1
|
Li X, La Salvia S, Liang Y, Adamiak M, Kohlbrenner E, Jeong D, Chepurko E, Ceholski D, Lopez-Gordo E, Yoon S, Mathiyalagan P, Agarwal N, Jha D, Lodha S, Daaboul G, Phan A, Raisinghani N, Zhang S, Zangi L, Gonzalez-Kozlova E, Dubois N, Dogra N, Hajjar RJ, Sahoo S. Extracellular Vesicle-Encapsulated Adeno-Associated Viruses for Therapeutic Gene Delivery to the Heart. Circulation 2023; 148:405-425. [PMID: 37409482 DOI: 10.1161/circulationaha.122.063759] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/16/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Adeno-associated virus (AAV) has emerged as one of the best tools for cardiac gene delivery due to its cardiotropism, long-term expression, and safety. However, a significant challenge to its successful clinical use is preexisting neutralizing antibodies (NAbs), which bind to free AAVs, prevent efficient gene transduction, and reduce or negate therapeutic effects. Here we describe extracellular vesicle-encapsulated AAVs (EV-AAVs), secreted naturally by AAV-producing cells, as a superior cardiac gene delivery vector that delivers more genes and offers higher NAb resistance. METHODS We developed a 2-step density-gradient ultracentrifugation method to isolate highly purified EV-AAVs. We compared the gene delivery and therapeutic efficacy of EV-AAVs with an equal titer of free AAVs in the presence of NAbs, both in vitro and in vivo. In addition, we investigated the mechanism of EV-AAV uptake in human left ventricular and human induced pluripotent stem cell-derived cardiomyocytes in vitro and mouse models in vivo using a combination of biochemical techniques, flow cytometry, and immunofluorescence imaging. RESULTS Using cardiotropic AAV serotypes 6 and 9 and several reporter constructs, we demonstrated that EV-AAVs deliver significantly higher quantities of genes than AAVs in the presence of NAbs, both to human left ventricular and human induced pluripotent stem cell-derived cardiomyocytes in vitro and to mouse hearts in vivo. Intramyocardial delivery of EV-AAV9-sarcoplasmic reticulum calcium ATPase 2a to infarcted hearts in preimmunized mice significantly improved ejection fraction and fractional shortening compared with AAV9-sarcoplasmic reticulum calcium ATPase 2a delivery. These data validated NAb evasion by and therapeutic efficacy of EV-AAV9 vectors. Trafficking studies using human induced pluripotent stem cell-derived cells in vitro and mouse hearts in vivo showed significantly higher expression of EV-AAV6/9-delivered genes in cardiomyocytes compared with noncardiomyocytes, even with comparable cellular uptake. Using cellular subfraction analyses and pH-sensitive dyes, we discovered that EV-AAVs were internalized into acidic endosomal compartments of cardiomyocytes for releasing and acidifying AAVs for their nuclear uptake. CONCLUSIONS Together, using 5 different in vitro and in vivo model systems, we demonstrate significantly higher potency and therapeutic efficacy of EV-AAV vectors compared with free AAVs in the presence of NAbs. These results establish the potential of EV-AAV vectors as a gene delivery tool to treat heart failure.
Collapse
Affiliation(s)
- Xisheng Li
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sabrina La Salvia
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yaxuan Liang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China (Y.L.)
| | - Marta Adamiak
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Erik Kohlbrenner
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
- Spark Therapeutics, Philadelphia, PA (E.K.)
| | - Dongtak Jeong
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, South Korea (D.J.)
| | - Elena Chepurko
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Delaine Ceholski
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Estrella Lopez-Gordo
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Seonghun Yoon
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Neha Agarwal
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Divya Jha
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Shweta Lodha
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Anh Phan
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nikhil Raisinghani
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Shihong Zhang
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lior Zangi
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Edgar Gonzalez-Kozlova
- Department of Oncological Sciences (E.G.-K.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology (N. Dubois), Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute (N. Dubois), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Navneet Dogra
- Department of Pathology and Laboratory Medicine (N. Dogra), Icahn School of Medicine at Mount Sinai, New York, NY
- Icahn Genomics Institute (N.Dogra), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Roger J Hajjar
- Gene and Cell Therapy Institute, Massachusetts General Brigham, Boston (R.J.H.)
| | - Susmita Sahoo
- Cardiovascular Research Institute (X.L., S.L.S., M.A., E.C., D.C., E.L.-G., S.Y., N.A., D.J., S.L., A.P., N.R., S.Z., L.Z., S.S.), Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
2
|
Liang Y, Iqbal Z, Lu J, Wang J, Zhang H, Chen X, Duan L, Xia J. Cell-derived nanovesicle-mediated drug delivery to the brain: Principles and strategies for vesicle engineering. Mol Ther 2023; 31:1207-1224. [PMID: 36245129 PMCID: PMC10188644 DOI: 10.1016/j.ymthe.2022.10.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Developing strategies toward safe and effective drug delivery into the central nervous system (CNS) with improved targeting abilities and reduced off-target effects is crucial. CNS-targeted drug carriers made of synthetic molecules raise concerns about their biodegradation, clearance, immune responses, and neurotoxicity. Cell-derived nanovesicles (CDNs) have recently been applied in CNS-targeted drug delivery, because of their intrinsic stability, biocompatibility, inherent homing capability, and the ability to penetrate through biological barriers, including the blood-brain barrier. Among these CDNs, extracellular vesicles and exosomes are the most studied because their surface can be engineered and modified to cater to brain targeting. In this review, we focus on the application of CDNs in brain-targeted drug delivery to treat neurological diseases. We cover recently developed methods of exosome derivation and engineering, including exosome-like particles, hybrid exosomes, exosome-associated adeno-associated viruses, and envelope protein nanocages. Finally, we discuss the limitations and project the future development of the CDN-based brain-targeted delivery systems, and conclude that engineered CDNs hold great potential in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, China; Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, China
| | - Zoya Iqbal
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, China
| | - Jianping Lu
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, China
| | - Jianhong Wang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, China
| | - Hao Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, Jiangsu 210096, China; EVLiXiR Biotech Inc., Nanjing, Jiangsu 210032, China
| | - Xi Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Li Duan
- Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, China.
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
3
|
Kawajiri K, Ihara K, Sasano T. Gene therapy to terminate tachyarrhythmias. Expert Rev Cardiovasc Ther 2022; 20:431-442. [PMID: 35655364 DOI: 10.1080/14779072.2022.2085686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION To date, the treatment option for tachyarrhythmia is classified into drug therapy, catheter ablation, and implantable device therapy. However, the efficacy of the antiarrhythmic drugs is limited. Although the indication of catheter ablation is expanding, several fatal tachyarrhythmias are still refractory to ablation. Implantable cardioverter-defibrillator increases survival, but it is not a curable treatment. Therefore, a novel therapy for tachyarrhythmias refractory to present treatments is desired. Gene therapy is being developed as a promising candidate for this purpose, and basic research and translational research have been accumulated in recent years. AREAS COVERED This paper reviews the current state of gene therapy for arrhythmias, including susceptible arrhythmias, the route of administration to the heart, and the type of vector to use. We also discuss the latest progress in the technology of gene delivery and genome editing. EXPERT OPINION Gene therapy is one of the most promising technologies for arrhythmia treatment. However, additional technological innovation to achieve safe, localized, homogeneous, and long-lasting gene transfer is required for its clinical application.
Collapse
Affiliation(s)
- Kohei Kawajiri
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Kensuke Ihara
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| |
Collapse
|
4
|
Extracellular Vesicles as Novel Drug-Delivery Systems through Intracellular Communications. MEMBRANES 2022; 12:membranes12060550. [PMID: 35736256 PMCID: PMC9230693 DOI: 10.3390/membranes12060550] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
Since it has been reported that extracellular vesicles (EVs) carry cargo using cell-to-cell comminication according to various in vivo situations, they are exprected to be applied as new drug-delivery systems (DDSs). In addition, non-coding RNAs, such as microRNAs (miRNAs), have attracted much attention as potential biomarkers in the encapsulated extracellular-vesicle (EV) form. EVs are bilayer-based lipids with heterogeneous populations of varying sizes and compositions. The EV-mediated transport of contents, which includes proteins, lipids, and nucleic acids, has attracted attention as a DDS through intracellular communication. Many reports have been made on the development of methods for introducing molecules into EVs and efficient methods for introducing them into target vesicles. In this review, we outline the possible molecular mechanisms by which miRNAs in exosomes participate in the post-transcriptional regulation of signaling pathways via cell–cell communication as novel DDSs, especially small EVs.
Collapse
|
5
|
Matsuzaka Y, Hirai Y, Hashido K, Okada T. Therapeutic Application of Extracellular Vesicles-Capsulated Adeno-Associated Virus Vector via nSMase2/Smpd3, Satellite, and Immune Cells in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:1551. [PMID: 35163475 PMCID: PMC8836108 DOI: 10.3390/ijms23031551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Yukihiko Hirai
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| | - Kazuo Hashido
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| |
Collapse
|
6
|
Wang W, Liu J, Yang M, Qiu R, Li Y, Bian S, Hao B, Lei B. Intravitreal Injection of an Exosome-Associated Adeno-Associated Viral Vector Enhances Retinoschisin 1 Gene Transduction in the Mouse Retina. Hum Gene Ther 2021; 32:707-716. [PMID: 33832349 DOI: 10.1089/hum.2020.328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To investigate whether exosome-associated adeno-associated virus (AAV) retinoschisin 1 (RS1) vector improved the transduction efficiency of RS1 in the mouse retina. pAAV2-RS1-ZsGreen plasmid was constructed by homologous recombination. Exosome-associated AAV vectors containing human RS1 gene (exosome-associated AAV [exo-AAV]2-RS1-ZsGreen) were isolated from producer cells' supernatant, and confirmed by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. In vitro, HEK-293T cells were transduced with AAV2-RS1-ZsGreen and exo-AAV2-RS1-ZsGreen. In vivo, 1 μL of AAV2-RS1-ZsGreen or 1 μL exo-AAV2-RS1-ZsGreen (2 × 108 genome copies/μL) was injected intravitreally into the C57BL/6J mouse eyes. Phosphate buffer saline was injected as controls. The mRNA and the protein expression in the retina were detected. Exo-AAV2-RS1-ZsGreen possessed lipid bilayers, a saucer-like structures and an average of 120 nm particle size. The expression of RS1 and ZsGreen in exo-AAV2-RS1-ZsGreen group were 7.6 times and 5.7 times that of AAV2-RS1-ZsGreen group in HEK-293T cells, respectively. Furthermore, RS1 protein expression increased by 11.8 times in HEK-293T cells. Intravitreal injection of exo-AAV significantly increased the transduction efficiency of RS1 than AAV. Exo-AAV may be a powerful gene delivery system for gene therapy of X-link retinoschisis as well as other inherited retina degenerations.
Collapse
Affiliation(s)
- Weiping Wang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jingyang Liu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Mingzhu Yang
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ruiqi Qiu
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ya Li
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shasha Bian
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bingtao Hao
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Kovács OT, Soltész-Katona E, Marton N, Baricza E, Hunyady L, Turu G, Nagy G. Impact of Medium-Sized Extracellular Vesicles on the Transduction Efficiency of Adeno-Associated Viruses in Neuronal and Primary Astrocyte Cell Cultures. Int J Mol Sci 2021; 22:ijms22084221. [PMID: 33921740 PMCID: PMC8073863 DOI: 10.3390/ijms22084221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Adeno-associated viruses (AAV) are safe and efficient gene therapy vectors with promising results in the treatment of several diseases. Extracellular vesicles (EV) are phospholipid bilayer-surrounded structures carrying several types of lipids, proteins, and nucleic acids with the ability to cross biological barriers. EV-associated AAVs might serve as new and efficient gene therapy vectors considering that they carry the benefits of both AAVs and EVs. (2) We tested vesicle-associated AAVs and vesicles mixed with AAVs on two major cell types of the central nervous system: a neural cell line (N2A) and primary astrocyte cells. (3) In contrast to previously published in vivo observations, the extracellular vesicle packaging did not improve but, in the case of primary astrocyte cells, even inhibited the infection capacity of the AAV particles. The observed effect was not due to the inhibitory effects of the vesicles themselves, since mixing the AAVs with extracellular vesicles did not change the effectiveness. (4) Our results suggest that improvement of the in vivo efficacy of the EV-associated AAV particles is not due to the enhanced interaction between the AAV and the target cells, but most likely to the improved delivery of the AAVs through tissue barriers and to the shielding of AAVs from neutralizing antibodies.
Collapse
Affiliation(s)
- Orsolya Tünde Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (O.T.K.); (E.B.)
- Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary; (E.S.-K.); (L.H.)
| | - Eszter Soltész-Katona
- Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary; (E.S.-K.); (L.H.)
| | - Nikolett Marton
- Jahn Ferenc Dél-pesti Hospital, Department of Radiology, Köves street 1, 1204 Budapest, Hungary;
| | - Eszter Baricza
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (O.T.K.); (E.B.)
| | - László Hunyady
- Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary; (E.S.-K.); (L.H.)
- MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, 1085 Budapest, Hungary
| | - Gábor Turu
- Department of Physiology, Semmelweis University, Tűzoltó street 37-47, 1094 Budapest, Hungary; (E.S.-K.); (L.H.)
- MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, 1085 Budapest, Hungary
- Correspondence: (G.T.); (G.N.)
| | - György Nagy
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (O.T.K.); (E.B.)
- Department of Rheumatology & Clinical Immunology, Semmelweis University, Árpád fejedelem street 7, 1023 Budapest, Hungary
- Correspondence: (G.T.); (G.N.)
| |
Collapse
|
8
|
Sahoo S, Adamiak M, Mathiyalagan P, Kenneweg F, Kafert-Kasting S, Thum T. Therapeutic and Diagnostic Translation of Extracellular Vesicles in Cardiovascular Diseases: Roadmap to the Clinic. Circulation 2021; 143:1426-1449. [PMID: 33819075 PMCID: PMC8021236 DOI: 10.1161/circulationaha.120.049254] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exosomes are small membrane-bound vesicles of endocytic origin that are actively secreted. The potential of exosomes as effective communicators of biological signaling in myocardial function has previously been investigated, and a recent explosion in exosome research not only underscores their significance in cardiac physiology and pathology, but also draws attention to methodological limitations of studying these extracellular vesicles. In this review, we discuss recent advances and challenges in exosome research with an emphasis on scientific innovations in isolation, identification, and characterization methodologies, and we provide a comprehensive summary of web-based resources available in the field. Importantly, we focus on the biology and function of exosomes, highlighting their fundamental role in cardiovascular pathophysiology to further support potential applications of exosomes as biomarkers and therapeutics for cardiovascular diseases.
Collapse
Affiliation(s)
- Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York (S.S., M.A., P.M.)
| | - Marta Adamiak
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York (S.S., M.A., P.M.)
| | - Prabhu Mathiyalagan
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York (S.S., M.A., P.M.)
| | - Franziska Kenneweg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (F.K., S.K-K., T.T.), Hannover Medical School, Germany
| | - Sabine Kafert-Kasting
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (F.K., S.K-K., T.T.), Hannover Medical School, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (S.K-K., T.T.)
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS) (F.K., S.K-K., T.T.), Hannover Medical School, Germany
- REBIRTH Center for Translational Regenerative Medicine (T.T.), Hannover Medical School, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (S.K-K., T.T.)
| |
Collapse
|
9
|
Ingusci S, Cattaneo S, Verlengia G, Zucchini S, Simonato M. A Matter of Genes: The Hurdles of Gene Therapy for Epilepsy. Epilepsy Curr 2019; 19:38-43. [PMID: 30838918 PMCID: PMC6610370 DOI: 10.1177/1535759718822846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Gene therapy has recently advanced to the level of standard of care for several
diseases. However, its application to neurological disorders is still in the
experimental phase. In this review, we discuss recent advancements in the field
that provide optimism on the possibility to have first-in-human studies for gene
therapy of some forms of epilepsy in the not so distant future.
Collapse
Affiliation(s)
- Selene Ingusci
- 1 Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Stefano Cattaneo
- 2 School of Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Gianluca Verlengia
- 1 Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,2 School of Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Silvia Zucchini
- 1 Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,3 Technopole of Ferrara, LTTA Laboratory for the Technologies for Advanced Therapies, Ferrara, Italy
| | - Michele Simonato
- 1 Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,2 School of Medicine, University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
10
|
Volak A, LeRoy SG, Natasan JS, Park DJ, Cheah PS, Maus A, Fitzpatrick Z, Hudry E, Pinkham K, Gandhi S, Hyman BT, Mu D, GuhaSarkar D, Stemmer-Rachamimov AO, Sena-Esteves M, Badr CE, Maguire CA. Virus vector-mediated genetic modification of brain tumor stromal cells after intravenous delivery. J Neurooncol 2018; 139:293-305. [PMID: 29767307 PMCID: PMC6454875 DOI: 10.1007/s11060-018-2889-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/28/2018] [Indexed: 12/22/2022]
Abstract
The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.
Collapse
Affiliation(s)
- Adrienn Volak
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Stanley G LeRoy
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Jeya Shree Natasan
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - David J Park
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Pike See Cheah
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Andreas Maus
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Zachary Fitzpatrick
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Eloise Hudry
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Kelsey Pinkham
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | - Sheetal Gandhi
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Bradley T Hyman
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
- Alzheimer Research Unit, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Charlestown, MA, USA
| | - Dakai Mu
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Christian E Badr
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA.
| | - Casey A Maguire
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Cwetsch AW, Pinto B, Savardi A, Cancedda L. In vivo methods for acute modulation of gene expression in the central nervous system. Prog Neurobiol 2018; 168:69-85. [PMID: 29694844 PMCID: PMC6080705 DOI: 10.1016/j.pneurobio.2018.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
Abstract
Accurate and timely expression of specific genes guarantees the healthy development and function of the brain. Indeed, variations in the correct amount or timing of gene expression lead to improper development and/or pathological conditions. Almost forty years after the first successful gene transfection in in vitro cell cultures, it is currently possible to regulate gene expression in an area-specific manner at any step of central nervous system development and in adulthood in experimental animals in vivo, even overcoming the very poor accessibility of the brain. Here, we will review the diverse approaches for acute gene transfer in vivo, highlighting their advantages and disadvantages with respect to the efficiency and specificity of transfection as well as to brain accessibility. In particular, we will present well-established chemical, physical and virus-based approaches suitable for different animal models, pointing out their current and future possible applications in basic and translational research as well as in gene therapy.
Collapse
Affiliation(s)
- Andrzej W Cwetsch
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Bruno Pinto
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Annalisa Savardi
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Laura Cancedda
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; DulbeccoTelethon Institute, Italy.
| |
Collapse
|
12
|
Exosomes in Myocardial Repair: Advances and Challenges in the Development of Next-Generation Therapeutics. Mol Ther 2018; 26:1635-1643. [PMID: 29807783 DOI: 10.1016/j.ymthe.2018.04.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 01/08/2023] Open
Abstract
Myocardial disease is a leading cause of morbidity and mortality worldwide. Given the limited regenerative capacity of the human heart following myocardial injury, stem cell-based therapies have emerged as a promising approach for improving cardiac repair and function. The discovery of extracellular vesicles including exosomes as a key component of the beneficial function of stem cells has generated hope for their use to advance cell-based regenerative therapies for cardiac repair. Exosomes secreted from stem cells are membranous bionanovesicles, naturally loaded with various proteins, lipids, and nucleic acids. They have been found to have anti-apoptotic, anti-fibrotic, as well as pro-angiogenic effects, all of which are crucial to restore function of the damaged myocardium. In this brief review, we will focus on the latest research and debates on cardiac repair and regenerative potential of exosomes from a variety of sources such as cardiac and non-cardiac stem and progenitor cells, somatic cells, and body fluids. We will also highlight important barriers involved in translating these findings into developing clinically suitable exosome-based therapies.
Collapse
|
13
|
György B, Lööv C, Zaborowski MP, Takeda S, Kleinstiver BP, Commins C, Kastanenka K, Mu D, Volak A, Giedraitis V, Lannfelt L, Maguire CA, Joung JK, Hyman BT, Breakefield XO, Ingelsson M. CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer's Disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:429-440. [PMID: 29858078 PMCID: PMC5992788 DOI: 10.1016/j.omtn.2018.03.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/23/2022]
Abstract
The APPswe (Swedish) mutation in the amyloid precursor protein (APP) gene causes dominantly inherited Alzheimer’s disease (AD) as a result of increased β-secretase cleavage of the amyloid-β (Aβ) precursor protein. This leads to abnormally high Aβ levels, not only in brain but also in peripheral tissues of mutation carriers. Here, we selectively disrupted the human mutant APPSW allele using CRISPR. By applying CRISPR/Cas9 from Streptococcus pyogenes, we generated allele-specific deletions of either APPSW or APPWT. As measured by ELISA, conditioned media of targeted patient-derived fibroblasts displayed an approximate 60% reduction in secreted Aβ. Next, coding sequences for the APPSW-specific guide RNA (gRNA) and Cas9 were packaged into separate adeno-associated viral (AAV) vectors. Site-specific indel formation was achieved both in primary neurons isolated from APPSW transgenic mouse embryos (Tg2576) and after co-injection of these vectors into hippocampus of adult mice. Taken together, we here present proof-of-concept data that CRISPR/Cas9 can selectively disrupt the APPSW allele both ex vivo and in vivo—and thereby decrease pathogenic Aβ. Hence, this system may have the potential to be developed as a tool for gene therapy against AD caused by APPswe and other point mutations associated with increased Aβ.
Collapse
Affiliation(s)
- Bence György
- Departments of Neurology and Radiology, Massachusetts General Hospital and Center for NeuroDiscovery, Harvard Medical School, Boston, MA, USA; Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Camilla Lööv
- Departments of Neurology and Radiology, Massachusetts General Hospital and Alzheimer's Disease Research Center, Harvard Medical School, Boston, MA, USA
| | - Mikołaj P Zaborowski
- Departments of Neurology and Radiology, Massachusetts General Hospital and Center for NeuroDiscovery, Harvard Medical School, Boston, MA, USA; Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Shuko Takeda
- Departments of Neurology and Radiology, Massachusetts General Hospital and Alzheimer's Disease Research Center, Harvard Medical School, Boston, MA, USA
| | - Benjamin P Kleinstiver
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Caitlin Commins
- Departments of Neurology and Radiology, Massachusetts General Hospital and Alzheimer's Disease Research Center, Harvard Medical School, Boston, MA, USA
| | - Ksenia Kastanenka
- Departments of Neurology and Radiology, Massachusetts General Hospital and Alzheimer's Disease Research Center, Harvard Medical School, Boston, MA, USA
| | - Dakai Mu
- Departments of Neurology and Radiology, Massachusetts General Hospital and Center for NeuroDiscovery, Harvard Medical School, Boston, MA, USA
| | - Adrienn Volak
- Departments of Neurology and Radiology, Massachusetts General Hospital and Center for NeuroDiscovery, Harvard Medical School, Boston, MA, USA
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences, Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Lannfelt
- Department of Public Health and Caring Sciences, Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Casey A Maguire
- Departments of Neurology and Radiology, Massachusetts General Hospital and Center for NeuroDiscovery, Harvard Medical School, Boston, MA, USA
| | - J Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Departments of Neurology and Radiology, Massachusetts General Hospital and Alzheimer's Disease Research Center, Harvard Medical School, Boston, MA, USA
| | - Xandra O Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital and Center for NeuroDiscovery, Harvard Medical School, Boston, MA, USA
| | - Martin Ingelsson
- Departments of Neurology and Radiology, Massachusetts General Hospital and Center for NeuroDiscovery, Harvard Medical School, Boston, MA, USA; Department of Public Health and Caring Sciences, Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Piguet F, Alves S, Cartier N. Clinical Gene Therapy for Neurodegenerative Diseases: Past, Present, and Future. Hum Gene Ther 2017; 28:988-1003. [DOI: 10.1089/hum.2017.160] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Françoise Piguet
- Translational Medicine and Neurogenetics Department, Institut de Genetique et de Biologie Moleculaire et Cellulaire, Strasbourg, France
- Inserm U596, Illkirch, France; CNRS, UMR7104, Illkirch, France
- Faculte des Sciences de la Vie, Universite de Strasbourg, Strasbourg, France
| | | | - Nathalie Cartier
- INSERM/CEA UMR1169, MIRCen Fontenay aux Roses, France
- Universite Paris-Sud, Orsay, France
| |
Collapse
|
15
|
Enhanced liver gene transfer and evasion of preexisting humoral immunity with exosome-enveloped AAV vectors. Blood Adv 2017; 1:2019-2031. [PMID: 29296848 DOI: 10.1182/bloodadvances.2017010181] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/21/2017] [Indexed: 02/03/2023] Open
Abstract
Results from clinical trials of liver gene transfer for hemophilia demonstrate the potential of the adeno-associated virus (AAV) vector platform. However, to achieve therapeutic transgene expression, in some cases high vector doses are required, which are associated with a higher risk of triggering anti-capsid cytotoxic T-cell responses. Additionally, anti-AAV preexisting immunity can prevent liver transduction even at low neutralizing antibody (NAb) titers. Here, we describe the use of exosome-associated AAV (exo-AAV) vectors as a robust liver gene delivery system that allows the therapeutic vector dose to be decreased while protecting from preexisting humoral immunity to the capsid. The in vivo efficiency of liver targeting of standard AAV8 or AAV5 and exo-AAV8 or exo-AAV5 vectors expressing human coagulation factor IX (hF.IX) was evaluated. A significant enhancement of transduction efficiency was observed, and in hemophilia B mice treated with 4 × 1010 vector genomes per kilogram of exo-AAV8 vectors, a staggering ∼1 log increase in hF.IX transgene expression was observed, leading to superior correction of clotting time. Enhanced liver expression was also associated with an increase in the frequency of regulatory T cells in lymph nodes. The efficiency of exo- and standard AAV8 vectors in evading preexisting NAbs to the capsid was then evaluated in a passive immunization mouse model and in human sera. Exo-AAV8 gene delivery allowed for efficient transduction even in the presence of moderate NAb titers, thus potentially extending the proportion of subjects eligible for liver gene transfer. Exo-AAV vectors therefore represent a platform to improve the safety and efficacy of liver-directed gene transfer.
Collapse
|
16
|
Biferi MG, Cohen-Tannoudji M, Cappelletto A, Giroux B, Roda M, Astord S, Marais T, Bos C, Voit T, Ferry A, Barkats M. A New AAV10-U7-Mediated Gene Therapy Prolongs Survival and Restores Function in an ALS Mouse Model. Mol Ther 2017; 25:2038-2052. [PMID: 28663100 DOI: 10.1016/j.ymthe.2017.05.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/13/2022] Open
Abstract
One of the most promising therapeutic approaches for familial amyotrophic lateral sclerosis linked to superoxide dismutase 1 (SOD1) is the suppression of toxic mutant SOD1 in the affected tissues. Here, we report an innovative molecular strategy for inducing substantial, widespread, and sustained reduction of mutant human SOD1 (hSOD1) levels throughout the body of SOD1G93A mice, leading to therapeutic effects in animals. Adeno-associated virus serotype rh10 vectors (AAV10) were used to mediate exon skipping of the hSOD1 pre-mRNA by expression of exon-2-targeted antisense sequences embedded in a modified U7 small-nuclear RNA (AAV10-U7-hSOD). Skipping of hSOD1 exon 2 led to the generation of a premature termination codon, inducing production of a deleted transcript that was subsequently degraded by the activation of nonsense-mediated decay. Combined intravenous and intracerebroventricular delivery of AAV10-U7-hSOD increased the survival of SOD1G93A mice injected either at birth or at 50 days of age (by 92% and 58%, respectively) and prevented weight loss and the decline of neuromuscular function. This study reports the effectiveness of an exon-skipping approach in SOD1-ALS mice, supporting the translation of this technology to the treatment of this as yet incurable disease.
Collapse
Affiliation(s)
- Maria Grazia Biferi
- Centre of Research in Myology (CRM), Institut de Myologie, Sorbonne Universités, UPMC Univ Paris 06, Inserm UMRS974, GH Pitié Salpêtrière, Paris 75013, France.
| | - Mathilde Cohen-Tannoudji
- Centre of Research in Myology (CRM), Institut de Myologie, Sorbonne Universités, UPMC Univ Paris 06, Inserm UMRS974, GH Pitié Salpêtrière, Paris 75013, France
| | - Ambra Cappelletto
- Centre of Research in Myology (CRM), Institut de Myologie, Sorbonne Universités, UPMC Univ Paris 06, Inserm UMRS974, GH Pitié Salpêtrière, Paris 75013, France
| | - Benoit Giroux
- Centre of Research in Myology (CRM), Institut de Myologie, Sorbonne Universités, UPMC Univ Paris 06, Inserm UMRS974, GH Pitié Salpêtrière, Paris 75013, France
| | - Marianne Roda
- Centre of Research in Myology (CRM), Institut de Myologie, Sorbonne Universités, UPMC Univ Paris 06, Inserm UMRS974, GH Pitié Salpêtrière, Paris 75013, France
| | - Stéphanie Astord
- Centre of Research in Myology (CRM), Institut de Myologie, Sorbonne Universités, UPMC Univ Paris 06, Inserm UMRS974, GH Pitié Salpêtrière, Paris 75013, France
| | - Thibaut Marais
- Centre of Research in Myology (CRM), Institut de Myologie, Sorbonne Universités, UPMC Univ Paris 06, Inserm UMRS974, GH Pitié Salpêtrière, Paris 75013, France
| | - Corinne Bos
- Centre of Research in Myology (CRM), Institut de Myologie, Sorbonne Universités, UPMC Univ Paris 06, Inserm UMRS974, GH Pitié Salpêtrière, Paris 75013, France
| | - Thomas Voit
- NIHR GOSH Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, and Great Ormond Street Hospital Trust, London WC1N 1EH, UK
| | - Arnaud Ferry
- Centre of Research in Myology (CRM), Institut de Myologie, Sorbonne Universités, UPMC Univ Paris 06, Inserm UMRS974, GH Pitié Salpêtrière, Paris 75013, France; Sorbonne Paris Cité, Université Paris Descartes, Paris 75006, France
| | - Martine Barkats
- Centre of Research in Myology (CRM), Institut de Myologie, Sorbonne Universités, UPMC Univ Paris 06, Inserm UMRS974, GH Pitié Salpêtrière, Paris 75013, France
| |
Collapse
|