray matter, whereas the other three provided robust transduction. The cause for this variation is unknown, but it did not correlate with vector titer, buffer, or purification method. These results highlight the need to identify the cause of this variation and to develop improved production and quality control methods to ensure lot-to-lot consistency of vector potency.
Collapse
Affiliation(s)
- Deirdre M. O'Connor
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | | | | | - Nicholas M. Boulis
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Anthony Donsante
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia;,Correspondence: Dr. Anthony Donsante, Department of Neurosurgery, Emory University School of Medicine, 101 Woodruff Circle, Room 6339, Atlanta, GA 30322.
| |
Collapse
|
9
|
The Application of Adeno-Associated Viral Vector Gene Therapy to the Treatment of Fragile X Syndrome. Brain Sci 2019; 9:brainsci9020032. [PMID: 30717399 PMCID: PMC6406794 DOI: 10.3390/brainsci9020032] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/18/2023] Open
Abstract
Viral vector-mediated gene therapy has grown by leaps and bounds over the past several years. Although the reasons for this progress are varied, a deeper understanding of the basic biology of the viruses, the identification of new and improved versions of viral vectors, and simply the vast experience gained by extensive testing in both animal models of disease and in clinical trials, have been key factors. Several studies have investigated the efficacy of adeno-associated viral (AAV) vectors in the mouse model of fragile X syndrome where AAVs have been used to express fragile X mental retardation protein (FMRP), which is missing or highly reduced in the disorder. These studies have demonstrated a range of efficacies in different tests from full correction, to partial rescue, to no effect. Here we provide a backdrop of recent advances in AAV gene therapy as applied to central nervous system disorders, outline the salient features of the fragile X studies, and discuss several key issues for moving forward. Collectively, the findings to date from the mouse studies on fragile X syndrome, and data from clinical trials testing AAVs in other neurological conditions, indicate that AAV-mediated gene therapy could be a viable strategy for treating fragile X syndrome.
Collapse
|
10
|
Destination Brain: the Past, Present, and Future of Therapeutic Gene Delivery. J Neuroimmune Pharmacol 2017; 12:51-83. [PMID: 28160121 DOI: 10.1007/s11481-016-9724-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
Abstract
Neurological diseases and disorders (NDDs) present a significant societal burden and currently available drug- and biological-based therapeutic strategies have proven inadequate to alleviate it. Gene therapy is a suitable alternative to treat NDDs compared to conventional systems since it can be tailored to specifically alter select gene expression, reverse disease phenotype and restore normal function. The scope of gene therapy has broadened over the years with the advent of RNA interference and genome editing technologies. Consequently, encouraging results from central nervous system (CNS)-targeted gene delivery studies have led to their transition from preclinical to clinical trials. As we shift to an exciting gene therapy era, a retrospective of available literature on CNS-associated gene delivery is in order. This review is timely in this regard, since it analyzes key challenges and major findings from the last two decades and evaluates future prospects of brain gene delivery. We emphasize major areas consisting of physiological and pharmacological challenges in gene therapy, function-based selection of a ideal cellular target(s), available therapy modalities, and diversity of viral vectors and nanoparticles as vehicle systems. Further, we present plausible answers to key questions such as strategies to circumvent low blood-brain barrier permeability and most suitable CNS cell types for targeting. We compare and contrast pros and cons of the tested viral vectors in the context of delivery systems used in past and current clinical trials. Gene vector design challenges are also evaluated in the context of cell-specific promoters. Key challenges and findings reported for recent gene therapy clinical trials, assessing viral vectors and nanoparticles are discussed from the perspective of bench to bedside gene therapy translation. We conclude this review by tying together gene delivery challenges, available vehicle systems and comprehensive analyses of neuropathogenesis to outline future prospects of CNS-targeted gene therapies.
Collapse
|
11
|
Jackson KL, Dayton RD, Deverman BE, Klein RL. Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B. Front Mol Neurosci 2016; 9:116. [PMID: 27867348 PMCID: PMC5095393 DOI: 10.3389/fnmol.2016.00116] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/19/2016] [Indexed: 11/13/2022] Open
Abstract
Widespread genetic modification of cells in the central nervous system (CNS) with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin (CBA) hybrid promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered adeno-associated virus (AAV)-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS)-related protein transactive response DNA-binding protein, 43 kDa (TDP-43) with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats.
Collapse
Affiliation(s)
- Kasey L Jackson
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center Shreveport, LA, USA
| | - Robert D Dayton
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center Shreveport, LA, USA
| | - Benjamin E Deverman
- Division of Biology and Biological Engineering, California Institute of Technology Pasadena, CA, USA
| | - Ronald L Klein
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center Shreveport, LA, USA
| |
Collapse
|
12
|
Motas S, Haurigot V, Garcia M, Marcó S, Ribera A, Roca C, Sánchez X, Sánchez V, Molas M, Bertolin J, Maggioni L, León X, Ruberte J, Bosch F. CNS-directed gene therapy for the treatment of neurologic and somatic mucopolysaccharidosis type II (Hunter syndrome). JCI Insight 2016; 1:e86696. [PMID: 27699273 DOI: 10.1172/jci.insight.86696] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mucopolysaccharidosis type II (MPSII) is an X-linked lysosomal storage disease characterized by severe neurologic and somatic disease caused by deficiency of iduronate-2-sulfatase (IDS), an enzyme that catabolizes the glycosaminoglycans heparan and dermatan sulphate. Intravenous enzyme replacement therapy (ERT) currently constitutes the only approved therapeutic option for MPSII. However, the inability of recombinant IDS to efficiently cross the blood-brain barrier (BBB) limits ERT efficacy in treating neurological symptoms. Here, we report a gene therapy approach for MPSII through direct delivery of vectors to the CNS. Through a minimally invasive procedure, we administered adeno-associated virus vectors encoding IDS (AAV9-Ids) to the cerebrospinal fluid of MPSII mice with already established disease. Treated mice showed a significant increase in IDS activity throughout the encephalon, with full resolution of lysosomal storage lesions, reversal of lysosomal dysfunction, normalization of brain transcriptomic signature, and disappearance of neuroinflammation. Moreover, our vector also transduced the liver, providing a peripheral source of therapeutic protein that corrected storage pathology in visceral organs, with evidence of cross-correction of nontransduced organs by circulating enzyme. Importantly, AAV9-Ids-treated MPSII mice showed normalization of behavioral deficits and considerably prolonged survival. These results provide a strong proof of concept for the clinical translation of our approach for the treatment of Hunter syndrome patients with cognitive impairment.
Collapse
Affiliation(s)
- Sandra Motas
- Center of Animal Biotechnology and Gene Therapy and.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Virginia Haurigot
- Center of Animal Biotechnology and Gene Therapy and.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Miguel Garcia
- Center of Animal Biotechnology and Gene Therapy and.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Sara Marcó
- Center of Animal Biotechnology and Gene Therapy and.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Albert Ribera
- Center of Animal Biotechnology and Gene Therapy and.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Carles Roca
- Center of Animal Biotechnology and Gene Therapy and.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Xavier Sánchez
- Center of Animal Biotechnology and Gene Therapy and.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Víctor Sánchez
- Center of Animal Biotechnology and Gene Therapy and.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Maria Molas
- Center of Animal Biotechnology and Gene Therapy and.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Joan Bertolin
- Center of Animal Biotechnology and Gene Therapy and.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Luca Maggioni
- Center of Animal Biotechnology and Gene Therapy and.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Xavier León
- Center of Animal Biotechnology and Gene Therapy and.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | - Jesús Ruberte
- Center of Animal Biotechnology and Gene Therapy and.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain.,Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy and.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| |
Collapse
|