1
|
Islam MM, Saha A, Trisha FA, Gonzalez-Andrades M, Patra HK, Griffith M, Chodosh J, Rajaiya J. An in vitro 3-dimensional Collagen-based Corneal Construct with Innervation Using Human Corneal Cell Lines. OPHTHALMOLOGY SCIENCE 2024; 4:100544. [PMID: 39139547 PMCID: PMC11321308 DOI: 10.1016/j.xops.2024.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 08/15/2024]
Abstract
Purpose To develop a 3-dimensional corneal construct suitable for in vitro studies of disease conditions and therapies. Design In vitro human corneal constructs were created using chemically crosslinked collagen and chondroitin sulfate extracellular matrix and seeded with 3 human corneal cell types (epithelial, stromal, and endothelial) together with neural cells. The neural cells were derived from hybrid neuroblastoma cells and the other cells used from immortalized human corneal cell lines. To check the feasibility and characterize the constructs, cytotoxicity, cell proliferation, histology, and protein expression studies were performed. Results Optimized culture condition permitted synchronized viability across the cell types within the construct. The construct showed a typical appearance for different cellular layers, including healthy appearing, phenotypically differentiated neurons. The expected protein expression profiles for specific cell types within the construct were confirmed with western blotting. Conclusions An in vitro corneal construct was successfully developed with maintenance of individual cell phenotypes with anatomically correct cellular loci. The construct may be useful in evaluation of specific corneal disorders and in developing different corneal disease models. Additionally, the construct can be used in evaluating drug targeting and/or penetration to individual corneal layers, testing novel therapeutics for corneal diseases, and potentially reducing the necessity for animals in corneal research at the early stages of investigation. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Mohammad Mirazul Islam
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, Massachusetts
- Department of Ophthalmology and Visual Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Amrita Saha
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, Massachusetts
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Farzana Afrose Trisha
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, Massachusetts
| | - Miguel Gonzalez-Andrades
- Department of Ophthalmology, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital and University of Cordoba, Cordoba, Spain
| | - Hirak K. Patra
- UCL Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, UK
| | - May Griffith
- Department of Ophthalmology, Université de Montréal and Centre de recherche de l'Hôpital Maisonneuve Rosemont, Montreal, Quebec, Canada
| | - James Chodosh
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, Massachusetts
- Department of Ophthalmology and Visual Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Jaya Rajaiya
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, Massachusetts
- Department of Ophthalmology and Visual Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
2
|
Abizanda-Campo S, Virumbrales-Muñoz M, Humayun M, Marmol I, Beebe DJ, Ochoa I, Oliván S, Ayuso JM. Microphysiological systems for solid tumor immunotherapy: opportunities and challenges. MICROSYSTEMS & NANOENGINEERING 2023; 9:154. [PMID: 38106674 PMCID: PMC10724276 DOI: 10.1038/s41378-023-00616-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023]
Abstract
Immunotherapy remains more effective for hematologic tumors than for solid tumors. One of the main challenges to immunotherapy of solid tumors is the immunosuppressive microenvironment these tumors generate, which limits the cytotoxic capabilities of immune effector cells (e.g., cytotoxic T and natural killer cells). This microenvironment is characterized by hypoxia, nutrient starvation, accumulated waste products, and acidic pH. Tumor-hijacked cells, such as fibroblasts, macrophages, and T regulatory cells, also contribute to this inhospitable microenvironment for immune cells by secreting immunosuppressive cytokines that suppress the antitumor immune response and lead to immune evasion. Thus, there is a strong interest in developing new drugs and cell formulations that modulate the tumor microenvironment and reduce tumor cell immune evasion. Microphysiological systems (MPSs) are versatile tools that may accelerate the development and evaluation of these therapies, although specific examples showcasing the potential of MPSs remain rare. Advances in microtechnologies have led to the development of sophisticated microfluidic devices used to recapitulate tumor complexity. The resulting models, also known as microphysiological systems (MPSs), are versatile tools with which to decipher the molecular mechanisms driving immune cell antitumor cytotoxicity, immune cell exhaustion, and immune cell exclusion and to evaluate new targeted immunotherapies. Here, we review existing microphysiological platforms to study immuno-oncological applications and discuss challenges and opportunities in the field.
Collapse
Affiliation(s)
- Sara Abizanda-Campo
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI USA
- University of Wisconsin Carbone Cancer Center, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI USA
- Tissue Microenvironment Lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, Spain
- Centro Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - María Virumbrales-Muñoz
- University of Wisconsin Carbone Cancer Center, Madison, WI USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI USA
| | - Mouhita Humayun
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge, Cambridge, MA USA
| | - Ines Marmol
- Tissue Microenvironment Lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, Spain
| | - David J Beebe
- University of Wisconsin Carbone Cancer Center, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI USA
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI USA
| | - Ignacio Ochoa
- Tissue Microenvironment Lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, Spain
- Centro Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Sara Oliván
- Tissue Microenvironment Lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, Spain
| | - Jose M Ayuso
- Department of Dermatology, University of Wisconsin-Madison, Madison, WI USA
- University of Wisconsin Carbone Cancer Center, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI USA
| |
Collapse
|
3
|
Kumari S, Zemek RM, Palendira U, Ebert LM. Celebrating 100 years of Immunology & Cell Biology - a special focus on the field of tumor immunology in Australia. Immunol Cell Biol 2023; 101:783-788. [PMID: 37694341 DOI: 10.1111/imcb.12690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
In this Commentary article, as part of the 100-year celebrations of the journal, we reflect on the contribution of articles published in ICB in the field of tumor immunology. A highlight is a series of interviews conducted with three Australian-based ICB authors who have contributed key papers over the years: Rajiv Khanna, Delia Nelson and Ian Frazer.
Collapse
Affiliation(s)
- Snehlata Kumari
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Umaimainthan Palendira
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Lisa M Ebert
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
4
|
Tischer-Zimmermann S, Salzer E, Bitencourt T, Frank N, Hoffmann-Freimüller C, Stemberger J, Maecker-Kolhoff B, Blasczyk R, Witt V, Fritsch G, Paster W, Lion T, Eiz-Vesper B, Geyeregger R. Rapid and sustained T cell-based immunotherapy against invasive fungal disease via a combined two step procedure. Front Immunol 2023; 14:988947. [PMID: 37090716 PMCID: PMC10114046 DOI: 10.3389/fimmu.2023.988947] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/09/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction Aspergillus fumigatus (Asp) infections constitute a major cause of morbidity and mortality in patients following allogeneic hematopoietic stem cell transplantation (HSCT). In the context of insufficient host immunity, antifungal drugs show only limited efficacy. Faster and increased T-cell reconstitution correlated with a favorable outcome and a cell-based therapy approach strongly indicated successful clearance of fungal infections. Nevertheless, complex and cost- or time-intensive protocols hampered their implementation into clinical application. Methods To facilitate the clinical-scale manufacturing process of Aspergillus fumigatus-specific T cells (ATCs) and to enable immediate (within 24 hours) and sustained (12 days later) treatment of patients with invasive aspergillosis (IA), we adapted and combined two complementary good manufacturing practice (GMP)-compliant approaches, i) the direct magnetic enrichment of Interferon-gamma (IFN-γ) secreting ATCs using the small-scale Cytokine Secretion Assay (CSA) and ii) a short-term in vitro T-cell culture expansion (STE), respectively. We further compared stimulation with two standardized and commercially available products: Asp-lysate and a pool of overlapping peptides derived from different Asp-proteins (PepMix). Results For the fast CSA-based approach we detected IFN-γ+ ATCs after Asp-lysate- as well as PepMix-stimulation but with a significantly higher enrichment efficiency for stimulation with the Asp-lysate when compared to the PepMix. In contrast, the STE approach resulted in comparably high ATC expansion rates by using Asp-lysate or PepMix. Independent of the stimulus, predominantly CD4+ helper T cells with a central-memory phenotype were expanded while CD8+ T cells mainly showed an effector-memory phenotype. ATCs were highly functional and cytotoxic as determined by secretion of granzyme-B and IFN-γ. Discussion For patients with IA, the immediate adoptive transfer of IFN-γ+ ATCs followed by the administration of short-term in vitro expanded ATCs from the same donor, might be a promising therapeutic option to improve the clinical outcome.
Collapse
Affiliation(s)
- Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Elisabeth Salzer
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Department of Pediatrics, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
| | | | - Nelli Frank
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | | | - Julia Stemberger
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Britta Maecker-Kolhoff
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Volker Witt
- Department of Pediatrics, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Gerhard Fritsch
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Wolfgang Paster
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Thomas Lion
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - René Geyeregger
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Department of Pediatrics, St. Anna Children’s Hospital, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Marshall LJ, Bailey J, Cassotta M, Herrmann K, Pistollato F. Poor Translatability of Biomedical Research Using Animals - A Narrative Review. Altern Lab Anim 2023; 51:102-135. [PMID: 36883244 DOI: 10.1177/02611929231157756] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The failure rate for the translation of drugs from animal testing to human treatments remains at over 92%, where it has been for the past few decades. The majority of these failures are due to unexpected toxicity - that is, safety issues revealed in human trials that were not apparent in animal tests - or lack of efficacy. However, the use of more innovative tools, such as organs-on-chips, in the preclinical pipeline for drug testing, has revealed that these tools are more able to predict unexpected safety events prior to clinical trials and so can be used for this, as well as for efficacy testing. Here, we review several disease areas, and consider how the use of animal models has failed to offer effective new treatments. We also make some suggestions as to how the more human-relevant new approach methodologies might be applied to address this.
Collapse
Affiliation(s)
- Lindsay J Marshall
- Animal Research Issues, 94219The Humane Society of the United States, Gaithersburg, MD, USA
| | - Jarrod Bailey
- 380235Cruelty Free International, London, UK; 542332Animal Free Research UK, London, UK
| | | | - Kathrin Herrmann
- Johns Hopkins Bloomberg School of Public Health, 457389Center for Alternatives to Animal Testing, Baltimore, MD, USA; Senate Department for the Environment, Urban Mobility, Consumer Protection and Climate Action, Berlin, Germany
| | | |
Collapse
|
6
|
Probing the Skin–Brain Axis: New Vistas Using Mouse Models. Int J Mol Sci 2022; 23:ijms23137484. [PMID: 35806489 PMCID: PMC9267936 DOI: 10.3390/ijms23137484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Inflammatory diseases of the skin, including atopic dermatitis and psoriasis, have gained increasing attention with rising incidences in developed countries over the past decades. While bodily properties, such as immunological responses of the skin, have been described in some detail, interactions with the brain via different routes are less well studied. The suggested routes of the skin–brain axis comprise the immune system, HPA axis, and the peripheral and central nervous system, including microglia responses and structural changes. They provide starting points to investigate the molecular mechanisms of neuropsychiatric comorbidities in AD and psoriasis. To this end, mouse models exist for AD and psoriasis that could be tested for relevant behavioral entities. In this review, we provide an overview of the current mouse models and assays. By combining an extensive behavioral characterization and state-of-the-art genetic interventions with the investigation of underlying molecular pathways, insights into the mechanisms of the skin–brain axis in inflammatory cutaneous diseases are examined, which will spark further research in humans and drive the development of novel therapeutic strategies.
Collapse
|
7
|
Ayuso JM, Park KY, Virumbrales-Muñoz M, Beebe DJ. Toward improved in vitro models of human cancer. APL Bioeng 2021; 5:010902. [PMID: 33532672 PMCID: PMC7822630 DOI: 10.1063/5.0026857] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of death across the world and continues to increase in incidence. Despite years of research, multiple tumors (e.g., glioblastoma, pancreatic cancer) still have limited treatment options in the clinic. Additionally, the attrition rate and cost of drug development have continued to increase. This trend is partly explained by the poor predictive power of traditional in vitro tools and animal models. Moreover, multiple studies have highlighted that cell culture in traditional Petri dishes commonly fail to predict drug sensitivity. Conversely, animal models present differences in tumor biology compared with human pathologies, explaining why promising therapies tested in animal models often fail when tested in humans. The surging complexity of patient management with the advent of cancer vaccines, immunotherapy, and precision medicine demands more robust and patient-specific tools to better inform our understanding and treatment of human cancer. Advances in stem cell biology, microfluidics, and cell culture have led to the development of sophisticated bioengineered microscale organotypic models (BMOMs) that could fill this gap. In this Perspective, we discuss the advantages and limitations of patient-specific BMOMs to improve our understanding of cancer and how these tools can help to confer insight into predicting patient response to therapy.
Collapse
Affiliation(s)
| | - Keon-Young Park
- Department of Surgery, University of California San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
8
|
The Effect of a 13-Valent Conjugate Pneumococcal Vaccine on Circulating Antibodies Against Oxidized LDL and Phosphorylcholine in Man, A Randomized Placebo-Controlled Clinical Trial. BIOLOGY 2020; 9:biology9110345. [PMID: 33105582 PMCID: PMC7716233 DOI: 10.3390/biology9110345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/19/2022]
Abstract
Simple Summary Atherosclerosis is the main underlying mechanism for cardiovascular disease. The main cause for atherosclerosis development is oxidized low density lipoprotein (oxLDL) accumulation in the vessel wall and a subsequent immune response. It has been established that immunoglobulin M antibodies against oxLDL help protect against atherosclerosis. It has been found in mice that vaccination with Streptococcus pneumoniae results in an increase of these protective antibodies and thereby decreases the development of atherosclerosis. In this study, we investigated if this increase of antibodies can be found in human as well. Twenty-four healthy male volunteers were vaccinated with Prevenar-13, a pneumococcal vaccine, using different dosing regimens. An increase in anti-Prevenar antibodies was found, showing that the vaccination worked. However, no increase in protective anti-phosphorylcholine or anti-oxLDL antibodies was observed. This work shows that vaccination against pneumococcal does not seem to be a suitable treatment option to help prevent atherosclerosis development, although further research would be required to test alternative pneumococcal-based vaccines, vaccination regimens or study populations. Abstract In mice vaccination with Streptococcus pneumoniae results in an increase in anti-oxLDL IgM antibodies due to mimicry of anti-phosphorylcholine (present in the cell wall of S. pneumoniae) and anti-oxLDL IgM. In this study we investigated the human translation of this molecular mimicry by vaccination against S. pneumoniae using the Prevenar-13 vaccine. Twenty-four healthy male volunteers were vaccinated with Prevenar-13, either three times, twice or once in a double-blind, placebo-controlled, randomized single center clinical study. Anti-pneumococcal wall, oxLDL and phosphorycholine antibody levels were measured at a fixed serum dilution, as well as circulating lipid levels over the course of 68 weeks. A significant increase in anti-oxLDL IgG and IgM was seen in the group receiving two doses six months apart compared to the placebo. However, these differences were not observed in the groups receiving a single dose, two doses one month apart, or three doses. This study shows that vaccination with Prevenar-13 does not result in robust anti-oxLDL IgM levels in humans. Further research would be required to test alternative pneumococcal-based vaccines, vaccination regimens or study populations, such as cardiovascular disease patients.
Collapse
|
9
|
Cassotta M, Forbes-Hernández TY, Calderón Iglesias R, Ruiz R, Elexpuru Zabaleta M, Giampieri F, Battino M. Links between Nutrition, Infectious Diseases, and Microbiota: Emerging Technologies and Opportunities for Human-Focused Research. Nutrients 2020; 12:E1827. [PMID: 32575399 PMCID: PMC7353391 DOI: 10.3390/nu12061827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
The interaction between nutrition and human infectious diseases has always been recognized. With the emergence of molecular tools and post-genomics, high-resolution sequencing technologies, the gut microbiota has been emerging as a key moderator in the complex interplay between nutrients, human body, and infections. Much of the host-microbial and nutrition research is currently based on animals or simplistic in vitro models. Although traditional in vivo and in vitro models have helped to develop mechanistic hypotheses and assess the causality of the host-microbiota interactions, they often fail to faithfully recapitulate the complexity of the human nutrient-microbiome axis in gastrointestinal homeostasis and infections. Over the last decade, remarkable progress in tissue engineering, stem cell biology, microfluidics, sequencing technologies, and computing power has taken place, which has produced a new generation of human-focused, relevant, and predictive tools. These tools, which include patient-derived organoids, organs-on-a-chip, computational analyses, and models, together with multi-omics readouts, represent novel and exciting equipment to advance the research into microbiota, infectious diseases, and nutrition from a human-biology-based perspective. After considering some limitations of the conventional in vivo and in vitro approaches, in this review, we present the main novel available and emerging tools that are suitable for designing human-oriented research.
Collapse
Affiliation(s)
- Manuela Cassotta
- Centre for Nutrition and Health, Universidad Europea del Atlántico (UEA), 39001 Santander, Spain; (M.C.); (R.C.I.); (R.R.)
| | - Tamara Yuliett Forbes-Hernández
- Department of Analytical and Food Chemistry, Nutrition and Food Science Group, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
| | - Ruben Calderón Iglesias
- Centre for Nutrition and Health, Universidad Europea del Atlántico (UEA), 39001 Santander, Spain; (M.C.); (R.C.I.); (R.R.)
| | - Roberto Ruiz
- Centre for Nutrition and Health, Universidad Europea del Atlántico (UEA), 39001 Santander, Spain; (M.C.); (R.C.I.); (R.R.)
| | - Maria Elexpuru Zabaleta
- Dipartimento di Scienze Cliniche e Molecolari, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - Francesca Giampieri
- Department of Analytical and Food Chemistry, Nutrition and Food Science Group, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60131 Ancona, Italy
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - Maurizio Battino
- Department of Analytical and Food Chemistry, Nutrition and Food Science Group, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
- Department of Clinical Sciences, Faculty of Medicine, Polytechnic University of Marche, 60131 Ancona, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
Barthélémy I, Hitte C, Tiret L. The Dog Model in the Spotlight: Legacy of a Trustful Cooperation. J Neuromuscul Dis 2020; 6:421-451. [PMID: 31450509 PMCID: PMC6918919 DOI: 10.3233/jnd-190394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dogs have long been used as a biomedical model system and in particular as a preclinical proof of concept for innovative therapies before translation to humans. A recent example of the utility of this animal model is the promising myotubularin gene delivery in boys affected by X-linked centronuclear myopathy after successful systemic, long-term efficient gene therapy in Labrador retrievers. Mostly, this is due to unique features that make dogs an optimal system. The continuous emergence of spontaneous inherited disorders enables the identification of reliable complementary molecular models for human neuromuscular disorders (NMDs). Dogs’ characteristics including size, lifespan and unprecedented medical care level allow a comprehensive longitudinal description of diseases. Moreover, the highly similar pathogenic mechanisms with human patients yield to translational robustness. Finally, interindividual phenotypic heterogeneity between dogs helps identifying modifiers and anticipates precision medicine issues. This review article summarizes the present list of molecularly characterized dog models for NMDs and provides an exhaustive list of the clinical and paraclinical assays that have been developed. This toolbox offers scientists a sensitive and reliable system to thoroughly evaluate neuromuscular function, as well as efficiency and safety of innovative therapies targeting these NMDs. This review also contextualizes the model by highlighting its unique genetic value, shaped by the long-term coevolution of humans and domesticated dogs. Because the dog is one of the most protected research animal models, there is considerable opposition to include it in preclinical projects, posing a threat to the use of this model. We thus discuss ethical issues, emphasizing that unlike many other models, the dog also benefits from its contribution to comparative biomedical research with a drastic reduction in the prevalence of morbid alleles in the breeding stock and an improvement in medical care.
Collapse
Affiliation(s)
- Inès Barthélémy
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| | - Christophe Hitte
- CNRS, University of Rennes 1, UMR 6290, IGDR, Faculty of Medicine, SFR Biosit, Rennes, France
| | - Laurent Tiret
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| |
Collapse
|
11
|
Arend P. ABO phenotype-protected reproduction based on human specific α1,2 L-fucosylation as explained by the Bombay type formation. Immunobiology 2018; 223:684-693. [PMID: 30075871 DOI: 10.1016/j.imbio.2018.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
Abstract
The metabolic relationship between the formation of the ABO(H) blood group phenotype and human fertility is evident in the case of the (Oh) or Bombay blood type, which Charles Darwin would have interpreted as resulting from reduced male fertility in consanguinities, based on the history of his own family, the Darwin/Wedgwood Dynasty. The classic Bombay type occurs with the extremely rare, human-specific genotype (h/h; se/se), which (due to point mutations) does not encode fucosyltransferases 1(FUT1) and 2 (FUT2). These enzymes are the basis for ABO(H) phenotype formation on the cell surfaces and fucosylation of plasma proteins, involving neonatal immunoglobulin M (IgM). In the normal human blood group O(H), which is not protected by clonal selection with regard to environmental A/B immunization, the plasma contains a mixture of non-immune and adaptive anti-A/B reactive isoagglutinins, which in the O(h) Bombay type show extremely elevated levels, associated with decreased levels of fucosylation-dependent functional plasma proteins, suchs as the van Willebrand factor (vWF) and clotting factor VIII. In fact, while the involvement of adaptive immunoglobulins remains unknown, poor fucosylation may explain the polyreactivity in the Bombay type plasma, which exhibits pronounced complement-binding cross-reactive anti-A/Tn and anti-B IgM levels, with additional anti-H reactivity, acting over a wide range of temperatures, with an amplitude at 37 °C. This aggressive anti-glycan-reactive IgM molecule suggests the induction of ADCC (antibody-dependent) and/or complement-mediated cytotoxicity via overexpressed glycosidic bond sites against the embryogenic stem cell-to-germ cell transformation, which is characterized by fleeting appearances of A-like, developmental trans-species GalNAcα1-O-Ser/Thr-R glycan, also referred to as the Tn (T "nouvelle") antigen.
Collapse
Affiliation(s)
- Peter Arend
- Philipps University Marburg, Department of Medicine, D-355, Marburg, Lahn, Germany; Gastroenterology Research Laboratory, University of Iowa, College of Medicine, Iowa City, IA, USA; Research Laboratories, Chemie Grünenthal GmbH, D-52062 Aachen, Germany.
| |
Collapse
|
12
|
Jatzlauk G, Bartel S, Heine H, Schloter M, Krauss-Etschmann S. Influences of environmental bacteria and their metabolites on allergies, asthma, and host microbiota. Allergy 2017; 72:1859-1867. [PMID: 28600901 DOI: 10.1111/all.13220] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2017] [Indexed: 02/07/2023]
Abstract
The prevalence of allergic diseases and asthma has dramatically increased over the last decades, resulting in a high burden for patients and healthcare systems. Thus, there is an unmet need to develop preventative strategies for these diseases. Epidemiological studies show that reduced exposure to environmental bacteria in early life (eg, birth by cesarean section, being formula-fed, growing up in an urban environment or with less contact to various persons) is associated with an increased risk to develop allergies and asthma later in life. Conversely, a reduced risk for asthma is consistently found in children growing up on traditional farms, thereby being exposed to a wide spectrum of microbes. However, clinical studies with bacteria to prevent allergic diseases are still rare and to some extent contradicting. A detailed mechanistic understanding of how environmental microbes influence the development of the human microbiome and the immune system is important to enable the development of novel preventative approaches that are based on the early modulation of the host microbiota and immunity. In this mini-review, we summarize current knowledge and experimental evidence for the potential of bacteria and their metabolites to be used for the prevention of asthma and allergic diseases.
Collapse
Affiliation(s)
- G. Jatzlauk
- Division of Early Life Origins of Chronic Lung Diseases; Priority Area Asthma and Allergy; Research Center Borstel; Leibniz-Center for Medicine and Biosciences; Member of the Airway Research Center North (ARCN); German Center for Lung Research (DZL); Borstel Germany
| | - S. Bartel
- Division of Early Life Origins of Chronic Lung Diseases; Priority Area Asthma and Allergy; Research Center Borstel; Leibniz-Center for Medicine and Biosciences; Member of the Airway Research Center North (ARCN); German Center for Lung Research (DZL); Borstel Germany
| | - H. Heine
- Division of Innate Immunity; Priority Area Asthma and Allergy; Research Center Borstel; Leibniz-Center for Medicine and Biosciences; Member of the Airway Research Center North (ARCN); German Center for Lung Research (DZL); Borstel Germany
| | - M. Schloter
- Research Unit Environmental Genomics; Helmholtz Zentrum München; Oberschleißheim Germany
| | - S. Krauss-Etschmann
- Division of Early Life Origins of Chronic Lung Diseases; Priority Area Asthma and Allergy; Research Center Borstel; Leibniz-Center for Medicine and Biosciences; Member of the Airway Research Center North (ARCN); German Center for Lung Research (DZL); Borstel Germany
- Institute for Experimental Medicine; Christian-Albrechts-Universität zu Kiel; Kiel Germany
| |
Collapse
|
13
|
Salzer E, Cagdas D, Hons M, Mace EM, Garncarz W, Petronczki ÖY, Platzer R, Pfajfer L, Bilic I, Ban SA, Willmann KL, Mukherjee M, Supper V, Hsu HT, Banerjee PP, Sinha P, McClanahan F, Zlabinger GJ, Pickl WF, Gribben JG, Stockinger H, Bennett KL, Huppa JB, Dupré L, Sanal Ö, Jäger U, Sixt M, Tezcan I, Orange JS, Boztug K. RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics. Nat Immunol 2016; 17:1352-1360. [PMID: 27776107 PMCID: PMC6400263 DOI: 10.1038/ni.3575] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022]
Abstract
RASGRP1 is an important guanine nucleotide exchange factor and activator of the RAS-MAPK pathway following T cell antigen receptor (TCR) signaling. The consequences of RASGRP1 mutations in humans are unknown. In a patient with recurrent bacterial and viral infections, born to healthy consanguineous parents, we used homozygosity mapping and exome sequencing to identify a biallelic stop-gain variant in RASGRP1. This variant segregated perfectly with the disease and has not been reported in genetic databases. RASGRP1 deficiency was associated in T cells and B cells with decreased phosphorylation of the extracellular-signal-regulated serine kinase ERK, which was restored following expression of wild-type RASGRP1. RASGRP1 deficiency also resulted in defective proliferation, activation and motility of T cells and B cells. RASGRP1-deficient natural killer (NK) cells exhibited impaired cytotoxicity with defective granule convergence and actin accumulation. Interaction proteomics identified the dynein light chain DYNLL1 as interacting with RASGRP1, which links RASGRP1 to cytoskeletal dynamics. RASGRP1-deficient cells showed decreased activation of the GTPase RhoA. Treatment with lenalidomide increased RhoA activity and reversed the migration and activation defects of RASGRP1-deficient lymphocytes.
Collapse
Affiliation(s)
- Elisabeth Salzer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Deniz Cagdas
- Section of Pediatric Immunology, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Miroslav Hons
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Emily M Mace
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Wojciech Garncarz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Özlem Yüce Petronczki
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - René Platzer
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Laurène Pfajfer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Ivan Bilic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sol A Ban
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katharina L Willmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Malini Mukherjee
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Verena Supper
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hsiang Ting Hsu
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Pinaki P Banerjee
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Papiya Sinha
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Fabienne McClanahan
- Centre for Haemato-Oncology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, London, UK
| | - Gerhard J Zlabinger
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Christian Doppler Laboratory for Immunomodulation and Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, London, UK
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Loïc Dupré
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Centre de Physiopathologie de Toulouse Purpan (CPTP), INSERM, UMR1043, Toulouse Purpan University Hospital, Toulouse, France
| | - Özden Sanal
- Section of Pediatric Immunology, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Ulrich Jäger
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Ilhan Tezcan
- Section of Pediatric Immunology, Hacettepe University, Ihsan Dogramaci Children's Hospital, Ankara, Turkey
| | - Jordan S Orange
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Kinderspital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
Perlman RL. Mouse models of human disease: An evolutionary perspective. EVOLUTION MEDICINE AND PUBLIC HEALTH 2016; 2016:170-6. [PMID: 27121451 PMCID: PMC4875775 DOI: 10.1093/emph/eow014] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/12/2016] [Indexed: 12/21/2022]
Abstract
The use of mice as model organisms to study human biology is predicated on the genetic and physiological similarities between the species. Nonetheless, mice and humans have evolved in and become adapted to different environments and so, despite their phylogenetic relatedness, they have become very different organisms. Mice often respond to experimental interventions in ways that differ strikingly from humans. Mice are invaluable for studying biological processes that have been conserved during the evolution of the rodent and primate lineages and for investigating the developmental mechanisms by which the conserved mammalian genome gives rise to a variety of different species. Mice are less reliable as models of human disease, however, because the networks linking genes to disease are likely to differ between the two species. The use of mice in biomedical research needs to take account of the evolved differences as well as the similarities between mice and humans.
Collapse
Affiliation(s)
- Robert L Perlman
- Department of Pediatrics, The University of Chicago, 5841 S. Maryland Ave, MC 5058, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Woodward B. Fidelity in Animal Modeling: Prerequisite for a Mechanistic Research Front Relevant to the Inflammatory Incompetence of Acute Pediatric Malnutrition. Int J Mol Sci 2016; 17:541. [PMID: 27077845 PMCID: PMC4848997 DOI: 10.3390/ijms17040541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 11/16/2022] Open
Abstract
Inflammatory incompetence is characteristic of acute pediatric protein-energy malnutrition, but its underlying mechanisms remain obscure. Perhaps substantially because the research front lacks the driving force of a scholarly unifying hypothesis, it is adrift and research activity is declining. A body of animal-based research points to a unifying paradigm, the Tolerance Model, with some potential to offer coherence and a mechanistic impetus to the field. However, reasonable skepticism prevails regarding the relevance of animal models of acute pediatric malnutrition; consequently, the fundamental contributions of the animal-based component of this research front are largely overlooked. Design-related modifications to improve the relevance of animal modeling in this research front include, most notably, prioritizing essential features of pediatric malnutrition pathology rather than dietary minutiae specific to infants and children, selecting windows of experimental animal development that correspond to targeted stages of pediatric immunological ontogeny, and controlling for ontogeny-related confounders. In addition, important opportunities are presented by newer tools including the immunologically humanized mouse and outbred stocks exhibiting a magnitude of genetic heterogeneity comparable to that of human populations. Sound animal modeling is within our grasp to stimulate and support a mechanistic research front relevant to the immunological problems that accompany acute pediatric malnutrition.
Collapse
Affiliation(s)
- Bill Woodward
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
16
|
Noor F. A shift in paradigm towards human biology-based systems for cholestatic-liver diseases. J Physiol 2015; 593:5043-55. [PMID: 26417843 DOI: 10.1113/jp271124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/16/2015] [Indexed: 12/15/2022] Open
Abstract
Cholestatic-liver diseases (CLDs) arise from diverse causes ranging from genetic factors to drug-induced cholestasis. The so-called diseases of civilization (obesity, diabetes, metabolic disorders, non-alcoholic liver disease, cardiovascular diseases, etc.) are intricately implicated in liver and gall bladder diseases. Although CLDs have been extensively studied, there seem to be important gaps in the understanding of human disease. Despite the fact that many animal models exist and substantial clinical data are available, translation of this knowledge towards therapy has been disappointingly limited. Recent advances in liver cell culture such as in vivo-like 3D cultivation of human primary hepatic cells, human induced pluripotent stem cell-derived hepatocytes; and cutting-edge analytical techniques such as 'omics' technologies and high-content screenings could play a decisive role in deeper mechanistic understanding of CLDs. This Topical Review proposes a roadmap to human biology-based research using omics technologies providing quantitative information on mechanisms in an adverse outcome/disease pathway framework. With modern sensitive tools, a shift in paradigm in human disease research seems timely and even inevitable to overcome species barriers in translation.
Collapse
Affiliation(s)
- Fozia Noor
- Biochemical Engineering Institute, Saarland University, Saarbrücken, Germany
| |
Collapse
|
17
|
van de Stolpe A, Kauffmann RH. Innovative human-specific investigational approaches to autoimmune disease. RSC Adv 2015. [DOI: 10.1039/c4ra15794j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
An organ-on-chip disease model approach, including “pre-clinical trial-on-chip” is introduced for understanding of human autoimmune disease pathophysiology and drug development.
Collapse
Affiliation(s)
- Anja van de Stolpe
- Precision & Decentralized Diagnostics
- Philips Research
- Eindhoven
- The Netherlands
| | | |
Collapse
|
18
|
Smith AM, Dragunow M. The human side of microglia. Trends Neurosci 2014; 37:125-35. [DOI: 10.1016/j.tins.2013.12.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 12/13/2022]
|
19
|
Animal models of human disease: Inflammation. Biochem Pharmacol 2014; 87:121-30. [DOI: 10.1016/j.bcp.2013.06.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 06/16/2013] [Indexed: 12/26/2022]
|
20
|
Perlman H, Budinger GRS, Ward PA. Humanizing the mouse: in defense of murine models of critical illness. Am J Respir Crit Care Med 2013; 187:898-900. [PMID: 23634853 DOI: 10.1164/rccm.201303-0489ed] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
21
|
Abstract
Defensins are small, multifunctional cationic peptides. They typically contain six conserved cysteines whose three intramolecular disulfides stabilize a largely β-sheet structure. This review of human α-defensins begins by describing their evolution, including their likely relationship to the Big Defensins of invertebrates, and their kinship to the β-defensin peptides of many if not all vertebrates, and the θ-defensins found in certain non-human primates. We provide a short history of the search for leukocyte-derived microbicidal molecules, emphasizing the roles played by luck (good), preconceived notions (mostly bad), and proper timing (essential). The antimicrobial, antiviral, antitoxic, and binding properties of human α-defensins are summarized. The structural features of α-defensins are described extensively and their functional contributions are assessed. The properties of HD6, an enigmatic Paneth cell α-defensin, are contrasted with those of the four myeloid α-defensins (HNP1-4) and of HD5, the other α-defensin of human Paneth cells. The review ends with a decalogue that may assist researchers or students interested in α-defensins and related aspects of neutrophil function.
Collapse
Affiliation(s)
- Robert I Lehrer
- Department of Medicine and Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1688, USA.
| | | |
Collapse
|
22
|
|