1
|
Vitozzi S, Correa SG, Lozano A, Fernández EJ, Quiroga R. A novel missense mutation in the AIRE gene underlying autoimmune polyglandular syndrome type 1. Immunogenetics 2024; 76:69-74. [PMID: 38030802 DOI: 10.1007/s00251-023-01324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 12/01/2023]
Abstract
The immune regulator gene AIRE plays an essential role in the establishment of immune tolerance and the prevention of autoimmunity. This transcription factor plays a critical role in promoting self-tolerance in the thymus by regulating the expression of a large number of self-antigens that share the common feature of being tissue-restricted in their expression pattern in the periphery. Dysfunction of AIRE in humans causes a rare disease, autoimmune polyglandular syndrome type 1 (APS1), characterized by an autoimmune response against peripheral tissues, particularly endocrine tissues. Although a few dominant mutations have been described, the inactivation of AIRE is usually caused by recessive mutations. Recent data suggests that alterations in AIRE function contribute not only to APS1 but also to more common forms of autoimmune disease. Here, we present a previously unreported missense mutation (NM_000383.2:c.260 T > C) in exon 2 of the AIRE gene, predicted to cause the substitution (p.(Leu87Pro)) in the CARD domain of the AIRE protein. When inherited in conjunction with another dysfunctional AIRE allele, this mutation was associated with immune dysregulation in a pediatric patient. The presence of hypergammaglobulinemia, malabsorption syndrome, ectodermal dysplasia, mucocutaneous candidiasis, vitiligo, and hypothyroidism as well as the presence of multiple autoantibodies allowed us to confirm an APS1 diagnosis.
Collapse
Affiliation(s)
- Susana Vitozzi
- Laboratorios LACE, Córdoba, Argentina.
- Facultad de Ciencias de la Salud, Cátedra de Inmunología, Universidad Católica de Córdoba, Córdoba, Argentina.
| | - Silvia Graciela Correa
- Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica E Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Alejandro Lozano
- Facultad de Ciencias de la Salud, Cátedra de Inmunología, Universidad Católica de Córdoba, Córdoba, Argentina
- Servicio de Alergia e Inmunología, Clínica Universitaria Reina Fabiola, Córdoba, Argentina
| | | | - Rodrigo Quiroga
- Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| |
Collapse
|
2
|
Qian G, Yan X, Xuan J, Zheng D, He Z, Shen J. A novel AIRE mutation leads to autoimmune polyendocrine syndrome type-1. Front Cell Dev Biol 2022; 10:948350. [PMID: 36072346 PMCID: PMC9441485 DOI: 10.3389/fcell.2022.948350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune polyendocrine syndrome type-1 (APS-1) is a rare inherited monogenic autoimmune disease characterized by the presence of at least two of three following major clinical features: chronic mucocutaneous candidiasis, hypoparathyroidism, and adrenal insufficiency. Mutations in autoimmune regulator (AIRE) gene have been found to contribute to APS-1. In the present study, we reported a 36-years-old male APS-1 patient who presented with hypoparathyroidism and Addison’s disease. The proband underwent complete clinical examinations and mutation screening was performed by Sanger sequencing on AIRE gene. A novel homozygous mutation in exon 9 of the AIRE gene (c.1024C>T) was identified. Based on sequencing findings, HEK293T cell-based assays were conducted to analyze the subcellular localization and mutant transcript processing. Our results revealed that p.Q342X mutant localized in nuclear speckles and exerted a dominant-negative effect on wildtype AIRE function. We reported the c.1024C>T mutation of AIRE gene for the first time, which enriched the AIRE mutation database and contributed to further understanding of APS-1.
Collapse
Affiliation(s)
- Guofeng Qian
- Department of Endocrinology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Guofeng Qian, ; Jianguo Shen,
| | - Xiaoyi Yan
- Department of Cell Biology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junli Xuan
- Imaging Facility of Core Facilities, College of Medicine, Zhejiang University, Hangzhou, China
| | - Danfeng Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiwen He
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianguo Shen
- Department of Endocrinology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Guofeng Qian, ; Jianguo Shen,
| |
Collapse
|
3
|
Bhalla P, Su DM, van Oers NSC. Thymus Functionality Needs More Than a Few TECs. Front Immunol 2022; 13:864777. [PMID: 35757725 PMCID: PMC9229346 DOI: 10.3389/fimmu.2022.864777] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/03/2022] [Indexed: 12/18/2022] Open
Abstract
The thymus, a primary lymphoid organ, produces the T cells of the immune system. Originating from the 3rd pharyngeal pouch during embryogenesis, this organ functions throughout life. Yet, thymopoiesis can be transiently or permanently damaged contingent on the types of systemic stresses encountered. The thymus also undergoes a functional decline during aging, resulting in a progressive reduction in naïve T cell output. This atrophy is evidenced by a deteriorating thymic microenvironment, including, but not limited, epithelial-to-mesenchymal transitions, fibrosis and adipogenesis. An exploration of cellular changes in the thymus at various stages of life, including mouse models of in-born errors of immunity and with single cell RNA sequencing, is revealing an expanding number of distinct cell types influencing thymus functions. The thymus microenvironment, established through interactions between immature and mature thymocytes with thymus epithelial cells (TEC), is well known. Less well appreciated are the contributions of neural crest cell-derived mesenchymal cells, endothelial cells, diverse hematopoietic cell populations, adipocytes, and fibroblasts in the thymic microenvironment. In the current review, we will explore the contributions of the many stromal cell types participating in the formation, expansion, and contraction of the thymus under normal and pathophysiological processes. Such information will better inform approaches for restoring thymus functionality, including thymus organoid technologies, beneficial when an individuals’ own tissue is congenitally, clinically, or accidentally rendered non-functional.
Collapse
Affiliation(s)
- Pratibha Bhalla
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Dong-Ming Su
- Department of Microbiology, Immunology & Genetics, The University of North Texas Health Sciences Center, Fort Worth, TX, United States
| | - Nicolai S C van Oers
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
4
|
Walsh MC, Choi Y. Regulation of T cell-associated tissues and T cell activation by RANKL-RANK-OPG. J Bone Miner Metab 2021; 39:54-63. [PMID: 33438173 PMCID: PMC8670018 DOI: 10.1007/s00774-020-01178-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/28/2020] [Indexed: 10/22/2022]
Abstract
The receptor activator of nuclear factor kappa-B ligand (RANKL)-RANK-osteoprotegerin (OPG) system is critical to bone homeostasis, but genetically deficient mouse models have revealed important roles in the immune system as well. RANKL-RANK-OPG is particularly important to T cell biology because of its organogenic control of thymic development and secondary lymphoid tissues influence central T cell tolerance and peripheral T cell function. RANKL-RANK-OPG cytokine-receptor interactions are often controlled by regulation of expression of RANKL on developing T cells, which interacts with RANK expressed on some lymphoid tissue cells to stimulate key downstream signaling pathways that affect critical tuning functions of the T cell compartment, like cell survival and antigen presentation. Activation of peripheral T cells is regulated by RANKL-enhanced dendritic cell survival, and dysregulation of the RANKL-RANK-OPG system in this context is associated with loss of T cell tolerance and autoimmune disease. Given its broader implications for immune homeostasis and osteoimmunology, it is critical to further understand how the RANKL-RANK-OPG system operates in T cell biology.
Collapse
Affiliation(s)
- Matthew C Walsh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Balakrishnan S, Kumar P, Prabhakar BS. Post-translational modifications contribute to neoepitopes in Type-1 diabetes: Challenges for inducing antigen-specific tolerance. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140478. [PMID: 32599298 DOI: 10.1016/j.bbapap.2020.140478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/20/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
Type-1 Diabetes (T1D) is the major autoimmune disease affecting the juvenile population in which insulin-producing pancreatic β-cells are destroyed by self-reactive T-cells and B-cells. Emerging studies have identified the presence of autoantibodies and altered T-cell reactivity against several autoantigens in individuals who are at risk of developing T1D even before the clinical onset of diabetes. Whilst these findings could lead to the development of predictive biomarkers for early diagnosis, growing evidence on the generation of neoepitopes, epitope spreading and diverse antigen repertoire in T1D poses a major challenge for developing approaches to induce antigen-specific tolerance. Mechanisms of neoepitope generation include post-translational modifications of existing epitopes, aberrant translational products, peptide fusion, and differences in MHC binding registers. Here, we focus our discussion on how post-translational modifications can give rise to immunogenic neoepitopes in T1D and present our perspective on how it could affect the development of therapeutic approaches to induce antigen-specific tolerance.
Collapse
Affiliation(s)
- Sivasangari Balakrishnan
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, United States of America.
| | - Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, United States of America.
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, United States of America.
| |
Collapse
|
6
|
|
7
|
Sadeghian-Rizi T, Alsahebfosoul F, Kazemi M, Khanahmad H, Jahanian-Najafabadi A. Association of AIRE Polymorphism and the Susceptibility to Multiple Sclerosis in Iranian Population. Avicenna J Med Biotechnol 2018; 10:110-114. [PMID: 29849988 PMCID: PMC5960056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Multiple Sclerosis (MS) is the most common cause of neurologic disability in young adults. Recently, the AIRE gene was identified as a genetic risk factor for several autoimmune diseases in genome wide association studies. The aim of this study was to further investigate the possible role of the AIRE gene in susceptibility to MS in Iranian population. Methods: A total of 112 MS patients and 94 ethnically matched controls were included in the study. The Single-Nucleotide Polymorphism (SNP) (rs1800520, C>G) with a global MAF=0.2282/1143 was selected and genotyped using HRM real-time PCR method. Results: Results showed that AIRE SNP rs1800520 was significantly less common in the MS patients than in healthy controls (17.8 vs. 28.7%, pc=0.032, OR=0.54,95% CI 0.279, 1.042). Also, the frequency of allele G was significantly higher among the control group than in the case group (37.77 vs. 25%, pc=0.014). Interestingly, mRNA transcribed on the rs1800520 SNP showed decreased free energy than the wild type suggesting that its increased stability may be responsible for the different activities of the polymorphic AIRE molecule. Conclusions: This is the first study investigating the relationship between AIRE gene and the susceptibility to MS. These results indicated that the rs1800520 SNP is not a susceptibility gene variant for the development of MS in Iranian population.
Collapse
Affiliation(s)
- Tahereh Sadeghian-Rizi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fereshteh Alsahebfosoul
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Conteduca G, Indiveri F, Filaci G, Negrini S. Beyond APECED: An update on the role of the autoimmune regulator gene (AIRE) in physiology and disease. Autoimmun Rev 2018; 17:325-330. [PMID: 29427825 DOI: 10.1016/j.autrev.2017.10.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022]
Abstract
The autoimmune regulator gene (AIRE) is a transcription factor expressed both in the thymus, by medullary thymic epithelial cells, and in secondary lymphoid organs. AIRE controls the local transcription of organ- specific proteins typically expressed in peripheral tissues, thus allowing the negative selection of self- reactive T cells. The crucial role played by AIRE in central immune tolerance emerged in the studies on the pathogenesis of Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy, a rare inherited polyendocrine/autoimmune disease. Thereafter, several studies found evidences indicating that AIRE impairment might be pathogenically involved in several autoimmune diseases and in tumorigenesis. In this review, we focus on recent advances relative to AIRE's effect on T cell development in physiology and disease. In particular, we address the following issues: 1) AIRE function and mTECs biology, 2) the impact of AIRE gene mutations in autoimmune diseases, and 3) the role of AIRE gene in anti-tumor immune response.
Collapse
Affiliation(s)
- Giuseppina Conteduca
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, Laboratory of Hematology, University of Liège, Liège, Belgium
| | - Francesco Indiveri
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; Department of Internal Medicine, Clinical Immunology Unit, University of Genoa, Genoa, Italy
| | - Gilberto Filaci
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; Department of Internal Medicine, Clinical Immunology Unit, University of Genoa, Genoa, Italy.
| | - Simone Negrini
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy; Department of Internal Medicine, Clinical Immunology Unit, University of Genoa, Genoa, Italy
| |
Collapse
|
9
|
Abstract
About two decades ago, cloning of the autoimmune regulator (AIRE) gene materialized one of the most important actors on the scene of self-tolerance. Thymic transcription of genes encoding tissue-specific antigens (ts-ags) is activated by AIRE protein and embodies the essence of thymic self-representation. Pathogenic AIRE variants cause the autoimmune polyglandular syndrome type 1, which is a rare and complex disease that is gaining attention in research on autoimmunity. The animal models of disease, although not identically reproducing the human picture, supply fundamental information on mechanisms and extent of AIRE action: thanks to its multidomain structure, AIRE localizes to chromatin enclosing the target genes, binds to histones, and offers an anchorage to multimolecular complexes involved in initiation and post-initiation events of gene transcription. In addition, AIRE enhances mRNA diversity by favoring alternative mRNA splicing. Once synthesized, ts-ags are presented to, and cause deletion of the self-reactive thymocyte clones. However, AIRE function is not restricted to the activation of gene transcription. AIRE would control presentation and transfer of self-antigens for thymic cellular interplay: such mechanism is aimed at increasing the likelihood of engagement of the thymocytes that carry the corresponding T-cell receptors. Another fundamental role of AIRE in promoting self-tolerance is related to the development of thymocyte anergy, as thymic self-representation shapes at the same time the repertoire of regulatory T cells. Finally, AIRE seems to replicate its action in the secondary lymphoid organs, albeit the cell lineage detaining such property has not been fully characterized. Delineation of AIRE functions adds interesting data to the knowledge of the mechanisms of self-tolerance and introduces exciting perspectives of therapeutic interventions against the related diseases.
Collapse
Affiliation(s)
- Roberto Perniola
- Department of Pediatrics, Neonatal Intensive Care, Vito Fazzi Regional Hospital, Lecce, Italy
| |
Collapse
|
10
|
Oliveira EH, Macedo C, Collares CV, Freitas AC, Donate PB, Sakamoto-Hojo ET, Donadi EA, Passos GA. Aire Downregulation Is Associated with Changes in the Posttranscriptional Control of Peripheral Tissue Antigens in Medullary Thymic Epithelial Cells. Front Immunol 2016; 7:526. [PMID: 27933063 PMCID: PMC5120147 DOI: 10.3389/fimmu.2016.00526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/10/2016] [Indexed: 12/14/2022] Open
Abstract
Autoimmune regulator (Aire) is a transcriptional regulator of peripheral tissue antigens (PTAs) and microRNAs (miRNAs) in medullary thymic epithelial cells (mTECs). In this study, we tested the hypothesis that Aire also played a role as an upstream posttranscriptional controller in these cells and that variation in its expression might be associated with changes in the interactions between miRNAs and the mRNAs encoding PTAs. We demonstrated that downregulation of Aire in vivo in the thymuses of BALB/c mice imbalanced the large-scale expression of these two RNA species and consequently their interactions. The expression profiles of a large set of mTEC miRNAs and mRNAs isolated from the thymuses of mice subjected (or not) to small-interfering-induced Aire gene knockdown revealed that 87 miRNAs and 4,558 mRNAs were differentially expressed. The reconstruction of the miRNA–mRNA interaction networks demonstrated that interactions between these RNAs were under Aire influence and therefore changed when this gene was downregulated. Prior to Aire-knockdown, only members of the miR-let-7 family interacted with a set of PTA mRNAs. Under Aire-knockdown conditions, a larger set of miRNA families and their members established this type of interaction. Notably, no previously described Aire-dependent PTA interacted with the miRNAs, indicating that these PTAs were somehow refractory. The miRNA–mRNA interactions were validated by calculating the minimal free energy of the pairings between the miRNA seed regions and the mRNA 3′ UTRs and within the cellular milieu using the luciferase reporter gene assay. These results suggest the existence of a link between transcriptional and posttranscriptional control because Aire downregulation alters the miRNA–mRNA network controlling PTAs in mTEC cells.
Collapse
Affiliation(s)
- Ernna H Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP) , São Paulo , Brazil
| | - Claudia Macedo
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP) , São Paulo , Brazil
| | - Cristhianna V Collares
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP) , São Paulo , Brazil
| | - Ana Carolina Freitas
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo (USP) , São Paulo , Brazil
| | - Paula Barbim Donate
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP) , São Paulo , Brazil
| | - Elza T Sakamoto-Hojo
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo (USP) , São Paulo , Brazil
| | - Eduardo A Donadi
- Department of Clinical Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo (USP) , São Paulo , Brazil
| | - Geraldo A Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil; Discipline of Genetics and Molecular Biology, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
11
|
Perry JSA, Hsieh CS. Development of T-cell tolerance utilizes both cell-autonomous and cooperative presentation of self-antigen. Immunol Rev 2016; 271:141-55. [PMID: 27088912 PMCID: PMC4837647 DOI: 10.1111/imr.12403] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of T-cell self-tolerance in the thymus is important for establishing immune homeostasis and preventing autoimmunity. Here, we review the components of T-cell tolerance, which includes T-cell receptor (TCR) self-reactivity, costimulation, cytokines, and antigen presentation by a variety of antigen-presenting cells (APCs) subsets. We discuss the current evidence on the process of regulatory T (Treg) cell and negative selection and the importance of TCR signaling. We then examine recent evidence showing unique roles for bone marrow (BM)-derived APCs and medullary thymic epithelial cells (mTECs) on the conventional and Treg TCR repertoire, as well as emerging data on the role of B cells in tolerance. Finally, we review the accumulating data that suggest that cooperative antigen presentation is a prominent component of T -ell tolerance. With the development of tools to interrogate the function of individual APC subsets in the medulla, we have gained greater understanding of the complex cellular and molecular events that determine T-cell tolerance.
Collapse
Affiliation(s)
- Justin S A Perry
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
12
|
Comprehensive Survey of miRNA-mRNA Interactions Reveals That Ccr7 and Cd247 (CD3 zeta) are Posttranscriptionally Controlled in Pancreas Infiltrating T Lymphocytes of Non-Obese Diabetic (NOD) Mice. PLoS One 2015; 10:e0142688. [PMID: 26606254 PMCID: PMC4659659 DOI: 10.1371/journal.pone.0142688] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/26/2015] [Indexed: 01/14/2023] Open
Abstract
In autoimmune type 1 diabetes mellitus (T1D), auto-reactive clones of CD4+ and CD8+ T lymphocytes in the periphery evolve into pancreas-infiltrating T lymphocytes (PILs), which destroy insulin-producing beta-cells through inflammatory insulitis. Previously, we demonstrated that, during the development of T1D in non-obese diabetic (NOD) mice, a set of immune/inflammatory reactivity genes were differentially expressed in T lymphocytes. However, the posttranscriptional control involving miRNA interactions that occur during the evolution of thymocytes into PILs remains unknown. In this study, we postulated that miRNAs are differentially expressed during this period and that these miRNAs can interact with mRNAs involved in auto-reactivity during the progression of insulitis. To test this hypothesis, we used NOD mice to perform, for the first time, a comprehensive survey of miRNA and mRNA expression as thymocytes mature into peripheral CD3+ T lymphocytes and, subsequently, into PILs. Reconstruction of miRNA-mRNA interaction networks for target prediction revealed the participation of a large set of miRNAs that regulate mRNA targets related to apoptosis, cell adhesion, cellular regulation, cellular component organization, cellular processes, development and the immune system, among others. The interactions between miR-202-3p and the Ccr7 chemokine receptor mRNA or Cd247 (Cd3 zeta chain) mRNA found in PILs are highlighted because these interactions can contribute to a better understanding of how the lack of immune homeostasis and the emergence of autoimmunity (e.g., T1D) can be associated with the decreased activity of Ccr7 or Cd247, as previously observed in NOD mice. We demonstrate that these mRNAs are controlled at the posttranscriptional level in PILs.
Collapse
|
13
|
Nishijima H, Kitano S, Miyachi H, Morimoto J, Kawano H, Hirota F, Morita R, Mouri Y, Masuda K, Imoto I, Ikuta K, Matsumoto M. Ectopic Aire Expression in the Thymic Cortex Reveals Inherent Properties of Aire as a Tolerogenic Factor within the Medulla. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:4641-9. [PMID: 26453754 DOI: 10.4049/jimmunol.1501026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/14/2015] [Indexed: 11/19/2022]
Abstract
Cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells (mTECs) play essential roles in the positive and negative selection of developing thymocytes, respectively. Aire in mTECs plays an essential role in the latter process through expression of broad arrays of tissue-restricted Ags. To determine whether the location of Aire within the medulla is absolutely essential or whether Aire could also function within the cortex for establishment of self-tolerance, we used bacterial artificial chromosome technology to establish a semiknockin strain of NOD-background (β5t/Aire-transgenic) mice expressing Aire under control of the promoter of β5t, a thymoproteasome expressed exclusively in the cortex. Although Aire was expressed in cTECs as typical nuclear dot protein in β5t/Aire-Tg mice, cTECs expressing Aire ectopically did not confer transcriptional expression of either Aire-dependent or Aire-independent tissue-restricted Ag genes. We then crossed β5t/Aire-Tg mice with Aire-deficient NOD mice, generating a strain in which Aire expression was confined to cTECs. Despite the presence of Aire(+) cTECs, these mice succumbed to autoimmunity, as did Aire-deficient NOD mice. The thymic microenvironment harboring Aire(+) cTECs, within which many Aire-activated genes were present, also showed no obvious alteration of positive selection, suggesting that Aire's unique property of generating a self-tolerant T cell repertoire is functional only in mTECs.
Collapse
Affiliation(s)
- Hitoshi Nishijima
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Junko Morimoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Hiroshi Kawano
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Fumiko Hirota
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Ryoko Morita
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan
| | - Yasuhiro Mouri
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan
| | - Kiyoshi Masuda
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; and
| | - Issei Imoto
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan; and
| | - Koichi Ikuta
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima 770-8503, Japan; Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo 100-0004, Japan;
| |
Collapse
|
14
|
Abstract
Down syndrome is the most commonly encountered human chromosomal disorder. Down syndrome is associated with thyroid dysfunction including: hypothyroidism, both congenital and acquired, and hyperthyroidism. A genetic predisposition and a propensity to acquire autoimmune disorders seem to be possible factors, though their causal relation remains unclear. The aim of the review is to describe what is currently known about the association between Down syndrome and thyroid dysfunction.
Collapse
Affiliation(s)
- Lorenzo Iughetti
- a 1 Department of Medical and Surgical sciences of Mothers, Children and Adults, University of Modena and Reggio Emilia, via del Pozzo no 71, 41124, Modena, Italy
| | - Laura Lucaccioni
- a 1 Department of Medical and Surgical sciences of Mothers, Children and Adults, University of Modena and Reggio Emilia, via del Pozzo no 71, 41124, Modena, Italy
| | - Francesco Fugetto
- a 1 Department of Medical and Surgical sciences of Mothers, Children and Adults, University of Modena and Reggio Emilia, via del Pozzo no 71, 41124, Modena, Italy
| | - Avril Mason
- b 2 Developmental Endocrinology Research Group, University of Glasgow, Royal Hospital for Sick Children, G3 8SJ, UK
| | - Barbara Predieri
- a 1 Department of Medical and Surgical sciences of Mothers, Children and Adults, University of Modena and Reggio Emilia, via del Pozzo no 71, 41124, Modena, Italy
| |
Collapse
|
15
|
Passos GA, Mendes-da-Cruz DA, Oliveira EH. The Thymic Orchestration Involving Aire, miRNAs, and Cell-Cell Interactions during the Induction of Central Tolerance. Front Immunol 2015; 6:352. [PMID: 26236310 PMCID: PMC4500981 DOI: 10.3389/fimmu.2015.00352] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/29/2015] [Indexed: 01/23/2023] Open
Abstract
Developing thymocytes interact sequentially with two distinct structures within the thymus: the cortex and medulla. Surviving single-positive and double-positive thymocytes from the cortex migrate into the medulla, where they interact with medullary thymic epithelial cells (mTECs). These cells ectopically express a vast set of peripheral tissue antigens (PTAs), a property termed promiscuous gene expression that is associated with the presentation of PTAs by mTECs to thymocytes. Thymocyte clones that have a high affinity for PTAs are eliminated by apoptosis in a process termed negative selection, which is essential for tolerance induction. The Aire gene is an important factor that controls the expression of a large set of PTAs. In addition to PTAs, Aire also controls the expression of miRNAs in mTECs. These miRNAs are important in the organization of the thymic architecture and act as posttranscriptional controllers of PTAs. Herein, we discuss recent discoveries and highlight open questions regarding the migration and interaction of developing thymocytes with thymic stroma, the ectopic expression of PTAs by mTECs, the association between Aire and miRNAs and its effects on central tolerance.
Collapse
Affiliation(s)
- Geraldo Aleixo Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, São Paulo , Brazil ; Disciplines of Genetics and Molecular Biology, Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation , Rio de Janeiro, Rio de Janeiro , Brazil
| | - Ernna Hérida Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, São Paulo , Brazil
| |
Collapse
|
16
|
Oftedal BE, Hellesen A, Erichsen MM, Bratland E, Vardi A, Perheentupa J, Kemp EH, Fiskerstrand T, Viken MK, Weetman AP, Fleishman SJ, Banka S, Newman WG, Sewell WAC, Sozaeva LS, Zayats T, Haugarvoll K, Orlova EM, Haavik J, Johansson S, Knappskog PM, Løvås K, Wolff ASB, Abramson J, Husebye ES. Dominant Mutations in the Autoimmune Regulator AIRE Are Associated with Common Organ-Specific Autoimmune Diseases. Immunity 2015; 42:1185-96. [PMID: 26084028 DOI: 10.1016/j.immuni.2015.04.021] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/06/2015] [Accepted: 04/06/2015] [Indexed: 01/13/2023]
Abstract
The autoimmune regulator (AIRE) gene is crucial for establishing central immunological tolerance and preventing autoimmunity. Mutations in AIRE cause a rare autosomal-recessive disease, autoimmune polyendocrine syndrome type 1 (APS-1), distinguished by multi-organ autoimmunity. We have identified multiple cases and families with mono-allelic mutations in the first plant homeodomain (PHD1) zinc finger of AIRE that followed dominant inheritance, typically characterized by later onset, milder phenotypes, and reduced penetrance compared to classical APS-1. These missense PHD1 mutations suppressed gene expression driven by wild-type AIRE in a dominant-negative manner, unlike CARD or truncated AIRE mutants that lacked such dominant capacity. Exome array analysis revealed that the PHD1 dominant mutants were found with relatively high frequency (>0.0008) in mixed populations. Our results provide insight into the molecular action of AIRE and demonstrate that disease-causing mutations in the AIRE locus are more common than previously appreciated and cause more variable autoimmune phenotypes.
Collapse
Affiliation(s)
- Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Alexander Hellesen
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Martina M Erichsen
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Eirik Bratland
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Ayelet Vardi
- Department of Immunology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Jaakko Perheentupa
- Hospital for Children and Adolescents, University of Helsinki, 00100 Helsinki, Finland
| | - E Helen Kemp
- Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | - Torunn Fiskerstrand
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Marte K Viken
- Department of Immunology, Oslo University Hospital and University of Oslo, 0316 Oslo, Norway
| | - Anthony P Weetman
- Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield S10 2RX, UK
| | - Sarel J Fleishman
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK
| | - William G Newman
- Manchester Centre for Genomic Medicine, University of Manchester, Manchester M13 9WL, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK
| | - W A C Sewell
- Path Links Immunology, Scunthorpe General Hospital, Scunthorpe DN15 7BH, UK
| | - Leila S Sozaeva
- Endocrinological Research Center, Institute of Pediatric Endocrinology, Moscow 117036, Russian Federation
| | - Tetyana Zayats
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, 5021 Bergen, Norway
| | | | - Elizaveta M Orlova
- Endocrinological Research Center, Institute of Pediatric Endocrinology, Moscow 117036, Russian Federation
| | - Jan Haavik
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, 5021 Bergen, Norway
| | - Stefan Johansson
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Per M Knappskog
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Kristian Løvås
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Jakub Abramson
- Department of Immunology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
17
|
Macedo C, Oliveira EH, Almeida RS, Donate PB, Fornari TA, Pezzi N, Sakamoto-Hojo ET, Donadi EA, Passos GA. Aire-dependent peripheral tissue antigen mRNAs in mTEC cells feature networking refractoriness to microRNA interaction. Immunobiology 2015; 220:93-102. [PMID: 25220732 DOI: 10.1016/j.imbio.2014.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/11/2014] [Accepted: 08/13/2014] [Indexed: 01/18/2023]
Abstract
The downregulation of PTA genes in mTECs is associated with the loss of self-tolerance, and the role of miRNAs in this process is not fully understood. Therefore, we studied the expression of mRNAs and miRNAs in mTECs from autoimmune NOD mice during the period when loss of self-tolerance occurs in parallel with non-autoimmune BALB/c mice. Although the expression of the transcriptional regulator Aire was unchanged, we observed downregulation of a set of PTA mRNAs. A set of miRNAs was also differentially expressed in these mice. The reconstruction of miRNA-mRNA interaction networks identified the controller miRNAs and predicted the PTA mRNA targets. Interestingly, the known Aire-dependent PTAs exhibited pronounced refractoriness in the networking interaction with miRNAs. This study reveals the existence of a new mechanism in mTECs, and this mechanism may have importance in the control of self-tolerance.
Collapse
Affiliation(s)
- Claudia Macedo
- Molecular Immunogenetics Group, Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ernna H Oliveira
- Molecular Immunogenetics Group, Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Renata S Almeida
- Molecular Immunogenetics Group, Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Paula B Donate
- Molecular Immunogenetics Group, Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Thaís A Fornari
- Molecular Immunogenetics Group, Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Nicole Pezzi
- Molecular Immunogenetics Group, Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Elza T Sakamoto-Hojo
- Department of Biology, Faculty of Philosophy, Sciences and Letters, USP, Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Department of Clinical Medicine, School of Medicine of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil
| | - Geraldo A Passos
- Molecular Immunogenetics Group, Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Department of Morphology, Physiology and Basic Pathology, Disciplines of Genetics and Molecular Biology, School of Dentistry of Ribeirão Preto, USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
18
|
Autoreactive T cells specific for insulin B:11-23 recognize a low-affinity peptide register in human subjects with autoimmune diabetes. Proc Natl Acad Sci U S A 2014; 111:14840-5. [PMID: 25267644 DOI: 10.1073/pnas.1416864111] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Previous studies in type 1 diabetes (T1D) in the nonobese diabetic mouse demonstrated that a crucial insulin epitope (B:9-23) is presented to diabetogenic CD4 T cells by IA(g7) in a weakly bound register. The importance of antigenic peptides with low-affinity HLA binding in human autoimmune disease remains less clear. The objective of this study was to investigate T-cell responses to a low-affinity self-epitope in subjects with T1D. HLA-DQ8 tetramers loaded with a modified insulin peptide designed to improve binding the low-affinity register were used to visualize T-cell responses following in vitro stimulation. Positive responses were only detectable in T1D patients. Because the immunogenic register of B:9-23 presented by DQ8 has not been conclusively demonstrated, T-cell assays using substituted peptides and DQ8 constructs engineered to express and present B:9-23 in fixed binding registers were used to determine the immunogenic register of this peptide. Tetramer-positive T-cell clones isolated from T1D subjects that responded to stimulation by B:11-23 peptide and denatured insulin protein were conclusively shown to recognize B:11-23 bound to HLA-DQ8 in the low-affinity register 3. These T cells also responded to homologous peptides derived from microbial antigens, suggesting that their initial priming could occur via molecular mimicry. These results are in accord with prior observations from the nonobese diabetic mouse model, suggesting a mechanism shared by mouse and man through which T cells that recognize a weakly bound peptide can circumvent tolerance mechanisms and play a role in the initiation of autoimmune diseases, such as T1D.
Collapse
|
19
|
Berrih-Aknin S. Myasthenia Gravis: paradox versus paradigm in autoimmunity. J Autoimmun 2014; 52:1-28. [PMID: 24934596 DOI: 10.1016/j.jaut.2014.05.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022]
Abstract
Myasthenia Gravis (MG) is a paradigm of organ-specific autoimmune disease (AID). It is mediated by antibodies that target the neuromuscular junction. The purpose of this review is to place MG in the general context of autoimmunity, to summarize the common mechanisms between MG and other AIDs, and to describe the specific mechanisms of MG. We have chosen the most common organ-specific AIDs to compare with MG: type 1 diabetes mellitus (T1DM), autoimmune thyroid diseases (AITD), multiple sclerosis (MS), some systemic AIDs (systemic lupus erythematous (SLE), rheumatoid arthritis (RA), Sjogren's syndrome (SS)), as well as inflammatory diseases of the gut and liver (celiac disease (CeD), Crohn's disease (CD), and primary biliary cirrhosis (PBC)). Several features are similar between all AIDs, suggesting that common pathogenic mechanisms lead to their development. In this review, we address the predisposing factors (genetic, epigenetic, hormones, vitamin D, microbiota), the triggering components (infections, drugs) and their interactions with the immune system [1,2]. The dysregulation of the immune system is detailed and includes the role of B cells, Treg cells, Th17 and cytokines. We particularly focused on the role of TNF-α and interferon type I whose role in MG is very analogous to that in several other AIDS. The implication of AIRE, a key factor in central tolerance is also discussed. Finally, if MG is a prototype of AIDS, it has a clear specificity compared to the other AIDS, by the fact that the target organ, the muscle, is not the site of immune infiltration and B cell expansion, but exclusively that of antibody-mediated pathogenic mechanisms. By contrast, the thymus in the early onset subtype frequently undergoes tissue remodeling, resulting in the development of ectopic germinal centers surrounded by high endothelial venules (HEV), as observed in the target organs of many other AIDs.
Collapse
Affiliation(s)
- Sonia Berrih-Aknin
- Sorbonne Universités, UPMC Univ Paris 06, Myology Research Center UM76, F-75013 Paris, France; INSERM U974, F-75013 Paris, France; CNRS FRE 3617, F-75013 Paris, France; Institute of Myology, F-75013 Paris, France.
| |
Collapse
|
20
|
Lebovitz HE. Autoimmune polyglandular syndromes: interplay between the immune and the endocrine systems leading to a diverse set of clinical diseases and new insights into immune regulation. Diabetes Technol Ther 2013; 15 Suppl 2:S2-21-S2-28. [PMID: 23786295 DOI: 10.1089/dia.2013.0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During the last 50 years, three major classes of autoimmune polyglandular syndromes (APSs) have been defined, and their characteristics and heritability have been delineated. Simultaneously, studies of the immunologic bases of these syndromes provided fundamental information in understanding immune regulation. Genetic analyses of patients and their families with APS type 1 (autoimmune polyendocrinopathy candidiasis, ectodermal dystrophy) identified the autoimmune regulator (AIRE) gene, which drives the expression of peripheral tissue-specific antigens in thymic cells and is critical in the development of self-tolerance. Mutations in this gene cause APS type 1. In contrast, studies in APS type 2 have been instrumental in understanding the role of human leukocyte antigen type II and related molecules in the pathogenesis of polygenetic autoimmune diseases such as type 1A diabetes. Immune dysfunction polyendocrinopathy, enteropathy, X-linked syndrome, which is caused by mutations in the forkhead box P3 gene, has been a model for studying regulatory T cell biology. The APSs epitomize the synergies that the merger of clinical and basic science can achieve. This is the environment that George Eisenbarth was able to create at the Barbara Davis Center for Diabetes.
Collapse
Affiliation(s)
- Harold E Lebovitz
- Department of Medicine, State University of New York Health Science Center at Brooklyn, Brooklyn, New York 11203, USA.
| |
Collapse
|
21
|
Macedo C, Evangelista AF, Marques MM, Octacílio-Silva S, Donadi EA, Sakamoto-Hojo ET, Passos GA. Autoimmune regulator (Aire) controls the expression of microRNAs in medullary thymic epithelial cells. Immunobiology 2013; 218:554-60. [PMID: 22883565 DOI: 10.1016/j.imbio.2012.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 01/12/2023]
Abstract
The autoimmune regulator (Aire) is a transcription factor that controls the ectopic expression of a large set of peripheral tissue antigen (PTA) genes in medullary thymic epithelial cells (mTECs). Recent evidence has demonstrated that Aire releases stalled RNA polymerase II (RNA Pol II) from blockage at the promoter region of its target genes. Given that, in addition to messenger RNAs (mRNA), RNA Pol II also transcribes microRNAs (miRNAs), we raised the hypothesis that Aire might play a role as an upstream controller of miRNA transcription. To test this, we initially analyzed the expression profiles of 662 miRNAs in control and Aire-silenced (siRNA) murine mTEC 3.10 cells using microarrays. The bioinformatics programs SAM and Cluster-TreeView were then used to identify the differentially expressed miRNAs and their profiles, respectively. Thirty Aire-dependent miRNAs were identified in the Aire-silenced mTECs, of which 18 were up- and 12 were down-regulated. The down-regulated miR-376 family was the focus of this study because its members (miR-376a, miR-376b and miR-376c) are located in the genome within the Gm2922 open-reading frame (ORF) gene segment on the chromosome 12F1. The T-boxes (TTATTA) and G-boxes (GATTGG), which represent putative RNA Pol II promoter motifs, were located in a portion spanning 10 kb upstream of the ATG codon of Gm2922. Moreover, we found that Gm2922 encodes an mRNA, which was also down-regulated in Aire-silenced mTECs. These results represent the first evidence that Aire can play a role as a controller of transcription of miRNAs located within genomic regions encompassing ORF and/or mRNA genes.
Collapse
Affiliation(s)
- Claudia Macedo
- Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), 14040-900 Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
22
|
Peterson EJ, Maltzman JS, Koretzky GA. T-cell activation and tolerance. Clin Immunol 2013. [DOI: 10.1016/b978-0-7234-3691-1.00036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Oliveira EH, Macedo C, Donate PB, Almeida RS, Pezzi N, Nguyen C, Rossi MA, Sakamoto-Hojo ET, Donadi EA, Passos GA. Expression profile of peripheral tissue antigen genes in medullary thymic epithelial cells (mTECs) is dependent on mRNA levels of autoimmune regulator (Aire). Immunobiology 2013; 218:96-104. [PMID: 22564670 DOI: 10.1016/j.imbio.2012.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 02/02/2012] [Accepted: 02/07/2012] [Indexed: 12/25/2022]
Abstract
In the thymus of non-obese diabetic (NOD) mice, the expression of the autoimmune regulator (Aire) gene varies with age, and its down-regulation in young mice precedes the later emergence of type 1 diabetes mellitus (T1D). In addition, the insulin (Ins2) peripheral tissue antigen (PTA) gene, which is Aire-dependent, is also deregulated in these mice. Based in these findings, we hypothesized that the imbalance in PTA gene expression in the thymus can be associated with slight variations in Aire transcript levels. To test this, we used siRNA to knockdown Aire by in vivo electro-transfection of the thymus of BALB/c mice. The efficiency of the electro-transfection was monitored by assessing the presence of irrelevant Cy3-labeled siRNA in the thymic stroma. Importantly, Aire-siRNA reached medullary thymic epithelial cells (mTECs) down-regulating Aire. As expected, the in vivo Aire knockdown was partial and transient; the maximum 59% inhibition occurred in 48 h. The Aire knockdown was sufficient to down-regulate PTA genes; however, surprisingly, several others, including Ins2, were up-regulated. The modulation of these genes after in vivo Aire knockdown was comparable to that observed in NOD mice before the emergence of T1D. The in vitro transfections of 3.10 mTEC cells with Aire siRNA resulted in samples featuring partial (69%) and complete (100%) Aire knockdown. In these Aire siRNA-transfected 3.10 mTECs, the expression of PTA genes, including Ins2, was down-regulated. This suggests that the expression profile of PTA genes in mTECs is affected by fine changes in the transcription level of Aire.
Collapse
Affiliation(s)
- Ernna H Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), 14040-900 Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Perniola R. Expression of the autoimmune regulator gene and its relevance to the mechanisms of central and peripheral tolerance. Clin Dev Immunol 2012; 2012:207403. [PMID: 23125865 PMCID: PMC3485510 DOI: 10.1155/2012/207403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/26/2012] [Accepted: 09/11/2012] [Indexed: 01/12/2023]
Abstract
The autoimmune polyendocrine syndrome type 1 (APS-1) is a monogenic disease due to pathogenic variants occurring in the autoimmune regulator (AIRE) gene. Its related protein, AIRE, activates the transcription of genes encoding for tissue-specific antigens (TsAgs) in a subset of medullary thymic epithelial cells: the presentation of TsAgs to the maturating thymocytes induces the apoptosis of the autoreactive clones and constitutes the main form of central tolerance. Dysregulation of thymic AIRE expression in genetically transmitted and acquired diseases other than APS-1 may contribute to further forms of autoimmunity. As AIRE and its murine homolog are also expressed in the secondary lymphoid organs, the extent and relevance of AIRE participation in the mechanisms of peripheral tolerance need to be thoroughly defined.
Collapse
Affiliation(s)
- Roberto Perniola
- Neonatal Intensive Care, Department of Pediatrics, V. Fazzi Regional Hospital, Piazza F. Muratore, 73100 Lecce, Italy.
| |
Collapse
|
25
|
Aleksic M, Liddy N, Molloy PE, Pumphrey N, Vuidepot A, Chang KM, Jakobsen BK. Different affinity windows for virus and cancer-specific T-cell receptors: implications for therapeutic strategies. Eur J Immunol 2012; 42:3174-9. [PMID: 22949370 DOI: 10.1002/eji.201242606] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/08/2012] [Accepted: 08/31/2012] [Indexed: 12/12/2022]
Abstract
T-cell destiny during thymic selection depends on the affinity of the TCR for autologous peptide ligands presented in the context of MHC molecules. This is a delicately balanced process; robust binding leads to negative selection, yet some affinity for the antigen complex is required for positive selection. All TCRs of the resulting repertoire thus have some intrinsic affinity for an MHC type presenting an assortment of peptides. Generally, TCR affinities of peripheral T cells will be low toward self-derived peptides, as these would have been presented during thymic selection, whereas, by serendipity, binding to pathogen-derived peptides that are encountered de novo could be stronger. A crucial question in assessing immunotherapeutic strategies for cancer is whether natural TCR repertoires have the capacity for efficiently recognizing tumor-associated peptide antigens. Here, we report a comprehensive comparison of TCR affinities to a range of HLA-A2 presented antigens. TCRs that bind viral antigens fall within a strikingly higher affinity range than those that bind cancer-related antigens. This difference may be one of the key explanations for tumor immune escape and for the deficiencies of T-cell vaccines against cancer.
Collapse
|
26
|
Gray DHD, Kupresanin F, Berzins SP, Herold MJ, O'Reilly LA, Bouillet P, Strasser A. The BH3-only proteins Bim and Puma cooperate to impose deletional tolerance of organ-specific antigens. Immunity 2012; 37:451-62. [PMID: 22960223 DOI: 10.1016/j.immuni.2012.05.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/14/2012] [Accepted: 05/31/2012] [Indexed: 11/25/2022]
Abstract
Although the proapoptotic BH3-only protein, Bim, is required for deletion of autoreactive thymocytes, Bim-deficient mice do not succumb to extensive organ-specific autoimmune disease. To determine whether other BH3-only proteins safeguard tolerance in the absence of Bim, we screened mice lacking Bim as well as other BH3-only proteins. Most strains showed no additional defects; however, mice deficient for both Puma and Bim spontaneously developed autoimmunity in multiple organs, and their T cells could transfer organ-specific autoimmunity. Puma- and Bim-double-deficient mice had a striking accumulation of mature, single-positive thymocytes, suggesting an additional defect in thymic deletion was the basis for disease. Transgenic mouse models of thymocyte deletion by peripheral neoantigens confirmed that the loss of Bim and Puma allowed increased numbers of autoreactive thymocytes to escape deletion. Our data show that Puma cooperates with Bim to impose a thymic-deletion checkpoint to peripheral self-antigens and cement the notion that defects in apoptosis alone are sufficient to cause autoimmune disease.
Collapse
Affiliation(s)
- Daniel H D Gray
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Ishimaru N. A multilateral study of the pathogenesis of organ-specific autoimmune diseases. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Proapoptotic protein Bim is differentially required during thymic clonal deletion to ubiquitous versus tissue-restricted antigens. Proc Natl Acad Sci U S A 2012; 109:893-8. [PMID: 22215602 DOI: 10.1073/pnas.1114834109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Positive and negative selection of thymocytes in the thymus are critical for the development of a mature and self-tolerant T-cell repertoire. The proapoptotic Bcl-2 family member Bim is important for negative selection by inducing apoptosis in thymocytes receiving a strong signal through their antigen receptor. However, in the case of ubiquitous self-antigens (UbA), Bim is not required for the clonal deletion of self-reactive thymocytes, suggesting the existence of nonapoptotic clonal deletion mechanisms. Unlike UbA, clonal deletion to tissue-restricted antigens (TRAs) requires positive selection and CCR7-mediated migration to the medulla. This led us to hypothesize that Bim is required for the latter. To study the role of Bim in clonal deletion to TRA, we constructed bone marrow (BM) chimeras using OT-I Bim-deficient or -sufficient donor bone marrow and recipients that express membrane bound chicken ovalbumin under control of the rat insulin promoter (Rip-mOVA). We found that clonal deletion to TRA was completely abrogated in the absence of Bim and large numbers of mature OT-I CD8 T cells survived in the periphery. Despite the large numbers of autoreactive T cells, the chimeras did not develop diabetes and OT-I Bim-deficient T cells from these chimeras were functionally impaired. Collectively, these data provide unique evidence of a differential, thymocyte-intrinsic, molecular requirement downstream of the T-cell receptor (TCR) for clonal deletion to UbA versus TRA and highlight the profound ability of other tolerance mechanisms to control T-cell autoreactivity in the absence of thymic clonal deletion.
Collapse
|