1
|
Marín-García C, Álvarez-González L, Marín-Gual L, Casillas S, Picón J, Yam K, Garcias-Ramis MM, Vara C, Ventura J, Ruiz-Herrera A. Multiple Genomic Landscapes of Recombination and Genomic Divergence in Wild Populations of House Mice-The Role of Chromosomal Fusions and Prdm9. Mol Biol Evol 2024; 41:msae063. [PMID: 38513632 PMCID: PMC10991077 DOI: 10.1093/molbev/msae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
Chromosomal fusions represent one of the most common types of chromosomal rearrangements found in nature. Yet, their role in shaping the genomic landscape of recombination and hence genome evolution remains largely unexplored. Here, we take advantage of wild mice populations with chromosomal fusions to evaluate the effect of this type of structural variant on genomic landscapes of recombination and divergence. To this aim, we combined cytological analysis of meiotic crossovers in primary spermatocytes with inferred analysis of recombination rates based on linkage disequilibrium using single nucleotide polymorphisms. Our results suggest the presence of a combined effect of Robertsonian fusions and Prdm9 allelic background, a gene involved in the formation of meiotic double strand breaks and postzygotic reproductive isolation, in reshaping genomic landscapes of recombination. We detected a chromosomal redistribution of meiotic recombination toward telomeric regions in metacentric chromosomes in mice with Robertsonian fusions when compared to nonfused mice. This repatterning was accompanied by increased levels of crossover interference and reduced levels of estimated recombination rates between populations, together with high levels of genomic divergence. Interestingly, we detected that Prdm9 allelic background was a major determinant of recombination rates at the population level, whereas Robertsonian fusions showed limited effects, restricted to centromeric regions of fused chromosomes. Altogether, our results provide new insights into the effect of Robertsonian fusions and Prdm9 background on meiotic recombination.
Collapse
Affiliation(s)
- Cristina Marín-García
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Lucía Álvarez-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Laia Marín-Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Sònia Casillas
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Judith Picón
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Keren Yam
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - María Magdalena Garcias-Ramis
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Covadonga Vara
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Small Mammals Research Unit, Granollers Museum of Natural Sciences, Granollers 08402, Barcelona, Spain
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| |
Collapse
|
2
|
The impact of chromosomal fusions on 3D genome folding and recombination in the germ line. Nat Commun 2021; 12:2981. [PMID: 34016985 PMCID: PMC8137915 DOI: 10.1038/s41467-021-23270-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/16/2021] [Indexed: 02/08/2023] Open
Abstract
The spatial folding of chromosomes inside the nucleus has regulatory effects on gene expression, yet the impact of genome reshuffling on this organization remains unclear. Here, we take advantage of chromosome conformation capture in combination with single-nucleotide polymorphism (SNP) genotyping and analysis of crossover events to study how the higher-order chromatin organization and recombination landscapes are affected by chromosomal fusions in the mammalian germ line. We demonstrate that chromosomal fusions alter the nuclear architecture during meiosis, including an increased rate of heterologous interactions in primary spermatocytes, and alterations in both chromosome synapsis and axis length. These disturbances in topology were associated with changes in genomic landscapes of recombination, resulting in detectable genomic footprints. Overall, we show that chromosomal fusions impact the dynamic genome topology of germ cells in two ways: (i) altering chromosomal nuclear occupancy and synapsis, and (ii) reshaping landscapes of recombination.
Collapse
|
3
|
Farré M, Ruiz-Herrera A. The Plasticity of Genome Architecture. Genes (Basel) 2020; 11:E1413. [PMID: 33260806 PMCID: PMC7760494 DOI: 10.3390/genes11121413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 11/26/2022] Open
Abstract
Understanding the origin of species and their adaptability to new environments is one of the main questions in biology [...].
Collapse
Affiliation(s)
- Marta Farré
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
| | - Aurora Ruiz-Herrera
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Campus UAB, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
4
|
Spatial and Temporal Dynamics of Contact Zones Between Chromosomal Races of House Mice, Mus musculus domesticus, on Madeira Island. Genes (Basel) 2020; 11:genes11070748. [PMID: 32640559 PMCID: PMC7397221 DOI: 10.3390/genes11070748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 01/29/2023] Open
Abstract
Analysis of contact zones between parapatric chromosomal races can help our understanding of chromosomal divergence and its influence on the speciation process. Monitoring the position and any movement of contact zones can allow particular insights. This study investigates the present (2012-2014) and past (1998-2002) distribution of two parapatric house mouse chromosomal races-PEDC (Estreito da Calheta) and PADC (Achadas da Cruz)-on Madeira Island, aiming to identify changes in the location and width of their contact. We also extended the 1998-2002 sampling area into the range of another chromosomal race-PLDB (Lugar de Baixo). Clinal analysis indicates no major geographic alterations in the distribution and chromosomal characteristics of the PEDC and PADC races but exhibited a significant shift in position of the Rb (7.15) fusion, resulting in the narrowing of the contact zone over a 10+ year period. We discuss how this long-lasting contact zone highlights the role of landscape on mouse movements, in turn influencing the chromosomal characteristics of populations. The expansion of the sampling area revealed new chromosomal features in the north and a new contact zone in the southern range involving the PEDC and PLDB races. We discuss how different interacting mechanisms (landscape resistance, behaviour, chromosomal incompatibilities, meiotic drive) may help to explain the pattern of chromosomal variation at these contacts between chromosomal races.
Collapse
|
5
|
Chromosomal Differentiation in Genetically Isolated Populations of the Marsh-Specialist Crocidura suaveolens (Mammalia: Soricidae). Genes (Basel) 2020; 11:genes11030270. [PMID: 32131436 PMCID: PMC7140822 DOI: 10.3390/genes11030270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
The genus Crocidura represents a remarkable model for the study of chromosome evolution. This is the case of the lesser white-toothed shrew (Crocidura suaveolens), a representative of the Palearctic group. Although continuously distributed from Siberia to Central Europe, C. suaveolens is a rare, habitat-specialist species in the southwesternmost limit of its distributional range, in the Gulf of Cádiz (Iberian Peninsula). In this area, C. suaveolens is restricted to genetically isolated populations associated to the tidal marches of five rivers (Guadiana, Piedras, Odiel, Tinto and Guadalquivir). This particular distributional range provides a unique opportunity to investigate whether genetic differentiation and habitat specialization was accompanied by chromosomal variation. In this context, the main objective of this study was to determinate the chromosomal characteristics of the habitat-specialist C. suaveolens in Southwestern Iberia, as a way to understand the evolutionary history of this species in the Iberian Peninsula. A total of 41 individuals from six different populations across the Gulf of Cádiz were collected and cytogenetically characterized. We detected four different karyotypes, with diploid numbers (2n) ranging from 2n = 40 to 2n = 43. Two of them (2n = 41 and 2n = 43) were characterized by the presence of B-chromosomes. The analysis of karyotype distribution across lineages and populations revealed an association between mtDNA population divergence and chromosomal differentiation. C. suaveolens populations in the Gulf of Cádiz provide a rare example of true karyotypic polymorphism potentially associated to genetic isolation and habitat specialization in which to investigate the evolutionary significance of chromosomal variation in mammals and their contribution to phenotypic and ecological divergence.
Collapse
|
6
|
Vara C, Capilla L, Ferretti L, Ledda A, Sánchez-Guillén RA, Gabriel SI, Albert-Lizandra G, Florit-Sabater B, Bello-Rodríguez J, Ventura J, Searle JB, Mathias ML, Ruiz-Herrera A. PRDM9 Diversity at Fine Geographical Scale Reveals Contrasting Evolutionary Patterns and Functional Constraints in Natural Populations of House Mice. Mol Biol Evol 2020; 36:1686-1700. [PMID: 31004162 PMCID: PMC6657731 DOI: 10.1093/molbev/msz091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
One of the major challenges in evolutionary biology is the identification of the genetic basis of postzygotic reproductive isolation. Given its pivotal role in this process, here we explore the drivers that may account for the evolutionary dynamics of the PRDM9 gene between continental and island systems of chromosomal variation in house mice. Using a data set of nearly 400 wild-caught mice of Robertsonian systems, we identify the extent of PRDM9 diversity in natural house mouse populations, determine the phylogeography of PRDM9 at a local and global scale based on a new measure of pairwise genetic divergence, and analyze selective constraints. We find 57 newly described PRDM9 variants, this diversity being especially high on Madeira Island, a result that is contrary to the expectations of reduced variation for island populations. Our analysis suggest that the PRDM9 allelic variability observed in Madeira mice might be influenced by the presence of distinct chromosomal fusions resulting from a complex pattern of introgression or multiple colonization events onto the island. Importantly, we detect a significant reduction in the proportion of PRDM9 heterozygotes in Robertsonian mice, which showed a high degree of similarity in the amino acids responsible for protein–DNA binding. Our results suggest that despite the rapid evolution of PRDM9 and the variability detected in natural populations, functional constraints could facilitate the accumulation of allelic combinations that maintain recombination hotspot symmetry. We anticipate that our study will provide the basis for examining the role of different PRDM9 genetic backgrounds in reproductive isolation in natural populations.
Collapse
Affiliation(s)
- Covadonga Vara
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laia Capilla
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luca Ferretti
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Alice Ledda
- Department for Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Rosa A Sánchez-Guillén
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Instituto de Ecología AC (INECOL), Red de Biología Evolutiva, Xalapa, Veracruz, Mexico
| | - Sofia I Gabriel
- CESAM - Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Guillermo Albert-Lizandra
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Beatriu Florit-Sabater
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judith Bello-Rodríguez
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY
| | - Maria L Mathias
- CESAM - Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Aurora Ruiz-Herrera
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Sastre N, Calvete O, Martínez-Vargas J, Medarde N, Casellas J, Altet L, Sánchez A, Francino O, Ventura J. Skin mites in mice (Mus musculus): high prevalence of Myobia sp. (Acari, Arachnida) in Robertsonian mice. Parasitol Res 2018; 117:2139-2148. [PMID: 29728826 DOI: 10.1007/s00436-018-5901-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/26/2018] [Indexed: 11/29/2022]
Abstract
Myobia sp. and Demodex sp. are two skin mites that infest mice, particularly immunodeficient or transgenic lab mice. In the present study, wild house mice from five localities from the Barcelona Roberstonian system were analysed in order to detect skin mites and compare their prevalence between standard (2n = 40) and Robertsonian mice (2n > 40). We found and identified skin mites through real-time qPCR by comparing sequences from the mitochondrial 16S rRNA and the nuclear 18S rRNA genes since no sequences are available so far using the mitochondrial gene. Fourteen positive samples were identified as Myobia musculi except for a deletion of 296 bp out to 465 bp sequenced, and one sample was identified as Demodex canis. Sampling one body site, the mite prevalence in standard and Robertsonian mice was 0 and 26%, respectively. The malfunction of the immune system elicits an overgrowth of skin mites and consequently leads to diseases such as canine demodicosis in dogs or rosacea in humans. In immunosuppressed mice, the probability of developing demodicosis is higher than in healthy mice. Since six murine toll-like receptors (TLRs) are located in four chromosomes affected by Robertsonian fusions, we cannot dismiss that differences in mite prevalence could be the consequence of the interruption of TLR function. Although ecological and/or morphological factors cannot be disregarded to explain differences in mite prevalence, the detection of translocation breakpoints in TLR genes or the analysis of TLR gene expression are needed to elucidate how Robertsonian fusions affect the immune system in mice.
Collapse
Affiliation(s)
- Natalia Sastre
- Servei Veterinari de Genètica Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| | - Oriol Calvete
- Human Genetics Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Calle de Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Jessica Martínez-Vargas
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Nuria Medarde
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Joaquim Casellas
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Laura Altet
- Vetgenomics, Parc de Recerca UAB Edifici Eureka, Bellaterra, 08193, Barcelona, Spain
| | - Armand Sánchez
- Servei Veterinari de Genètica Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Vetgenomics, Parc de Recerca UAB Edifici Eureka, Bellaterra, 08193, Barcelona, Spain
| | - Olga Francino
- Servei Veterinari de Genètica Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
- Vetgenomics, Parc de Recerca UAB Edifici Eureka, Bellaterra, 08193, Barcelona, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
8
|
Martínez-Vargas J, Muñoz-Muñoz F, López-Fuster MJ, Cubo J, Ventura J. Multimethod Approach to the Early Postnatal Growth of the Mandible in Mice from a Zone of Robertsonian Polymorphism. Anat Rec (Hoboken) 2018; 301:1360-1381. [PMID: 29669189 DOI: 10.1002/ar.23835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 11/30/2017] [Accepted: 12/27/2017] [Indexed: 11/11/2022]
Abstract
The western European house mouse (Mus musculus domesticus) shows high karyotypic diversity owing to Robertsonian translocations. Morphometric studies conducted with adult mice suggest that karyotype evolution due to these chromosomal reorganizations entails variation in the form and the patterns of morphological covariation of the mandible. However, information is much scarcer regarding the effect of these rearrangements on the growth pattern of the mouse mandible over early postnatal ontogeny. Here we compare mandible growth from the second to the eighth week of postnatal life between two ontogenetic series of mice from wild populations, with the standard karyotype and with Robertsonian translocations respectively, reared under the same conditions. A multi-method approach is used, including bone histology analyses of mandible surfaces and cross-sections, as well as geometric morphometric analyses of mandible form. The mandibles of both standard and Robertsonian mice display growth acceleration around weaning, anteroposterior direction of bone maturation, a predominance of bone deposition fields over ontogeny, and relatively greater expansion of the posterior mandible region correlated with the ontogenetic increase in mandible size. Nevertheless, differences exist between the two mouse groups regarding the timing of histological maturation of the mandible, the localization of certain bone remodeling fields, the temporospatial patterns of morphological variation, and the organization into two main modules. The dissimilarities in the process of mandible growth between the two groups of mice become more evident around sexual maturity, and could arise from alterations that Robertsonian translocations may exert on genes involved in the bone remodeling mechanism. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jessica Martínez-Vargas
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - Francesc Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain
| | - María José López-Fuster
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Jorge Cubo
- Sorbonne Université, CNRS-INSU, Institut des Sciences de la Terre Paris, ISTeP UMR 7193, F-75005 Paris, France
| | - Jacint Ventura
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
9
|
Martínez-Vargas J, Martinez-Maza C, Muñoz-Muñoz F, Medarde N, Lamrous H, López-Fuster MJ, Cubo J, Ventura J. Comparative postnatal histomorphogenesis of the mandible in wild and laboratory mice. Ann Anat 2017; 215:8-19. [PMID: 28935565 DOI: 10.1016/j.aanat.2017.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/19/2017] [Accepted: 09/01/2017] [Indexed: 12/11/2022]
Abstract
The coordinated activity of bone cells (i.e., osteoblasts and osteoclasts) during ontogeny underlies observed changes in bone growth rates (recorded in bone histology and bone microstructure) and bone remodeling patterns explaining the ontogenetic variation in bone size and shape. Histological cross-sections of the mandible in the C57BL/6J inbred mouse strain were recently examined in order to analyze the bone microstructure, as well as the directions and rates of bone growth according to the patterns of fluorescent labeling, with the aim of description of the early postnatal histomorphogenesis of this skeletal structure. Here we use the same approach to characterize the histomorphogenesis of the mandible in wild specimens of Mus musculus domesticus, from the second to the eighth week of postnatal life, for the first time. In addition, we assess the degree of similarity in this biological process between the wild specimens examined and the C57BL/6J laboratory strain. Bone microstructure data show that M. musculus domesticus and the C57BL/6J strain differ in the temporospatial pattern of histological maturation of the mandible, which particularly precludes the support of mandibular organization into the alveolar region and the ascending ramus modules at the histological level in M. musculus domesticus. The patterns of fluorescent labeling reveal that the mandible of the wild mice exhibits temporospatial differences in the remodeling pattern, as well as higher growth rates particularly after weaning, compared to the laboratory mice. Since the two mouse groups were reared under the same conditions, the dissimilarities found suggest the existence of differences between the groups in the genetic regulation of bone remodeling, probably as a result of their different genetic backgrounds. Despite the usual suitability of inbred mouse strains as model organisms, inferences from them to natural populations regarding bone growth should be made with caution.
Collapse
Affiliation(s)
- Jessica Martínez-Vargas
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, E-08193 Cerdanyola del Vallès, Spain.
| | - Cayetana Martinez-Maza
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC), C/José Gutiérrez Abascal 2, E-28006 Madrid, Spain.
| | - Francesc Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, E-08193 Cerdanyola del Vallès, Spain.
| | - Nuria Medarde
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, E-08193 Cerdanyola del Vallès, Spain.
| | - Hayat Lamrous
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut des Sciences de la Terre Paris (iSTeP), 4 place Jussieu, BC 19, F-75005 Paris, France.
| | - María José López-Fuster
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, E-08028 Barcelona, Spain.
| | - Jorge Cubo
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut des Sciences de la Terre Paris (iSTeP), 4 place Jussieu, BC 19, F-75005 Paris, France.
| | - Jacint Ventura
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de Bellaterra, E-08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
10
|
Martínez-Vargas J, Muñoz-Muñoz F, Martinez-Maza C, Molinero A, Ventura J. Postnatal mandible growth in wild and laboratory mice: Differences revealed from bone remodeling patterns and geometric morphometrics. J Morphol 2017; 278:1058-1074. [DOI: 10.1002/jmor.20694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 03/17/2017] [Accepted: 04/11/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Jessica Martínez-Vargas
- Departament de Biologia Animal; de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona; Campus de Bellaterra, E-08193 Cerdanyola del Vallès Spain
| | - Francesc Muñoz-Muñoz
- Departament de Biologia Animal; de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona; Campus de Bellaterra, E-08193 Cerdanyola del Vallès Spain
| | - Cayetana Martinez-Maza
- Departamento de Paleobiología; Museo Nacional de Ciencias Naturales (CSIC); C/José Gutiérrez Abascal 2 Madrid E-28006 Spain
| | - Amalia Molinero
- Institut de Neurociències and Departament de Biologia Cel·lular; de Fisiologia i d'Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona; Campus de Bellaterra, E-08193 Cerdanyola del Vallès Spain
| | - Jacint Ventura
- Departament de Biologia Animal; de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona; Campus de Bellaterra, E-08193 Cerdanyola del Vallès Spain
| |
Collapse
|
11
|
Medarde N, Merico V, López-Fuster MJ, Zuccotti M, Garagna S, Ventura J. Impact of the number of Robertsonian chromosomes on germ cell death in wild male house mice. Chromosome Res 2015; 23:159-69. [PMID: 25589476 DOI: 10.1007/s10577-014-9442-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
Previous studies in the house mouse have shown that the presence of Robertsonian (Rb) metacentric chromosomes in heterozygous condition affects the process of spermatogenesis. This detrimental effect mainly depends on the number of metacentrics involved and the complexity of the resulting meiotic figures. In this study, we aimed at elucidating the relationship between the chromosomal composition and spermatogenesis impairment in mice present in an area of chromosomal polymorphism (the so-called Barcelona system BRbS) in which Rb mice are surrounded by all acrocentric animals, no established metacentric races are present and the level of structural heterozygosity is relatively low. Using the terminal deoxinucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay, we report higher frequency of apoptotic spermatogenetic cells in mice carrying six pairs of metacentrics at the homozygous state than in those carrying two or three fusions at the heterozygous state. Specifically, we detected a higher frequency of TUNEL-positive (T+) tubules and of T+ cells per tubule cross section and also a lower spermatid/spermatocyte ratio. These results indicate that the number of metacentrics at the homozygous state is more influential in determining apoptotic germ cell death than that of moderate chromosome heterozygosity. The percentage of germ cell death lower than 50 % found in our samples and the geographic distribution of the set of metacentrics within the BRbS indicate that although the spermatogenic alterations detected in this area could act as a partial barrier to gene flow, they are not sufficient to prevent Rb chromosomes from spreading in nature.
Collapse
Affiliation(s)
- Nuria Medarde
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain,
| | | | | | | | | | | |
Collapse
|
12
|
Capilla L, Medarde N, Alemany-Schmidt A, Oliver-Bonet M, Ventura J, Ruiz-Herrera A. Genetic recombination variation in wild Robertsonian mice: on the role of chromosomal fusions and Prdm9 allelic background. Proc Biol Sci 2015; 281:rspb.2014.0297. [PMID: 24850922 DOI: 10.1098/rspb.2014.0297] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite the existence of formal models to explain how chromosomal rearrangements can be fixed in a population in the presence of gene flow, few empirical data are available regarding the mechanisms by which genome shuffling contributes to speciation, especially in mammals. In order to shed light on this intriguing evolutionary process, here we present a detailed empirical study that shows how Robertsonian (Rb) fusions alter the chromosomal distribution of recombination events during the formation of the germline in a Rb system of the western house mouse (Mus musculus domesticus). Our results indicate that both the total number of meiotic crossovers and the chromosomal distribution of recombination events are reduced in mice with Rb fusions and that this can be related to alterations in epigenetic signatures for heterochromatinization. Furthermore, we detected novel house mouse Prdm9 allelic variants in the Rb system. Remarkably, mean recombination rates were positively correlated with a decrease in the number of ZnF domains in the Prdm9 gene. The suggestion that recombination can be modulated by both chromosomal reorganizations and genetic determinants that control the formation of double-stranded breaks during meiosis opens new avenues for understanding the role of recombination in chromosomal speciation.
Collapse
Affiliation(s)
- Laia Capilla
- Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, Campus UAB 08193, Barcelona, Spain Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Campus UAB 08193, Barcelona, Spain
| | - Nuria Medarde
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Campus UAB 08193, Barcelona, Spain
| | | | - Maria Oliver-Bonet
- Unitat d'Investigació, Hospital Universitari Son Espases, Ctra Valldemossa 79, Palma 07010, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Campus UAB 08193, Barcelona, Spain
| | - Aurora Ruiz-Herrera
- Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, Campus UAB 08193, Barcelona, Spain Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Campus UAB 08193, Barcelona, Spain
| |
Collapse
|
13
|
Sánchez-Guillén RA, Capilla L, Reig-Viader R, Martínez-Plana M, Pardo-Camacho C, Andrés-Nieto M, Ventura J, Ruiz-Herrera A. On the origin of Robertsonian fusions in nature: evidence of telomere shortening in wild house mice. J Evol Biol 2015; 28:241-9. [PMID: 25491286 DOI: 10.1111/jeb.12568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/21/2014] [Accepted: 11/23/2014] [Indexed: 01/31/2023]
Abstract
The role of telomere shortening to explain the occurrence of Robertsonian (Rb) fusions, as well as the importance of the average telomere length vs. the proportion of short telomeres, especially in nature populations, is largely unexplored. In this study, we have analysed telomere shortening in nine wild house mice from the Barcelona Rb system with diploid numbers ranging from 29 to 40 chromosomes. We also included two standard (2n=40) laboratory mice for comparison. Our data showed that the average telomere length (considering all chromosomal arms) is influenced by both the diploid number and the origin of the mice (wild vs. laboratory). In detail, we detected that wild mice from the Rb Barcelona system (fused and standard) present shorter telomeres than standard laboratory mice. However, only wild mice with Rb fusions showed a high proportion of short telomeres (only in p-arms), thus revealing the importance of telomere shortening in the origin of the Rb fusions in the Barcelona system. Overall, our study confirms that the number of critically short telomeres, and not a simple reduction in the average telomere length, is more likely to lead to the origin of Rb fusions in the Barcelona system and ultimately in nature.
Collapse
Affiliation(s)
- R A Sánchez-Guillén
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chmátal L, Gabriel SI, Mitsainas GP, Martínez-Vargas J, Ventura J, Searle JB, Schultz RM, Lampson MA. Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Curr Biol 2014; 24:2295-300. [PMID: 25242031 DOI: 10.1016/j.cub.2014.08.017] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
Abstract
Mammalian karyotypes (number and structure of chromosomes) can vary dramatically over short evolutionary time frames. There are examples of massive karyotype conversion, from mostly telocentric (centromere terminal) to mostly metacentric (centromere internal), in 10(2)-10(5) years. These changes typically reflect rapid fixation of Robertsonian (Rb) fusions, a common chromosomal rearrangement that joins two telocentric chromosomes at their centromeres to create one metacentric. Fixation of Rb fusions can be explained by meiotic drive: biased chromosome segregation during female meiosis in violation of Mendel's first law. However, there is no mechanistic explanation of why fusions would preferentially segregate to the egg in some populations, leading to fixation and karyotype change, while other populations preferentially eliminate the fusions and maintain a telocentric karyotype. Here we show, using both laboratory models and wild mice, that differences in centromere strength predict the direction of drive. Stronger centromeres, manifested by increased kinetochore protein levels and altered interactions with spindle microtubules, are preferentially retained in the egg. We find that fusions preferentially segregate to the polar body in laboratory mouse strains when the fusion centromeres are weaker than those of telocentrics. Conversely, fusion centromeres are stronger relative to telocentrics in natural house mouse populations that have changed karyotype by accumulating metacentric fusions. Our findings suggest that natural variation in centromere strength explains how the direction of drive can switch between populations. They also provide a cell biological basis of centromere drive and karyotype evolution.
Collapse
Affiliation(s)
- Lukáš Chmátal
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA
| | - Sofia I Gabriel
- Centre for Environmental and Marine Studies (CESAM), Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Rua Ernesto Vasconcelos, Campo Grande, 1749-016 Lisbon, Portugal
| | - George P Mitsainas
- Section of Animal Biology, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Jessica Martínez-Vargas
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Jacint Ventura
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, E139 Corson Hall, Cornell University, Ithaca, NY 14853, USA
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA.
| | - Michael A Lampson
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Veyrunes F, Perez J, Borremans B, Gryseels S, Richards LR, Duran A, Chevret P, Robinson TJ, Britton-Davidian J. A new cytotype of the African pygmy mouse Mus minutoides in Eastern Africa. Implications for the evolution of sex-autosome translocations. Chromosome Res 2014; 22:533-43. [PMID: 25159220 DOI: 10.1007/s10577-014-9440-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 07/31/2014] [Accepted: 08/17/2014] [Indexed: 11/27/2022]
Abstract
The African pygmy mice (genus Mus, subgenus Nannomys) are recognized for their highly conserved morphology but extensive chromosomal diversity, particularly involving sex-autosome translocations, one of the rarest chromosomal rearrangements among mammals. It has been shown that in the absence of unambiguous diagnostic morphological traits, sex-autosome translocations offer accurate taxonomic markers. For example, in Mus minutoides, irrespective of the diploid number (which ranges from 2n = 18 to 34), all specimens possess the sex-autosome translocations (X.1) and (Y.1) that are unique to this species. In this study, we describe a new cytotype that challenges this view. Males are characterized by the translocation (Y.1) only, while females carry no sex-autosome translocation, the X chromosome being acrocentric. Hence, although sex-autosome translocations (X.1) and (Y.1) are still diagnostic when one or both are present, their absence does not rule out M. minutoides. This cytotype has a large distribution, with specimens found in Tanzania and in the eastern part of South Africa. The nonpervasive distribution of Rb(X.1) provides an opportunity to investigate different evolutionary scenarios of sex-autosome translocations using a phylogenetic framework and the distribution of telomeric repeats. The results tend to support a scenario involving a reversal event, i.e., fusion then fission of Rb(X.1), and highlighted the existence of a new X1X1X2X2/X1X2Y sex chromosome system, confirming the remarkable diversity of neo-sex chromosomes and sex determination systems in the African pygmy mice.
Collapse
Affiliation(s)
- F Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier 2, UMR CNRS 5554, Montpellier, France,
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Guerrero RF, Kirkpatrick M. Local adaptation and the evolution of chromosome fusions. Evolution 2014; 68:2747-56. [PMID: 24964074 DOI: 10.1111/evo.12481] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/16/2014] [Indexed: 11/30/2022]
Abstract
We use forward and coalescent models of population genetics to study chromosome fusions that reduce the recombination between two locally adapted loci. Under a continent-island model, a fusion spreads and reaches a polymorphic equilibrium when it causes recombination between locally adapted alleles to be less than their selective advantage. In contrast, fusions in a two-deme model always spread; whether it reaches a polymorphic equilibrium or becomes fixed depends on the relative recombination rates of fused homozygotes and heterozygotes. Neutral divergence around fusion polymorphisms is markedly increased, showing peaks at the point of fusion and at the locally adapted loci. Local adaptation could explain the evolution of many of chromosome fusions, which are some of the most common chromosome rearrangements in nature.
Collapse
Affiliation(s)
- Rafael F Guerrero
- Department of Integrative Biology C-0990, University of Texas, Austin, Texas, 78712.
| | | |
Collapse
|
17
|
The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation. Chromosoma 2014; 123:529-44. [PMID: 25053180 DOI: 10.1007/s00412-014-0477-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 01/01/2023]
Abstract
Many different chromosomal races with reduced chromosome number due to the presence of Robertsonian fusion metacentrics have been described in western Europe and northern Africa, within the distribution area of the western house mouse Mus musculus domesticus. This subspecies of house mouse has become the ideal model for studies to elucidate the processes of chromosome mutation and fixation that lead to the formation of chromosomal races and for studies on the impact of chromosome heterozygosities on reproductive isolation and speciation. In this review, we briefly describe the history of the discovery of the first and subsequent metacentric races in house mice; then, we focus on the molecular composition of the centromeric regions involved in chromosome fusion to examine the molecular characteristics that may explain the great variability of the karyotype that house mice show. The influence that metacentrics exert on the nuclear architecture of the male meiocytes and the consequences on meiotic progression are described to illustrate the impact that chromosomal heterozygosities exert on fertility of house mice-of relevance to reproductive isolation and speciation. The evolutionary significance of the Robertsonian phenomenon in the house mouse is discussed in the final section of this review.
Collapse
|
18
|
Martínez-Vargas J, Muñoz-Muñoz F, Medarde N, López-Fuster MJ, Ventura J. Effect of chromosomal reorganizations on morphological covariation of the mouse mandible: insights from a Robertsonian system of Mus musculus domesticus. Front Zool 2014. [DOI: 10.1186/s12983-014-0051-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
19
|
Medarde N, Martínez-Vargas J, Sánchez-Chardi A, López-Fuster MJ, Ventura J. Effect of Robertsonian translocations on sperm head form in the house mouse. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nuria Medarde
- Departament de Biologia Animal; de Biologia Vegetal i d'Ecologia; Facultat de Biociències; Universitat Autònoma de Barcelona; E-08193 Cerdanyola del Vallès Spain
| | - Jessica Martínez-Vargas
- Departament de Biologia Animal; de Biologia Vegetal i d'Ecologia; Facultat de Biociències; Universitat Autònoma de Barcelona; E-08193 Cerdanyola del Vallès Spain
| | | | - María José López-Fuster
- Departament de Biologia Animal and Institut de Recerca de la Biodiversitat (IRBio); Facultat de Biologia; Universitat de Barcelona; E-08007 Barcelona Spain
| | - Jacint Ventura
- Departament de Biologia Animal; de Biologia Vegetal i d'Ecologia; Facultat de Biociències; Universitat Autònoma de Barcelona; E-08193 Cerdanyola del Vallès Spain
| |
Collapse
|
20
|
Medarde N, Muñoz-Muñoz F, López-Fuster MJ, Ventura J. Variational modularity at the cell level: insights from the sperm head of the house mouse. BMC Evol Biol 2013; 13:179. [PMID: 24004811 PMCID: PMC3846807 DOI: 10.1186/1471-2148-13-179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 08/21/2013] [Indexed: 11/17/2022] Open
Abstract
Background Modularity is an important feature in the evolvability of organisms, since it allows the occurrence of complex adaptations at every single level of biological systems. While at the cellular level the modular organization of molecular interactions has been analyzed in detail, the phenotypic modularity (or variational modularity) of cell shape remains unexplored. The mammalian spermatozoon constitutes one of the most complex and specialized cell types found in organisms. The structural heterogeneity found in the sperm head suggests an association between its inner composition, shape and specificity of function. However, little is known about the extent of the connections between these features. Taking advantage of the house mouse sperm morphology, we analyzed the variational modularity of the sperm head by testing several hypotheses related to its structural and functional organization. Because chromosomal rearrangements can affect the genotype-phenotype map of individuals and thus modify the patterns of covariation between traits, we also evaluate the effect of Robertsonian translocations on the modularity pattern of the sperm head. Results The results indicated that the house mouse sperm head is divided into three variational modules (the acrosomal, post-acrosomal and ventral spur module), which correspond to the main regions of the cytoskeletal mesh beneath the plasma membrane, i.e., the perinuclear theca. Most of the covariation is concentrated between the ventral spur and the acrosomal and post-acrosomal modules. Although the Rb fusions did not alter the main modularity pattern, they did affect the percentages of covariation between pairs of modules. Conclusions The structural heterogeneity of the cytoskeleton is responsible for the modular organization of the sperm head shape, corroborating the role that this structure has in maintaining the cell shape. The reduction in percentages of shape covariation between pairs of modules in Rb sperms suggests that chromosomal rearrangements could induce changes in the genotype-phenotype map. Nevertheless, how these variations affect sperm fertilization success is yet to be elucidated.
Collapse
Affiliation(s)
- Nuria Medarde
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| | | | | | | |
Collapse
|