1
|
La Marca JE, Kelly GL, Strasser A, Diepstraten ST. Don't fear the reaper: The role of regulated cell death in tumorigenesis and BH3-mimetics for cancer therapy. Dev Cell 2024; 59:2532-2548. [PMID: 39378839 DOI: 10.1016/j.devcel.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 10/10/2024]
Abstract
From its earliest characterization, it has been recognized that there is a role for regulated (programmed) cell death in cancer. As our understanding of the different types of programmed cell death processes and their molecular control has advanced, so have the technologies that allow us to manipulate these processes to, for example, fight against cancer. In this review, we describe the roles of the different forms of regulated cell death in the development of cancer as well as their potential therapeutic exploitation. In that vein, we explore the development and use of BH3-mimetics, a unique class of drugs that can directly activate the apoptotic cell death machinery to treat cancer. Finally, we address key challenges that face the field to improve the use of these therapeutics and the efforts that are being undertaken to do so.
Collapse
Affiliation(s)
- John E La Marca
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Genome Engineering and Cancer Modelling Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Davies KA, Czabotar PE, Murphy JM. Death at a funeral: Activation of the dead enzyme, MLKL, to kill cells by necroptosis. Curr Opin Struct Biol 2024; 88:102891. [PMID: 39059047 DOI: 10.1016/j.sbi.2024.102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Necroptosis is a lytic form of programmed cell death implicated in inflammatory pathologies, leading to intense interest in the underlying mechanisms and therapeutic prospects. Here, we review our current structural understanding of how the terminal executioner of the pathway, the dead kinase, mixed lineage kinase domain-like (MLKL), is converted from a dormant to killer form by the upstream regulatory kinase, RIPK3. RIPK3-mediated phosphorylation of MLKL's pseudokinase domain toggles a molecular switch that induces dissociation from a cytoplasmic platform, assembly of MLKL oligomers, and trafficking to the plasma membrane, where activated MLKL accumulates and permeabilises the lipid bilayer to induce cell death. We highlight gaps in mechanistic knowledge of MLKL's activation, how mechanisms diverge between species, and the power of modelling in advancing structural insights.
Collapse
Affiliation(s)
- Katherine A Davies
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
3
|
Blackhurst BM, Funk KE. Molecular and Cellular Mechanisms Underlying Neurologic Manifestations of Mosquito-Borne Flavivirus Infections. Viruses 2023; 15:2200. [PMID: 38005878 PMCID: PMC10674799 DOI: 10.3390/v15112200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Flaviviruses are a family of enveloped viruses with a positive-sense RNA genome, transmitted by arthropod vectors. These viruses are known for their broad cellular tropism leading to infection of multiple body systems, which can include the central nervous system. Neurologic effects of flavivirus infection can arise during both acute and post-acute infectious periods; however, the molecular and cellular mechanisms underlying post-acute sequelae are not fully understood. Here, we review recent studies that have examined molecular and cellular mechanisms that may contribute to neurologic sequelae following infection with the West Nile virus, Japanese encephalitis virus, Zika virus, dengue virus, and St. Louis encephalitis virus. Neuronal death, either from direct infection or due to the resultant inflammatory response, is a common mechanism by which flavivirus infection can lead to neurologic impairment. Other types of cellular damage, such as oxidative stress and DNA damage, appear to be more specific to certain viruses. This article aims to highlight mechanisms of cellular damage that are common across several flavivirus members and mechanisms that are more unique to specific members. Our goal is to inspire further research to improve understanding of this area in the hope of identifying treatment options for flavivirus-associated neurologic changes.
Collapse
Affiliation(s)
| | - Kristen E. Funk
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
4
|
Du L, Wu Y, Pan Y, Wang L, Zhang H, Li J, Liu Y, Zhang H, He P. Lipopolysaccharide and Glycolipoprotein Coordinately Triggered Necroptosis Contributes to the Pathogenesis of Leptospira Infection in Mice. J Infect Dis 2023; 228:944-956. [PMID: 37166078 DOI: 10.1093/infdis/jiad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/08/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Leptospirosis is a recurring but neglected zoonotic disease caused by pathogenic Leptospira. The explicit underlying mechanism of necroptosis and its role in Leptospira infection have not yet been elucidated. Here we reported that leptospiral pathogen-associated molecular patterns, lipopolysaccharide, and glycolipoprotein activate the necroptotic RIPK1-RIPK3-MLKL cascade through the TLR4 signaling pathway in mouse macrophages. Using the murine acute leptospirosis model, we reveal that abolition of necroptosis exhibited significantly improved outcomes in acute phases, with enhanced eradication of Leptospira from liver, mild clinical symptoms, and decreased cytokine production. RIPK3 was also found to exert a necroptosis-independent function in CXCL1 production and neutrophil recruitment, with the consequence of improved Leptospira control. These findings improve our understanding of the mechanism of Leptospira-macrophage interactions, indicating potential therapeutic values by targeting necroptosis signaling pathways.
Collapse
Affiliation(s)
- Lin Du
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunqiang Wu
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Pan
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingxia Wang
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haiwei Zhang
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiayin Li
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ya'nan Liu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibing Zhang
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping He
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Stringer JM, Alesi LR, Winship AL, Hutt KJ. Beyond apoptosis: evidence of other regulated cell death pathways in the ovary throughout development and life. Hum Reprod Update 2023; 29:434-456. [PMID: 36857094 PMCID: PMC10320496 DOI: 10.1093/humupd/dmad005] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Regulated cell death is a fundamental component of numerous physiological processes; spanning from organogenesis in utero, to normal cell turnover during adulthood, as well as the elimination of infected or damaged cells throughout life. Quality control through regulation of cell death pathways is particularly important in the germline, which is responsible for the generation of offspring. Women are born with their entire supply of germ cells, housed in functional units known as follicles. Follicles contain an oocyte, as well as specialized somatic granulosa cells essential for oocyte survival. Follicle loss-via regulated cell death-occurs throughout follicle development and life, and can be accelerated following exposure to various environmental and lifestyle factors. It is thought that the elimination of damaged follicles is necessary to ensure that only the best quality oocytes are available for reproduction. OBJECTIVE AND RATIONALE Understanding the precise factors involved in triggering and executing follicle death is crucial to uncovering how follicle endowment is initially determined, as well as how follicle number is maintained throughout puberty, reproductive life, and ovarian ageing in women. Apoptosis is established as essential for ovarian homeostasis at all stages of development and life. However, involvement of other cell death pathways in the ovary is less established. This review aims to summarize the most recent literature on cell death regulators in the ovary, with a particular focus on non-apoptotic pathways and their functions throughout the discrete stages of ovarian development and reproductive life. SEARCH METHODS Comprehensive literature searches were carried out using PubMed and Google Scholar for human, animal, and cellular studies published until August 2022 using the following search terms: oogenesis, follicle formation, follicle atresia, oocyte loss, oocyte apoptosis, regulated cell death in the ovary, non-apoptotic cell death in the ovary, premature ovarian insufficiency, primordial follicles, oocyte quality control, granulosa cell death, autophagy in the ovary, autophagy in oocytes, necroptosis in the ovary, necroptosis in oocytes, pyroptosis in the ovary, pyroptosis in oocytes, parthanatos in the ovary, and parthanatos in oocytes. OUTCOMES Numerous regulated cell death pathways operate in mammalian cells, including apoptosis, autophagic cell death, necroptosis, and pyroptosis. However, our understanding of the distinct cell death mediators in each ovarian cell type and follicle class across the different stages of life remains the source of ongoing investigation. Here, we highlight recent evidence for the contribution of non-apoptotic pathways to ovarian development and function. In particular, we discuss the involvement of autophagy during follicle formation and the role of autophagic cell death, necroptosis, pyroptosis, and parthanatos during follicle atresia, particularly in response to physiological stressors (e.g. oxidative stress). WIDER IMPLICATIONS Improved knowledge of the roles of each regulated cell death pathway in the ovary is vital for understanding ovarian development, as well as maintenance of ovarian function throughout the lifespan. This information is pertinent not only to our understanding of endocrine health, reproductive health, and fertility in women but also to enable identification of novel fertility preservation targets.
Collapse
Affiliation(s)
- Jessica M Stringer
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lauren R Alesi
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Amy L Winship
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Karla J Hutt
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
6
|
Huyghe J, Priem D, Bertrand MJM. Cell death checkpoints in the TNF pathway. Trends Immunol 2023:S1471-4906(23)00105-9. [PMID: 37357102 DOI: 10.1016/j.it.2023.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Tumor necrosis factor (TNF) plays a central role in orchestrating mammalian inflammatory responses. It promotes inflammation either directly by inducing inflammatory gene expression or indirectly by triggering cell death. TNF-mediated cell death-driven inflammation can be beneficial during infection by providing cell-extrinsic signals that help to mount proper immune responses. Uncontrolled cell death caused by TNF is instead highly detrimental and is believed to cause several human autoimmune diseases. Death is not the default response to TNF sensing. Molecular brakes, or cell death checkpoints, actively repress TNF cytotoxicity to protect the organism from its detrimental consequences. These checkpoints therefore constitute essential safeguards against inflammatory diseases. Recent advances in the field have revealed the existence of several new and unexpected brakes against TNF cytotoxicity and pathogenicity.
Collapse
Affiliation(s)
- Jon Huyghe
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Dario Priem
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Mathieu J M Bertrand
- Cell Death and Inflammation Unit, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
7
|
Purnama CA, Meiliana A, Barliana MI, Lestari K. Update of cellular responses to the efferocytosis of necroptosis and pyroptosis. Cell Div 2023; 18:5. [PMID: 37032375 PMCID: PMC10084608 DOI: 10.1186/s13008-023-00087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/01/2023] [Indexed: 04/11/2023] Open
Abstract
Cell death is a basic physiological process that occurs in all living organisms. A few key players in these mechanisms, as well as various forms of cell death programming, have been identified. Apoptotic cell phagocytosis, also known as apoptotic cell clearance, is a well-established process regulated by a number of molecular components, including 'find-me', 'eat-me' and engulfment signals. Efferocytosis, or the rapid phagocytic clearance of cell death, is a critical mechanism for tissue homeostasis. Despite having similar mechanism to phagocytic clearance of infections, efferocytosis differs from phagocytosis in that it induces a tissue-healing response and is immunologically inert. However, as field of cell death has rapid expanded, much attention has recently been drawn to the efferocytosis of additional necrotic-like cell types, such as necroptosis and pyroptosis. Unlike apoptosis, this method of cell suicide allows the release of immunogenic cellular material and causes inflammation. Regardless of the cause of cell death, the clearance of dead cells is a necessary function to avoid uncontrolled synthesis of pro-inflammatory molecules and inflammatory disorder. We compare and contrast apoptosis, necroptosis and pyroptosis, as well as the various molecular mechanisms of efferocytosis in each type of cell death, and investigate how these may have functional effects on different intracellular organelles and signalling networks. Understanding how efferocytic cells react to necroptotic and pyroptotic cell uptake can help us understand how to modulate these cell death processes for therapeutic purposes.
Collapse
Affiliation(s)
- Chandra Agung Purnama
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia
- Prodia Clinical Laboratory, Jl. Supratman No. 43, Bandung, 40114, Indonesia
| | - Anna Meiliana
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia
- Prodia Clinical Laboratory, Jl. Supratman No. 43, Bandung, 40114, Indonesia
- Prodia Education and Research Institute, Jl. Kramat Raya No 150, Jakarta, Indonesia
| | - Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia.
- Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia.
| | - Keri Lestari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia
- Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia
| |
Collapse
|
8
|
Porcine sapovirus-induced RIPK1-dependent necroptosis is proviral in LLC-PK cells. PLoS One 2023; 18:e0279843. [PMID: 36735696 PMCID: PMC9897573 DOI: 10.1371/journal.pone.0279843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/15/2022] [Indexed: 02/04/2023] Open
Abstract
Sapoviruses belonging to the genus Sapovirus within the family Caliciviridae are commonly responsible for severe acute gastroenteritis in both humans and animals. Caliciviruses are known to induce intrinsic apoptosis in vitro and in vivo, however, calicivirus-induced necroptosis remains to be fully elucidated. Here, we demonstrate that infection of porcine kidney LLC-PK cells with porcine sapovirus (PSaV) Cowden strain as a representative of caliciviruses induces receptor-interacting protein kinase 1 (RIPK1)-dependent necroptosis and acts as proviral compared to the antiviral function of PSaV-induced apoptosis. Infection of LLC-PK cells with PSaV Cowden strain showed that the interaction of phosphorylated RIPK1 (pRIPK1) with RIPK3 (pRIPK3), mixed lineage kinase domain-like protein (pMLKL) increased in a time-dependent manner, indicating induction of PSaV-induced RIPK1-dependent necroptosis. Interfering of PSaV-infected cells with each necroptotic molecule (RIPK1, RIPK3, or MLKL) by treatment with each specific chemical inhibitor or knockdown with each specific siRNA significantly reduced replication of PSaV but increased apoptosis and cell viability, implying proviral action of PSaV-induced necroptosis. In contrast, treatment of PSaV-infected cells with pan-caspase inhibitor Z-VAD-FMK increased PSaV replication and necroptosis, indicating an antiviral action of PSaV-induced apoptosis. These results suggest that PSaV-induced RIPK1-dependent necroptosis and apoptosis‒which have proviral and antiviral effects, respectively‒counterbalanced each other in virus-infected cells. Our study contributes to understanding the nature of PSaV-induced necroptosis and apoptosis and will aid in developing efficient and affordable therapies against PSaV and other calicivirus infections.
Collapse
|
9
|
Daniels BP, Oberst A. Outcomes of RIP Kinase Signaling During Neuroinvasive Viral Infection. Curr Top Microbiol Immunol 2023; 442:155-174. [PMID: 32253569 PMCID: PMC7781604 DOI: 10.1007/82_2020_204] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuroinvasive viral diseases are a considerable and growing burden on global public health. Despite this, these infections remain poorly understood, and the molecular mechanisms that govern protective versus pathological neuroinflammatory responses to infection are a matter of intense investigation. Recent evidence suggests that necroptosis, an immunogenic form of programmed cell death, may contribute to the pathogenesis of viral encephalitis. However, the receptor-interacting protein (RIP) kinases that coordinate necroptosis, RIPK1 and RIPK3, also appear to have unexpected, cell death-independent functions in the central nervous system (CNS) that promote beneficial neuroinflammation during neuroinvasive infection. Here, we review the emerging evidence in this field, with additional discussion of recent work examining roles for RIPK signaling and necroptosis during noninfectious pathologies of the CNS, as these studies provide important additional insight into the potential for specialized neuroimmune functions for the RIP kinases.
Collapse
Affiliation(s)
- Brian P Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
10
|
Song Y, Zhang J, Fang L, Liu W. Prognostic necroptosis-related gene signature aids immunotherapy in lung adenocarcinoma. Front Genet 2022; 13:1027741. [PMID: 36506314 PMCID: PMC9732465 DOI: 10.3389/fgene.2022.1027741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Background: Necroptosis is a phenomenon of cellular necrosis resulting from cell membrane rupture by the corresponding activation of Receptor Interacting Protein Kinase 3 (RIPK3) and Mixed Lineage Kinase domain-Like protein (MLKL) under programmed regulation. It is reported that necroptosis is closely related to the development of tumors, but the prognostic role and biological function of necroptosis in lung adenocarcinoma (LUAD), the most important cause of cancer-related deaths, is still obscure. Methods: In this study, we constructed a prognostic Necroptosis-related gene signature based on the RNA transcription data of LUAD patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases as well as the corresponding clinical information. Kaplan-Meier analysis, receiver operating characteristic (ROC), and Cox regression were made to validate and evaluate the model. We analyzed the immune landscape in LUAD and the relationship between the signature and immunotherapy regimens. Results: Five genes (RIPK3, MLKL, TLR2, TNFRSF1A, and ALDH2) were used to construct the prognostic signature, and patients were divided into high and low-risk groups in line with the risk score. Cox regression showed that risk score was an independent prognostic factor. Nomogram was created for predicting the survival rate of LUAD patients. Patients in high and low-risk groups have different tumor purity, tumor immunogenicity, and different sensitivity to common antitumor drugs. Conclusion: Our results highlight the association of necroptosis with LUAD and its potential use in guiding immunotherapy.
Collapse
Affiliation(s)
- Yuqi Song
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, China
| | - Jinming Zhang
- First Hospital of Jilin University, Changchun, China
| | - Linan Fang
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, China,*Correspondence: Linan Fang, ; Wei Liu,
| | - Wei Liu
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, China,*Correspondence: Linan Fang, ; Wei Liu,
| |
Collapse
|
11
|
Lei K, Tan B, Liang R, Lyu Y, Wang K, Wang W, Wang K, Hu X, Wu D, Lin H, Wang M. Development and clinical validation of a necroptosis-related gene signature for prediction of prognosis and tumor immunity in lung adenocarcinoma. Am J Cancer Res 2022; 12:5160-5182. [PMID: 36504901 PMCID: PMC9729905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022] Open
Abstract
Necroptosis is a new programmed formation of necrotizing cell death, which plays important role in tumor biological regulation, including tumorigenesis and immunity. In this study, we aimed to establish and validate a prediction model based on necroptosis-related genes (NRGs) for lung adenocarcinoma (LUAD) prognosis and tumor immunity. The training set consisted of samples from The Cancer Genome Atlas (TCGA) dataset (n = 334), and the validation sets consisted of samples from the Gene Expression Omnibus (GEO) (n = 439) and clinical (n = 20) datasets. Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that 28 necroptosis-related differentially expressed genes (DEGs) were enriched in cell death and immune regulation. RT-qPCR and western blot results showed the low expression of necroptosis markers in LUAD cells. A prognostic gene signature based on 6 NRGs (PYGB, IL1A, IFNAR2, BIRC3, H2AFY2, and H2AFX) was constructed and the risk score was calculated. Multivariate Cox regression analysis showed that the risk score was an independent risk factor [hazard ratio (HR) = 1.220, 95% confidence interval (CI): 1.154-1.290, P<0.001]. In the TCGA cohort, a high-risk score was associated with poor prognosis, weak immune infiltration, and low expression at immune checkpoints, which was validated in the GEO and clinical cohorts. Our findings showed that the patients in the low-risk group had a better progression-free survival (PFS) [not reached vs. 8.5 months, HR = 0.18, 95% CI: 0.04-0.72, P<0.001] than those in the high-risk score group. Immunotherapy tolerance was found to be correlated with the high-risk score, and the risk score combined with PD-L1 (AUC = 0.808, 95% CI: 0.613-1.000) could better predict the immunotherapy response of LUAD. A nomogram was shown to have a strong ability to predict the individual survival rate of patients with LUAD in the TCGA and GSE68465 cohorts. We constructed and validated a potential prognostic signature consisting of 6 NRGs to predict the prognosis and tumor immunity of LUAD, which may be helpful to guide the individualized immunotherapy of LUAD.
Collapse
Affiliation(s)
- Kai Lei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China,Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Binghua Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China,Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Ruihao Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China,Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Yingcheng Lyu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China,Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Kexi Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China,Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Wenjian Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China,Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Kefeng Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China,Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Xueting Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China,Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Duoguang Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China,Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Huayue Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Minghui Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China,Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou, Guangdong, China
| |
Collapse
|
12
|
Zhang J, He X, Hu J, Li T. Characterization of Necroptosis-Related Molecular Subtypes and Therapeutic Response in Lung Adenocarcinoma. Front Genet 2022; 13:920350. [PMID: 35754848 PMCID: PMC9214237 DOI: 10.3389/fgene.2022.920350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most common malignant tumors with high morbidity and mortality and is usually associated with therapeutic resistance and poor prognosis because of individual biological heterogeneity. There is an unmet need to screen for reliable parameters, especially immunotherapy-related biomarkers to predict the patient’s outcomes. Necroptosis is a special caspase-independent form of necrotic cell death associated with the pathogenesis, progression, and prognosis of multiple tumors but the potential connection between necroptosis-related genes (NRGs) and LUAD still remains unclear. In this study, we expounded mutational and transcriptional alterations of 67 NRGs in 522 LUAD samples and proposed a consensus-clustering subtype of these patients into two cohorts with distinct immunological and clinical prognosis characteristics. Cluster B patients were associated with a better prognosis and characterized by relatively lower expression of NRGs, higher immune scores in the tumor microenvironment (TME), more mild clinical stages, and downregulated expression of immunotherapy checkpoints. Subsequently, the NRG score was further established to predict the overall survival (OS) of LUAD patients using univariate Cox, LASSO, and multivariate Cox regression analyses. The immunological characteristics and potential predictive capability of NRG scores were further validated by 583 LUAD patients in external datasets. In addition to better survival and immune-activated conditions, low-NRG-score cohorts exhibited a significant positive correlation with the mRNA stem index (mRNAsi) and tumor mutation burden (TMB) levels. Combined with classical clinical characteristics and NRG scores, we successfully defined a novel necroptosis-related nomogram to accurately predict the 1/3/5-year survival rate of individual LUAD patients, and the potential predictive capability was further estimated and validated in multiple test datasets with high AUC values. Integrated transcriptomic analysis helps us seek vital NRGs and supplements a novel clinical application of NRG scores in predicting the overall survival and therapeutic benefits for LUAD patients.
Collapse
Affiliation(s)
- Jingchen Zhang
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xujian He
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jia Hu
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Tong Li
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Li J, Yang K, Pan X, Peng H, Hou C, Xiao J, Wang Q. Long Noncoding RNA MIAT Regulates Hyperosmotic Stress-Induced Corneal Epithelial Cell Injury via Inhibiting the Caspase-1-Dependent Pyroptosis and Apoptosis in Dry Eye Disease. J Inflamm Res 2022; 15:3269-3283. [PMID: 35676970 PMCID: PMC9169976 DOI: 10.2147/jir.s361541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/20/2022] [Indexed: 12/21/2022] Open
Abstract
Purpose The biological role and mechanism of long noncoding RNA (lncRNA) myocardial infarction-associated transcript (MIAT) in dry eye remain to be illustrated. Pyroptosis is a noticeable form of inflammatory activation, which is characteristic of gasdermin D (GSDMD)-driven cell death. The present study was designed to explore the role of MIAT in pyroptosis and apoptosis induced by hyperosmolarity stress (HS) in human corneal epithelial cells (HCECs). Methods HCECs were cultured in 70–120 mM hyperosmotic medium for 24 h to create a dry eye model in vitro. The level of the pyroptosis marker GSDMD was measured, and the cell inflammatory response was evaluated by detecting IL-1β and IL-18 levels. Exogenous caspase-1 inhibitor Ac-YVAD-CHO was used. The pyroptosis in HCECs was examined by caspase-1 activity, immunofluorescent staining, and Western blotting. Flow cytometry was performed to test the apoptosis rate of HCECs. Cell migration and proliferation were detected. The expression of the lncRNA MIAT in HCECs was detected by quantitative real-time PCR. MIAT was knocked down by small interfering RNA (siRNA) transfection. The effects of caspase-1 inhibition on pyroptosis, apoptosis, migration, and proliferation were observed. Results HS promoted pyroptosis in HCECs by elevating caspase-1, GSDMD, and the active cleavage of GSDMD (N-terminal domain, N-GSDMD), and increased the release of IL-1β, IL-18, LDH and the rate of apoptosis, with reduced cell migration. These changes were prevented by the inhibition of caspase-1. The expression of MIAT was significantly increased in HCECs exposed to a hyperosmotic medium. Silencing MIAT increased the expression of GSDMD, caspase-1, and inflammatory chemokines IL-1β and IL-18, and promoted apoptosis while inhibiting migration and proliferation in HCECs. Conclusion The lncRNA MIAT is involved in HS-induced pyroptosis and apoptosis and the inflammatory response of HCECs and provides a new understanding of the pathogenesis of dry eye.
Collapse
Affiliation(s)
- Jinjian Li
- Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, 266500, People’s Republic of China
| | - Kun Yang
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, 266500, People’s Republic of China
| | - Xinghui Pan
- Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, 266500, People’s Republic of China
| | - Hui Peng
- Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, 266500, People’s Republic of China
| | - Chenting Hou
- Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, 266500, People’s Republic of China
| | - Jie Xiao
- Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, 266500, People’s Republic of China
| | - Qing Wang
- Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, 266500, People’s Republic of China
- Correspondence: Qing Wang, Ophthalmology, Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266500, People’s Republic of China, Tel +86 17853290636, Fax +86 532 82911747, Email
| |
Collapse
|
14
|
Zhang Y, Mou Y, Zhang J, Suo C, Zhou H, Gu M, Wang Z, Tan R. Therapeutic Implications of Ferroptosis in Renal Fibrosis. Front Mol Biosci 2022; 9:890766. [PMID: 35655759 PMCID: PMC9152458 DOI: 10.3389/fmolb.2022.890766] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Renal fibrosis is a common feature of chronic kidney disease (CKD), and can lead to the destruction of normal renal structure and loss of kidney function. Little progress has been made in reversing fibrosis in recent years. Ferroptosis is more immunogenic than apoptosis due to the release and activation of damage-related molecular patterns (DAMPs) signals. In this paper, the relationship between renal fibrosis and ferroptosis was reviewed from the perspective of iron metabolism and lipid peroxidation, and some pharmaceuticals or chemicals associated with both ferroptosis and renal fibrosis were summarized. Other programmed cell death and ferroptosis in renal fibrosis were also firstly reviewed for comparison and further investigation.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhua Mou
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jianjian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanjian Suo
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ruoyun Tan,
| |
Collapse
|
15
|
Pyroptosis and Sarcopenia: Frontier Perspective of Disease Mechanism. Cells 2022; 11:cells11071078. [PMID: 35406642 PMCID: PMC8998102 DOI: 10.3390/cells11071078] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023] Open
Abstract
With global ageing, sarcopenia, as an age-related disease, has brought a heavy burden to individuals and society. Increasing attention has been given to further exploring the morbidity mechanism and intervention measures for sarcopenia. Pyroptosis, also known as cellular inflammatory necrosis, is a kind of regulated cell death that plays a role in the ageing progress at the cellular level. It is closely related to age-related diseases such as cardiovascular diseases, Alzheimer’s disease, osteoarthritis, and sarcopenia. In the process of ageing, aggravated oxidative stress and poor skeletal muscle perfusion in ageing muscle tissues can activate the nod-like receptor (NLRP) family to trigger pyroptosis. Chronic inflammation is a representative characteristic of ageing. The levels of inflammatory factors such as TNF-α may activate the signaling pathways of pyroptosis by the NF-κB-GSDMD axis, which remains to be further studied. Autophagy is a protective mechanism in maintaining the integrity of intracellular organelles and the survival of cells in adverse conditions. The autophagy of skeletal muscle cells can inhibit the activation of the pyroptosis pathway to some extent. A profound understanding of the mechanism of pyroptosis in sarcopenia may help to identify new therapeutic targets in the future. This review article focuses on the role of pyroptosis in the development and progression of sarcopenia.
Collapse
|
16
|
Herbert A, Fedorov A, Poptsova M. Mono a Mano: ZBP1’s Love–Hate Relationship with the Kissing Virus. Int J Mol Sci 2022; 23:ijms23063079. [PMID: 35328502 PMCID: PMC8955656 DOI: 10.3390/ijms23063079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022] Open
Abstract
Z-DNA binding protein (ZBP1) very much represents the nuclear option. By initiating inflammatory cell death (ICD), ZBP1 activates host defenses to destroy infectious threats. ZBP1 is also able to induce noninflammatory regulated cell death via apoptosis (RCD). ZBP1 senses the presence of left-handed Z-DNA and Z-RNA (ZNA), including that formed by expression of endogenous retroelements. Viruses such as the Epstein–Barr “kissing virus” inhibit ICD, RCD and other cell death signaling pathways to produce persistent infection. EBV undergoes lytic replication in plasma cells, which maintain detectable levels of basal ZBP1 expression, leading us to suggest a new role for ZBP1 in maintaining EBV latency, one of benefit for both host and virus. We provide an overview of the pathways that are involved in establishing latent infection, including those regulated by MYC and NF-κB. We describe and provide a synthesis of the evidence supporting a role for ZNA in these pathways, highlighting the positive and negative selection of ZNA forming sequences in the EBV genome that underscores the coadaptation of host and virus. Instead of a fight to the death, a state of détente now exists where persistent infection by the virus is tolerated by the host, while disease outcomes such as death, autoimmunity and cancer are minimized. Based on these new insights, we propose actionable therapeutic approaches to unhost EBV.
Collapse
Affiliation(s)
- Alan Herbert
- InsideOutBio, 42 8th Street, Charlestown, MA 02129, USA
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky Bulvar, 101000 Moscow, Russia; (A.F.); (M.P.)
- Correspondence:
| | - Aleksandr Fedorov
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky Bulvar, 101000 Moscow, Russia; (A.F.); (M.P.)
| | - Maria Poptsova
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky Bulvar, 101000 Moscow, Russia; (A.F.); (M.P.)
| |
Collapse
|
17
|
Witkop EM, Proestou DA, Gomez-Chiarri M. The expanded inhibitor of apoptosis gene family in oysters possesses novel domain architectures and may play diverse roles in apoptosis following immune challenge. BMC Genomics 2022; 23:201. [PMID: 35279090 PMCID: PMC8917759 DOI: 10.1186/s12864-021-08233-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background Apoptosis plays important roles in a variety of functions, including immunity and response to environmental stress. The Inhibitor of Apoptosis (IAP) gene family of apoptosis regulators is expanded in molluscs, including eastern, Crassostrea virginica, and Pacific, Crassostrea gigas, oysters. The functional importance of IAP expansion in apoptosis and immunity in oysters remains unknown. Results Phylogenetic analysis of IAP genes in 10 molluscs identified lineage specific gene expansion in bivalve species. Greater IAP gene family expansion was observed in C. virginica than C. gigas (69 vs. 40), resulting mainly from tandem duplications. Functional domain analysis of oyster IAP proteins revealed 3 novel Baculoviral IAP Repeat (BIR) domain types and 14 domain architecture types across gene clusters, 4 of which are not present in model organisms. Phylogenetic analysis of bivalve IAPs suggests a complex history of domain loss and gain. Most IAP genes in oysters (76% of C. virginica and 82% of C. gigas), representing all domain architecture types, were expressed in response to immune challenge (Ostreid Herpesvirus OsHV-1, bacterial probionts Phaeobacter inhibens and Bacillus pumilus, several Vibrio spp., pathogenic Aliiroseovarius crassostreae, and protozoan parasite Perkinsus marinus). Patterns of IAP and apoptosis-related differential gene expression differed between the two oyster species, where C. virginica, in general, differentially expressed a unique set of IAP genes in each challenge, while C. gigas differentially expressed an overlapping set of IAP genes across challenges. Apoptosis gene expression patterns clustered mainly by resistance/susceptibility of the oyster host to immune challenge. Weighted Gene Correlation Network Analysis (WGCNA) revealed unique combinations of transcripts for 1 to 12 IAP domain architecture types, including novel types, were significantly co-expressed in response to immune challenge with transcripts in apoptosis-related pathways. Conclusions Unprecedented diversity characterized by novel BIR domains and protein domain architectures was observed in oyster IAPs. Complex patterns of gene expression of novel and conserved IAPs in response to a variety of ecologically-relevant immune challenges, combined with evidence of direct co-expression of IAP genes with apoptosis-related transcripts, suggests IAP expansion facilitates complex and nuanced regulation of apoptosis and other immune responses in oysters. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08233-6.
Collapse
|
18
|
Wu L, Chung JY, Cao T, Jin G, Edmiston WJ, Hickman S, Levy ES, Whalen JA, Abrams ESL, Degterev A, Lo EH, Tozzi L, Kaplan DL, El Khoury J, Whalen MJ. Genetic inhibition of RIPK3 ameliorates functional outcome in controlled cortical impact independent of necroptosis. Cell Death Dis 2021; 12:1064. [PMID: 34753914 PMCID: PMC8578385 DOI: 10.1038/s41419-021-04333-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability with no specific effective therapy, in part because disease driving mechanisms remain to be elucidated. Receptor interacting protein kinases (RIPKs) are serine/threonine kinases that assemble multi-molecular complexes that induce apoptosis, necroptosis, inflammasome and nuclear factor kappa B activation. Prior studies using pharmacological inhibitors implicated necroptosis in the pathogenesis of TBI and stroke, but these studies cannot be used to conclusively demonstrate a role for necroptosis because of the possibility of off target effects. Using a model of cerebral contusion and RIPK3 and mixed lineage kinase like knockout (MLKL-/-) mice, we found evidence for activation of RIPK3 and MLKL and assembly of a RIPK1-RIPK3-MLKL necrosome complex in pericontusional brain tissue. Phosphorylated forms of RIPK3 and MLKL were detected in endothelium, CD11b + immune cells, and neurons, and RIPK3 was upregulated and activated in three-dimensional human endothelial cell cultures subjected to CCI. RIPK3-/- and MLKL-/- mice had reduced blood-brain barrier damage at 24 h (p < 0.05), but no differences in neuronal death (6 h, p = ns in CA1, CA3 and DG), brain edema (24 h, p = ns), or lesion size (4 weeks, p = ns) after CCI. RIPK3-/-, but not MLKL-/- mice, were protected against postinjury motor and cognitive deficits at 1-4 weeks (RIPK3-/- vs WT: p < 0.05 for group in wire grip, Morris water maze hidden platform trials, p < 0.05 for novel object recognition test, p < 0.01 for rotarod test). RIPK3-/- mice had reduced infiltrating leukocytes (p < 0.05 vs WT in CD11b + cells, microglia and macrophages), HMGB1 release and interleukin-1 beta activation at 24-48 h (p < 0.01) after CCI. Our data indicate that RIPK3 contributes to functional outcome after cerebral contusion by mechanisms involving inflammation but independent of necroptosis.
Collapse
Affiliation(s)
- Limin Wu
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Joon Yong Chung
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Tian Cao
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA ,grid.13291.380000 0001 0807 1581Department of Neurology, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Gina Jin
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - William J. Edmiston
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Suzanne Hickman
- grid.32224.350000 0004 0386 9924Department of Medicine, Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, Boston, USA
| | - Emily S. Levy
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Jordyn A. Whalen
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Eliza Sophie LaRovere Abrams
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Alexei Degterev
- grid.67033.310000 0000 8934 4045Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA USA
| | - Eng H. Lo
- grid.32224.350000 0004 0386 9924Department of Radiology, Massachusetts General Hospital, Boston, MA 02115 USA ,grid.32224.350000 0004 0386 9924Department of Neurology, Massachusetts General Hospital, Boston, MA 02115 USA
| | - Lorenzo Tozzi
- grid.429997.80000 0004 1936 7531Department of Biomedical Engineering, Tufts University, Medford, MA 02155 USA
| | - David L. Kaplan
- grid.429997.80000 0004 1936 7531Department of Biomedical Engineering, Tufts University, Medford, MA 02155 USA
| | - Joseph El Khoury
- grid.32224.350000 0004 0386 9924Department of Medicine, Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, Boston, USA
| | - Michael J. Whalen
- grid.38142.3c000000041936754XDepartment of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
19
|
Abstract
Group A rotavirus (RVA), one of the leading pathogens causing severe acute gastroenteritis in children and a wide variety of young animals worldwide, induces apoptosis upon infecting cells. Though RVA-induced apoptosis mediated via the dual modulation of its NSP4 and NSP1 proteins is relatively well studied, the nature and signaling pathway(s) involved in RVA-induced necroptosis are yet to be fully elucidated. Here, we demonstrate the nature of RVA-induced necroptosis, the signaling cascade involved, and correlation with RVA-induced apoptosis. Infection with the bovine NCDV and human DS-1 RV strains was shown to activate receptor-interacting protein kinase 1 (RIPK1)/RIPK3/mixed lineage kinase domain-like protein (MLKL), the key necroptosis molecules in virus-infected cells. Using immunoprecipitation assay, RIPK1 was found to bind phosphorylated RIPK3 (pRIPK3) and pMLKL. pMLKL, the major executioner molecule in the necroptotic pathway, was translocated to the plasma membrane of RVA-infected cells to puncture the cell membrane. Interestingly, transfection of RVA NSP4 also induced necroptosis through the RIPK1/RIPK3/MLKL necroptosis pathway. Blockage of each key necroptosis molecule in the RVA-infected or NSP4-transfected cells resulted in decreased necroptosis but increased cell viability and apoptosis, thereby resulting in decreased viral yields in the RVA-infected cells. In contrast, suppression of RVA-induced apoptosis increased necroptosis and virus yields. Our findings suggest that RVA NSP4 also induces necroptosis via the RIPK1/RIPK3/MLKL necroptosis pathway. Moreover, necroptosis and apoptosis-which have proviral and antiviral effects, respectively-exhibited a crosstalk in RVA-infected cells. These findings significantly increase our understanding of the nature of RVA-induced necroptosis and the crosstalk between RVA-induced necroptosis and apoptosis. IMPORTANCE Viral infection usually culminates in cell death through apoptosis, necroptosis, and rarely, pyroptosis. Necroptosis is a form of programmed necrosis that is mediated by signaling complexes of the receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL). Although apoptosis induction by rotavirus and its NSP4 protein is well known, rotavirus-induced necroptosis is not fully understood. Here, we demonstrate that rotavirus and also its NSP4 protein can induce necroptosis in cultured cells through the activation of the RIPK1/RIPK3/MLKL necroptosis pathway. Moreover, rotavirus-induced necroptosis and apoptosis have opposite effects on viral yield, i.e., they function as proviral and antiviral processes, respectively, and counterbalance each other in rotavirus-infected cells. Our findings provide important insights for understanding the nature of rotavirus-induced necroptosis and the development of novel therapeutic strategies against infection with rotavirus and other RNA viruses.
Collapse
|
20
|
Palmer S, Chappidi S, Pinkham C, Hancks DC. Evolutionary profile for (host and viral) MLKL indicates its activities as a battlefront for extensive counteradaptation. Mol Biol Evol 2021; 38:5405-5422. [PMID: 34436583 PMCID: PMC8662602 DOI: 10.1093/molbev/msab256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pathogen infection triggers host innate defenses which may result in the activation of regulated cell death (RCD) pathways such as apoptosis. Given a vital role in immunity, apoptotic effectors are often counteracted by pathogen-encoded antagonists. Mounting evidence indicates that programmed necrosis, which is mediated by the RIPK3/MLKL axis and termed necroptosis, evolved as a countermeasure to pathogen-mediated inhibition of apoptosis. Yet, it is unclear whether components of this emerging RCD pathway display signatures associated with pathogen conflict that are rare in combination but common to key host defense factors, namely, rapid evolution, viral homolog (virolog), and cytokine induction. We leveraged evolutionary sequence analysis that examines rates of amino acid replacement, which revealed: 1) strong and recurrent signatures of positive selection for primate and bat RIPK3 and MLKL, and 2) elevated rates of amino acid substitution on multiple RIPK3/MLKL surfaces suggestive of past antagonism with multiple, distinct pathogen-encoded inhibitors. Furthermore, our phylogenomics analysis across poxvirus genomes illuminated volatile patterns of evolution for a recently described MLKL viral homolog. Specifically, poxviral MLKLs have undergone numerous gene replacements mediated by duplication and deletion events. In addition, MLKL protein expression is stimulated by interferons in human and mouse cells. Thus, MLKL displays all three hallmarks of pivotal immune factors of which only a handful of factors like OAS1 exhibit. These data support the hypothesis that over evolutionary time MLKL functions—which may include execution of necroptosis—have served as a major determinant of infection outcomes despite gene loss in some host genomes.
Collapse
Affiliation(s)
- Suzette Palmer
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sruthi Chappidi
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chelsea Pinkham
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
21
|
Li W, Sun J, Zhou X, Lu Y, Cui W, Miao L. Mini-Review: GSDME-Mediated Pyroptosis in Diabetic Nephropathy. Front Pharmacol 2021; 12:780790. [PMID: 34867412 PMCID: PMC8637879 DOI: 10.3389/fphar.2021.780790] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022] Open
Abstract
Pyroptosis is a recently identified type of lytic programmed cell death, in which pores form in the plasma membrane, and cells swell, rupture, and then release their contents, including inflammatory cytokines. Molecular studies indicated that pyroptosis may occur via a gasdermin D (GSDMD) and caspase-1 (Casp1) -dependent classical pathway, a GSDMD and Casp11/4/5-dependent non-classical pathway, or a gasdermin E (GSDME) and Casp3-dependent pathway. Studies of animal models and humans indicated that pyroptosis can exacerbate several complications of diabetes, including diabetic nephropathy (DN), a serious microvascular complication of diabetes. Many studies investigated the mechanism mediating the renoprotective effect of GSDMD regulation in the kidneys of patients and animal models with diabetes. As a newly discovered regulatory mechanism, GSDME and Casp3-dependent pyroptotic pathway in the progression of DN has also attracted people's attention. Z-DEVD-FMK, an inhibitor of Casp3, ameliorates albuminuria, improves renal function, and reduces tubulointerstitial fibrosis in diabetic mice, and these effects are associated with the inhibition of GSDME. Studies of HK-2 cells indicated that the molecular and histological features of secondary necrosis were present following glucose stimulation due to GSDME cleavage, such as cell swelling, and release of cellular contents. Therefore, therapies targeting Casp3/GSDME-dependent pyroptosis have potential for treatment of DN. A novel nephroprotective strategy that employs GSDME-derived peptides which are directed against Casp3-induced cell death may be a key breakthrough. This mini-review describes the discovery and history of research in this pyroptosis pathway and reviews the function of proteins in the gasdermin family, with a focus on the role of GSDME-mediated pyroptosis in DN. Many studies have investigated the impact of GSDME-mediated pyroptosis in kidney diseases, and these studies used multiple interventions, in vitro models, and in vivo models. We expect that further research on the function of GDSME in DN may provide valuable insights that may help to improve treatments for this disease.
Collapse
Affiliation(s)
| | | | | | | | - Wenpeng Cui
- *Correspondence: Lining Miao, ; Wenpeng Cui,
| | - Lining Miao
- *Correspondence: Lining Miao, ; Wenpeng Cui,
| |
Collapse
|
22
|
Gao M, He Y, Tang H, Chen X, Liu S, Tao Y. cGAS/STING: novel perspectives of the classic pathway. MOLECULAR BIOMEDICINE 2020; 1:7. [PMID: 35006429 PMCID: PMC8603984 DOI: 10.1186/s43556-020-00006-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023] Open
Abstract
Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor and innate immune response initiator. Binding with exogenous or endogenous nucleic acids, cGAS activates its downstream adaptor, stimulator of interferon genes (STING). STING then triggers protective immune to enable the elimination of the pathogens and the clearance of cancerous cells. Apparently, aberrantly activated by self-DNA, cGAS/STING pathway is threatening to cause autoimmune and inflammatory diseases. The effects of cGAS/STING in defenses against infection and autoimmune diseases have been well studied, still it is worthwhile to discuss the roles of cGAS/STING pathway beyond the “classical” realm of innate immunity. Recent studies have revealed its involvement in non-canonical inflammasome formation, calcium hemostasis regulation, endoplasmic reticulum (ER) stress response, perception of leaking mitochondrial DNA (mtDNA), autophagy induction, cellular senescence and senescence-associated secretory phenotype (SASP) production, providing an exciting area for future exploration. Previous studies generally focused on the function of cGAS/STING pathway in cytoplasm and immune response. In this review, we summarize the latest research of this pathway on the regulation of other physiological process and STING independent reactions to DNA in micronuclei and nuclei. Together, these studies provide a new perspective of cGAS/STING pathway in human diseases.
Collapse
Affiliation(s)
- Menghui Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Yuchen He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Haosheng Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xiangyu Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078, China. .,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
23
|
Zhan L, Peng X, Lin J, Zhang Y, Gao H, Zhu Y, Huan Y, Zhao G. Honokiol Reduces Fungal Load, Toll-Like Receptor-2, and Inflammatory Cytokines in Aspergillus fumigatus Keratitis. Invest Ophthalmol Vis Sci 2020; 61:48. [PMID: 32347916 PMCID: PMC7401949 DOI: 10.1167/iovs.61.4.48] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose We characterized the effects of Honokiol (HNK) on Aspergillus fumigatus-caused keratomycosis and the underlying mechanisms. HNK is known to have anti-inflammatory and antifungal properties, but the influence on fungal keratitis (FK) remains unknown. Methods In ex vivo, minimum inhibitory concentration and Cell Count Kit-8 assay were carried out spectrophotometrically to provide preferred concentration applied in vivo. Time kill assay pointed that HNK was fungicidal and fungistatic chronologically. Adherence assay, crystal violet staining, and membrane permeability assay tested HNK effects on different fungal stages. In vivo, clinical scores reflected the improvement degree of keratitis outcome. Myeloperoxidase (MPO) assay, flow cytometry (FCM), and immunohistofluorescence staining (IFS) were done to evaluate neutrophil infiltration. Plate count detected HNK fungicidal potentiality. RT-PCR, Western blot, and enzyme-linked immunosorbent assay (ELISA) verified the anti-inflammatory activity of HNK collaboratively. Results In vitro, MIC90 HNK was 8 µg/mL (no cytotoxicity), and Minimal Fungicidal Concentration (MFC) was 12 µg/mL for A. fumigatus. HNK played the fungistatic and fungicidal roles at 6 and 24 hours, respectively, inhibiting adherence at the beginning, diminishing biofilms formation, and increasing membrane permeability all the time. In vivo, HNK improved C57BL/6 mice outcome by reducing disease severity (clinical scores), neutrophil infiltration (MPO, FCM, and IFS), and fungal loading (plate count). RT-PCR, Western blot, and ELISA revealed that HNK downregulated mRNA and protein expression levels of Toll-like receptor-2 (TLR-2), high mobility group box 1 (HMGB1), IL-1β, and TNF-α. Conclusions Our study suggested HNK played antifungal and anti-inflammatory roles on keratomycosis by reducing survival of fungi, infiltration of leucocytes, and expression of HMGB1, TLR-2, and proinflammatory cytokines, providing a potential treatment for FK.
Collapse
|
24
|
Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X, Shi S. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol 2020; 13:110. [PMID: 32778143 PMCID: PMC7418434 DOI: 10.1186/s13045-020-00946-7] [Citation(s) in RCA: 737] [Impact Index Per Article: 184.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, cancer immunotherapy based on immune checkpoint inhibitors (ICIs) has achieved considerable success in the clinic. However, ICIs are significantly limited by the fact that only one third of patients with most types of cancer respond to these agents. The induction of cell death mechanisms other than apoptosis has gradually emerged as a new cancer treatment strategy because most tumors harbor innate resistance to apoptosis. However, to date, the possibility of combining these two modalities has not been discussed systematically. Recently, a few studies revealed crosstalk between distinct cell death mechanisms and antitumor immunity. The induction of pyroptosis, ferroptosis, and necroptosis combined with ICIs showed synergistically enhanced antitumor activity, even in ICI-resistant tumors. Immunotherapy-activated CD8+ T cells are traditionally believed to induce tumor cell death via the following two main pathways: (i) perforin-granzyme and (ii) Fas-FasL. However, recent studies identified a new mechanism by which CD8+ T cells suppress tumor growth by inducing ferroptosis and pyroptosis, which provoked a review of the relationship between tumor cell death mechanisms and immune system activation. Hence, in this review, we summarize knowledge of the reciprocal interaction between antitumor immunity and distinct cell death mechanisms, particularly necroptosis, ferroptosis, and pyroptosis, which are the three potentially novel mechanisms of immunogenic cell death. Because most evidence is derived from studies using animal and cell models, we also reviewed related bioinformatics data available for human tissues in public databases, which partially confirmed the presence of interactions between tumor cell death and the activation of antitumor immunity.
Collapse
Affiliation(s)
- Rong Tang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
RIPK3 collaborates with GSDMD to drive tissue injury in lethal polymicrobial sepsis. Cell Death Differ 2020; 27:2568-2585. [PMID: 32152555 DOI: 10.1038/s41418-020-0524-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Sepsis is a systemic inflammatory disease causing life-threatening multi-organ dysfunction. Accumulating evidences suggest that two forms of programmed necrosis, necroptosis and pyroptosis triggered by the pathogen component lipopolysaccharide (LPS) and inflammatory cytokines, play important roles in the development of bacterial sepsis-induced shock and tissue injury. Sepsis-induced shock and tissue injury required receptor-interacting protein kinase-3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL) phosphorylation, caspase11 activation and gasdermin D (GSDMD) cleavage. However, the synergistic effect of necroptosis and pyroptosis in the pathological progress of sepsis remains elusive. In this study, we found that blockage of both necroptosis and pyroptosis (double deletion of Ripk3/Gsdmd or Mlkl/Gsdmd) resulted in accumulative protection against septic shock, systemic blood clotting and multi-organ injury in mice. Bone marrow transplantation confirmed that necroptosis and pyroptosis in both myeloid and nonmyeloid cells are indispensable in the progression of sepsis-induced multi-organ injury. Both RIPK3 and GSDMD signaling collaborated to amplify necroinflammation and tissue factor release in macrophages and endothelial cells, which led to tissue injury. Furthermore, cell death induced by inflammatory cytokines and high-mobility group box 1 could be prevented by double ablation of Ripk3/Gsdmd or Mlkl/Gsdmd, suggesting that a positive feedback loop interconnecting RIPK3/MLKL and GSDMD machinery and inflammation facilitated sepsis progression. Collectively, our findings demonstrated that RIPK3-mediated necroptosis and GSDMD-mediated pyroptosis collaborated to amply inflammatory signaling and enhance tissue injury in the process of sepsis, which may shed new light on two potential targets of combined therapeutic interventions for this highly lethal disorder.
Collapse
|
26
|
Shlomovitz I, Speir M, Gerlic M. Flipping the dogma - phosphatidylserine in non-apoptotic cell death. Cell Commun Signal 2019; 17:139. [PMID: 31665027 PMCID: PMC6819419 DOI: 10.1186/s12964-019-0437-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022] Open
Abstract
The exposure of phosphatidylserine (PS) on the outer plasma membrane has long been considered a unique feature of apoptotic cells. Together with other "eat me" signals, it enables the recognition and phagocytosis of dying cells (efferocytosis), helping to explain the immunologically-silent nature of apoptosis. Recently, however, PS exposure has also been reported in non-apoptotic forms of regulated inflammatory cell death, such as necroptosis, challenging previous dogma. In this review, we outline the evidence for PS exposure in non-apoptotic cells and extracellular vesicles (EVs), and discuss possible mechanisms based on our knowledge of apoptotic-PS exposure. In addition, we examine the outcomes of non-apoptotic PS exposure, including the reversibility of cell death, efferocytosis, and consequent inflammation. By examining PS biology, we challenge the established approach of distinguishing apoptosis from other cell death pathways by AnnexinV staining of PS externalization. Finally, we re-evaluate how PS exposure is thought to define apoptosis as an immunologically silent process distinct from other non-apoptotic and inflammatory cell death pathways. Ultimately, we suggest that a complete understanding of how regulated cell death processes affect the immune system is far from being fully elucidated.
Collapse
Affiliation(s)
- Inbar Shlomovitz
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168 Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800 Australia
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Quaresma JAS. Organization of the Skin Immune System and Compartmentalized Immune Responses in Infectious Diseases. Clin Microbiol Rev 2019; 32:e00034-18. [PMID: 31366611 PMCID: PMC6750136 DOI: 10.1128/cmr.00034-18] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The skin is an organ harboring several types of immune cells that participate in innate and adaptive immune responses. The immune system of the skin comprises both skin cells and professional immune cells that together constitute what is designated skin-associated lymphoid tissue (SALT). In this review, I extensively discuss the organization of SALT and the mechanisms involved in its responses to infectious diseases of the skin and mucosa. The nature of these SALT responses, and the cellular mediators involved, often determines the clinical course of such infections. I list and describe the components of innate immunity, such as the roles of the keratinocyte barrier and of inflammatory and natural killer cells. I also examine the mechanisms involved in adaptive immune responses, with emphasis on new cytokine profiles, and the role of cell death phenomena in host-pathogen interactions and control of the immune responses to infectious agents. Finally, I highlight the importance of studying SALT in order to better understand host-pathogen relationships involving the skin and detail future directions in the immunological investigation of this organ, especially in light of recent findings regarding the skin immune system.
Collapse
Affiliation(s)
- Juarez Antonio Simões Quaresma
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- School of Medicine, São Paulo University, São Paulo, SP, Brazil
| |
Collapse
|
28
|
Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ 2019; 26:99-114. [PMID: 30341423 PMCID: PMC6294779 DOI: 10.1038/s41418-018-0212-6] [Citation(s) in RCA: 662] [Impact Index Per Article: 132.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/17/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023] Open
Abstract
Pyroptosis and necroptosis represent two pathways of genetically encoded necrotic cell death. Although these cell death programmes can protect the host against microbial pathogens, their dysregulation has been implicated in a variety of autoimmune and auto-inflammatory conditions. The disease-promoting potential of necroptosis and pyroptosis is likely a consequence of their ability to induce a lytic cell death. This cell suicide mechanism, distinct from apoptosis, allows the release of immunogenic cellular content, including damage-associated molecular patterns (DAMPs), and inflammatory cytokines such as interleukin-1β (IL-1β), to trigger inflammation. In this Review, we discuss recent discoveries that have advanced our understanding on the primary functions of pyroptosis and necroptosis, including evidence for the specific cytokines and DAMPs responsible for driving inflammation. We compare the similar and unique aspects of pyroptotic- and necroptotic-induced membrane damage, and explore how these may functionally impact distinct intracellular organelles and signalling pathways. We also examine studies highlighting the crosstalk that can occur between necroptosis and pyroptosis signalling, and evidence supporting the physiological significance of this convergence. Ultimately, a better understanding of the similarities, unique aspects and crosstalk of pyroptosis and necroptosis will inform as to how these cell death pathways might be manipulated for therapeutic benefit.
Collapse
Affiliation(s)
- Daniel Frank
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3050, Australia.
| |
Collapse
|
29
|
Abstract
Purpose: Fungal keratitis is a major cause of corneal ulcers, resulting in significant visual impairment and blindness. Fenretinide, a derivative of vitamin A, has been shown to suppress inflammation in a multitude of diseases. In this study, we aimed to characterize the effect of fenretinide in Aspergillus fumigatus keratitis of the eye in a mouse model. Methods: In vivo and in vitro experiments were performed in mouse models and THP-1 macrophage cell cultures infected with A. fumigatus, respectively. Experimental subjects were first pretreated with fenretinide, and then the effect of the compound was assessed with clinical evaluation, neutrophil staining, myeloperoxidase assay, quantitative polymerase chain reaction (qRT-PCR), and western blot. Results: We confirmed that fenretinide contributed to protection of corneal transparency during early mouse A. fumigatus keratitis by reducing neutrophil recruitment, decreasing myeloperoxidase (MPO) levels and increasing apoptosis. Compared with controls, fenretinide impaired proinflammatory cytokine interleukin 1 beta (IL-1β) production in response to A. fumigatus exposure with contributions by lectin-type oxidized LDL receptor 1 (LOX-1) and c-Jun N-terminal kinase (JNK). Conclusions: Together, these findings demonstrate that fenretinide may suppress inflammation through reduced neutrophil recruitment and inflammatory cytokine production in A. fumigatus keratitis.
Collapse
|
30
|
Kim EH, Wong SW, Martinez J. Programmed Necrosis and Disease:We interrupt your regular programming to bring you necroinflammation. Cell Death Differ 2018; 26:25-40. [PMID: 30349078 DOI: 10.1038/s41418-018-0179-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Compared to the tidy and immunologically silent death during apoptosis, necrosis seems like a chaotic and unorganized demise. However, we now recognize that there is a method to its madness, as many forms of necrotic cell death are indeed programmed and function beyond lytic cell death to support homeostasis and immunity. Inherently more immunogenic than their apoptotic counterpart, programmed necrosis, such as necroptosis, pyroptosis, ferroptosis, and NETosis, releases inflammatory cytokines and danger-associated molecular patterns (DAMPs), skewing the milieu to a pro-inflammatory state. Moreover, impaired clearance of dead cells often leads to inflammation. Importantly, these pathways have all been implicated in inflammatory and autoimmune diseases, therefore careful understanding of their molecular mechanisms can have long lasting effects on how we interpret their role in disease and how we translate these mechanisms into therapy.
Collapse
Affiliation(s)
- Eui Ho Kim
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Sing-Wai Wong
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.,Oral and Craniofacial Biomedicine Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
31
|
Affiliation(s)
- Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
32
|
Johnston A, Wang Z. Necroptosis: MLKL Polymerization. JOURNAL OF NATURE AND SCIENCE 2018; 4:e513. [PMID: 30294675 PMCID: PMC6173486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Necroptosis is a subtype of regulated necrosis that occurs when caspases are inhibited or fail to activate. Stimulus of cell death receptors results in a signaling cascade that triggers caspase independent, immunogenic cell death. The core pathway relies on receptor interacting protein kinase (RIPK) 1 and 3, which interact through their receptor homotypic interacting motif (RHIM) domains, and form amyloid-like structures termed the necrosome. RIPK3 recruits and phosphorylates mixed lineage kinase domain-like pseudokinase (MLKL), the terminal mediator in the necroptotic pathway. MLKL polymerizes to form a second amyloid-like structure that causes cell membrane disruption resulting in cell death. Although the core necroptosis pathway has been elucidated, the details of MLKL membrane translocation and membrane disruption remain an open area of research.
Collapse
Affiliation(s)
- Andrea Johnston
- Department of Molecular Biology, UT Southwestern, 6000 Harry Hines Blvd., NA8.202, Dallas, Texas 75390, USA
| | - Zhigao Wang
- Department of Molecular Biology, UT Southwestern, 6000 Harry Hines Blvd., NA8.202, Dallas, Texas 75390, USA
| |
Collapse
|
33
|
RHIM-based protein:protein interactions in microbial defence against programmed cell death by necroptosis. Semin Cell Dev Biol 2018; 99:86-95. [PMID: 29738881 DOI: 10.1016/j.semcdb.2018.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/16/2018] [Accepted: 05/04/2018] [Indexed: 11/22/2022]
Abstract
The Receptor-interacting protein kinase Homotypic Interaction Motif (RHIM) is an amino acid sequence that mediates multiple protein:protein interactions in the mammalian programmed cell death pathway known as necroptosis. At least one key RHIM-based complex has been shown to have a functional amyloid fibril structure, which provides a stable hetero-oligomeric platform for downstream signaling. RHIMs and related motifs are present in immunity-related proteins across nature, from viruses to fungi to metazoans. Necroptosis is a hallmark feature of cellular clearance of infection. For this reason, numerous pathogens, including viruses and bacteria, have developed varied methods to modulate necroptosis, focusing on inhibiting RHIM:RHIM interactions, and thus their downstream cell death effects. This review will discuss current understanding of RHIM:RHIM interactions in normal cellular activation of necroptosis, from a structural and cell biology perspective. It will compare the mechanisms by which pathogens subvert these interactions in order to maintain their replicative and infective cycles and consider the similarities between RHIMs and other functional amyloid-forming proteins associated with cell death and innate immunity. It will discuss the implications of the heteromeric nature and structure of RHIM-based amyloid complexes in the context of other functional amyloids.
Collapse
|
34
|
Callow MG, Watanabe C, Wickliffe KE, Bainer R, Kummerfield S, Weng J, Cuellar T, Janakiraman V, Chen H, Chih B, Liang Y, Haley B, Newton K, Costa MR. CRISPR whole-genome screening identifies new necroptosis regulators and RIPK1 alternative splicing. Cell Death Dis 2018; 9:261. [PMID: 29449584 PMCID: PMC5833675 DOI: 10.1038/s41419-018-0301-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/04/2018] [Indexed: 12/04/2022]
Abstract
The necroptotic cell death pathway is a key component of human pathogen defense that can become aberrantly derepressed during tissue homeostasis to contribute to multiple types of tissue damage and disease. While formation of the necrosome kinase signaling complex containing RIPK1, RIPK3, and MLKL has been extensively characterized, additional mechanisms of its regulation and effector functions likely remain to be discovered. We screened 19,883 mouse protein-coding genes by CRISPR/Cas9-mediated gene knockout for resistance to cytokine-induced necroptosis and identified 112 regulators and mediators of necroptosis, including 59 new candidate pathway components with minimal or no effect on cell growth in the absence of necroptosis induction. Among these, we further characterized the function of PTBP1, an RNA binding protein whose activity is required to maintain RIPK1 protein abundance by regulating alternative splice-site selection.
Collapse
Affiliation(s)
- Marinella G Callow
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Colin Watanabe
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Katherine E Wickliffe
- Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Russell Bainer
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sarah Kummerfield
- Department of Bioinformatics and Computational Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Julie Weng
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Trinna Cuellar
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.,Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | | | - Honglin Chen
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ben Chih
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yuxin Liang
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Kim Newton
- Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Michael R Costa
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
35
|
Orozco S, Oberst A. RIPK3 in cell death and inflammation: the good, the bad, and the ugly. Immunol Rev 2018; 277:102-112. [PMID: 28462521 DOI: 10.1111/imr.12536] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Necroptosis is a form of cell death that can be observed downstream of death receptor or pattern recognition receptor signaling under certain cellular contexts, or in response to some viral and bacterial infections. The receptor interacting protein kinases-1 (RIPK1) and RIPK3 are at the core of necroptotic signaling, among other proteins. Because this pathway is normally halted by the pro-apoptotic protease caspase-8 and the IAP ubiquitin ligases, how and when necroptosis is triggered in physiological settings are ongoing questions. Interestingly, accumulating evidence suggests that RIPK3 has functions beyond the induction of necroptotic cell death, especially in the areas of tissue injury and sterile inflammation. Here, we will discuss the role of RIPK3 in a variety of physiological conditions, including necroptotic and non-necroptotic cell death, in the context of viral and bacterial infections, tissue damage, and inflammation.
Collapse
Affiliation(s)
- Susana Orozco
- Department of Immunology, University of Washington, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA.,Center for Innate Immunity and Immune Disease, Seattle, WA, USA
| |
Collapse
|
36
|
Kolb JP, Oguin TH, Oberst A, Martinez J. Programmed Cell Death and Inflammation: Winter Is Coming. Trends Immunol 2017; 38:705-718. [PMID: 28734635 DOI: 10.1016/j.it.2017.06.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 01/19/2023]
Abstract
The life of an organism requires the assistance of an unlikely process: programmed cell death. Both development and the maintenance of homeostasis result in the production of superfluous cells that must eventually be disposed of. Furthermore, programmed cell death can also represent a defense mechanism; for example, by depriving pathogens of a replication niche. The responsibility of handling these dead cells falls on phagocytes of the immune system, which surveil their surroundings for dying or dead cells and efficiently clear them in a quiescent manner. This process, termed efferocytosis, depends on cooperation between the phagocyte and the dying cell. In this review we explore different types of programmed cell death and their impact on innate immune responses.
Collapse
Affiliation(s)
- Joseph P Kolb
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, Durham, NC 27709, USA
| | - Thomas H Oguin
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, Durham, NC 27709, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, Durham, NC 27709, USA.
| |
Collapse
|
37
|
Necroptotic death signaling: evolution, mechanisms and disease relevance. Immunol Cell Biol 2017; 95:129-130. [PMID: 28194028 DOI: 10.1038/icb.2016.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Petrie EJ, Hildebrand JM, Murphy JM. Insane in the membrane: a structural perspective of MLKL function in necroptosis. Immunol Cell Biol 2017; 95:152-159. [DOI: 10.1038/icb.2016.125] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Emma J Petrie
- Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology, University of Melbourne Parkville Victoria Australia
| | - Joanne M Hildebrand
- Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology, University of Melbourne Parkville Victoria Australia
| | - James M Murphy
- Cell Signalling and Cell Death Division, Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology, University of Melbourne Parkville Victoria Australia
| |
Collapse
|
39
|
Karaji N, Sattentau QJ. Efferocytosis of Pathogen-Infected Cells. Front Immunol 2017; 8:1863. [PMID: 29312342 PMCID: PMC5743670 DOI: 10.3389/fimmu.2017.01863] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022] Open
Abstract
The prompt and efficient clearance of unwanted and abnormal cells by phagocytes is termed efferocytosis and is crucial for organism development, maintenance of tissue homeostasis, and regulation of the immune system. Dying cells are recognized by phagocytes through pathways initiated via "find me" signals, recognition via "eat me" signals and down-modulation of regulatory "don't eat me" signals. Pathogen infection may trigger cell death that drives phagocytic clearance in an immunologically silent, or pro-inflammatory manner, depending on the mode of cell death. In many cases, efferocytosis is a mechanism for eliminating pathogens and pathogen-infected cells; however, some pathogens have subverted this process and use efferocytic mechanisms to avoid innate immune detection and assist phagocyte infection. In parallel, phagocytes can integrate signals received from infected dying cells to elicit the most appropriate effector response against the infecting pathogen. This review focuses on pathogen-induced cell death signals that drive infected cell recognition and uptake by phagocytes, and the outcomes for the infected target cell, the phagocyte, the pathogen and the host.
Collapse
Affiliation(s)
- Niloofar Karaji
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, United Kingdom
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford, United Kingdom
| |
Collapse
|