1
|
Hara H, Takayanagi K, Shimizu T, Iwashita T, Ikari A, Maeshima A, Hasegawa H. Possible involvement of up-regulated salt-dependent glucose transporter-5 (SGLT5) in high-fructose diet-induced hypertension. Hypertens Res 2024:10.1038/s41440-024-01915-0. [PMID: 39706885 DOI: 10.1038/s41440-024-01915-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/17/2024] [Accepted: 09/06/2024] [Indexed: 12/23/2024]
Abstract
Excessive fructose intake causes a variety of adverse conditions (e.g., obesity, hepatic steatosis, insulin resistance and uric acid overproduction). High fructose-induced hypertension is a particularly common and pathologically significant condition induced by excess fructose, but its underlying mechanisms remain unknown. We investigated these mechanisms in 7-week-old male Sprague-Dawley rats fed normal rat food or a diet containing 60% glucose (GLU group) or 60% fructose (FRU group) for 3, 6, or 12 weeks. Daily food consumption was measured to avoid between-group discrepancies in caloric/salt intake, adjusting for feeding amounts. The mean blood pressure of FRU rats was significantly higher (12 weeks GLU: 94.8 ± 3.4 mmHg vs. 12 weeks FRU: 103.7 ± 1.2 mmHg), and fractional sodium excretion was significantly lower (12 weeks GLU: 0.084 ± 0.011% vs. 12 weeks FRU: 0.059 ± 0.08%), indicating that the high-fructose diet caused salt retention. The kidney weight and glomerular surface area were greater in FRU rats (12 weeks GLU: 7495 ± 181 vs. 12 weeks FRU: 9831 ± 164 μm2), suggesting that the high-fructose diet induced an increase in extracellular fluid volume. The expressions of GLUT5 and ketohexokinase, an enzyme required for fructose metabolism, were up-regulated in the FRU group rats (GLUT5 12 weeks GLU: 104.7 ± 15.4% vs. 12 weeks FLU: 309.0 ± 99.9%, ketohexokinase 12 weeks GLU: 129.6 ± 3.5% vs. 12 weeks FLU: 163.9 ± 13.0%). Cortical ATP levels were significantly lower in FRU rats (12 weeks GLU: 9.82 ± 1.26 nmol/mg protein vs. 12 weeks FRU: 7.59 ± 1.68 nmol/mg protein), possibly indicating ATP consumption due to fructose metabolism. Unlike in previous reports the high-fructose diet did not affect NHE3 expression (12 weeks GLU: 166.1 ± 6.3% vs. 12 weeks FLU: 142.0 ± 5.9%). A gene chip analysis conducted to identify susceptible molecules revealed that only Slc5a10 (corresponding to SGLT5) showed >two-fold up-regulation in FRU versus GLU rats. RT-PCR and in situ hybridization confirmed the SGLT5 up-regulation (12 weeks GLU: 75.0 ± 5.8% vs. 12 weeks FLU: 230.1 ± 16.0%). Our findings may indicate that the high-fructose diet increased sodium reabsorption principally through up-regulated SGLT5, finally causing salt-sensitive hypertension.
Collapse
Affiliation(s)
- Hiroaki Hara
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kamoda 1981, Kawagoe, Saitama, 350-8550, Japan
| | - Kaori Takayanagi
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kamoda 1981, Kawagoe, Saitama, 350-8550, Japan
- Ishikawa Kinenkai Kawagoe Ekimae Clinic, Wakita-honmachi 16-23, Kawagoe, Saitama, 350-1123, Japan
| | - Taisuke Shimizu
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kamoda 1981, Kawagoe, Saitama, 350-8550, Japan
| | - Takatsugu Iwashita
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kamoda 1981, Kawagoe, Saitama, 350-8550, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Akito Maeshima
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kamoda 1981, Kawagoe, Saitama, 350-8550, Japan
| | - Hajime Hasegawa
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, Kamoda 1981, Kawagoe, Saitama, 350-8550, Japan.
| |
Collapse
|
2
|
Draicchio F, Behrends V, Tillin NA, Hurren NM, Sylow L, Mackenzie R. Involvement of the extracellular matrix and integrin signalling proteins in skeletal muscle glucose uptake. J Physiol 2022; 600:4393-4408. [PMID: 36054466 PMCID: PMC9826115 DOI: 10.1113/jp283039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/03/2022] [Indexed: 01/11/2023] Open
Abstract
Whole-body euglycaemia is partly maintained by two cellular processes that encourage glucose uptake in skeletal muscle, the insulin- and contraction-stimulated pathways, with research suggesting convergence between these two processes. The normal structural integrity of the skeletal muscle requires an intact actin cytoskeleton as well as integrin-associated proteins, and thus those structures are likely fundamental for effective glucose uptake in skeletal muscle. In contrast, excessive extracellular matrix (ECM) remodelling and integrin expression in skeletal muscle may contribute to insulin resistance owing to an increased physical barrier causing reduced nutrient and hormonal flux. This review explores the role of the ECM and the actin cytoskeleton in insulin- and contraction-mediated glucose uptake in skeletal muscle. This is a clinically important area of research given that defects in the structural integrity of the ECM and integrin-associated proteins may contribute to loss of muscle function and decreased glucose uptake in type 2 diabetes.
Collapse
Affiliation(s)
- Fulvia Draicchio
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| | - Volker Behrends
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| | - Neale A. Tillin
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| | - Nicholas M. Hurren
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| | - Lykke Sylow
- Molecular Metabolism in Cancer & Ageing Research GroupDepartment of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Richard Mackenzie
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| |
Collapse
|
3
|
Bell DSH, Goncalves E. Diabetogenic effects of cardioprotective drugs. Diabetes Obes Metab 2021; 23:877-885. [PMID: 33319474 DOI: 10.1111/dom.14295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/22/2020] [Accepted: 12/07/2020] [Indexed: 01/11/2023]
Abstract
Drugs that protect against cardiovascular events in the patient with diabetes may also positively or negatively affect glycaemic control in the patient with established diabetes and may induce the development of diabetes in the predisposed patient. Mainly through increasing insulin resistance, beta-blockers, statins and high-dose diuretics have the potential to worsen glycaemic control. Dihydropyridine calcium channel blockers, low-dose diuretics, vasodilating beta-blockers, alpha-blockers and pitavastatin have little or no effect on glycaemic control. Blockers of the renin-angiotensin-aldosterone system, colesevelam, ranolazine and verapamil, through slowing breakdown of bradykinin, vasodilation, increasing cholecystokinin levels, blocking sodium channels and decreasing beta cell apoptosis, may improve glycaemic control and avoid the development of diabetes.
Collapse
|
4
|
Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol Rev 2020; 100:407-461. [DOI: 10.1152/physrev.00001.2019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of type 2 diabetes, vascular complications of diabetes, and several other age-related chronic inflammatory diseases such as cardiovascular disease, cancer, and disorders of the central nervous system. MGO is mainly formed as a byproduct of glycolysis and, under physiological circumstances, detoxified by the glyoxalase system. MGO is the major precursor of nonenzymatic glycation of proteins and DNA, subsequently leading to the formation of advanced glycation end products (AGEs). MGO and MGO-derived AGEs can impact on organs and tissues affecting their functions and structure. In this review we summarize the formation of MGO, the detoxification of MGO by the glyoxalase system, and the biochemical pathways through which MGO is linked to the development of diabetes, vascular complications of diabetes, and other age-related diseases. Although interventions to treat MGO-associated complications are not yet available in the clinical setting, several strategies to lower MGO have been developed over the years. We will summarize several new directions to target MGO stress including glyoxalase inducers and MGO scavengers. Targeting MGO burden may provide new therapeutic applications to mitigate diseases in which MGO plays a crucial role.
Collapse
Affiliation(s)
- C. G. Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - C. D. A. Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
5
|
Chou CL, Lin H, Chen JS, Fang TC. Renin inhibition improves metabolic syndrome, and reduces angiotensin II levels and oxidative stress in visceral fat tissues in fructose-fed rats. PLoS One 2017; 12:e0180712. [PMID: 28700686 PMCID: PMC5507254 DOI: 10.1371/journal.pone.0180712] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/20/2017] [Indexed: 12/29/2022] Open
Abstract
Renin–angiotensin system in visceral fat plays a crucial role in the pathogenesis of metabolic syndrome in fructose-fed rats. However, the effects of renin inhibition on visceral adiposity in metabolic syndrome are not fully investigated. We investigated the effects of renin inhibition on visceral adiposity in fructose-fed rats. Male Wistar–Kyoto rats were divided into 4 groups for 8-week experiments: Group Con (standard chow diet), Group Fru (high-fructose diet; 60% fructose), Group FruA (high-fructose diet and concurrent aliskiren treatment; 100 mg/kg body weight [BW] per day), and Group FruB (high-fructose diet and subsequent, i.e. 4 weeks after initiating high-fructose feeding, aliskiren treatment; 100 mg/kg BW per day). The high-fructose diet induced metabolic syndrome, increased visceral fat weights and adipocyte sizes, and augmented angiotensin II (Ang II), NADPH oxidase (NOX) isoforms expressions, oxidative stress, and dysregulated production of adipocytokines from visceral adipose tissues. Concurrent and subsequent aliskiren administration ameliorated metabolic syndrome, dysregulated adipocytokines, and visceral adiposity in high fructose-fed hypertensive rats, and was associated with reducing Ang II levels, NOX isoforms expressions and oxidative stress in visceral fat tissues. Therefore, this study demonstrates renin inhibition could improve metabolic syndrome, and reduce Ang II levels and oxidative stress in visceral fat tissue in fructose-fed rats, and suggests that visceral adipose Ang II plays a crucial role in the pathogenesis of metabolic syndrome in fructose-fed rats.
Collapse
Affiliation(s)
- Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Heng Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jin-Shuen Chen
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Te-Chao Fang
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
6
|
Sousa GJ, Oliveira PWC, Nogueira BV, Melo AF, Faria TDO, Meira EF, Mill JG, Bissoli NS, Baldo MP. Fructose intake exacerbates the contractile response elicited by norepinephrine in mesenteric vascular bed of rats via increased endothelial prostanoids. J Nutr Biochem 2017; 48:21-28. [PMID: 28654829 DOI: 10.1016/j.jnutbio.2017.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/31/2017] [Accepted: 06/15/2017] [Indexed: 12/15/2022]
Abstract
Chronic fructose intake induces major cardiovascular and metabolic disturbances and is associated with the development of hypertension due to changes in vascular function. We hypothesized that high fructose intake for 6 weeks would cause metabolic syndrome and lead to initial vascular dysfunction. Male Wistar rats were assigned to receive fructose (FRU, 10%) or drinking water (CON) for 6 weeks. Systolic blood pressure was evaluated by tail plethysmography. Fasting glucose, insulin and glucose tolerance were measured at the end of the follow-up. Mesenteric vascular bed reactivity was tested before and after pharmacological blockade. Western blot analysis was performed for iNOS, eNOS, Nox2 and COX-2. DHE staining was used for vascular superoxide anion detection. Vessel structure was evaluated by optical and electronic microscopy. Fructose intake did not alter blood pressure, but did increase visceral fat deposition and fasting glucose as well as impair insulin and glucose tolerance. Fructose increased NE-induced vasoconstriction compared with CON, and this difference was abrogated by indomethacin perfusion as well as endothelium removal. ACh-induced relaxation was preserved, and the NO modulation tested after L-NAME perfusion was similar between groups. SNP-induced relaxation was not altered. Inducible NOS was increased; however, there were no changes in eNOS, Nox2 or COX-2 protein expression. Basal or stimulated superoxide anion production was not changed by fructose intake. In conclusion, high fructose intake increased NE-induced vasoconstriction through the endothelial prostanoids even in the presence of a preserved endothelium-mediated relaxation. No major changes in vessel structure were detected.
Collapse
Affiliation(s)
- Glauciene J Sousa
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Breno V Nogueira
- Department of Morphology, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Antônio F Melo
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Eduardo Frizera Meira
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil; Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Alegre, Brazil
| | - José G Mill
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | - Nazaré S Bissoli
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | - Marcelo P Baldo
- Department of Pathophysiology, Montes Claros State University, Montes Claros, Brazil.
| |
Collapse
|
7
|
Kho MC, Lee YJ, Park JH, Kim HY, Yoon JJ, Ahn YM, Tan R, Park MC, Cha JD, Choi KM, Kang DG, Lee HS. Fermented Red Ginseng Potentiates Improvement of Metabolic Dysfunction in Metabolic Syndrome Rat Models. Nutrients 2016; 8:E369. [PMID: 27322312 PMCID: PMC4924210 DOI: 10.3390/nu8060369] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/27/2016] [Accepted: 06/02/2016] [Indexed: 01/08/2023] Open
Abstract
Metabolic syndrome including obesity, dyslipidemia and hypertension is a cluster of risk factors of cardiovascular disease. Fermentation of medicinal herbs improves their pharmacological efficacy. Red ginseng (RG), a widely used traditional herbal medicine, was reported with anti-inflammatory and anti-oxidant activity. Aim in the present study was to investigate that the effects of fermented red ginseng (FRG) on a high-fructose (HF) diet induced metabolic disorders, and those effects were compared to RG and losartan. Animals were divided into four groups: a control group fed a regular diet and tap water, and fructose groups that were fed a 60% high-fructose (HF) diet with/without RG 250 mg/kg/day or FRG 250 mg/kg/day for eight weeks, respectively. Treatment with FRG significantly suppressed the increments of body weight, liver weight, epididymal fat weight and adipocyte size. Moreover, FRG significantly prevented the development of metabolic disturbances such as hyperlipidemia and hypertension. Staining with Oil-red-o demonstrated a marked increase of hepatic accumulation of triglycerides, and this increase was prevented by FRG. FRG ameliorated endothelial dysfunction by downregulation of endothelin-1 (ET-1) and adhesion molecules in the aorta. In addition, FRG induced markedly upregulation of Insulin receptor substrate 1 (IRS-1) and glucose transporter type 4 (Glut4) in the muscle. These results indicate that FRG ameliorates obesity, dyslipidemia, hypertension and fatty liver in HF diet rats. More favorable pharmacological effects on HF diet induced metabolic disorders were observed with FRG, compared to an equal dose of RG. These results showed that the pharmacological activity of RG was enhanced by fermentation. Taken together, fermentated red ginseng might be a beneficial therapeutic approach for metabolic syndrome.
Collapse
Affiliation(s)
- Min Chul Kho
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- Hanbang Body-Fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Yun Jung Lee
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- Hanbang Body-Fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Ji Hun Park
- Hanbang Body-Fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Hye Yoom Kim
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- Hanbang Body-Fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Jung Joo Yoon
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- Hanbang Body-Fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - You Mee Ahn
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- Hanbang Body-Fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Rui Tan
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- Hanbang Body-Fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Min Cheol Park
- Department of Oriental Medical Ophthalmology & Otolaryngology & Dermatology, College of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Jeong Dan Cha
- Department of Oral Microbiology and Institute of Oral Bioscience, Chonbuk National University, Jeonju, Jeonbuk 54896, Korea.
| | - Kyung Min Choi
- Department of Research Development, Institute of Jinan Red Ginseng, Jinan, Jeonbuk 55442, Korea.
| | - Dae Gill Kang
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- Hanbang Body-Fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| | - Ho Sub Lee
- College of Oriental Medicine and Professional Graduate School of Oriental Medicine, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
- Hanbang Body-Fluid Research Center, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea.
| |
Collapse
|
8
|
Effects of antihypertensive drugs losartan and levamlodipine besylate on insulin resistance in patients with essential hypertension combined with isolated impaired fasting glucose. Hypertens Res 2016; 39:321-6. [DOI: 10.1038/hr.2015.155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/12/2015] [Accepted: 08/28/2015] [Indexed: 01/19/2023]
|
9
|
The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin Sci (Lond) 2015; 128:839-61. [PMID: 25818485 DOI: 10.1042/cs20140683] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The formation and accumulation of advanced glycation endproducts (AGEs) are related to diabetes and other age-related diseases. Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is the major precursor in the formation of AGEs. MGO is mainly formed as a byproduct of glycolysis. Under physiological circumstances, MGO is detoxified by the glyoxalase system into D-lactate, with glyoxalase I (GLO1) as the key enzyme in the anti-glycation defence. New insights indicate that increased levels of MGO and the major MGO-derived AGE, methylglyoxal-derived hydroimidazolone 1 (MG-H1), and dysfunctioning of the glyoxalase system are linked to several age-related health problems, such as diabetes, cardiovascular disease, cancer and disorders of the central nervous system. The present review summarizes the mechanisms through which MGO is formed, its detoxification by the glyoxalase system and its effect on biochemical pathways in relation to the development of age-related diseases. Although several scavengers of MGO have been developed over the years, therapies to treat MGO-associated complications are not yet available for application in clinical practice. Small bioactive inducers of GLO1 can potentially form the basis for new treatment strategies for age-related disorders in which MGO plays a pivotal role.
Collapse
|
10
|
Chin SH, Item F, Wueest S, Zhou Z, Wiedemann MSF, Gai Z, Schoenle EJ, Kullak-Ublick GA, Al-Hasani H, Konrad D. Opposing effects of reduced kidney mass on liver and skeletal muscle insulin sensitivity in obese mice. Diabetes 2015; 64:1131-41. [PMID: 25325737 DOI: 10.2337/db14-0779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reduced kidney mass and/or function may result in multiple metabolic derangements, including insulin resistance. However, underlying mechanisms are poorly understood. Herein, we aimed to determine the impact of reduced kidney mass on glucose metabolism in lean and obese mice. To that end, 7-week-old C57BL/6J mice underwent uninephrectomy (UniNx) or sham operation. After surgery, animals were fed either a chow (standard) diet or a high-fat diet (HFD), and glucose homeostasis was assessed 20 weeks after surgery. Intraperitoneal glucose tolerance was similar in sham-operated and UniNx mice. However, insulin-stimulated glucose disposal in vivo was significantly diminished in UniNx mice, whereas insulin-stimulated glucose uptake into isolated skeletal muscle was similar in sham-operated and UniNx mice. Of note, capillary density was significantly reduced in skeletal muscle of HFD-fed UniNx mice. In contrast, hepatic insulin sensitivity was improved in UniNx mice. Furthermore, adipose tissue hypoxia-inducible factor 1α expression and inflammation were reduced in HFD-fed UniNx mice. Treatment with the angiotensin II receptor blocker telmisartan improved glucose tolerance and hepatic insulin sensitivity in HFD-fed sham-operated but not UniNx mice. In conclusion, UniNx protects from obesity-induced adipose tissue inflammation and hepatic insulin resistance, but it reduces muscle capillary density and, thus, deteriorates HFD-induced skeletal muscle glucose disposal.
Collapse
Affiliation(s)
- Siew Hung Chin
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland Children's Research Center, University Children's Hospital, Zurich, Switzerland Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Flurin Item
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Zhou Zhou
- German Diabetes Center at Heinrich Heine University, Düsseldorf, Germany
| | - Michael S F Wiedemann
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland Children's Research Center, University Children's Hospital, Zurich, Switzerland Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Eugen J Schoenle
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Hadi Al-Hasani
- German Diabetes Center at Heinrich Heine University, Düsseldorf, Germany German Center for Diabetes Research, Düsseldorf, Germany
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland Children's Research Center, University Children's Hospital, Zurich, Switzerland Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Bonner JS, Lantier L, Hocking KM, Kang L, Owolabi M, James FD, Bracy DP, Brophy CM, Wasserman DH. Relaxin treatment reverses insulin resistance in mice fed a high-fat diet. Diabetes 2013; 62:3251-60. [PMID: 23801576 PMCID: PMC3749347 DOI: 10.2337/db13-0033] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The endogenous hormone relaxin increases vascular reactivity and angiogenesis. We demonstrate that acute relaxin infusion in lean C57BL/6J mice enhances skeletal muscle perfusion and augments muscle glucose uptake during a hyperinsulinemic-euglycemic clamp. However, an acute effect was absent in mice fed a high-fat (HF) diet for 13 weeks. In contrast, mice fed an HF diet for 13 weeks and continuously treated with relaxin for the final 3 weeks of the diet exhibited decreased fasting blood glucose. Insulin-stimulated whole-body glucose disappearance and percent suppression of hepatic glucose production are corrected by chronic relaxin. The increase in peripheral glucose utilization is a result of augmented in vivo skeletal muscle glucose uptake. Relaxin intervention improves endothelial-dependent vascular reactivity and induces a two-fold proliferation in skeletal muscle capillarity. The metabolic effects of the treatment are not attributed to changes in myocellular insulin signaling. Relaxin intervention reverses the accumulation of collagen III in the liver and collagen III and collagen IV in the heart; this is induced by HF feeding. These studies show the potential of relaxin in the treatment of diet-induced insulin resistance and vascular dysfunction. Relaxin provides a novel therapeutic approach targeting the extramyocellular barriers to insulin action, which are critical to the pathogenesis of insulin resistance.
Collapse
Affiliation(s)
- Jeffrey S Bonner
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fructose: a key factor in the development of metabolic syndrome and hypertension. J Nutr Metab 2013; 2013:682673. [PMID: 23762544 PMCID: PMC3677638 DOI: 10.1155/2013/682673] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus and the metabolic syndrome are becoming leading causes of death in the world. Identifying the etiology of diabetes is key to prevention. Despite the similarity in their structures, fructose and glucose are metabolized in different ways. Uric acid, a byproduct of uncontrolled fructose metabolism is known risk factor for hypertension. In the liver, fructose bypasses the two highly regulated steps in glycolysis, glucokinase and phosphofructokinase, both of which are inhibited by increasing concentrations of their byproducts. Fructose is metabolized by fructokinase (KHK). KHK has no negative feedback system, and ATP is used for phosphorylation. This results in intracellular phosphate depletion and the rapid generation of uric acid due to activation of AMP deaminase. Uric acid, a byproduct of this reaction, has been linked to endothelial dysfunction, insulin resistance, and hypertension. We present possible mechanisms by which fructose causes insulin resistance and suggest actions based on this association that have therapeutic implications.
Collapse
|
13
|
Bonner JS, Lantier L, Hasenour CM, James FD, Bracy DP, Wasserman DH. Muscle-specific vascular endothelial growth factor deletion induces muscle capillary rarefaction creating muscle insulin resistance. Diabetes 2013; 62:572-80. [PMID: 23002035 PMCID: PMC3554359 DOI: 10.2337/db12-0354] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Muscle insulin resistance is associated with a reduction in vascular endothelial growth factor (VEGF) action and muscle capillary density. We tested the hypothesis that muscle capillary rarefaction critically contributes to the etiology of muscle insulin resistance in chow-fed mice with skeletal and cardiac muscle VEGF deletion (mVEGF(-/-)) and wild-type littermates (mVEGF(+/+)) on a C57BL/6 background. The mVEGF(-/-) mice had an ~60% and ~50% decrease in capillaries in skeletal and cardiac muscle, respectively. The mVEGF(-/-) mice had augmented fasting glucose turnover. Insulin-stimulated whole-body glucose disappearance was blunted in mVEGF(-/-) mice. The reduced peripheral glucose utilization during insulin stimulation was due to diminished in vivo cardiac and skeletal muscle insulin action and signaling. The decreased insulin-stimulated muscle glucose uptake was independent of defects in insulin action at the myocyte, suggesting that the impairment in insulin-stimulated muscle glucose uptake was due to poor muscle perfusion. The deletion of VEGF in cardiac muscle did not affect cardiac output. These studies emphasize the importance for novel therapeutic approaches that target the vasculature in the treatment of insulin-resistant muscle.
Collapse
Affiliation(s)
- Jeffrey S Bonner
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Carbonyl stress induces hypertension and cardio-renal vascular injury in Dahl salt-sensitive rats. Hypertens Res 2013; 36:361-7. [PMID: 23364337 PMCID: PMC3619051 DOI: 10.1038/hr.2012.204] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One major precursor of carbonyl stress, methylglyoxal (MG), is elevated in the plasma of chronic kidney disease (CKD) patients, and this precursor contributes to the progression of vascular injury, hypertension and renal injury in diabetic nephropathy patients. This molecule induces salt-sensitive hypertension via a reactive oxygen species-mediated pathway. We examined the role of MG in the pathogenesis of hypertension and cardio–renal injury in Dahl salt-sensitive (Dahl S) rats, which is a rat model of CKD. Nine-week-old Dahl S rats were fed a 1% NaCl diet, and 1% MG was added to their drinking water for up to 12 weeks. Blood pressure and cardio–renal injuries were compared with rats treated with tap water alone. The angiotensin II receptor blocker (ARB), candesartan (10 mg kg−1 day−1), was administered to MG Dahl S rats to determine the impact of this drug on the pathogenesis of MG-induced CKD. A progressive increase in systolic blood pressure was observed (123±1–148±5 mm Hg) after 12 weeks of MG administration. MG administration significantly increased urinary albumin excretion, glomerular sclerosis, tubular injury, myocardial collagen content and cardiac perivascular fibrosis. MG also enhanced the renal expression of Nɛ-carboxyethyl-lysine (an advanced glycation end product), 8-hydroxydeoxyguanosine (a marker of oxidative stress), macrophage (ED-1) positive cells (a marker of inflammation) and nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase activity. Candesartan treatment for 4 weeks significantly reduced these parameters. These results suggest that MG-induced hypertension and cardio–renal injury and increased inflammation and carbonyl and oxidative stress, which were partially preventable by an ARB.
Collapse
|
15
|
Rebollo A, Roglans N, Alegret M, Laguna JC. Way back for fructose and liver metabolism: Bench side to molecular insights. World J Gastroenterol 2012; 18:6552-9. [PMID: 23236229 PMCID: PMC3516224 DOI: 10.3748/wjg.v18.i45.6552] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/26/2012] [Accepted: 09/29/2012] [Indexed: 02/06/2023] Open
Abstract
The World Health Organization recommends that the daily intake of added sugars should make up no more than 10% of total energy. The consumption of sugar-sweetened beverages is the main source of added sugars. Fructose, together with glucose, as a component of high fructose corn syrups or as a component of the sucrose molecule, is one of the main sweeteners present in this kind of beverages. Data from prospective and intervention studies clearly point to high fructose consumption, mainly in the form of sweetened beverages, as a risk factor for several metabolic diseases in humans. The incidence of hypertension, nonalcoholic fatty liver disease (NAFLD), dyslipidemia (mainly hypertriglyceridemia), insulin resistance, type 2 diabetes mellitus, obesity, and the cluster of many of these pathologies in the form of metabolic syndrome is higher in human population segments that show high intake of fructose. Adolescent and young adults from low-income families are especially at risk. We recently reviewed evidence from experimental animals and human data that confirms the deleterious effect of fructose on lipid and glucose metabolism. In this present review we update the information generated in the past 2 years about high consumption of fructose-enriched beverages and the occurrence of metabolic disturbances, especially NAFLD, type 2 diabetes mellitus, and metabolic syndrome. We have explored recent data from observational and experimental human studies, as well as experimental data from animal and cell models. Finally, using information generated in our laboratory and others, we provide a view of the molecular mechanisms that may be specifically involved in the development of liver lipid and glucose metabolic alterations after fructose consumption in liquid form.
Collapse
|
16
|
Direct renin inhibitor prevents and ameliorates insulin resistance, aortic endothelial dysfunction and vascular remodeling in fructose-fed hypertensive rats. Hypertens Res 2012; 36:123-8. [PMID: 22895064 DOI: 10.1038/hr.2012.124] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor blockers can improve insulin resistance and vascular dysfunction in insulin-resistant rats; however, there are few reports on the effects of direct renin inhibitors on these conditions. We investigated the effects of a direct renin inhibitor, aliskiren, on insulin resistance, aortic endothelial dysfunction and vascular remodeling in fructose-fed hypertensive rats. Male Wistar-Kyoto rats were divided into four groups (n=6 per group) and studied for 8 weeks: Group Con: standard chow diet; group Fru: high-fructose diet (60% fructose); Group FruA: high-fructose diet with concurrent aliskiren treatment (100 mg kg(-1) per day); and Group FruB: high-fructose diet with subsequent aliskiren treatment 4 weeks later. Blood was collected for biochemical assays, and isolated rings of the thoracic aorta were obtained for analysis of vascular reactivity, vascular structure and lipid peroxide. Rats fed with high-fructose diets developed significant systolic hypertension, decreased plasma nitrite (NO(2); nitric oxide metabolite) levels and increased plasma glucose, insulin, triglyceride, total cholesterol and aortic lipid peroxide levels, and aortic wall thickness compared with control rats. Aliskiren treatment, either concurrent or subsequent, elevated plasma NO(2) levels and reduced systolic hypertension, insulin resistance, dyslipidemia, aortic lipid peroxide levels and aortic wall hypertrophy in FHR. The peak endothelium-dependent aortic relaxations were significantly higher in rats that received aliskiren treatment than in those that did not. In conclusion, our findings suggest that aliskiren prevents and ameliorates insulin resistance, aortic endothelial dysfunction and oxidative vascular remodeling in fructose-fed hypertensive rats.
Collapse
|
17
|
Anti-hypertensive therapy and insulin sensitivity: regulation through the microcirculation? Hypertens Res 2012; 35:20-2. [DOI: 10.1038/hr.2011.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|