1
|
Wojtkowiak-Giera A, Derda M, Łanocha-Arendarczyk N, Kolasa A, Kot K, Walczykiewicz J, Solarczyk P, Kosik-Bogacka D. The Immunological Changes in the Skin of BALC/c Mice with Disseminated Acanthamoebiasis. Pathogens 2023; 12:pathogens12050631. [PMID: 37242301 DOI: 10.3390/pathogens12050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Toll-like receptors (TLR) are involved in the recognition of numerous pathogens, including Acanthamoeba spp. Thanks to this, it is possible for immune cells to recognize microorganisms and trigger the body's innate immune response. The stimulation of TLRs also leads to the activation of specific immunity. The aim of the study was to determine the TLR2 and TLR4 gene expression in the skin of BALC/c mice infected with Acanthamoeba with AM22 strain isolated from a patient. Receptor expression was assessed by real-time polymerase chain reaction (qPCR) in the amoeba-infected host with normal (A) and reduced immunity (AS) as well as in the control host with normal immunity (C) and reduced immunity (CS). Statistical analysis of TLR2 gene expression in A and AS groups compared to C and CS groups, respectively, were statistically insignificant. In the A group, we found statistical upregulation of TLR4 gene expression at 8 dpi compared to the C group. While in AS group, TLR4 gene expression was at a similar level, such as in the CS group. Taking into account the host's immune status, the TLR4 gene expression was statistically higher in the skin of host from A group than in host from AS group at the beginning of the infection. Increased TLR4 gene expression in hosts with normal immunity infected with Acanthamoeba suggests the involvement of the studied receptor in the course of acanthamoebiasis. The above research results provide new data on the involvement of the studied receptor in the skin in the host's immune defense triggered during the Acanthamoeba infection.
Collapse
Affiliation(s)
- Agnieszka Wojtkowiak-Giera
- Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Monika Derda
- Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Joanna Walczykiewicz
- Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Piotr Solarczyk
- Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Danuta Kosik-Bogacka
- Independent of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Self-assembled BPIV3 nanoparticles can induce comprehensive immune responses and protection against BPIV3 challenge by inducing dendritic cell maturation in mice. Vet Microbiol 2022; 268:109415. [DOI: 10.1016/j.vetmic.2022.109415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/24/2023]
|
3
|
Ding Y, Xu J, Cheng LB, Huang YQ, Wang YQ, Li H, Li Y, Ji JY, Zhang JH, Zhao L. Effect of Emodin on Coxsackievirus B3m-Mediated Encephalitis in Hand, Foot, and Mouth Disease by Inhibiting Toll-Like Receptor 3 Pathway In Vitro and In Vivo. J Infect Dis 2021; 222:443-455. [PMID: 32115640 DOI: 10.1093/infdis/jiaa093] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Encephalitis in hand, foot, and mouth disease (HFMD) is a serious threat to children's health and life. Toll-like receptor 3 (TLR3) is an innate immune-recognition receptor that can recognize virus and initiate innate immune responses. Emodin has the effects of anti-inflammatory and regulating immune function, but the mechanism is not very clear. METHODS Cells and mice were pretreated with coxsackievirus B3m (CVB3) and treated with emodin. The messenger ribonucleic acid (mRNA) and protein levels of TLR3 and downstream molecules were detected by quantitative real-time polymearse chain reaction and western blotting analysis, respectively. TLR3 expression was also downregulated by anti-TLR3 antibody (TLR3Ab) or small interfering RNA (siRNA). Pathological changes were assessed with hematoxylin and eosin staining. Immunohistochemistry was used to examine the expression of TLR3 in brain tissues. The expression of interleukin (IL)-6, nuclear factor (NF)-κB, and interferon (IFN)-β in serum were tested with enzyme-linked immunosorbent assay. RESULTS Emodin decreased the mRNA and protein levels of TLR3 and downstream molecules in vitro and in vivo. After downregulating TLR3 using anti-TLR3Ab or siRNA, emodin could still decrease the mRNA and protein levels of TLR3 and downstream molecules. Emodin also displayed notable effects on pathology, TLR3 protein in brain tissues, and expression of IL-6, NF-κB, IFN-β, in serum. CONCLUSIONS Emodin exerts a protective effect in CVB3-mediated encephalitis in HFMD by inhibiting the TLR3 pathway.
Collapse
Affiliation(s)
- Yan Ding
- Department of Infectious Diseases and Immunology, Medical and Health Center for Women and Children, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Jie Xu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei Province, People's Republic of China.,Department of Hepatology, Yichang Hospital of Traditional Chinese Medicine, Yichang, Hubei Province, People's Republic of China
| | - Liang-Bin Cheng
- Department of Liver Diseases, Hubei Hospital of Traditional Chinese Medicine, Wuhan, Hubei Province, People's Republic of China
| | - Yong-Qian Huang
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - You-Qin Wang
- Department of Pediatrics, Central Hospital, Hubei University of Medicine, Suizhou, Hubei Province, People's Republic of China
| | - Hui Li
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Yu Li
- Department of Vascular Surgery, Yichang Central People's Hospital, Yichang, Hubei Province, People's Republic of China
| | - Jing-Yu Ji
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| | - Ji-Hong Zhang
- Department of Hepatology, Yichang Hospital of Traditional Chinese Medicine, Yichang, Hubei Province, People's Republic of China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
4
|
Costa AO, Chagas IAR, de Menezes-Neto A, Rêgo FD, Nogueira PM, Torrecilhas AC, Furst C, Fux B, Soares RP. Distinct immunomodulatory properties of extracellular vesicles released by different strains of Acanthamoeba. Cell Biol Int 2021; 45:1060-1071. [PMID: 33448518 DOI: 10.1002/cbin.11551] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/08/2020] [Accepted: 01/09/2021] [Indexed: 01/07/2023]
Abstract
Free living amoeba of the genus Acanthamoeba are opportunist protozoan involved in corneal, systemic, and encephalic infections in humans. Most of the mechanisms underlying intraspecies variations and pathogenicity are still unknown. Recently, the release of extracellular vesicles (EVs) by Acanthamoeba was reported. However, comparative characterization of EVs from distinct strains is not available. The aim of this study was to evaluate EVs produced by Acanthamoeba from different genotypes, comparing their proteases profile and immunomodulatory properties. EVs from four environmental or clinical strains (genotypes T1, T2, T4, and T11) were obtained by ultracentrifugation, quantitated by nanoparticle tracking analysis and analyzed by scanning and transmission electron microscopy. Proteases profile was determined by zymography and functional properties of EVs (measure of nitrite and cytokine production) were determined after peritoneal macrophage stimulation. Despite their genotype, all strains released EVs and no differences in size and/or concentration were detected. EVs exhibited a predominant activity of serine proteases (pH 7.4 and 3.5), with higher intensity in T4 and T1 strains. EVs from the environmental, nonpathogenic T11 strain exhibited a more proinflammatory profile, inducing higher levels of Nitrite, tumor necrosis factor alpha and interleukin-6 via TLR4/TLR2 than those strains with pathogenic traits (T4, T1, and T2). Preincubation with EVs treated with protease inhibitors or heating drastically decreased nitrite concentration production in macrophages. Those data suggest that immunomodulatory effects of EVs may reflect their pathogenic potential depending on the Acanthamoeba strains and are dependent on protease integrity.
Collapse
Affiliation(s)
- Adriana Oliveira Costa
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Armando de Menezes-Neto
- Instituto René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Patologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Felipe Dutra Rêgo
- Instituto René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, Diadema, São Paulo, Brazil
| | - Cinthia Furst
- Departamento de Patologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Blima Fux
- Departamento de Patologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | | |
Collapse
|
5
|
Wang Z, Wu D, Tachibana H, Feng M, Cheng XJ. Identification and biochemical characterisation of Acanthamoeba castellanii cysteine protease 3. Parasit Vectors 2020; 13:592. [PMID: 33228764 PMCID: PMC7685649 DOI: 10.1186/s13071-020-04474-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acanthamoeba spp. are free-living amoeba that are ubiquitously distributed in the environment. This study examines pathogenic Acanthamoeba cysteine proteases (AcCPs) belonging to the cathepsin L-family and explores the mechanism of AcCP3 interaction with host cells. METHODS Six AcCP genes were amplified by polymerase chain reaction (PCR). Quantitative real-time PCR was used to analyse the relative mRNA expression of AcCPs during the encystation process and between pre- and post-reactivated trophozoites. To further verify the role of AcCP3 in these processes, AcCP3 recombinant proteins were expressed in Escherichia coli, and the hydrolytic activity of AcCP3 was determined. The influence of the AcCP3 on the hydrolytic activity of trophozoites and the toxicity of trophozoites to human corneal epithelial cells (HCECs) was examined by inhibiting AcCP3 expression using siRNA. Furthermore, the levels of p-Raf and p-Erk were examined in HCECs following coculture with AcCP3 gene knockdown trophozoites by Western blotting. RESULTS During encystation, five out of six AcCPs exhibited decreased expression, and only AcCP6 was substantially up-regulated at the mRNA level, indicating that most AcCPs were not directly correlated to encystation. Furthermore, six AcCPs exhibited increased expression level following trophozoite reactivation with HEp-2 cells, particularly AcCP3, indicating that these AcCPs might be virulent factors. After refolding of recombinant AcCP3 protein, the 27 kDa mature protein from the 34 kDa pro-protein hydrolysed host haemoglobin, collagen and albumin and showed high activity in an acidic environment. After AcCP3 knockdown, the hydrolytic activity of trophozoite crude protein against gelatin was decreased, suggesting that these trophozoites had decreased toxicity. Compared with untreated trophozoites or negative control siRNA-treated trophozoites, AcCP3-knockdown trophozoites were less able to penetrate and damage monolayers of HCECs. Western blot analysis showed that the activation levels of the Ras/Raf/Erk/p53 signalling pathways in HCECs decreased after inhibiting the expression of trophozoite AcCP3. CONCLUSIONS AcCP6 was correlated to encystation. Furthermore, AcCP3 was a virulent factor in trophozoites and participated in the activation of the Ras/Raf/Erk/p53 signalling pathways of host cells.
Collapse
Affiliation(s)
- Zhixin Wang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Duo Wu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Xun-Jia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Fukuda K. Corneal fibroblasts: Function and markers. Exp Eye Res 2020; 200:108229. [PMID: 32919991 DOI: 10.1016/j.exer.2020.108229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Corneal stromal keratocytes contribute to the maintenance of corneal transparency and shape by synthesizing and degrading extracellular matrix. They are quiescent in the healthy cornea, but they become activated in response to insults from the external environment that breach the corneal epithelium, with such activation being associated with phenotypic transformation into fibroblasts. Corneal fibroblasts (activated keratocytes) act as sentinel cells to sense various external stimuli-including damage-associated molecular patterns derived from injured cells, pathogen-associated molecular patterns of infectious microorganisms, and inflammatory mediators such as cytokines-under pathological conditions such as trauma, infection, and allergy. The expression of various chemokines and adhesion molecules by corneal fibroblasts determines the selective recruitment and activation of inflammatory cells in a manner dependent on the type of insult. In infectious keratitis, the interaction of corneal fibroblasts with various components of microbes and with cytokines derived from infiltrated inflammatory cells results in excessive degradation of stromal collagen and consequent corneal ulceration. Corneal fibroblasts distinguish between type 1 and type 2 inflammation through recognition of corresponding cytokines, with their activation by type 2 cytokines contributing to the pathogenesis of corneal lesions in severe ocular allergic diseases. Pharmacological targeting of corneal fibroblast function is thus a potential novel therapeutic approach to prevention of excessive corneal stromal inflammation, damage, and scarring.
Collapse
Affiliation(s)
- Ken Fukuda
- Department of Ophthalmology and Visual Science, Kochi Medical School, Kochi University, Oko-cho, Nankoku City, Kochi, 783-8505, Japan.
| |
Collapse
|
7
|
Qu Z, Guo Y, Li M, Cao C, Wang J, Gao M. Recombinant ferritin nanoparticles can induce dendritic cell maturation through TLR4/NF-κB pathway. Biotechnol Lett 2020; 42:2489-2500. [PMID: 32567013 DOI: 10.1007/s10529-020-02944-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/14/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Immune response initiation and regulation require activation of dendritic cells (DCs). However, the mechanism by which ferritin, a carrier for immunogen, induces DCs maturation remains unclear. RESULTS Recombinant ferritin nanoparticle (RFNp), were prepared through the baculovirus expression vector system, formed spherical and hollow cage-liked proteins with a diameter of approximately 12.17 ± 0.87 nm. They induced bone marrow-derived DC (BMDC) maturation via surface molecules up-regulation of (MHC II, CD80, CD86 and CD40), increased pro-inflammatory cytokines production (IL-6, IL-12, TNF-α, and IFN-γ), and decreased antigen capturing capacity. They positively regulated IκBα and NF-κB (p65) phosphorylation, and facilitate NF-κB (p65) translocation into mature BMDCs nuclei. Following pre-treatment of RFNp-treated BMDCs with TLR4 and NF-κB (p65) inhibitors, respectively, surface molecule expression, pro-inflammatory cytokines production, and IκBα and NF-κB (p65) activities were suppressed. RFNp-treated BMDCs can also facilitate T-cell proliferation and differentiation into Th1 and Th2. CONCLUSION RFNps induced DCs maturation lends the potential application of RFNps as carrier platforms in DC-based vaccine.
Collapse
Affiliation(s)
- Zhehui Qu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China
- College of Animal Science and Veterinary Medicine, Xinyang Agriculture and Forestry University, Xinyang, 464000, Henan, People's Republic of China
| | - Yongli Guo
- Animal Disease Prevention and Control Center of Heilongjiang Province, Harbin, 150069, Heilongjiang, People's Republic of China
| | - Mingzhu Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Chong Cao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China
| | - Junwei Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China.
| | - Mingchun Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, People's Republic of China.
| |
Collapse
|
8
|
Khan NA, Anwar A, Siddiqui R. Acanthamoeba Keratitis: Current Status and Urgent Research Priorities. Curr Med Chem 2019; 26:5711-5726. [DOI: 10.2174/0929867325666180510125633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/10/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022]
Abstract
Background:First discovered in the early 1970s, Acanthamoeba keratitis has remained a major eye infection and presents a significant threat to the public health, especially in developing countries. The aim is to present a timely review of our current understanding of the advances made in this field in a comprehensible manner and includes novel concepts and provides clear directions for immediate research priorities.Methods:We undertook a search of bibliographic databases for peer-reviewed research literature and also summarized our published results in this field.Results:The present review focuses on novel diagnostic and therapeutic strategies in details which can provide access to management and treatment of Acanthamoeba keratitis. This coupled with the recently available genome sequence information together with high throughput genomics technology and innovative approaches should stimulate interest in the rational design of preventative and therapeutic measures. Current treatment of Acanthamoeba keratitis is problematic and often leads to infection recurrence. Better understanding of diagnosis, pathogenesis, pathophysiology and therapeutic regimens, would lead to novel strategies in treatment and prophylaxis.
Collapse
Affiliation(s)
- Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Ayaz Anwar
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Kot K, Kosik-Bogacka D, Łanocha-Arendarczyk N, Wojtkowiak-Giera A, Kolasa-Wołosiuk A. Expression of Toll-Like Receptors (TLR2 and TLR4) in the Eyes of Mice with Disseminated Acanthamoebiasis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1401894. [PMID: 31309100 PMCID: PMC6594330 DOI: 10.1155/2019/1401894] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022]
Abstract
Toll-like receptors (TLRs) play a key role in the innate immune response to numerous pathogens, including Acanthamoeba spp. The aim of this study was to determine the expression of TLR2 and TLR4 in the eyes of mice following intranasal infection with Acanthamoeba spp. in relation to the host's immunological status. Amoebae used in this study were isolated from the bronchial aspirate of a patient with acute myeloid leukemia (AML) and atypical symptoms of pneumonia. We found statistically significant differences in the expression of TLR2 and TLR4 in the eye of immunocompetent mice at 8, 16, and 24 days after Acanthamoeba spp. infection (dpi) compared to control group. Immunosuppressed mice showed significant differences in the expression of TLR2 at 16 and 24 dpi compared to uninfected animals. Our results indicate that TLR2 and TLR4 are upregulated in the eyes of mice in response to Acanthamoeba spp. We suggest that it is possible for trophozoites to migrate through the optic nerve from the brain to the eyes. The course of disseminated acanthamoebiasis may be influenced by the host's immunological status, and the observed changes in expression of TLR2 and TLR4 in the host's organs may indicate the role of these receptors in the pathomechanism of acanthamoebiasis.
Collapse
Affiliation(s)
- Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Danuta Kosik-Bogacka
- Independent of Pharmaceutical Botany, Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Agnieszka Wojtkowiak-Giera
- Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland
| | - Agnieszka Kolasa-Wołosiuk
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| |
Collapse
|
10
|
Gong J, Guan L, Tian P, Li C, Zhang Y. Rho Kinase Type 1 (ROCK1) Promotes Lipopolysaccharide-induced Inflammation in Corneal Epithelial Cells by Activating Toll-Like Receptor 4 (TLR4)-Mediated Signaling. Med Sci Monit 2018; 24:3514-3523. [PMID: 29804125 PMCID: PMC5999052 DOI: 10.12659/msm.907277] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Rho kinases (ROCKs) are the typical downstream effectors of RhoA, which can regulate corneal epithelial wound healing. In this study, the role of ROCK1 in lipopolysaccharide (LPS)-induced cornea inflammation was investigated. Material/Methods The expression of ROCK1 in human corneal epithelial cells (HCECs) was bilaterally modulated with ROCK1 expression vector and ROCK1 inhibitor Y-27632. The effects of ROCK1 modulation on the inflammatory response, cell viability, cell apoptosis, and cell cycle distribution were detected by ELISA assay, MTT assay, and flow cytometry, respectively. The pathways involved in the effect of ROCK1 in HCECs was preliminarily explained by detecting changes of TLR4-mediated NF-κB and ERK signaling using western blotting and electrophoretic mobility shift assays. Results Overexpression of ROCK1 promoted LPS-induced production of IL-6, IL-8, IL-1β, and TNF-α, and the apoptotic process in HCECs. Augmented inflammation and apoptosis were associated with stronger activation of TLR4-mediated signal transduction; the phosphorylation of IκBα, JNK, ERK1/2, and p38, and nuclear translocation of NF-κB p65 induced by LPS were further increased by overexpression of ROCK1. Inhibition of ROCK1 function by Y-27632 blocked the effect of LPS on HCECs; both LPS-induced inflammation and apoptosis was alleviated by Y-27632, which was associated with suppression of TLR4-mediated NF-κB and ERK signaling. Conclusions LPS-induced inflammation and apoptosis in HCECs depended on the function of ROCK1, inhibition of which would attenuate impairments on cornea cells due to LPS.
Collapse
Affiliation(s)
- Jianying Gong
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Linan Guan
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Pei Tian
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Chao Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Yi Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
11
|
Li J, Hu SB, He YM, Zhuo CF, Zhou RL, Chen F, Li HY, Deng ZY. 9c11tCLA modulates 11t18:1 and 9t18:1 induced inflammations differently in human umbilical vein endothelial cells. Sci Rep 2018; 8:1535. [PMID: 29367652 PMCID: PMC5784167 DOI: 10.1038/s41598-018-19729-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 01/04/2018] [Indexed: 02/02/2023] Open
Abstract
Endothelial inflammation is recognized as the initial stage of a multistep process leading to coronary heart disease (CHD). Recently, the different effects of industrial trans fatty acids (elaidic acid, 9t18:1) and ruminant trans fatty acids (vaccenic acid, 11t18:1) on CHD have been reported in epidemiological and animal studies, however, the mechanism was not fully studied. Therefore, the objective of this study was to explore the underlying mechanism by which 9t18:1 and 11t18:1 affect human umbilical vein endothelial cells (HUVECs) inflammation. We found that 9c11t-CLA modulated the inflammation of HUVECs induced by 9t18:1 and 11t18:1. Fatty acid composition, pro-inflammatory factors, phosphorylation of MAPKs, and the TLR4 level in HUVECs altered by 11t18:1 induction, collectively suggest that the bio-conversion of 11t18:1 to 9c11tCLA might be the cause why 11t18:1 and 9t18:1 have distinct influences on endothelial injuries. It was concluded that it is biosynthesis of 9c11t CLA from11t18:1, and the modulation of TLR4-MAPK pathway by 9c11t CLA, which at least partially account for the slight effect of 11t18:1 on endothelial inflammation.
Collapse
Affiliation(s)
- Jing Li
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Sheng-Ben Hu
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yue-Ming He
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Cheng-Fei Zhuo
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Ruo-Lin Zhou
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Fang Chen
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Hong-Yan Li
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Ze-Yuan Deng
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China. .,Institute for Advanced Study, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
12
|
Martínez-Castillo M, Santos-Argumedo L, Galván-Moroyoqui JM, Serrano-Luna J, Shibayama M. Toll-like receptors participate in Naegleria fowleri recognition. Parasitol Res 2017; 117:75-87. [PMID: 29128927 DOI: 10.1007/s00436-017-5666-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023]
Abstract
Naegleria fowleri is a protozoan that invades the central nervous system and causes primary amoebic meningoencephalitis. It has been reported that N. fowleri induces an important inflammatory response during the infection. In the present study, we evaluated the roles of Toll-like receptors in the recognition of N. fowleri trophozoites by human mucoepithelial cells, analyzing the expression and production of innate immune response mediators. After amoebic interactions with NCI-H292 cells, the expression and production levels of IL-8, TNF-α, IL-1β, and human beta defensin-2 were evaluated by RT-PCR, ELISA, immunofluorescence, and dot blot assays, respectively. To determine whether the canonical signaling pathways were engaged, we used different inhibitors, namely, IMG-2005 for MyD88 and BAY 11-7085 for the nuclear factor NFkB. Our results showed that the expression and production of the pro-inflammatory cytokines and beta defensin-2 were induced by N. fowleri mainly through the canonical TLR4 pathway in a time-dependent manner.
Collapse
Affiliation(s)
- Moisés Martínez-Castillo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360, Mexico City, Mexico
| | - Leopoldo Santos-Argumedo
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360, Mexico City, Mexico
| | - José Manuel Galván-Moroyoqui
- Department of Medicine and Health Sciences, University of Sonora, Boulevard Luis Donaldo Colosio and Francisco Q. Salazar S/N, 83000, Hermosillo, SON, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360, Mexico City, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
13
|
Mohammed I, Said DG, Dua HS. Human antimicrobial peptides in ocular surface defense. Prog Retin Eye Res 2017; 61:1-22. [DOI: 10.1016/j.preteyeres.2017.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023]
|
14
|
Acanthamoeba Activates Macrophages Predominantly through Toll-Like Receptor 4- and MyD88-Dependent Mechanisms To Induce Interleukin-12 (IL-12) and IL-6. Infect Immun 2017; 85:IAI.01054-16. [PMID: 28348053 DOI: 10.1128/iai.01054-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/09/2017] [Indexed: 12/14/2022] Open
Abstract
Acanthamoeba castellanii is a ubiquitous free-living amoeba with a worldwide distribution that can occasionally infect humans, causing particularly severe infections in immunocompromised individuals. Dissecting the immunology of Acanthamoeba infections has been considered problematic due to the very low incidence of disease, despite the high exposure rates. While macrophages are acknowledged as playing a significant role in Acanthamoeba infections, little is known about how this facultative parasite influences macrophage activity. Therefore, in this study we investigated the effects of Acanthamoeba on the activation of resting macrophages. Consequently, murine bone marrow-derived macrophages were cocultured with trophozoites of either the laboratory Neff strain or a clinical isolate of A. castellaniiIn vitro real-time imaging demonstrated that trophozoites of both strains often established evanescent contact with macrophages. Both Acanthamoeba strains induced a proinflammatory macrophage phenotype characterized by the significant production of interleukin-12 (IL-12) and IL-6. However, macrophages cocultured with the clinical isolate of Acanthamoeba produced significantly less IL-12 and IL-6 than the Neff strain. The utilization of macrophages derived from MyD88-, TRIF-, Toll-like receptor 2 (TLR2)-, TLR4-, and TLR2/4-deficient mice indicated that Acanthamoeba-induced proinflammatory cytokine production was through MyD88-dependent, TRIF-independent, TLR4-induced events. This study shows for the first time the involvement of TLRs expressed on macrophages in the recognition of and response to Acanthamoeba trophozoites.
Collapse
|
15
|
Carnt N, Robaei D, Watson SL, Minassian DC, Dart JKG. The Impact of Topical Corticosteroids Used in Conjunction with Antiamoebic Therapy on the Outcome of Acanthamoeba Keratitis. Ophthalmology 2016; 123:984-90. [PMID: 26952591 DOI: 10.1016/j.ophtha.2016.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To examine the impact of topical corticosteroid use after the start of antiamoebic therapy (AAT) on the outcomes of Acanthamoeba keratitis (AK) therapy. DESIGN Cohort study. PARTICIPANTS A total of 196 patients diagnosed with AK at Moorfields Eye Hospital, London, between January 1991 and April 2012. In 13 patients with bilateral AK, 1 eye was randomly excluded from analysis. METHODS Patient demographics and clinical examination findings were collected both at the start of AAT and subsequently at the time that topical corticosteroid therapy was initiated. Preliminary a priori investigations were used to identify effect modifiers/confounders and extreme associations requiring consideration in multivariate regression modeling. A multivariable logistic model, optimized for assessment of corticosteroid use after the start of AAT, was used to estimate the odds ratios (ORs) of a suboptimal outcome. MAIN OUTCOME MEASURES Suboptimal outcome was defined as final visual acuity ≤20/80, corneal perforation, or the need for keratoplasty. RESULTS In multivariable analysis, restricted to 129 eyes (1 eye per patient) free of scleritis and hypopyon at the start of AAT, topical corticosteroids were not associated with worse outcomes (OR, 1.08; 95% confidence interval [CI], 0.39-3.03), even when corticosteroids had been used before the start of AAT. Risk factors significantly associated with worse outcomes were topical corticosteroid use before the start of AAT (OR, 3.85; 95% CI, 1.35-11.03), a corneal ring infiltrate (together with at least 1 other feature of AK) present at the start of AAT (OR, 5.89; 95% CI, 1.17-29.67), and age ≥33 years at the start of AAT (OR, 4.02; 95% CI, 1.46-11.06). CONCLUSIONS Many corneal specialists currently are uncertain about the risk benefit associated with the use of topical corticosteroids for the management of inflammatory complications of AK. The evidence from this study gives clinicians and patients reassurance that the potential benefits of topical corticosteroid therapy, for treating pain and discomfort, are not associated with worse outcomes when initiated after starting modern AAT. Other potential benefits, in terms of resolution of inflammatory complications, will not be demonstrated without a carefully designed randomized clinical trial.
Collapse
Affiliation(s)
- Nicole Carnt
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; Save Sight Institute, University of Sydney, Sydney, Australia
| | - Dana Robaei
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; Save Sight Institute, University of Sydney, Sydney, Australia
| | | | | | - John K G Dart
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom.
| |
Collapse
|
16
|
Acanthamoeba infection in lungs of mice expressed by toll-like receptors (TLR2 and TLR4). Exp Parasitol 2016; 165:30-4. [PMID: 26940205 DOI: 10.1016/j.exppara.2016.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 02/11/2016] [Accepted: 02/26/2016] [Indexed: 01/13/2023]
Abstract
Toll-like receptors (TLRs) play a key role in the innate immune responses to a variety of pathogens including parasites. TLRs are among the most highly conserved in the evolution of the receptor family, localized mainly on cells of the immune system and on other cells such as lung cells. The aim of this study was to determine for the first time the expression of TLR2 and TLR4 in the lung of Acanthamoeba spp. infected mice using quantitative real-time polymerase chain reaction (Q-PCR) and immunohistochemical (IHC) staining. The Acanthamoeba spp. were isolated from a patient with Acanthamoeba keratitis (AK) (strain Ac 55) and from environmental samples of water from Malta Lake (Poznań, Poland - strain Ac 43). We observed a significantly increased level of expression of TLR2 as well as TLR4 mRNA from 2 to 30 days post Acanthamoeba infection (dpi) in the lungs of mice infected with Ac55 (KP120880) and Ac43 (KP120879) strains. According to our observations, increased TLR2 and TLR4 expression in the pneumocytes, interstitial cells and epithelial cells of the bronchial tree may suggest an important role of these receptors in protective immunity against Acanthamoeba infection in the lung. Moreover, increased levels of TLR2 and TLR4 mRNA expression in infected Acanthamoeba mice may suggest the involvement of these TLRs in the recognition of this amoeba pathogen-associated molecular pattern (PAMP).
Collapse
|
17
|
Kaur A, Kumar V, Singh S, Singh J, Upadhyay N, Datta S, Singla S, Kumar V. Toll-like receptor-associated keratitis and strategies for its management. 3 Biotech 2015; 5:611-619. [PMID: 28324534 PMCID: PMC4569616 DOI: 10.1007/s13205-015-0280-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/27/2015] [Indexed: 11/16/2022] Open
Abstract
Keratitis is an inflammatory condition, characterized by involvement of corneal tissues. Most recurrent challenge of keratitis is infection. Bacteria, virus, fungus and parasitic organism have potential to cause infection. TLR are an important class of protein which has a major role in innate immune response to combat with pathogens. In last past years, extensive research efforts have provided considerable abundance information regarding the role of TLR in various types of keratitis. This paper focuses to review the recent literature illustrating amoebic, bacterial, fungal and viral keratitis associated with Toll-like receptor molecules and summarize existing thoughts on pathogenesis and treatment besides future probabilities for prevention against TLR-associated keratitis.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Vijay Kumar
- Department of Chemistry, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Simranjeet Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Joginder Singh
- Department of Chemistry, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Niraj Upadhyay
- Department of Chemistry, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Shivika Datta
- Department of Zoology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sourav Singla
- Department of Biotechnology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Virender Kumar
- Department of Chemistry, Lovely Professional University, Phagwara, 144411, Punjab, India
| |
Collapse
|
18
|
Taube MA, del Mar Cendra M, Elsahn A, Christodoulides M, Hossain P. Pattern recognition receptors in microbial keratitis. Eye (Lond) 2015; 29:1399-415. [PMID: 26160532 DOI: 10.1038/eye.2015.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 05/31/2015] [Indexed: 12/12/2022] Open
Abstract
Microbial keratitis is a significant cause of global visual impairment and blindness. Corneal infection can be caused by a wide variety of pathogens, each of which exhibits a range of mechanisms by which the immune system is activated. The complexity of the immune response to corneal infection is only now beginning to be elucidated. Crucial to the cornea's defences are the pattern-recognition receptors: Toll-like and Nod-like receptors and the subsequent activation of inflammatory pathways. These inflammatory pathways include the inflammasome and can lead to significant tissue destruction and corneal damage, with the potential for resultant blindness. Understanding the immune mechanisms behind this tissue destruction may enable improved identification of therapeutic targets to aid development of more specific therapies for reducing corneal damage in infectious keratitis. This review summarises current knowledge of pattern-recognition receptors and their downstream pathways in response to the major keratitis-causing organisms and alludes to potential therapeutic approaches that could alleviate corneal blindness.
Collapse
Affiliation(s)
- M-A Taube
- Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - M del Mar Cendra
- Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - A Elsahn
- Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - M Christodoulides
- Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - P Hossain
- Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
19
|
Lorenzo-Morales J, Khan NA, Walochnik J. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. ACTA ACUST UNITED AC 2015; 22:10. [PMID: 25687209 PMCID: PMC4330640 DOI: 10.1051/parasite/2015010] [Citation(s) in RCA: 447] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/06/2015] [Indexed: 12/21/2022]
Abstract
Free-living amoebae of the genus Acanthamoeba are causal agents of a severe sight-threatening infection of the cornea known as Acanthamoeba keratitis. Moreover, the number of reported cases worldwide is increasing year after year, mostly in contact lens wearers, although cases have also been reported in non-contact lens wearers. Interestingly, Acanthamoeba keratitis has remained significant, despite our advances in antimicrobial chemotherapy and supportive care. In part, this is due to an incomplete understanding of the pathogenesis and pathophysiology of the disease, diagnostic delays and problems associated with chemotherapeutic interventions. In view of the devastating nature of this disease, here we present our current understanding of Acanthamoeba keratitis and molecular mechanisms associated with the disease, as well as virulence traits of Acanthamoeba that may be potential targets for improved diagnosis, therapeutic interventions and/or for the development of preventative measures. Novel molecular approaches such as proteomics, RNAi and a consensus in the diagnostic approaches for a suspected case of Acanthamoeba keratitis are proposed and reviewed based on data which have been compiled after years of working on this amoebic organism using many different techniques and listening to many experts in this field at conferences, workshops and international meetings. Altogether, this review may serve as the milestone for developing an effective solution for the prevention, control and treatment of Acanthamoeba infections.
Collapse
Affiliation(s)
- Jacob Lorenzo-Morales
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Tenerife, Canary Islands, Spain
| | - Naveed A Khan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Lin M, Lin J, Wang Y, Bonheur N, Kawai T, Wang Z, Han X. Lipopolysaccharide Attenuates CD40 Ligand-Induced Regulatory B10 Cell Expansion and IL-10 Production in Mouse Splenocytes. ACTA ACUST UNITED AC 2015; 5:1-8. [PMID: 26236564 PMCID: PMC4517687 DOI: 10.4236/oji.2015.51001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Toll-like receptors (TLRs) play a key role in B cell-mediated innate and adaptive immunity. It has been shown that interleukin 10 (IL-10)-producing regulatory B cells (B10 cells) can negatively regulate cellular immune responses and inflammation in autoimmune diseases. In this study, we determined the effect of TLR4 signaling on the CD40-activated B10 cell competency. The results demonstrated that LPS and CD40L synergistically stimulated proliferation of mouse splenocytes. The percentage of B10 cells in cultured splenocytes was significantly increased after CD40L stimulation but such increase was diminished by the addition of LPS. Such effects by LPS were only observed in cells from WT but not TLR4−/− mice. IL-10 mRNA expression and protein production in B10 cells from cultured splenocytes were significantly up-regulated by CD40L stimulation but were inhibited after the addition of LPS in a TLR4-dependent manner. This study suggests that LPS-induced TLR4 signaling attenuate CD40L-activated regulatory B10 cell competency.
Collapse
Affiliation(s)
- Mei Lin
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, USA ; Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiang Lin
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, USA ; Department of Stomatology, Fourth Hospital of Harbin Medical University, Harbin, China
| | - Yuhua Wang
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, USA ; Department of Stomatology, Shanghai 9th People's Hospital, Shanghai, China
| | - Nathalie Bonheur
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, USA
| | - Toshihisa Kawai
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, USA
| | - Zuomin Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, USA
| |
Collapse
|
21
|
Vaure C, Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol 2014; 5:316. [PMID: 25071777 PMCID: PMC4090903 DOI: 10.3389/fimmu.2014.00316] [Citation(s) in RCA: 563] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/23/2014] [Indexed: 01/16/2023] Open
Abstract
Toll-like receptors (TLRs) belong to the pattern recognition receptor (PRR) family, a key component of the innate immune system. TLRs detect invading pathogens and initiate an immediate immune response to them, followed by a long-lasting adaptive immune response. Activation of TLRs leads to the synthesis of pro-inflammatory cytokines and chemokines and the expression of co-stimulatory molecules. TLR4 specifically recognizes bacterial lipopolysaccharide, along with several other components of pathogens and endogenous molecules produced during abnormal situations, such as tissue damage. Evolution across species can lead to substantial diversity in the TLR4’s affinity and specificity to its ligands, the TLR4 gene and cellular expression patterns and tissue distribution. Consequently, TLR4 functions vary across different species. In recent years, the use of synthetic TLR agonists as adjuvants has emerged as a realistic therapeutic goal, notably for the development of vaccines against poorly immunogenic targets. Given that an adjuvanted vaccine must be assessed in pre-clinical animal models before being tested in humans, the extent to which an animal model represents and predicts the human condition is of particular importance. This review focuses on the current knowledge on the critical points of divergence between human and the mammalian species commonly used in vaccine research and development (non-human primate, mouse, rat, rabbit, swine, and dog), in terms of molecular, cellular, and functional properties of TLR4.
Collapse
Affiliation(s)
- Céline Vaure
- Research Department, Sanofi Pasteur , Marcy L'Etoile , France
| | - Yuanqing Liu
- Research Department, Sanofi Pasteur , Marcy L'Etoile , France
| |
Collapse
|
22
|
Nowak B, Valdenegro-Vega V, Crosbie P, Bridle A. Immunity to amoeba. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:257-267. [PMID: 23921258 DOI: 10.1016/j.dci.2013.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/02/2013] [Accepted: 07/28/2013] [Indexed: 06/02/2023]
Abstract
Amoebic infections in fish are most likely underestimated and sometimes overlooked due to the challenges associated with their diagnosis. Amoebic diseases reported in fish affect either gills or internal organs or may be systemic. Host response ranges from hyperplastic response in gill infections to inflammation (including granuloma formation) in internal organs. This review focuses on the immune response of Atlantic salmon to Neoparamoeba perurans, the causative agent of Amoebic Gill Disease (AGD).
Collapse
Affiliation(s)
- Barbara Nowak
- NCMCRS, AMC, University of Tasmania, Launceston, Tasmania, Australia.
| | | | - Philip Crosbie
- NCMCRS, AMC, University of Tasmania, Launceston, Tasmania, Australia
| | - Andrew Bridle
- NCMCRS, AMC, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|
23
|
Pathogenic strains of Acanthamoeba are recognized by TLR4 and initiated inflammatory responses in the cornea. PLoS One 2014; 9:e92375. [PMID: 24633052 PMCID: PMC3954866 DOI: 10.1371/journal.pone.0092375] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/21/2014] [Indexed: 12/18/2022] Open
Abstract
Free-living amoebae of the Acanthamoeba species are the causative agent of Acanthamoeba keratitis (AK), a sight-threatening corneal infection that causes severe pain and a characteristic ring-shaped corneal infiltrate. Innate immune responses play an important role in resistance against AK. The aim of this study is to determine if Toll-like receptors (TLRs) on corneal epithelial cells are activated by Acanthamoeba, leading to initiation of inflammatory responses in the cornea. Human corneal epithelial (HCE) cells constitutively expressed TLR1, TLR2, TLR3, TLR4, and TLR9 mRNA, and A. castellanii upregulated TLR4 transcription. Expression of TLR1, TLR2, TLR3, and TLR9 was unchanged when HCE cells were exposed to A. castellanii. IL-8 mRNA expression was upregulated in HCE cells exposed to A. castellanii. A. castellanii and lipopolysaccharide (LPS) induced significant IL-8 production by HCE cells as measured by ELISA. The percentage of total cells positive for TLR4 was higher in A. castellanii stimulated HCE cells compared to unstimulated HCE cells. A. castellanii induced upregulation of IL-8 in TLR4 expressing human embryonic kidney (HEK)-293 cells, but not TLR3 expressing HEK-293 cells. TLR4 neutralizing antibody inhibited A. castellanii-induced IL-8 by HCE and HEK-293 cells. Clinical strains but not soil strains of Acanthamoeba activated TLR4 expression in Chinese hamster corneas in vivo and in vitro. Clinical isolates but not soil isolates of Acanthamoeba induced significant (P< 0.05) CXCL2 production in Chinese hamster corneas 3 and 7 days after infection, which coincided with increased inflammatory cells in the corneas. Results suggest that pathogenic species of Acanthamoeba activate TLR4 and induce production of CXCL2 in the Chinese hamster model of AK. TLR4 may be a potential target in the development of novel treatment strategies in Acanthamoeba and other microbial infections that activate TLR4 in corneal cells.
Collapse
|
24
|
Wang M, Wang F, Yang J, Zhao D, Wang H, Shao F, Wang W, Sun R, Ling M, Zhai J, Song S. Mannan-binding lectin inhibits Candida albicans-induced cellular responses in PMA-activated THP-1 cells through Toll-like receptor 2 and Toll-like receptor 4. PLoS One 2013; 8:e83517. [PMID: 24391778 PMCID: PMC3877063 DOI: 10.1371/journal.pone.0083517] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/04/2013] [Indexed: 11/29/2022] Open
Abstract
Background Candida albicans (C. albicans), the most common human fungal pathogen, can cause fatal systemic infections under certain circumstances. Mannan-binding lectin (MBL),a member of the collectin family in the C-type lectin superfamily, is an important serum component associated with innate immunity. Toll-like receptors (TLRs) are expressed extensively, and have been shown to be involved in C. albicans-induced cellular responses. We first examined whether MBL modulated heat-killed (HK) C. albicans-induced cellular responses in phorbol 12-myristate 13-acetate (PMA)-activated human THP-1 macrophages. We then investigated the possible mechanisms of its inhibitory effect. Methodology/Principal Finding Enzyme-linked immunosorbent assay (ELISA) and reverse transcriptasepolymerase chain reaction (RT-PCR) analysis showed that MBL at higher concentrations (10–20 µg/ml) significantly attenuated C. albicans-induced chemokine (e.g., IL-8) and proinflammatory cytokine (e.g., TNF-α) production from PMA-activated THP-1 cells at both protein and mRNA levels. Electrophoretic mobility shift assay (EMSA) and Western blot (WB) analysis showed that MBL could inhibit C. albicans-induced nuclear factor-κB (NF-κB) DNA binding and its translocation in PMA-activated THP-1 cells. MBL could directly bind to PMA-activated THP-1 cells in the presence of Ca2+, and this binding decreased TLR2 and TLR4 expressions in C. albicans-induced THP-1 macrophages. Furthermore, the binding could be partially inhibited by both anti-TLR2 monoclonal antibody (clone TL2.1) and anti-TLR4 monoclonal antibody (clone HTA125). In addition, co-immunoprecipitation experiments and microtiter wells assay showed that MBL could directly bind to the recombinant soluble form of extracellular TLR2 domain (sTLR2) and sTLR4. Conclusions/Significance Our study demonstrates that MBL can affect proinflammatory cytokine and chemokine expressions by modifying C. albicans-/TLR-signaling pathways. This study supports an important role for MBL on the regulation of C. albicans-induced cellular responses.
Collapse
Affiliation(s)
- Mingyong Wang
- Department of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
- * E-mail:
| | - Fanping Wang
- Department of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jianbin Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Dongfang Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongpo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Feng Shao
- Department of Clinical Laboratory, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wenjun Wang
- Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Ruili Sun
- Department of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Mingzhi Ling
- Department of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jingjing Zhai
- Department of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Shijun Song
- Department of Clinical Laboratory, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
25
|
Tripathi T, Smith AD, Abdi M, Alizadeh H. Acanthamoeba-cytopathic protein induces apoptosis and proinflammatory cytokines in human corneal epithelial cells by cPLA2α activation. Invest Ophthalmol Vis Sci 2012; 53:7973-82. [PMID: 23132804 DOI: 10.1167/iovs.12-10436] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
PURPOSE We have shown that Acanthamoeba interacts with a mannosylated protein on corneal epithelial cells and stimulates trophozoites to secrete a mannose-induced 133 kDa protease (MIP-133), which facilitates corneal invasion and induces apoptosis. The mechanism of MIP-133-induced apoptosis is unknown. The aim of this study was to determine if MIP-133 induces apoptosis and proinflammatory cytokines/chemokines in human corneal epithelial (HCE) cells via the cytosolic phospholipase A(2α) (cPLA(2α)) pathway. METHODS HCE cells were incubated with or without MIP-133 at doses of 7.5, 15, and 50 μg/mL for 6, 12, and 24 hours. The effects of cPLA(2α) inhibitors on cPLA(2α), arachidonic acid (AA) release, and apoptosis were tested in vitro. Inhibition of cPLA(2α) involved preincubating HCE cells for 1 hour with cPLA(2α) inhibitors (10 μM methyl-arachidonyl fluorophosphonate [MAFP] or 20 μM arachidonyl trifluoromethyl ketone [AACOCF3]) with or without MIP-133 for 24 hours. Expression of cPLA(2α) mRNA and enzyme was examined by RT-PCR and cPLA(2) activity assays, respectively. Apoptosis of corneal epithelial cells was determined by caspase-3 and DNA fragmentation assays. Expression of IL-8, IL-6, IL-1β, and IFN-γ was examined by RT-PCR and ELISA. RESULTS MIP-133 induced significant cPLA(2α) (approximately two to four times) and AA release (approximately six times) from corneal cells while cPLA(2α) inhibitors significantly reduced cPLA(2α) (approximately two to four times) and AA release (approximately three times) (P < 0.05). cPLA(2α) inhibitors significantly inhibited MIP-133-induced DNA fragmentation approximately 7 to 12 times in HCE cells (P < 0.05). MIP-133 specifically activates cPLA(2α) enzyme activity in HCE cells, which is blocked by preincubation with anti-MIP-133 antibody. In addition, MIP-133 induced significant IL-8, IL-6, IL-1β, and IFN-γ production, approximately two to three times (P < 0.05). CONCLUSIONS MIP-133 interacts with phospholipids on plasma membrane of HCE cells and activates cPLA(2α). cPLA(2α) is involved in apoptosis, AA release, and activation of proinflammatory cytokines/chemokines from HCE cells. cPLA(2α) inhibitors may be a therapeutic target in Acanthamoeba keratitis.
Collapse
Affiliation(s)
- Trivendra Tripathi
- Department of Cell Biology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
26
|
Pan H, Wu X. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells. Biochem Biophys Res Commun 2012; 420:685-91. [PMID: 22450324 DOI: 10.1016/j.bbrc.2012.03.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/10/2012] [Indexed: 10/28/2022]
Abstract
Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-β (IFN-β) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-β. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-κB and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88) MyD88 expression and NF-κB activation, confirming that hypoxia suppressed the LPS-induced inflammatory response by affecting TLR4 signaling. In conclusion, our results demonstrated that hypoxia attenuated the host immune and inflammatory response against Acanthamoeba infection by suppressing TLR4 signaling, indicating that hypoxia might impair the host cell's ability to eliminate the Acanthamoeba invasion and that hypoxia could enhance cell susceptibility to Acanthamoeba infection. These results may explain why contact lens use is one of the most prominent risk factors for AK.
Collapse
Affiliation(s)
- Hong Pan
- Department of Ophthalmology, Qilu Hospital, Shandong University, 107#, Wenhua Xi Road, Jinan 250012, PR China
| | | |
Collapse
|
27
|
Shi L, Chang Y, Yang Y, Zhang Y, Yu FSX, Wu X. Activation of JNK signaling mediates connective tissue growth factor expression and scar formation in corneal wound healing. PLoS One 2012; 7:e32128. [PMID: 22363806 PMCID: PMC3283717 DOI: 10.1371/journal.pone.0032128] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/24/2012] [Indexed: 12/29/2022] Open
Abstract
Connective Tissue Growth Factor (CTGF) and Transforming growth factor-β1 (TGF-β1) are key growth factors in regulating corneal scarring. Although CTGF was induced by TGF-β1 and mediated many of fibroproliferative effects of TGF-β1, the signaling pathway for CTGF production in corneal scarring remains to be clarified. In the present study, we firstly investigated the effects of c-Jun N-terminal kinase (JNK) on CTGF expression induce by TGF-β1 in Telomerase-immortalized human cornea stroma fibroblasts (THSF). Then, we created penetrating corneal wound model and determined the effect of JNK in the pathogenesis of corneal scarring. TGF-β1 activated MAPK pathways in THSF cells. JNK inhibitor significantly inhibited CTGF, fibronectin and collagen I expression induced by TGF-β1 in THSF. In corneal wound healing, the JNK inhibitor significantly inhibited CTGF expression, markedly improved the architecture of corneal stroma and reduced corneal scar formation, but did not have a measurable impact on corneal wound healing in vivo. Our results indicate that JNK mediates the expression of CTGF and corneal scarring in corneal wound healing, and might be considered as specific targets of drug therapy for corneal scarring.
Collapse
Affiliation(s)
- Long Shi
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Yuan Chang
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Yongmei Yang
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Ying Zhang
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Fu-Shin X. Yu
- Departments of Ophthalmology, Anatomy, and Cell Biology, Wayne State University School of Medicine, Detroit, United States of America
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital, Shandong University, Jinan, People's Republic of China
- * E-mail:
| |
Collapse
|
28
|
|
29
|
Tidswell M, LaRosa SP. Toll-like receptor-4 antagonist eritoran tetrasodium for severe sepsis. Expert Rev Anti Infect Ther 2011; 9:507-20. [PMID: 21609262 DOI: 10.1586/eri.11.27] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The human innate immune system initiates inflammation in response to bacterial molecules, particularly Gram-negative bacterial endotoxin. The steps by which endotoxin exposure leads to systemic inflammation include binding to Toll-like receptor-4 that specifically recognizes endotoxin and subsequently triggers cellular and molecular inflammatory responses. Severe sepsis is a systemic inflammatory response to infection that induces organ dysfunction and threatens a person's survival. Severe sepsis is frequently associated with increased blood levels of endotoxin. It is a significant medical problem that effects approximately 700,000 patients every year in the USA, resulting in 250,000 deaths. Eritoran tetrasodium is a nonpathogenic analog of bacterial endotoxin that antagonizes inflammatory signaling by the immune receptor Toll-like receptor-4. Eritoran is being evaluated for the treatment of patients with severe sepsis.
Collapse
Affiliation(s)
- Mark Tidswell
- Adult Critical Care Division, Baystate Medical Center, 759 Chestnut Street, Springfield, MA 01199, USA.
| | | |
Collapse
|
30
|
Effect of Toll-like receptor 2 and 4 of corneal fibroblasts on cytokine expression with co-cultured antigen presenting cells. Cytokine 2011; 56:265-71. [PMID: 21820318 DOI: 10.1016/j.cyto.2011.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/29/2011] [Accepted: 07/05/2011] [Indexed: 11/20/2022]
Abstract
Keratocytes are the first component to contact ocular pathogens when the epithelial barrier breaks down and the emerging evidences indicated keratocytes appeared to be one of the corneal cellular immune components. Little is known about the role of Toll-like receptors (TLRs) in keratocytes, although it has been well documented that keratocytes constitutively express various TLRs including TLR2 and TLR4. In this in vitro study, the authors focused on the role of keratocytes in corneal innate immune system and cross-talk of keratocytes with resident antigen presenting cells (APCs), especially through TLR2 and TLR4. Primary cultivated keratocytes (corneal fibroblasts) from C57BL/6 mice per se actively secreted pro-inflammatory cytokines, especially interleukin (IL)-6, with a dose-dependent manner in response to Pam3CSK4 or lipopolysaccharide (LPS) challenge. With co-culture of corneal fibroblasts with APCs per se, secretion of IL-6 and tumor necrosis factor (TNF)-α was markedly increased and it was counterbalanced by concurrent increase in IL-10 and tumor growth factor-β1. After Pam3CSK4 or LPS stimulation, this cytokine balance was completely broken down by overwhelming amplification of IL-6 and TNF-α secretion, especially in co-culture of corneal fibroblasts with macrophages, rather than with dendritic cells. Using corneal fibroblasts from TLR2 or TLR4 knockout mice, we could find the reversal of Pam3CSK4 or LPS-responsive dose-dependent increment in IL-6 and TNF-α. These results implied that corneal fibroblasts and their TLRs could be key components for the ocular homeostasis and pathogen-associated ocular innate immunity.
Collapse
|
31
|
Abstract
The ocular surface is the first line of defence in the eye against environmental microbes. The ocular innate immune system consists of a combination of anatomical, mechanical and immunological defence mechanisms. TLRs (Toll-like receptors), widely expressed by the ocular surface, are able to recognize microbial pathogens and to trigger the earliest immune response leading to inflammation. Increasing evidence highlights the crucial role of TLRs in regulating innate immune responses during ocular surface infective and non-infective inflammatory conditions. In addition, recent observations have shown that TLRs modulate the adaptive immune response, also playing an important role in ocular autoimmune and allergic diseases. One of the main goals of ocular surface treatment is to control the inflammatory reaction in order to preserve corneal integrity and transparency. Recent experimental evidence has shown that specific modulation of TLR pathways induces an improvement in several ocular inflammatory conditions, such as allergic conjunctivitis, suggesting new therapeutic anti-inflammatory strategies. The purpose of the present review is to summarize the current knowledge of TLRs at the ocular surface and to propose them as potential targets of therapy for ocular inflammatory conditions.
Collapse
|
32
|
REN MY, WU XY. Toll-like receptor 4 signalling pathway activation in a rat model of Acanthamoeba Keratitis. Parasite Immunol 2010; 33:25-33. [DOI: 10.1111/j.1365-3024.2010.01247.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|