1
|
Gupta N, Srivastava A, Mishra AK. Deciphering the impact of NOS-derived NO on nitrogen metabolism and carbon flux in the heterocytous cyanobacterium Aphanizomenon flos-aquae 2012/KM1/D3. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109515. [PMID: 39854790 DOI: 10.1016/j.plaphy.2025.109515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025]
Abstract
Nitric oxide synthases (NOSs) are heme-based monooxygenases that catalyze the NADPH-dependent oxidation of L-arginine to produce NO and L-citrulline. Over the past five years, the identification and characterization of NOS homologs in cyanobacteria have significantly advanced our understanding of these enzymes. However, the precise mechanisms through which NOS-derived NO influences nitrogen metabolism remain incompletely elucidated. Therefore, the present study aims to investigates the impact of NOS-derived NO on nitrogen metabolism, heterocyte development, and carbon utilization dynamics in Aphanizomenon flos-aquae. Results demonstrate a three-fold increase in NOS-dependent NO production during the log to stationary growth phase in reponse to L-arginine availability. This increase in NOS activity substantially impacted critical cellular processes related to nitrogen metabolism. Specifically, the inhibition of NOS activity disrupted regulatory mechanisms involving ntcA and glnB genes, resulting in a failure to induce hetR, hep, dev and nif genes necessary for heterocyte differentiation and nitrogenase synthesis. NOS-derived NO also played a pivotal role in modulating the glutamine synthetase-glutamate synthase (GS-GOGAT) pathway, as evidenced by the sharp decline in glutamine and glutamate levels under NOS inhibition, which indicates impaired nitrogen assimilation. Besides, the observed alterations in succinate, fumarate, malate and pyruvate suggest regulatory roles of NOS in energy metabolism. NOS-inhibited cells redirected carbon flux towards glycogen/lipid biosynthesis, alongside protein degradation causing chlorosis, indicating nitrogen deficiency and compromised cellular viability. In contrast, NOS elicitation enhanced metabolic activity, supporting nitrogen assimilation and cellular growth. Overall, our results revealed the complex relationship among NOS-derived NO signaling, nitrogen metabolism, and carbon flux in cyanobacteria.
Collapse
Affiliation(s)
- Neha Gupta
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Ankit Srivastava
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Shelton AN, Yu FB, Grossman AR, Bhaya D. Abundant and active community members respond to diel cycles in hot spring phototrophic mats. THE ISME JOURNAL 2025; 19:wraf001. [PMID: 39777507 PMCID: PMC11788075 DOI: 10.1093/ismejo/wraf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/16/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Photosynthetic microbial mats in hot springs can provide insights into the diel behaviors of communities in extreme environments. In this habitat, photosynthesis dominates during the day, leading to super-oxic conditions, with a rapid transition to fermentation and anoxia at night. Multiple samples were collected from two springs over several years to generate metagenomic and metatranscriptomic datasets. Metagenome-assembled genomes comprised 71 taxa (in 19 different phyla), of which 12 core taxa were present at high abundance in both springs. The eight most active taxa identified by metatranscriptomics were an oxygenic cyanobacterium (Synechococcus sp.), five anoxygenic phototrophs from three different phyla, and two understudied heterotrophs from phylum Armatimonadota. In all eight taxa, a significant fraction of genes exhibited a diel expression pattern, although peak timing varied considerably. The two abundant heterotrophs exhibit starkly different peak timing of expression, which we propose is shaped by their metabolic and genomic potential to use carbon sources that become differentially available during the diel cycle. Network analysis revealed pathway expression patterns that had not previously been linked to diel cycles, including ribosome biogenesis and chaperones. This provides a framework for analyzing metabolically coupled communities and the dominant role of the diel cycle.
Collapse
Affiliation(s)
- Amanda N Shelton
- Division of Biosphere Sciences and Engineering, Carnegie Science, Stanford, CA 94305, United States
| | - Feiqiao B Yu
- Division of Biosphere Sciences and Engineering, Carnegie Science, Stanford, CA 94305, United States
- MultiOmics Tech Center, Arc Institute, Palo Alto, CA 94304, United States
| | - Arthur R Grossman
- Division of Biosphere Sciences and Engineering, Carnegie Science, Stanford, CA 94305, United States
| | - Devaki Bhaya
- Division of Biosphere Sciences and Engineering, Carnegie Science, Stanford, CA 94305, United States
| |
Collapse
|
3
|
Tenore A, Russo F, Jacob J, Grattepanche JD, Buttaro B, Klapper I. A Mathematical Model of Diel Activity and Long Time Survival in Phototrophic Mixed-Species Subaerial Biofilms. Bull Math Biol 2024; 86:123. [PMID: 39196435 PMCID: PMC11358337 DOI: 10.1007/s11538-024-01348-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Subaerial biofilms (SAB) are intricate microbial communities living on terrestrial surfaces, of interest in a variety of contexts including cultural heritage preservation, microbial ecology, biogeochemical cycling, and biotechnology. Here we propose a mathematical model aimed at better understanding the interplay between cyanobacteria and heterotrophic bacteria, common microbial SAB constituents, and their mutual dependence on local environmental conditions. SABs are modeled as thin mixed biofilm-liquid water layers sitting on stone. A system of ordinary differential equations regulates the dynamics of key SAB components: cyanobacteria, heterotrophs, polysaccharides and decayed biomass, as well as cellular levels of organic carbon, nitrogen and energy. These components are interconnected through a network of energetically dominant metabolic pathways, modeled with limitation terms reflecting the impact of biotic and abiotic factors. Daily cylces of temperature, humidity, and light intensity are considered as input model variables that regulate microbial activity by influencing water availability and metabolic kinetics. Relevant physico-chemical processes, including pH regulation, further contribute to a description of the SAB ecology. Numerical simulations explore the dynamics of SABs in a real-world context, revealing distinct daily activity periods shaped by water activity and light availability, as well as longer time scale survivability conditions. Results also suggest that heterotrophs could play a substantial role in decomposing non-volatile carbon compounds and regulating pH, thus influencing the overall composition and stability of the biofilm.
Collapse
Affiliation(s)
- A Tenore
- Department of Mathematics and Applications, University of Naples Federico II, Naples, Italy.
| | - F Russo
- Department of Mathematics and Applications, University of Naples Federico II, Naples, Italy
| | - J Jacob
- U.S. National Park Service, North Atlantic-Appalachian Region, Historic Architecture, Conservation, and Engineering Program, New York, USA
| | | | - B Buttaro
- Sol Sherry Thrombosis Research Center, Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - I Klapper
- Department of Mathematics, Temple University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Powell ME, McCoy SJ. Divide and conquer: Spatial and temporal resource partitioning structures benthic cyanobacterial mats. JOURNAL OF PHYCOLOGY 2024; 60:254-272. [PMID: 38467467 DOI: 10.1111/jpy.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/13/2024]
Abstract
Benthic cyanobacterial mats are increasing in abundance worldwide with the potential to degrade ecosystem structure and function. Understanding mat community dynamics is thus critical for predicting mat growth and proliferation and for mitigating any associated negative effects. Carbon, nitrogen, and sulfur cycling are the predominant forms of nutrient cycling discussed within the literature, while metabolic cooperation and viral interactions are understudied. Although many forms of nutrient cycling in mats have been assessed, the links between niche dynamics, microbial interactions, and nutrient cycling are not well described. Here, we present an updated review on how nutrient cycling and microbial community interactions in mats are structured by resource partitioning via spatial and temporal heterogeneity and succession. We assess community interactions and nutrient cycling at both intramat and metacommunity scales. Additionally, we present ideas and recommendations for research in this area, highlighting top-down control, boundary layers, and metabolic cooperation as important future directions.
Collapse
Affiliation(s)
- Maya E Powell
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sophie J McCoy
- Environment, Ecology and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Weeks K, Trembath-Reichert E, Boyer G, Fecteau K, Howells A, De Martini F, Gile GH, Shock EL. Characterization of microbiomic and geochemical compositions across the photosynthetic fringe. Front Microbiol 2023; 14:1176606. [PMID: 37187542 PMCID: PMC10178925 DOI: 10.3389/fmicb.2023.1176606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Hot spring outflow channels provide geochemical gradients that are reflected in microbial community compositions. In many hot spring outflows, there is a distinct visual demarcation as the community transitions from predominantly chemotrophs to having visible pigments from phototrophs. It has been hypothesized that this transition to phototrophy, known as the photosynthetic fringe, is a result of the pH, temperature, and/or sulfide concentration gradients in the hot spring outflows. Here, we explicitly evaluated the predictive capability of geochemistry in determining the location of the photosynthetic fringe in hot spring outflows. A total of 46 samples were taken from 12 hot spring outflows in Yellowstone National Park that spanned pH values from 1.9 to 9.0 and temperatures from 28.9 to 92.2°C. Sampling locations were selected to be equidistant in geochemical space above and below the photosynthetic fringe based on linear discriminant analysis. Although pH, temperature, and total sulfide concentrations have all previously been cited as determining factors for microbial community composition, total sulfide did not correlate with microbial community composition with statistical significance in non-metric multidimensional scaling. In contrast, pH, temperature, ammonia, dissolved organic carbon, dissolved inorganic carbon, and dissolved oxygen did correlate with the microbial community composition with statistical significance. Additionally, there was observed statistical significance between beta diversity and the relative position to the photosynthetic fringe with sites above the photosynthetic fringe being significantly different from those at or below the photosynthetic fringe according to canonical correspondence analysis. However, in combination, the geochemical parameters considered in this study only accounted for 35% of the variation in microbial community composition determined by redundancy analysis. In co-occurrence network analyses, each clique correlated with either pH and/or temperature, whereas sulfide concentrations only correlated with individual nodes. These results indicate that there is a complex interplay between geochemical variables and the position of the photosynthetic fringe that cannot be fully explained by statistical correlations with the individual geochemical variables included in this study.
Collapse
Affiliation(s)
- Katelyn Weeks
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Grayson Boyer
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Kristopher Fecteau
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, United States
| | - Alta Howells
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- NASA Postdoctoral Program Fellow at NASA Ames Research Center, Moffett Field, CA, United States
| | - Francesca De Martini
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Department of Life Sciences, Mesa Community College, Mesa, AZ, United States
| | - Gillian H. Gile
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Everett L. Shock
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
6
|
Abstract
Coastal marine macrophytes exhibit some of the highest rates of primary productivity in the world. They have been found to host a diverse set of microbes, many of which may impact the biology of their hosts through metabolisms that are unique to microbial taxa. Here, we characterized the metabolic functions of macrophyte-associated microbial communities using metagenomes collected from 2 species of kelp (Laminaria setchellii and Nereocystis luetkeana) and 3 marine angiosperms (Phyllospadix scouleri, P. serrulatus, and Zostera marina), including the rhizomes of two surfgrass species (Phyllospadix spp.), the seagrass Zostera marina, and the sediments surrounding P. scouleri and Z. marina. Using metagenomic sequencing, we describe 63 metagenome-assembled genomes (MAGs) that potentially benefit from being associated with macrophytes and may contribute to macrophyte fitness through their metabolic activity. Host-associated metagenomes contained genes for the use of dissolved organic matter from hosts and vitamin (B1, B2, B7, B12) biosynthesis in addition to a range of nitrogen and sulfur metabolisms that recycle dissolved inorganic nutrients into forms more available to the host. The rhizosphere of surfgrass and seagrass contained genes for anaerobic microbial metabolisms, including nifH genes associated with nitrogen fixation, despite residing in a well-mixed and oxygenated environment. The range of oxygen environments engineered by macrophytes likely explains the diversity of both oxidizing and reducing microbial metabolisms and contributes to the functional capabilities of microbes and their influences on carbon and nitrogen cycling in nearshore ecosystems. IMPORTANCE Kelps, seagrasses, and surfgrasses are ecosystem engineers on rocky shorelines, where they show remarkably high levels of primary production. Through analysis of their associated microbial communities, we found a variety of microbial metabolisms that may benefit the host, including nitrogen metabolisms, sulfur oxidation, and the production of B vitamins. In turn, these microbes have the genetic capabilities to assimilate the dissolved organic compounds released by their macrophyte hosts. We describe a range of oxygen environments associated with surfgrass, including low-oxygen microhabitats in their rhizomes that host genes for nitrogen fixation. The tremendous productivity of coastal seaweeds and seagrasses is likely due in part to the activities of associated microbes, and an increased understanding of these associations is needed.
Collapse
|
7
|
Distribution and Genomic Variation of Thermophilic Cyanobacteria in Diverse Microbial Mats at the Upper Temperature Limits of Photosynthesis. mSystems 2022; 7:e0031722. [PMID: 35980085 PMCID: PMC9600594 DOI: 10.1128/msystems.00317-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Thermophilic cyanobacteria have been extensively studied in Yellowstone National Park (YNP) hot springs, particularly during decades of work on the thick laminated mats of Octopus and Mushroom springs. However, focused studies of cyanobacteria outside these two hot springs have been lacking, especially regarding how physical and chemical parameters along with community morphology influence the genomic makeup of these organisms. Here, we used a metagenomic approach to examine cyanobacteria existing at the upper temperature limit of photosynthesis. We examined 15 alkaline hot spring samples across six geographic areas of YNP, all with various physical and chemical parameters and community morphology. We recovered 22 metagenome-assembled genomes (MAGs) belonging to thermophilic cyanobacteria, notably an uncultured Synechococcus-like taxon recovered from a setting at the upper temperature limit of photosynthesis, 73°C, in addition to thermophilic Gloeomargarita. Furthermore, we found that three distinct groups of Synechococcus-like MAGs recovered from different temperature ranges vary in their genomic makeup. MAGs from the uncultured very-high-temperature (up to 73°C) Synechococcus-like taxon lack key nitrogen metabolism genes and have genes implicated in cellular stress responses that diverge from other Synechococcus-like MAGs. Across all parameters measured, temperature was the primary determinant of taxonomic makeup of recovered cyanobacterial MAGs. However, total Fe, community morphology, and biogeography played an additional role in the distribution and abundance of upper-temperature-limit-adapted Synechococcus-like MAGs. These findings expand our understanding of cyanobacterial diversity in YNP and provide a basis for interrogation of understudied thermophilic cyanobacteria. IMPORTANCE Oxygenic photosynthesis arose early in microbial evolution-approximately 2.5 to 3.5 billion years ago-and entirely reshaped the biological makeup of Earth. However, despite the span of time in which photosynthesis has been refined, it is strictly limited to temperatures below 73°C, a barrier that many other biological processes have been able to overcome. Furthermore, photosynthesis at temperatures above 56°C is limited to circumneutral and alkaline pH. Hot springs in Yellowstone National Park (YNP), which have a large diversity in temperatures, pH, and geochemistry, provide a natural laboratory to study thermophilic microbial mats and the cyanobacteria within. While cyanobacteria in YNP microbial mats have been studied for decades, a vast majority of the work has focused on two springs within the same geyser basin, both containing similar community morphologies. Thus, the drivers of cyanobacterial adaptations to the upper limits of photosynthesis across a variety of environmental parameters have been understudied. Our findings provide new insights into the influence of these parameters on both taxonomic diversity and genomic content of cyanobacteria across a range of hot spring samples.
Collapse
|
8
|
Song ZQ, Wang L, Liang F, Zhou Q, Pei D, Jiang H, Li WJ. nifH gene expression and diversity in geothermal springs of Tengchong, China. Front Microbiol 2022; 13:980924. [PMID: 36160261 PMCID: PMC9493357 DOI: 10.3389/fmicb.2022.980924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Terrestrial hot springs have been suggested to harbor diverse diazotrophic lineages by using DNA-based nifH gene phylogenetic analysis. However, only a small amount of diazotrophs were ever confirmed to perform nitrogen fixation. In order to explore the compositions of active diazotrophic populations in hot springs, the in situ expression and diversity of nifH and 16S rRNA genes were investigated in the sediments of hot springs (pH 4.3-9.1; temperature 34-84°C) in Tengchong, China, by using high-throughput sequencing. The results showed that active diazotrophs were diverse in the studied Tengchong hot springs. The main active diazotrophs in high-temperature hot springs were affiliated with Aquificae, while those in low-temperature hot springs belonged to Cyanobacteria and Nitrospirae. Such dominance of Aquificae and Nitrospirae of diazotrophs has not been reported in other ecosystems. This suggests that hot springs may harbor unique active diazotrophs in comparison with other type of ecosystems. Furthermore, there were significant differences in the phylogenetic lineages of diazotrophs between hot springs of Tengchong and other regions, indicating that diazotrophs have geographical distribution patterns. Statistical analysis suggests that the expression and distribution of nifH gene were influenced by temperature and concentrations of ammonia and sulfur seem in Tengchong hot springs. These findings avail us to understand element cycling mediated by diazotrophs in hot spring ecosystems.
Collapse
Affiliation(s)
- Zhao-Qi Song
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Li Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Feng Liang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Dongli Pei
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Bennett AC, Murugapiran SK, Kees ED, Sauer HM, Hamilton TL. Temperature and Geographic Location Impact the Distribution and Diversity of Photoautotrophic Gene Variants in Alkaline Yellowstone Hot Springs. Microbiol Spectr 2022; 10:e0146521. [PMID: 35575591 PMCID: PMC9241655 DOI: 10.1128/spectrum.01465-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
Alkaline hot springs in Yellowstone National Park (YNP) provide a framework to study the relationship between photoautotrophs and temperature. Previous work has focused on studying how cyanobacteria (oxygenic phototrophs) vary with temperature, sulfide, and pH, but many questions remain regarding the ecophysiology of anoxygenic photosynthesis due to the taxonomic and metabolic diversity of these taxa. To this end, we examined the distribution of genes involved in phototrophy, carbon fixation, and nitrogen fixation in eight alkaline (pH 7.3-9.4) hot spring sites near the upper temperature limit of photosynthesis (71ºC) in YNP using metagenome sequencing. Based on genes encoding key reaction center proteins, geographic isolation plays a larger role than temperature in selecting for distinct phototrophic Chloroflexi, while genes typically associated with autotrophy in anoxygenic phototrophs, did not have distinct distributions with temperature. Additionally, we recovered Calvin cycle gene variants associated with Chloroflexi, an alternative carbon fixation pathway in anoxygenic photoautotrophs. Lastly, we recovered several abundant nitrogen fixation gene sequences associated with Roseiflexus, providing further evidence that genes involved in nitrogen fixation in Chloroflexi are more common than previously assumed. Together, our results add to the body of work on the distribution and functional potential of phototrophic bacteria in Yellowstone National Park hot springs and support the hypothesis that a combination of abiotic and biotic factors impact the distribution of phototrophic bacteria in hot springs. Future studies of isolates and metagenome assembled genomes (MAGs) from these data and others will further our understanding of the ecology and evolution of hot spring anoxygenic phototrophs. IMPORTANCE Photosynthetic bacteria in hot springs are of great importance to both microbial evolution and ecology. While a large body of work has focused on oxygenic photosynthesis in cyanobacteria in Mushroom and Octopus Springs in Yellowstone National Park, many questions remain regarding the metabolic potential and ecology of hot spring anoxygenic phototrophs. Anoxygenic phototrophs are metabolically and taxonomically diverse, and further investigations into their physiology will lead to a deeper understanding of microbial evolution and ecology of these taxa. Here, we have quantified the distribution of key genes involved in carbon and nitrogen metabolism in both oxygenic and anoxygenic phototrophs. Our results suggest that temperature >68ºC selects for distinct groups of cyanobacteria and that carbon fixation pathways associated with these taxa are likely subject to the same selective pressure. Additionally, our data suggest that phototrophic Chloroflexi genes and carbon fixation genes are largely influenced by local conditions as evidenced by our gene variant analysis. Lastly, we recovered several genes associated with potentially novel phototrophic Chloroflexi. Together, our results add to the body of work on hot springs in Yellowstone National Park and set the stage for future work on metagenome assembled genomes.
Collapse
Affiliation(s)
- Annastacia C. Bennett
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Senthil K. Murugapiran
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Eric D. Kees
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Hailey M. Sauer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Trinity L. Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
10
|
Millimeter-scale vertical partitioning of nitrogen cycling in hypersaline mats reveals prominence of genes encoding multi-heme and prismane proteins. THE ISME JOURNAL 2022; 16:1119-1129. [PMID: 34862473 PMCID: PMC8940962 DOI: 10.1038/s41396-021-01161-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 12/01/2022]
Abstract
Microbial mats are modern analogues of the first ecosystems on the Earth. As extant representatives of microbial communities where free oxygen may have first been available on a changing planet, they offer an ecosystem within which to study the evolution of biogeochemical cycles requiring and inhibited by oxygen. Here, we report the distribution of genes involved in nitrogen metabolism across a vertical oxygen gradient at 1 mm resolution in a microbial mat using quantitative PCR (qPCR), retro-transcribed qPCR (RT-qPCR) and metagenome sequencing. Vertical patterns in the presence and expression of nitrogen cycling genes, corresponding to oxygen requiring and non-oxygen requiring nitrogen metabolism, could be seen across gradients of dissolved oxygen and ammonium. Metagenome analysis revealed that genes annotated as hydroxylamine dehydrogenase (proper enzyme designation EC 1.7.2.6, hao) and hydroxylamine reductase (hcp) were the most abundant nitrogen metabolism genes in the mat. The recovered hao genes encode hydroxylamine dehydrogenase EC 1.7.2.6 (HAO) proteins lacking the tyrosine residue present in aerobic ammonia oxidizing bacteria (AOB). Phylogenetic analysis confirmed that those proteins were more closely related to ɛHao protein present in Campylobacterota lineages (previously known as Epsilonproteobacteria) rather than oxidative HAO of AOB. The presence of hao sequences related with ɛHao protein, as well as numerous hcp genes encoding a prismane protein, suggest the presence of a nitrogen cycling pathway previously described in Nautilia profundicola as ancestral to the most commonly studied present day nitrogen cycling pathways.
Collapse
|
11
|
Distribution of Dissolved Nitrogen Compounds in the Water Column of a Meromictic Subarctic Lake. NITROGEN 2021. [DOI: 10.3390/nitrogen2040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to better understand the biogeochemical cycle of nitrogen in meromictic lakes, which can serve as a model for past aquatic environments, we measured dissolved concentrations of nitrate, nitrite, ammonium, and organic nitrogen in the deep (39 m maximal depth) subarctic Lake Svetloe (NW Russia). The lake is a rare type of freshwater meromictic water body with high concentrations of methane, ferrous iron, and manganese and low concentrations of sulfates and sulfides in the monimolimnion. In the oligotrophic mixolimnion, the concentration of mineral forms of nitrogen decreased in summer compared to winter, likely due to a phytoplankton bloom. The decomposition of the bulk of the organic matter occurs under microaerophilic/anaerobic conditions of the chemocline and is accompanied by the accumulation of nitrogen in the form of N-NH4 in the monimolimnion. We revealed a strong relationship between methane and nitrogen cycles in the chemocline and monimolimnion horizons. The nitrate concentrations in Lake Svetloe varied from 9 to 13 μM throughout the water column. This fact is rare for meromictic lakes, where nitrate concentrations up to 13 µM are found in the monimolimnion zone down to the bottom layers. We hypothesize, in accord with available data for other stratified lakes that under conditions of high concentrations of manganese and ammonium at the boundary of redox conditions and below, anaerobic nitrification with the formation of nitrate occurs. Overall, most of the organic matter in Lake Svetloe undergoes biodegradation essentially under microaerophilic/anaerobic conditions of the chemocline and the monimolimnion. Consequently, the manifestation of the biogeochemical nitrogen cycle is expressed in these horizons in the most vivid and complex relationship with other cycles of elements.
Collapse
|
12
|
Tang J, Li L, Li M, Du L, Shah MMR, Waleron MM, Waleron M, Waleron KF, Daroch M. Description, Taxonomy, and Comparative Genomics of a Novel species, Thermoleptolyngbya sichuanensis sp. nov., Isolated From Hot Springs of Ganzi, Sichuan, China. Front Microbiol 2021; 12:696102. [PMID: 34566907 PMCID: PMC8461337 DOI: 10.3389/fmicb.2021.696102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022] Open
Abstract
Thermoleptolyngbya is a newly proposed genus of thermophilic cyanobacteria that are often abundant in thermal environments. However, a vast majority of Thermoleptolyngbya strains were not systematically identified, and genomic features of this genus are also sparse. Here, polyphasic approaches were employed to identify a thermophilic strain, PKUAC-SCTA183 (A183 hereafter), isolated from hot spring Erdaoqiao, Ganzi prefecture, China. Whole-genome sequencing of the strain revealed its allocation to Thermoleptolyngbya sp. and genetic adaptations to the hot spring environment. While the results of 16S rRNA were deemed inconclusive, the more comprehensive polyphasic approach encompassing phenetic, chemotaxic, and genomic approaches strongly suggest that a new taxon, Thermoleptolyngbya sichuanensis sp. nov., should be delineated around the A183 strain. The genome-scale phylogeny and average nucleotide/amino-acid identity confirmed the genetic divergence of the A183 strain from other strains of Thermoleptolyngbya along with traditional methods such as 16S-23S ITS and its secondary structure analyses. Comparative genomic and phylogenomic analyses revealed inconsistent genome structures between Thermoleptolyngbya A183 and O-77 strains. Further gene ontology analysis showed that the unique genes of the two strains were distributed in a wide range of functional categories. In addition, analysis of genes related to thermotolerance, signal transduction, and carbon/nitrogen/sulfur assimilation revealed the ability of this strain to adapt to inhospitable niches in hot springs, and these findings were preliminarily confirmed using experimental, cultivation-based approaches.
Collapse
Affiliation(s)
- Jie Tang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Liheng Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Meijin Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lianming Du
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Md Mahfuzur R Shah
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Michal M Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Malgorzata Waleron
- Department of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Krzysztof F Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
13
|
Kawai S, Martinez JN, Lichtenberg M, Trampe E, Kühl M, Tank M, Haruta S, Nishihara A, Hanada S, Thiel V. In-Situ Metatranscriptomic Analyses Reveal the Metabolic Flexibility of the Thermophilic Anoxygenic Photosynthetic Bacterium Chloroflexus aggregans in a Hot Spring Cyanobacteria-Dominated Microbial Mat. Microorganisms 2021; 9:microorganisms9030652. [PMID: 33801086 PMCID: PMC8004040 DOI: 10.3390/microorganisms9030652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Chloroflexus aggregans is a metabolically versatile, thermophilic, anoxygenic phototrophic member of the phylum Chloroflexota (formerly Chloroflexi), which can grow photoheterotrophically, photoautotrophically, chemoheterotrophically, and chemoautotrophically. In hot spring-associated microbial mats, C. aggregans co-exists with oxygenic cyanobacteria under dynamic micro-environmental conditions. To elucidate the predominant growth modes of C. aggregans, relative transcription levels of energy metabolism- and CO2 fixation-related genes were studied in Nakabusa Hot Springs microbial mats over a diel cycle and correlated with microscale in situ measurements of O2 and light. Metatranscriptomic analyses indicated two periods with different modes of energy metabolism of C. aggregans: (1) phototrophy around midday and (2) chemotrophy in the early morning hours. During midday, C. aggregans mainly employed photoheterotrophy when the microbial mats were hyperoxic (400–800 µmol L−1 O2). In the early morning hours, relative transcription peaks of genes encoding uptake hydrogenase, key enzymes for carbon fixation, respiratory complexes as well as enzymes for TCA cycle and acetate uptake suggest an aerobic chemomixotrophic lifestyle. This is the first in situ study of the versatile energy metabolism of C. aggregans based on gene transcription patterns. The results provide novel insights into the metabolic flexibility of these filamentous anoxygenic phototrophs that thrive under dynamic environmental conditions.
Collapse
Affiliation(s)
- Shigeru Kawai
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
- Correspondence: (S.K.); (V.T.)
| | - Joval N. Martinez
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
- Department of Natural Sciences, College of Arts and Sciences, University of St. La Salle, Bacolod City, Negros Occidental 6100, Philippines
| | - Mads Lichtenberg
- Department of Biology, Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (M.L.); (E.T.); (M.K.)
| | - Erik Trampe
- Department of Biology, Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (M.L.); (E.T.); (M.K.)
| | - Michael Kühl
- Department of Biology, Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (M.L.); (E.T.); (M.K.)
| | - Marcus Tank
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
- DSMZ—German Culture Collection of Microorganisms and Cell Culture, GmbH Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
| | - Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| | - Satoshi Hanada
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
- DSMZ—German Culture Collection of Microorganisms and Cell Culture, GmbH Inhoffenstraße 7B, 38124 Braunschweig, Germany
- Correspondence: (S.K.); (V.T.)
| |
Collapse
|
14
|
Sanz-Luque E, Bhaya D, Grossman AR. Polyphosphate: A Multifunctional Metabolite in Cyanobacteria and Algae. FRONTIERS IN PLANT SCIENCE 2020; 11:938. [PMID: 32670331 PMCID: PMC7332688 DOI: 10.3389/fpls.2020.00938] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/09/2020] [Indexed: 05/19/2023]
Abstract
Polyphosphate (polyP), a polymer of orthophosphate (PO4 3-) of varying lengths, has been identified in all kingdoms of life. It can serve as a source of chemical bond energy (phosphoanhydride bond) that may have been used by biological systems prior to the evolution of ATP. Intracellular polyP is mainly stored as granules in specific vacuoles called acidocalcisomes, and its synthesis and accumulation appear to impact a myriad of cellular functions. It serves as a reservoir for inorganic PO4 3- and an energy source for fueling cellular metabolism, participates in maintaining adenylate and metal cation homeostasis, functions as a scaffold for sequestering cations, exhibits chaperone function, covalently binds to proteins to modify their activity, and enables normal acclimation of cells to stress conditions. PolyP also appears to have a role in symbiotic and parasitic associations, and in higher eukaryotes, low polyP levels seem to impact cancerous proliferation, apoptosis, procoagulant and proinflammatory responses and cause defects in TOR signaling. In this review, we discuss the metabolism, storage, and function of polyP in photosynthetic microbes, which mostly includes research on green algae and cyanobacteria. We focus on factors that impact polyP synthesis, specific enzymes required for its synthesis and degradation, sequestration of polyP in acidocalcisomes, its role in cellular energetics, acclimation processes, and metal homeostasis, and then transition to its potential applications for bioremediation and medical purposes.
Collapse
Affiliation(s)
- Emanuel Sanz-Luque
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
- Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
| | - Devaki Bhaya
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, United States
| |
Collapse
|
15
|
Steinke L, Slysz GW, Lipton MS, Klatt C, Moran JJ, Romine MF, Wood JM, Anderson G, Bryant DA, Ward DM. Short-Term Stable Isotope Probing of Proteins Reveals Taxa Incorporating Inorganic Carbon in a Hot Spring Microbial Mat. Appl Environ Microbiol 2020; 86:e01829-19. [PMID: 31953342 PMCID: PMC7082580 DOI: 10.1128/aem.01829-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/12/2020] [Indexed: 11/20/2022] Open
Abstract
The upper green layer of the chlorophototrophic microbial mats associated with the alkaline siliceous hot springs of Yellowstone National Park consists of oxygenic cyanobacteria (Synechococcus spp.), anoxygenic Roseiflexus spp., and several other anoxygenic chlorophototrophs. Synechococcus spp. are believed to be the main fixers of inorganic carbon (Ci), but some evidence suggests that Roseiflexus spp. also contribute to inorganic carbon fixation during low-light, anoxic morning periods. Contributions of other phototrophic taxa have not been investigated. In order to follow the pathway of Ci incorporation into different taxa, mat samples were incubated with [13C]bicarbonate for 3 h during the early-morning, low-light anoxic period. Extracted proteins were treated with trypsin and analyzed by mass spectrometry, leading to peptide identifications and peptide isotopic profile signatures containing evidence of 13C label incorporation. A total of 25,483 peptides, corresponding to 7,221 proteins, were identified from spectral features and associated with mat taxa by comparison to metagenomic assembly sequences. A total of 1,417 peptides, derived from 720 proteins, were detectably labeled with 13C. Most 13C-labeled peptides were derived from proteins of Synechococcus spp. and Roseiflexus spp. Chaperones and proteins of carbohydrate metabolism were most abundantly labeled. Proteins involved in photosynthesis, Ci fixation, and N2 fixation were also labeled in Synechococcus spp. Importantly, most proteins of the 3-hydroxypropionate bi-cycle for Ci fixation in Roseiflexus spp. were labeled, establishing that members of this taxocene contribute to Ci fixation. Other taxa showed much lower [13C]bicarbonate incorporation.IMPORTANCE Yellowstone hot spring mats have been studied as natural models for understanding microbial community ecology and as modern analogs of stromatolites, the earliest community fossils on Earth. Stable-isotope probing of proteins (Pro-SIP) permitted short-term interrogation of the taxa that are involved in the important process of light-driven Ci fixation in this highly active community and will be useful in linking other metabolic processes to mat taxa. Here, evidence is presented that Roseiflexus spp., which use the 3-hydroxypropionate bi-cycle, are active in Ci fixation. Because this pathway imparts a lower degree of selection of isotopically heavy Ci than does the Calvin-Benson-Bassham cycle, the results suggest a mechanism to explain why the natural abundance of 13C in mat biomass is greater than expected if only the latter pathway were involved. Understanding how mat community members influence the 13C/12C ratios of mat biomass will help geochemists interpret the 13C/12C ratios of organic carbon in the fossil record.
Collapse
Affiliation(s)
- Laurey Steinke
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Gordon W Slysz
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Mary S Lipton
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christian Klatt
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - James J Moran
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Margie F Romine
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jason M Wood
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| | - Gordon Anderson
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, Pennsylvania, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - David M Ward
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
16
|
Anoxygenic Phototrophs Span Geochemical Gradients and Diverse Morphologies in Terrestrial Geothermal Springs. mSystems 2019; 4:4/6/e00498-19. [PMID: 31690593 PMCID: PMC6832021 DOI: 10.1128/msystems.00498-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Extant anoxygenic phototrophs are taxonomically, physiologically, and metabolically diverse and include examples from all seven bacterial phyla with characterized phototrophic members. pH, temperature, and sulfide are known to constrain phototrophs, but how these factors dictate the distribution and activity of specific taxa of anoxygenic phototrophs has not been reported. Here, we hypothesized that within the known limits of pH, temperature, and sulfide, the distribution, abundance, and activity of specific anoxygenic phototrophic taxa would vary due to key differences in the physiology of these organisms. To test this hypothesis, we examined the distribution, abundance, and potential activity of anoxygenic phototrophs in filaments, microbial mats, and sediments across geochemical gradients in geothermal features of Yellowstone National Park, which ranged in pH from 2.2 to 9.4 and in temperature from 31.5°C to 71.0°C. Indeed, our data indicate putative aerobic anoxygenic phototrophs within the Proteobacteria are more abundant at lower pH and lower temperature, while phototrophic Chloroflexi are prevalent in circumneutral to alkaline springs. In contrast to previous studies, our data suggest sulfide is not a key determinant of anoxygenic phototrophic taxa. Finally, our data underscore a role for photoheterotrophy (or photomixotrophy) across geochemical gradients in terrestrial geothermal ecosystems.IMPORTANCE There is a long and rich history of literature on phototrophs in terrestrial geothermal springs. These studies have revealed sulfide, pH, and temperature are the main constraints on phototrophy. However, the taxonomic and physiological diversity of anoxygenic phototrophs suggests that, within these constraints, specific geochemical parameters determine the distribution and activity of individual anoxygenic phototrophic taxa. Here, we report the recovery of sequences affiliated with characterized anoxygenic phototrophs in sites that range in pH from 2 to 9 and in temperature from 31°C to 71°C. Transcript abundance indicates anoxygenic phototrophs are active across this temperature and pH range. Our data suggest sulfide is not a key determinant of anoxygenic phototrophic taxa and underscore a role for photoheterotrophy in terrestrial geothermal ecosystems. These data provide the framework for high-resolution sequencing and in situ activity approaches to characterize the physiology of specific anoxygenic phototrophic taxa across a broad range of temperatures and pH.
Collapse
|
17
|
Allen JF, Thake B, Martin WF. Nitrogenase Inhibition Limited Oxygenation of Earth's Proterozoic Atmosphere. TRENDS IN PLANT SCIENCE 2019; 24:1022-1031. [PMID: 31447302 DOI: 10.1016/j.tplants.2019.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 05/24/2023]
Abstract
Cyanobacteria produced the oxygen that began to accumulate on Earth 2.5 billion years ago, at the dawn of the Proterozoic Eon. By 2.4 billion years ago, the Great Oxidation Event (GOE) marked the onset of an atmosphere containing oxygen. The oxygen content of the atmosphere then remained low for almost 2 billion years. Why? Nitrogenase, the sole nitrogen-fixing enzyme on Earth, controls the entry of molecular nitrogen into the biosphere. Nitrogenase is inhibited in air containing more than 2% oxygen: the concentration of oxygen in the Proterozoic atmosphere. We propose that oxygen inhibition of nitrogenase limited Proterozoic global primary production. Oxygen levels increased when upright terrestrial plants isolated nitrogen fixation in soil from photosynthetic oxygen production in shoots and leaves.
Collapse
Affiliation(s)
- John F Allen
- Research Department of Genetics, Evolution and Environment, Darwin Building, University College London, Gower Street, London WC1E 6BT, UK.
| | - Brenda Thake
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| |
Collapse
|
18
|
The Transcriptional Cycle Is Suited to Daytime N 2 Fixation in the Unicellular Cyanobacterium " Candidatus Atelocyanobacterium thalassa" (UCYN-A). mBio 2019; 10:mBio.02495-18. [PMID: 30602582 PMCID: PMC6315102 DOI: 10.1128/mbio.02495-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The symbiotic N2-fixing cyanobacterium UCYN-A, which is closely related to Braarudosphaera bigelowii, and its eukaryotic algal host have been shown to be globally distributed and important in open-ocean N2 fixation. These unique cyanobacteria have reduced metabolic capabilities, even lacking genes for oxygenic photosynthesis and carbon fixation. Cyanobacteria generally use energy from photosynthesis for nitrogen fixation but require mechanisms for avoiding inactivation of the oxygen-sensitive nitrogenase enzyme by ambient oxygen (O2) or the O2 evolved through photosynthesis. This study showed that symbiosis between the N2-fixing cyanobacterium UCYN-A and its eukaryotic algal host has led to adaptation of its daily gene expression pattern in order to enable daytime aerobic N2 fixation, which is likely more energetically efficient than fixing N2 at night, as found in other unicellular marine cyanobacteria. Symbiosis between a marine alga and a N2-fixing cyanobacterium (Cyanobacterium UCYN-A) is geographically widespread in the oceans and is important in the marine N cycle. UCYN-A is uncultivated and is an unusual unicellular cyanobacterium because it lacks many metabolic functions, including oxygenic photosynthesis and carbon fixation, which are typical in cyanobacteria. It is now presumed to be an obligate symbiont of haptophytes closely related to Braarudosphaera bigelowii. N2-fixing cyanobacteria use different strategies to avoid inhibition of N2 fixation by the oxygen evolved in photosynthesis. Most unicellular cyanobacteria temporally separate the two incompatible activities by fixing N2 only at night, but, surprisingly, UCYN-A appears to fix N2 during the day. The goal of this study was to determine how the unicellular UCYN-A strain coordinates N2 fixation and general metabolism compared to other marine cyanobacteria. We found that UCYN-A has distinct daily cycles of many genes despite the fact that it lacks two of the three circadian clock genes found in most cyanobacteria. We also found that the transcription patterns in UCYN-A are more similar to those in marine cyanobacteria that are capable of aerobic N2 fixation in the light, such as Trichodesmium and heterocyst-forming cyanobacteria, than to those in Crocosphaera or Cyanothece species, which are more closely related to unicellular marine cyanobacteria evolutionarily. Our findings suggest that the symbiotic interaction has resulted in a shift of transcriptional regulation to coordinate UCYN-A metabolism with that of the phototrophic eukaryotic host, thus allowing efficient coupling of N2 fixation (by the cyanobacterium) to the energy obtained from photosynthesis (by the eukaryotic unicellular alga) in the light.
Collapse
|
19
|
Nishihara A, Matsuura K, Tank M, McGlynn SE, Thiel V, Haruta S. Nitrogenase Activity in Thermophilic Chemolithoautotrophic Bacteria in the Phylum Aquificae Isolated under Nitrogen-Fixing Conditions from Nakabusa Hot Springs. Microbes Environ 2018; 33:394-401. [PMID: 30473565 PMCID: PMC6307999 DOI: 10.1264/jsme2.me18041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The phylum Aquificae comprises chemolithoautotrophic thermophilic to hyperthermophilic bacteria, in which the nitrogenase reductase gene (nifH) has been reported. However, nitrogen-fixing activity has not yet been demonstrated in members of this deeply branching bacterial phylum. We isolated two thermophilic diazotrophic strains from chemosynthetic microbial communities in slightly alkaline hot springs (≥70°C) in Nakabusa, Nagano Prefecture, Japan. A phylogenetic analysis based on 16S rRNA genes identified these strains as members of the genus Hydrogenobacter within Aquificae. Their NifH sequences showed 96.5 and 97.4% amino acid sequence identities to that from Hydrogenobacter thermophilus TK-6. Nitrogenase activity, measured by acetylene reduction, was confirmed in both strains at 70°C. These novel strains grew under semi-aerobic conditions by using CO2 as the sole carbon source and N2 as the sole nitrogen source in media containing hydrogen and/or thiosulfate. To the best of our knowledge, this is the first demonstration of active nitrogen fixation in thermophilic bacteria at 70°C and in the phylum Aquificae.
Collapse
Affiliation(s)
- Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Marcus Tank
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Shawn E McGlynn
- Department of Biological Sciences, Tokyo Metropolitan University.,Earth-Life Science Institute, Tokyo Institute of Technology.,Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science.,Blue Marble Space Institute of Science
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University
| |
Collapse
|
20
|
Alcamán-Arias ME, Pedrós-Alió C, Tamames J, Fernández C, Pérez-Pantoja D, Vásquez M, Díez B. Diurnal Changes in Active Carbon and Nitrogen Pathways Along the Temperature Gradient in Porcelana Hot Spring Microbial Mat. Front Microbiol 2018; 9:2353. [PMID: 30333812 PMCID: PMC6176055 DOI: 10.3389/fmicb.2018.02353] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 09/13/2018] [Indexed: 01/14/2023] Open
Abstract
Composition, carbon and nitrogen uptake, and gene transcription of microbial mat communities in Porcelana neutral hot spring (Northern Chilean Patagonia) were analyzed using metagenomics, metatranscriptomics and isotopically labeled carbon (H13CO3) and nitrogen (15NH4Cl and K15NO3) assimilation rates. The microbial mat community included 31 phyla, of which only Cyanobacteria and Chloroflexi were dominant. At 58°C both phyla co-occurred, with similar contributions in relative abundances in metagenomes and total transcriptional activity. At 66°C, filamentous anoxygenic phototrophic Chloroflexi were >90% responsible for the total transcriptional activity recovered, while Cyanobacteria contributed most metagenomics and metatranscriptomics reads at 48°C. According to such reads, phototrophy was carried out both through oxygenic photosynthesis by Cyanobacteria (mostly Mastigocladus) and anoxygenic phototrophy due mainly to Chloroflexi. Inorganic carbon assimilation through the Calvin-Benson cycle was almost exclusively due to Mastigocladus, which was the main primary producer at lower temperatures. Two other CO2 fixation pathways were active at certain times and temperatures as indicated by transcripts: 3-hydroxypropionate (3-HP) bi-cycle due to Chloroflexi and 3-hydroxypropionate-4-hydroxybutyrate (HH) cycle carried out by Thaumarchaeota. The active transcription of the genes involved in these C-fixation pathways correlated with high in situ determined carbon fixation rates. In situ measurements of ammonia assimilation and nitrogen fixation (exclusively attributed to Cyanobacteria and mostly to Mastigocladus sp.) showed these were the most important nitrogen acquisition pathways at 58 and 48°C. At 66°C ammonia oxidation genes were actively transcribed (mostly due to Thaumarchaeota). Reads indicated that denitrification was present as a nitrogen sink at all temperatures and that dissimilatory nitrate reduction to ammonia (DNRA) contributed very little. The combination of metagenomic and metatranscriptomic analysis with in situ assimilation rates, allowed the reconstruction of day and night carbon and nitrogen assimilation pathways together with the contribution of keystone microorganisms in this natural hot spring microbial mat.
Collapse
Affiliation(s)
- María E. Alcamán-Arias
- Department of Oceanography, Universidad de Concepción, Concepción, Chile
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Climate and Resilience Research, Universidad de Chile, Santiago, Chile
| | - Carlos Pedrós-Alió
- Programa de Biología de Sistemas, Centro Nacional de Biotecnología – Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Javier Tamames
- Programa de Biología de Sistemas, Centro Nacional de Biotecnología – Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Camila Fernández
- Department of Oceanography, Universidad de Concepción, Concepción, Chile
- Laboratoire d’Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre-et-Marie-Curie, Centre National de la Recherche Scientifique, Banyuls-sur-Mer, France
- Fondap IDEAL, Universidad Austral de Chile, Valdivia, Chile
| | - Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Mónica Vásquez
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Climate and Resilience Research, Universidad de Chile, Santiago, Chile
| |
Collapse
|
21
|
Guajardo-Leiva S, Pedrós-Alió C, Salgado O, Pinto F, Díez B. Active Crossfire Between Cyanobacteria and Cyanophages in Phototrophic Mat Communities Within Hot Springs. Front Microbiol 2018; 9:2039. [PMID: 30233525 PMCID: PMC6129581 DOI: 10.3389/fmicb.2018.02039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/13/2018] [Indexed: 01/16/2023] Open
Abstract
Cyanophages are viruses with a wide distribution in aquatic ecosystems, that specifically infect Cyanobacteria. These viruses can be readily isolated from marine and fresh waters environments; however, their presence in cosmopolitan thermophilic phototrophic mats remains largely unknown. This study investigates the morphological diversity (TEM), taxonomic composition (metagenomics), and active infectivity (metatranscriptomics) of viral communities over a thermal gradient in hot spring phototrophic mats from Northern Patagonia (Chile). The mats were dominated (up to 53%) by cosmopolitan thermophilic filamentous true-branching cyanobacteria from the genus Mastigocladus, the associated viral community was predominantly composed of Caudovirales (70%), with most of the active infections driven by cyanophages (up to 90% of Caudovirales transcripts). Metagenomic assembly lead to the first full genome description of a T7-like Thermophilic Cyanophage recovered from a hot spring (Porcelana Hot Spring, Chile), with a temperature of 58°C (TC-CHP58). This could potentially represent a world-wide thermophilic lineage of podoviruses that infect cyanobacteria. In the hot spring, TC-CHP58 was active over a temperature gradient from 48 to 66°C, showing a high population variability represented by 1979 single nucleotide variants (SNVs). TC-CHP58 was associated to the Mastigocladus spp. by CRISPR spacers. Marked differences in metagenomic CRISPR loci number and spacers diversity, as well as SNVs, in the TC-CHP58 proto-spacers at different temperatures, reinforce the theory of co-evolution between natural virus populations and cyanobacterial hosts. Considering the importance of cyanobacteria in hot spring biogeochemical cycles, the description of this new cyanopodovirus lineage may have global implications for the functioning of these extreme ecosystems.
Collapse
Affiliation(s)
- Sergio Guajardo-Leiva
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Pedrós-Alió
- Programa de Biología de Sistemas, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Oscar Salgado
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián Pinto
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for Climate and Resilience Research, Santiago, Chile
| |
Collapse
|
22
|
Hörnlein C, Confurius-Guns V, Stal LJ, Bolhuis H. Daily rhythmicity in coastal microbial mats. NPJ Biofilms Microbiomes 2018; 4:11. [PMID: 29796291 PMCID: PMC5953948 DOI: 10.1038/s41522-018-0054-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/26/2018] [Accepted: 04/17/2018] [Indexed: 12/31/2022] Open
Abstract
Cyanobacteria are major primary producers in coastal microbial mats and provide biochemical energy, organic carbon, and bound nitrogen to the mat community through oxygenic photosynthesis and dinitrogen fixation. In order to anticipate the specific requirements to optimize their metabolism and growth during a day-and-night cycle, Cyanobacteria possess a unique molecular timing mechanism known as the circadian clock that is well-studied under laboratory conditions but little is known about its function in a natural complex community. Here, we investigated daily rhythmicity of gene expression in a coastal microbial mat community sampled at 6 time points during a 24-h period. In order to identify diel expressed genes, meta-transcriptome data was fitted to periodic functions. Out of 24,035 conserved gene transcript clusters, approximately 7% revealed a significant rhythmic expression pattern. These rhythmic genes were assigned to phototrophic micro-eukaryotes, Cyanobacteria but also to Proteobacteria and Bacteroidetes. Analysis of MG-RAST annotated genes and mRNA recruitment analysis of two cyanobacterial and three proteobacterial microbial mat members confirmed that homologs of the cyanobacterial circadian clock genes were also found in other bacterial members of the microbial mat community. These results suggest that various microbial mat members other than Cyanobacteria have their own molecular clock, which can be entrained by a cocktail of Zeitgebers such as light, temperature or metabolites from neighboring species. Hence, microbial mats can be compared to a complex organism consisting of multiple sub-systems that have to be entrained in a cooperative way such that the corpus functions optimally.
Collapse
Affiliation(s)
- Christine Hörnlein
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, The Netherlands
| | - Veronique Confurius-Guns
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, The Netherlands
| | - Lucas J Stal
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, The Netherlands.,2Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Henk Bolhuis
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, The Netherlands
| |
Collapse
|
23
|
Di Cesare A, Cabello-Yeves PJ, Chrismas NAM, Sánchez-Baracaldo P, Salcher MM, Callieri C. Genome analysis of the freshwater planktonic Vulcanococcus limneticus sp. nov. reveals horizontal transfer of nitrogenase operon and alternative pathways of nitrogen utilization. BMC Genomics 2018; 19:259. [PMID: 29661139 PMCID: PMC5902973 DOI: 10.1186/s12864-018-4648-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/05/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Many cyanobacteria are capable of fixing atmospheric nitrogen, playing a crucial role in biogeochemical cycling. Little is known about freshwater unicellular cyanobacteria Synechococcus spp. at the genomic level, despite being recognised of considerable ecological importance in aquatic ecosystems. So far, it has not been shown whether these unicellular picocyanobacteria have the potential for nitrogen fixation. Here, we present the draft-genome of the new pink-pigmented Synechococcus-like strain Vulcanococcus limneticus. sp. nov., isolated from the volcanic Lake Albano (Central Italy). RESULTS The novel species Vulcanococcus limneticus sp. nov. falls inside the sub-cluster 5.2, close to the estuarine/marine strains in a maximum-likelihood phylogenetic tree generated with 259 marker genes with representatives from marine, brackish, euryhaline and freshwater habitats. V.limneticus sp. nov. possesses a complete nitrogenase and nif operon. In an experimental setup under nitrogen limiting and non-limiting conditions, growth was observed in both cases. However, the nitrogenase genes (nifHDK) were not transcribed, i.e., V.limneticus sp. nov. did not fix nitrogen, but instead degraded the phycobilisomes to produce sufficient amounts of ammonia. Moreover, the strain encoded many other pathways to incorporate ammonia, nitrate and sulphate, which are energetically less expensive for the cell than fixing nitrogen. The association of the nif operon to a genomic island, the relatively high amount of mobile genetic elements (52 transposases) and the lower observed GC content of V.limneticus sp. nov. nif operon (60.54%) compared to the average of the strain (68.35%) support the theory that this planktonic strain may have obtained, at some point of its evolution, the nif operon by horizontal gene transfer (HGT) from a filamentous or heterocystous cyanobacterium. CONCLUSIONS In this study, we describe the novel species Vulcanococcus limneticus sp. nov., which possesses a complete nif operon for nitrogen fixation. The finding that in our experimental conditions V.limneticus sp. nov. did not express the nifHDK genes led us to reconsider the actual ecological meaning of these accessory genes located in genomic island that have possibly been acquired via HGT.
Collapse
Affiliation(s)
- Andrea Di Cesare
- National Research Council CNR-ISE, Largo Tonolli 50, 28922, Verbania, Italy.,Department of Earth, Environmental, and Life Sciences, University of Genoa, 16132, Genoa, Italy
| | - Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Nathan A M Chrismas
- School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK.,Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, UK
| | | | - Michaela M Salcher
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Cristiana Callieri
- National Research Council CNR-ISE, Largo Tonolli 50, 28922, Verbania, Italy.
| |
Collapse
|
24
|
Esteves-Ferreira AA, Inaba M, Fort A, Araújo WL, Sulpice R. Nitrogen metabolism in cyanobacteria: metabolic and molecular control, growth consequences and biotechnological applications. Crit Rev Microbiol 2018. [DOI: 10.1080/1040841x.2018.1446902] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Alberto A. Esteves-Ferreira
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
- CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil
| | - Masami Inaba
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
| | - Antoine Fort
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
| | - Wagner L. Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Ronan Sulpice
- National University of Ireland – Galway, Plant Systems Biology Lab, School of Natural Sciences, Plant and AgriBiosciences Research Centre, Galway, Ireland
| |
Collapse
|
25
|
Behrendt L, Raina JB, Lutz A, Kot W, Albertsen M, Halkjær-Nielsen P, Sørensen SJ, Larkum AW, Kühl M. In situ metabolomic- and transcriptomic-profiling of the host-associated cyanobacteria Prochloron and Acaryochloris marina. THE ISME JOURNAL 2018; 12:556-567. [PMID: 29087375 PMCID: PMC5776471 DOI: 10.1038/ismej.2017.192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 01/20/2023]
Abstract
The tropical ascidian Lissoclinum patella hosts two enigmatic cyanobacteria: (1) the photoendosymbiont Prochloron spp., a producer of valuable bioactive compounds and (2) the chlorophyll-d containing Acaryochloris spp., residing in the near-infrared enriched underside of the animal. Despite numerous efforts, Prochloron remains uncultivable, restricting the investigation of its biochemical potential to cultivation-independent techniques. Likewise, in both cyanobacteria, universally important parameters on light-niche adaptation and in situ photosynthetic regulation are unknown. Here we used genome sequencing, transcriptomics and metabolomics to investigate the symbiotic linkage between host and photoendosymbiont and simultaneously probed the transcriptional response of Acaryochloris in situ. During high light, both cyanobacteria downregulate CO2 fixing pathways, likely a result of O2 photorespiration on the functioning of RuBisCO, and employ a variety of stress-quenching mechanisms, even under less stressful far-red light (Acaryochloris). Metabolomics reveals a distinct biochemical modulation between Prochloron and L. patella, including noon/midnight-dependent signatures of amino acids, nitrogenous waste products and primary photosynthates. Surprisingly, Prochloron constitutively expressed genes coding for patellamides, that is, cyclic peptides of great pharmaceutical value, with yet unknown ecological significance. Together these findings shed further light on far-red-driven photosynthesis in natural consortia, the interplay of Prochloron and its ascidian partner in a model chordate photosymbiosis and the uncultivability of Prochloron.
Collapse
Affiliation(s)
- Lars Behrendt
- Department of Civil, Environmental and Geomatic Engineering, Swiss Federal Institute of Technology, Zürich, Switzerland.
- Department of Biology, Marine Biological Section, University of Copenhagen, Helsingør, Denmark.
- Department of Biology, Microbiology Section, University of Copenhagen, Copenhagen, Denmark.
| | - Jean-Baptiste Raina
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology, Sydney, New South Wales, Australia
| | - Adrian Lutz
- Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Witold Kot
- Department of Environmental Science-Enviromental Microbiology and Biotechnology, Aarhus University, Roskilde, Denmark
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Per Halkjær-Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Søren J Sørensen
- Department of Biology, Microbiology Section, University of Copenhagen, Copenhagen, Denmark
| | - Anthony Wd Larkum
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology, Sydney, New South Wales, Australia
| | - Michael Kühl
- Department of Biology, Marine Biological Section, University of Copenhagen, Helsingør, Denmark
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Rewiring of Cyanobacterial Metabolism for Hydrogen Production: Synthetic Biology Approaches and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:171-213. [PMID: 30091096 DOI: 10.1007/978-981-13-0854-3_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
With the demand for renewable energy growing, hydrogen (H2) is becoming an attractive energy carrier. Developing H2 production technologies with near-net zero carbon emissions is a major challenge for the "H2 economy." Certain cyanobacteria inherently possess enzymes, nitrogenases, and bidirectional hydrogenases that are capable of H2 evolution using sunlight, making them ideal cell factories for photocatalytic conversion of water to H2. With the advances in synthetic biology, cyanobacteria are currently being developed as a "plug and play" chassis to produce H2. This chapter describes the metabolic pathways involved and the theoretical limits to cyanobacterial H2 production and summarizes the metabolic engineering technologies pursued.
Collapse
|
27
|
Singh Y, Gulati A, Singh D, Khattar J. Cyanobacterial community structure in hot water springs of Indian North-Western Himalayas: A morphological, molecular and ecological approach. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.11.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Louyakis AS, Gourlé H, Casaburi G, Bonjawo RME, Duscher AA, Foster JS. A year in the life of a thrombolite: comparative metatranscriptomics reveals dynamic metabolic changes over diel and seasonal cycles. Environ Microbiol 2017; 20:842-861. [DOI: 10.1111/1462-2920.14029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Artemis S. Louyakis
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
| | - Hadrien Gourlé
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
- Department of Animal Breeding and Genetics; Global Bioinformatics Centre, Swedish University of Agricultural Sciences; Uppsala Sweden
| | - Giorgio Casaburi
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
| | - Rachelle M. E. Bonjawo
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
| | - Alexandrea A. Duscher
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
| | - Jamie S. Foster
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
| |
Collapse
|
29
|
Yoon KS, Nguyen NT, Tran KT, Tsuji K, Ogo S. Nitrogen Fixation Genes and Nitrogenase Activity of the Non-Heterocystous Cyanobacterium Thermoleptolyngbya sp. O-77. Microbes Environ 2017; 32:324-329. [PMID: 29176306 PMCID: PMC5745016 DOI: 10.1264/jsme2.me17015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyanobacteria are widely distributed in marine, aquatic, and terrestrial ecosystems, and play an important role in the global nitrogen cycle. In the present study, we examined the genome sequence of the thermophilic non-heterocystous N2-fixing cyanobacterium, Thermoleptolyngbya sp. O-77 (formerly known as Leptolyngbya sp. O-77) and characterized its nitrogenase activity. The genome of this cyanobacterial strain O-77 consists of a single chromosome containing a nitrogen fixation gene cluster. A phylogenetic analysis indicated that the NifH amino acid sequence from strain O-77 was clustered with those from a group of mesophilic species: the highest identity was found in Leptolyngbya sp. KIOST-1 (97.9% sequence identity). The nitrogenase activity of O-77 cells was dependent on illumination, whereas a high intensity of light of 40 μmol m−2 s−1 suppressed the effects of illumination.
Collapse
Affiliation(s)
- Ki-Seok Yoon
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University.,Center for Small Molecule Energy, Kyushu University
| | - Nga T Nguyen
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University
| | - Kien Trung Tran
- Center for Small Molecule Energy, Kyushu University.,Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
| | - Kohsei Tsuji
- Center for Small Molecule Energy, Kyushu University.,Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
| | - Seiji Ogo
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University.,Center for Small Molecule Energy, Kyushu University.,Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
| |
Collapse
|
30
|
Thiel V, Hügler M, Ward DM, Bryant DA. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. II. Metabolic Functions of Abundant Community Members Predicted from Metagenomic Analyses. Front Microbiol 2017. [PMID: 28634470 PMCID: PMC5459899 DOI: 10.3389/fmicb.2017.00943] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin of Yellowstone National Park have been extensively characterized. Previous studies have focused on the chlorophototrophic organisms of the phyla Cyanobacteria and Chloroflexi. However, the diversity and metabolic functions of the other portion of the community in the microoxic/anoxic region of the mat are poorly understood. We recently described the diverse but extremely uneven microbial assemblage in the undermat of Mushroom Spring based on 16S rRNA amplicon sequences, which was dominated by Roseiflexus members, filamentous anoxygenic chlorophototrophs. In this study, we analyzed the orange-colored undermat portion of the community of Mushroom Spring mats in a genome-centric approach and discuss the metabolic potentials of the major members. Metagenome binning recovered partial genomes of all abundant community members, ranging in completeness from ~28 to 96%, and allowed affiliation of function with taxonomic identity even for representatives of novel and Candidate phyla. Less complete metagenomic bins correlated with high microdiversity. The undermat portion of the community was found to be a mixture of phototrophic and chemotrophic organisms, which use bicarbonate as well as organic carbon sources derived from different cell components and fermentation products. The presence of rhodopsin genes in many taxa strengthens the hypothesis that light energy is of major importance. Evidence for the usage of all four bacterial carbon fixation pathways was found in the metagenome. Nitrogen fixation appears to be limited to Synechococcus spp. in the upper mat layer and Thermodesulfovibrio sp. in the undermat, and nitrate/nitrite metabolism was limited. A closed sulfur cycle is indicated by biological sulfate reduction combined with the presence of genes for sulfide oxidation mainly in phototrophs. Finally, a variety of undermat microorganisms have genes for hydrogen production and consumption, which leads to the observed diel hydrogen concentration patterns.
Collapse
Affiliation(s)
- Vera Thiel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University ParkPA, United States
| | - Michael Hügler
- Department Microbiology and Molecular Biology, DVGW-Technologiezentrum WasserKarlsruhe, Germany
| | - David M Ward
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, United States
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University ParkPA, United States.,Department of Chemistry and Biochemistry, Montana State UniversityBozeman, MT, United States
| |
Collapse
|
31
|
Kirchhoff C, Cypionka H. Boosted Membrane Potential as Bioenergetic Response to Anoxia in Dinoroseobacter shibae. Front Microbiol 2017; 8:695. [PMID: 28473821 PMCID: PMC5397407 DOI: 10.3389/fmicb.2017.00695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 04/04/2017] [Indexed: 11/29/2022] Open
Abstract
Dinoroseobacter shibae DFL 12T is a metabolically versatile member of the world-wide abundant Roseobacter clade. As an epibiont of dinoflagellates D. shibae is subjected to rigorous changes in oxygen availability. It has been shown that it loses up to 90% of its intracellular ATP when exposed to anoxic conditions. Yet, D. shibae regenerates its ATP level quickly when oxygen becomes available again. In the present study we focused on the bioenergetic aspects of the quick recovery and hypothesized that the proton-motive force decreases during anoxia and gets restored upon re-aeration. Therefore, we analyzed ΔpH and the membrane potential (ΔΨ) during the oxic-anoxic transitions. To visualize changes of ΔΨ we used fluorescence microscopy and the carbocyanine dyes DiOC2 (3; 3,3′-Diethyloxacarbocyanine Iodide) and JC-10. In control experiments the ΔΨ-decreasing effects of the chemiosmotic inhibitors CCCP (carbonyl cyanide m-chlorophenyl hydrazone), TCS (3,3′,4′,5-tetrachlorosalicylanilide) and gramicidin were tested on D. shibae and Gram-negative and -positive control bacteria (Escherichia coli and Micrococcus luteus). We found that ΔpH is not affected by short-term anoxia and does not contribute to the quick ATP regeneration in D. shibae. By contrast, ΔΨ was increased during anoxia, which was astonishing since none of the control organisms behaved that way. Our study shows physiological and bioenergetical aspects comparing to previous studies on transcriptomic responses to the transition from aerobic to nitrate respiration in D. shibae. For the lifestyle as an epibiont of a dinoflagellate, the ability to stand phases of temporary oxygen depletion is beneficial. With a boosted ΔΨ, the cells are able to give their ATP regeneration a flying start, once oxygen is available again.
Collapse
Affiliation(s)
- Christian Kirchhoff
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University of OldenburgOldenburg, Germany
| | - Heribert Cypionka
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University of OldenburgOldenburg, Germany
| |
Collapse
|
32
|
Esteves-Ferreira AA, Cavalcanti JHF, Vaz MGMV, Alvarenga LV, Nunes-Nesi A, Araújo WL. Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions. Genet Mol Biol 2017; 40:261-275. [PMID: 28323299 PMCID: PMC5452144 DOI: 10.1590/1678-4685-gmb-2016-0050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteria is a remarkable group of prokaryotic photosynthetic microorganisms, with several genera capable of fixing atmospheric nitrogen (N2) and presenting a wide range of morphologies. Although the nitrogenase complex is not present in all cyanobacterial taxa, it is spread across several cyanobacterial strains. The nitrogenase complex has also a high theoretical potential for biofuel production, since H2 is a by-product produced during N2 fixation. In this review we discuss the significance of a relatively wide variety of cell morphologies and metabolic strategies that allow spatial and temporal separation of N2 fixation from photosynthesis in cyanobacteria. Phylogenetic reconstructions based on 16S rRNA and nifD gene sequences shed light on the evolutionary history of the two genes. Our results demonstrated that (i) sequences of genes involved in nitrogen fixation (nifD) from several morphologically distinct strains of cyanobacteria are grouped in similarity with their morphology classification and phylogeny, and (ii) nifD genes from heterocytous strains share a common ancestor. By using this data we also discuss the evolutionary importance of processes such as horizontal gene transfer and genetic duplication for nitrogenase evolution and diversification. Finally, we discuss the importance of H2 synthesis in cyanobacteria, as well as strategies and challenges to improve cyanobacterial H2 production.
Collapse
Affiliation(s)
- Alberto A Esteves-Ferreira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - João Henrique Frota Cavalcanti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marcelo Gomes Marçal Vieira Vaz
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Luna V Alvarenga
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Max-Planck-partner group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
33
|
Budinich M, Bourdon J, Larhlimi A, Eveillard D. A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems. PLoS One 2017; 12:e0171744. [PMID: 28187207 PMCID: PMC5302800 DOI: 10.1371/journal.pone.0171744] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/25/2017] [Indexed: 12/20/2022] Open
Abstract
Interplay within microbial communities impacts ecosystems on several scales, and elucidation of the consequent effects is a difficult task in ecology. In particular, the integration of genome-scale data within quantitative models of microbial ecosystems remains elusive. This study advocates the use of constraint-based modeling to build predictive models from recent high-resolution -omics datasets. Following recent studies that have demonstrated the accuracy of constraint-based models (CBMs) for simulating single-strain metabolic networks, we sought to study microbial ecosystems as a combination of single-strain metabolic networks that exchange nutrients. This study presents two multi-objective extensions of CBMs for modeling communities: multi-objective flux balance analysis (MO-FBA) and multi-objective flux variability analysis (MO-FVA). Both methods were applied to a hot spring mat model ecosystem. As a result, multiple trade-offs between nutrients and growth rates, as well as thermodynamically favorable relative abundances at community level, were emphasized. We expect this approach to be used for integrating genomic information in microbial ecosystems. Following models will provide insights about behaviors (including diversity) that take place at the ecosystem scale.
Collapse
Affiliation(s)
- Marko Budinich
- Computational Biology group, LINA UMR 6241 CNRS, EMN, Université de Nantes, Nantes, France
| | - Jérémie Bourdon
- Computational Biology group, LINA UMR 6241 CNRS, EMN, Université de Nantes, Nantes, France
| | - Abdelhalim Larhlimi
- Computational Biology group, LINA UMR 6241 CNRS, EMN, Université de Nantes, Nantes, France
| | - Damien Eveillard
- Computational Biology group, LINA UMR 6241 CNRS, EMN, Université de Nantes, Nantes, France
| |
Collapse
|
34
|
Terauchi K, Sobue R, Furutani Y, Aoki R, Fujita Y. Isolation of cyanobacterial mutants exhibiting growth defects under microoxic conditions by transposon tagging mutagenesis of Synechocystis sp. PCC 6803. J GEN APPL MICROBIOL 2017; 63:131-138. [DOI: 10.2323/jgam.2016.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Riho Sobue
- School of Agricultural Sciences, Nagoya University
| | | | - Rina Aoki
- Graduate School of Bioagricultural Sciences, Nagoya University
| | - Yuichi Fujita
- School of Agricultural Sciences, Nagoya University
- Graduate School of Bioagricultural Sciences, Nagoya University
| |
Collapse
|
35
|
Dual action of chromium-reducing and nitrogen-fixing Bacillus megaterium-ASNF3 for improved agro-rehabilitation of chromium-stressed soils. 3 Biotech 2016; 6:125. [PMID: 28330201 PMCID: PMC4909028 DOI: 10.1007/s13205-016-0443-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/25/2016] [Indexed: 11/06/2022] Open
Abstract
We conducted a study for enhanced biological rehabilitation of chromium-contaminated soils using a chromium-reducing and nitrogen-fixing bacterial species (Bacillus megaterium-ASNF3). The bacterial species was isolated from a chromium-rich land area, characterized, and employed under optimum conditions for the treatment of artificially prepared chromium-rich soil. The bacterium reduced Cr(VI) up to 86 % in a 60-day trial of incubation in the soil bioreactor. The nitrogenase activity of the bacterium yielded up to 486 nmol of ethylene/mL/h after an incubation period of 40 days when it was optimally cultured in growth medium at neutral pH and 30 °C. Although the nitrogen-fixing ability of the bacterium reduced significantly in the presence of 1000 ppm of Cr(VI), yet, the bacterium was proved to be a potential bio-fertilizer for enhancing nitrogen contents of the contaminated soil even under the higher chromium stress, together with the metal reduction. In the biologically treated soil, higher values of wheat growth variables were achieved. Application of metal-resistant B. megaterium-ASNF3 in selected situations rendered chromium-laden soils arable with significant increment in crop-yield parameters.
Collapse
|
36
|
Preisner EC, Fichot EB, Norman RS. Microbial Mat Compositional and Functional Sensitivity to Environmental Disturbance. Front Microbiol 2016; 7:1632. [PMID: 27799927 PMCID: PMC5066559 DOI: 10.3389/fmicb.2016.01632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 09/30/2016] [Indexed: 11/13/2022] Open
Abstract
The ability of ecosystems to adapt to environmental perturbations depends on the duration and intensity of change and the overall biological diversity of the system. While studies have indicated that rare microbial taxa may provide a biological reservoir that supports long-term ecosystem stability, how this dynamic population is influenced by environmental parameters remains unclear. In this study, a microbial mat ecosystem located on San Salvador Island, The Bahamas was used as a model to examine how environmental disturbance affects the protein synthesis potential (PSP) of rare and abundant archaeal and bacterial communities and how these changes impact potential biogeochemical processes. This ecosystem experienced a large shift in salinity (230 to 65 g kg-1) during 2011-2012 following the landfall of Hurricane Irene on San Salvador Island. High throughput sequencing and analysis of 16S rRNA and rRNA genes from samples before and after the pulse disturbance showed significant changes in the diversity and PSP of abundant and rare taxa, suggesting overall compositional and functional sensitivity to environmental change. In both archaeal and bacterial communities, while the majority of taxa showed low PSP across conditions, the overall community PSP increased post-disturbance, with significant shifts occurring among abundant and rare taxa across and within phyla. Broadly, following the post-disturbance reduction in salinity, taxa within Halobacteria decreased while those within Crenarchaeota, Thaumarchaeota, Thermoplasmata, Cyanobacteria, and Proteobacteria, increased in abundance and PSP. Quantitative PCR of genes and transcripts involved in nitrogen and sulfur cycling showed concomitant shifts in biogeochemical cycling potential. Post-disturbance conditions increased the expression of genes involved in N-fixation, nitrification, denitrification, and sulfate reduction. Together, our findings show complex community adaptation to environmental change and help elucidate factors connecting disturbance, biodiversity, and ecosystem function that may enhance ecosystem models.
Collapse
Affiliation(s)
| | | | - Robert S. Norman
- Department of Environmental Health Sciences, University of South Carolina, ColumbiaSC, USA
| |
Collapse
|
37
|
In Situ Hydrogen Dynamics in a Hot Spring Microbial Mat during a Diel Cycle. Appl Environ Microbiol 2016; 82:4209-4217. [PMID: 27208140 DOI: 10.1128/aem.00710-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/29/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Microbes can produce molecular hydrogen (H2) via fermentation, dinitrogen fixation, or direct photolysis, yet the H2 dynamics in cyanobacterial communities has only been explored in a few natural systems and mostly in the laboratory. In this study, we investigated the diel in situ H2 dynamics in a hot spring microbial mat, where various ecotypes of unicellular cyanobacteria (Synechococcus sp.) are the only oxygenic phototrophs. In the evening, H2 accumulated rapidly after the onset of darkness, reaching peak values of up to 30 μmol H2 liter(-1) at about 1-mm depth below the mat surface, slowly decreasing to about 11 μmol H2 liter(-1) just before sunrise. Another pulse of H2 production, reaching a peak concentration of 46 μmol H2 liter(-1), was found in the early morning under dim light conditions too low to induce accumulation of O2 in the mat. The light stimulation of H2 accumulation indicated that nitrogenase activity was an important source of H2 during the morning. This is in accordance with earlier findings of a distinct early morning peak in N2 fixation and expression of Synechococcus nitrogenase genes in mat samples from the same location. Fermentation might have contributed to the formation of H2 during the night, where accumulation of other fermentation products lowered the pH in the mat to less than pH 6 compared to a spring source pH of 8.3. IMPORTANCE Hydrogen is a key intermediate in anaerobic metabolism, and with the development of a sulfide-insensitive microsensor for H2, it is now possible to study the microdistribution of H2 in stratified microbial communities such as the photosynthetic microbial mat investigated here. The ability to measure H2 profiles within the mat compared to previous measurements of H2 emission gives much more detailed information about the sources and sinks of H2 in such communities, and it was demonstrated that the high rates of H2 formation in the early morning when the mat was exposed to low light intensities might be explained by nitrogen fixation, where H2 is formed as a by-product.
Collapse
|
38
|
Thiel V, Wood JM, Olsen MT, Tank M, Klatt CG, Ward DM, Bryant DA. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. I. Microbial Diversity Based on 16S rRNA Gene Amplicons and Metagenomic Sequencing. Front Microbiol 2016; 7:919. [PMID: 27379049 PMCID: PMC4911352 DOI: 10.3389/fmicb.2016.00919] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/27/2016] [Indexed: 11/13/2022] Open
Abstract
Microbial-mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin at Yellowstone National Park have been studied for nearly 50 years. The emphasis has mostly focused on the chlorophototrophic bacterial organisms of the phyla Cyanobacteria and Chloroflexi. In contrast, the diversity and metabolic functions of the heterotrophic community in the microoxic/anoxic region of the mat are not well understood. In this study we analyzed the orange-colored undermat of the microbial community of Mushroom Spring using metagenomic and rRNA-amplicon (iTag) analyses. Our analyses disclosed a highly diverse community exhibiting a high degree of unevenness, strongly dominated by a single taxon, the filamentous anoxygenic phototroph, Roseiflexus spp. The second most abundant organisms belonged to the Thermotogae, which have been hypothesized to be a major source of H2 from fermentation that could enable photomixotrophic metabolism by Chloroflexus and Roseiflexus spp. Other abundant organisms include two members of the Armatimonadetes (OP10); Thermocrinis sp.; and phototrophic and heterotrophic members of the Chloroflexi. Further, an Atribacteria (OP9/JS1) member; a sulfate-reducing Thermodesulfovibrio sp.; a Planctomycetes member; a member of the EM3 group tentatively affiliated with the Thermotogae, as well as a putative member of the Arminicenantes (OP8) represented ≥1% of the reads. Archaea were not abundant in the iTag analysis, and no metagenomic bin representing an archaeon was identified. A high microdiversity of 16S rRNA gene sequences was identified for the dominant taxon, Roseiflexus spp. Previous studies demonstrated that highly similar Synechococcus variants in the upper layer of the mats represent ecological species populations with specific ecological adaptations. This study suggests that similar putative ecotypes specifically adapted to different niches occur within the undermat community, particularly for Roseiflexus spp.
Collapse
Affiliation(s)
- Vera Thiel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University University Park, PA, USA
| | - Jason M Wood
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Millie T Olsen
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Marcus Tank
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University University Park, PA, USA
| | - Christian G Klatt
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA; Agricultural Research Service, United States Department of Agriculture, University of MinnesotaSaint Paul, MN, USA
| | - David M Ward
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA; Department of Chemistry and Biochemistry, Montana State UniversityBozeman, MT, USA
| |
Collapse
|
39
|
Tsujimoto R, Kamiya N, Fujita Y. Identification of acis-acting element in nitrogen fixation genes recognized by CnfR in the nonheterocystous nitrogen-fixing cyanobacteriumLeptolyngbya boryana. Mol Microbiol 2016; 101:411-24. [DOI: 10.1111/mmi.13402] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Ryoma Tsujimoto
- Graduate School of Bioagricultural Sciences; Nagoya University, Furo-cho; Chikusa-ku Nagoya 464-8601 Japan
| | - Narumi Kamiya
- School of Agricultural Sciences; Nagoya University, Furo-cho; Chikusa-ku Nagoya 464-8601 Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences; Nagoya University, Furo-cho; Chikusa-ku Nagoya 464-8601 Japan
| |
Collapse
|
40
|
Vanucci S, Guidi F, Pistocchi R, Long RA. Phylogenetic structure of bacterial assemblages co-occurring with Ostreopsis cf. ovata bloom. HARMFUL ALGAE 2016; 55:259-271. [PMID: 28073540 DOI: 10.1016/j.hal.2016.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 06/06/2023]
Abstract
Extensive blooms of the toxic epiphytic/benthic dinoflagellate Ostreopsis cf. ovata are being reported with increasing frequency and spatial distribution in temperate coastal regions including the Mediterranean. These blooms are of human and environmental health concern due to the production of isobaric palytoxin and a wide range of ovatoxins by Ostreopsis cf. ovata. Bacterial-microalgal interactions are important regulators in algal bloom dynamics and potentially toxin dynamics. This study investigated the bacterial assemblages co-occurring with O. cf. ovata (OA) and from ambient seawaters (SW) during the early and peak phases of bloom development in NW Adriatic Sea. Fractions of the bacterial assemblages co-occurring with O. cf. ovata (OA) and more closely associated to the mucilage layer (LA) embedding O. cf. ovata cells were also reported. In total, 14 bacterial phyla were detected by targeted 454 pyrosequencing of the 16S rRNA gene. The dominant bacterial phyla in the OA assemblages were Proteobacteria and Bacteroidetes; while at the class level, Alphaproteobacteria were the most abundant (83 and 66%, relative abundance, early and peak bloom phases), followed by Flavobacteria (7 and 19%, early and peak phases). Actinobacteria and Cyanobacteria were of minor importance (<5% of the relative bacterial abundance each). Gammaproteobacteria showed a notably presence in OA assemblage only at the early phase of the bloom (genus Haliea, 13%). The Alphaproteobacteria were predominately composed by the genera Ruegeria, Jannaschia and Erythrobacter which represented about half of the total phylotypes' contribution of OA at both early and peak phases of the O. cf. ovata bloom, suggesting interactions between this consortium and the microalga. Moreover, the highest contribution of Ruegeria (30% of the total phylotypes) was observed at the early phase of the bloom in LA assemblage. Microbial assemblages associated with the ambient seawaters while being also dominated by Alphaproteobacteria and Flavobacteria were partially distinct from those associated with O. cf. ovata due to the presence of genera almost not retrieved in the latter assemblages.
Collapse
Affiliation(s)
- Silvana Vanucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 S. Agata, Messina, Italy.
| | - Flavio Guidi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via S'Alberto 163, 48123 Ravenna, Italy
| | - Rossella Pistocchi
- Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via S'Alberto 163, 48123 Ravenna, Italy
| | - Richard A Long
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| |
Collapse
|
41
|
Daelman MRJ, Sorokin D, Kruse O, van Loosdrecht MCM, Strous M. Haloalkaline Bioconversions for Methane Production from Microalgae Grown on Sunlight. Trends Biotechnol 2016; 34:450-457. [PMID: 26968613 DOI: 10.1016/j.tibtech.2016.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 11/28/2022]
Abstract
Microalgal biomass can be converted to biofuels to replace nonsustainable fossil fuels, but the widespread use of microalgal biofuels remains hampered by the high energetic and monetary costs related to carbon dioxide supply and downstream processing. Growing microalgae in mixed culture biofilms reduces energy demands for mixing, maintaining axenic conditions, and biomass concentration. Furthermore, maintaining a high pH improves carbon dioxide absorption rates and inorganic carbon solubility, thus overcoming the carbon limitation and increasing the volumetric productivity of the microalgal biomass. Digesting the microalgal biomass anaerobically at high pH results in biogas that is enriched in methane, while the dissolved carbon dioxide is recycled to the phototrophic reactor. All of the required haloalkaline conversions are known in nature.
Collapse
Affiliation(s)
| | - Dimitry Sorokin
- Department of Biotechnology, Delft University, Delft, The Netherlands; Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstraße 27, D-33615 Bielefeld, Germany
| | | | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, Canada.
| |
Collapse
|
42
|
Wang J, Bao JT, Li XR, Liu YB. Molecular Ecology of nifH Genes and Transcripts Along a Chronosequence in Revegetated Areas of the Tengger Desert. MICROBIAL ECOLOGY 2016; 71:150-163. [PMID: 26276410 DOI: 10.1007/s00248-015-0657-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/29/2015] [Indexed: 06/04/2023]
Abstract
The colonization and succession of diazotrophs are essential for the development of organic soil layers in desert. We examined the succession of diazotrophs in the well-established revegetated areas representing a chronosequence of 0 year (control), 22 years (restored artificially since 1981), 57 years (restored artificially since 1956), and more than 100 years (restored naturally) to determine the community assembly and active expression of diazotrophs. The pyrosequencing data revealed that Alphaproteobacteria-like diazotrophs predominated in the topsoil of our mobile dune site, while cyanobacterial diazotrophs predominated in the revegetated sites. The cyanobacterial diazotrophs were primarily composed of the heterocystous genera Anabaena, Calothrix, Cylindrospermum, Nodularia, Nostoc, Trichormus, and Mastigocladus. Almost all the nifH sequences belonged to the Cyanobacteria phylum (all the relative abundance values >99.1 %) at transcript level and all the active cyanobacterial diazotrophs distributed in the families Nostocaceae and Rivulariaceae. The most dominant active cyanobacterial genus was Cylindrospermum in all the samples. The rank abundance and community analyses demonstrated that most of the diazotrophic diversity originated from the "rare" species, and all the DNA-based diazotrophic libraries were richer and more diverse than their RNA-based counterparts in the revegetated sites. Significant differences in the diazotrophic community and their active population composition were observed among the four research sites. Samples from the 1981-revegetating site (predominated by cyanobacterial crusts) showed the highest nitrogenase activity, followed by samples from the naturally revegetating site (predominated by lichen crusts), the 1956-revegetating site (predominated by moss crusts), and the mobile dune site (without crusts). Collectively, our data highlight the importance of nitrogen fixation by the primary successional desert topsoil and suggest that the N2-fixing cyanobacteria are the key diazotrophs to the nitrogen budget and the development of topsoil in desert, which is critical for the succession of the degraded terrestrial ecosystems.
Collapse
Affiliation(s)
- Jin Wang
- Shapotou Desert Experiment and Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
- Laboratory of Plant Stress Ecophysiology and Biotechnology, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jing-Ting Bao
- Shapotou Desert Experiment and Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Rong Li
- Shapotou Desert Experiment and Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Laboratory of Plant Stress Ecophysiology and Biotechnology, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Yu-Bing Liu
- Shapotou Desert Experiment and Research Station, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
- Laboratory of Plant Stress Ecophysiology and Biotechnology, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
43
|
Estrella Alcamán M, Fernandez C, Delgado A, Bergman B, Díez B. The cyanobacterium Mastigocladus fulfills the nitrogen demand of a terrestrial hot spring microbial mat. THE ISME JOURNAL 2015; 9:2290-303. [PMID: 26230049 PMCID: PMC4579480 DOI: 10.1038/ismej.2015.63] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 11/09/2022]
Abstract
Cyanobacteria from Subsection V (Stigonematales) are important components of microbial mats in non-acidic terrestrial hot springs. Despite their diazotrophic nature (N2 fixers), their impact on the nitrogen cycle in such extreme ecosystems remains unknown. Here, we surveyed the identity and activity of diazotrophic cyanobacteria in the neutral hot spring of Porcelana (Northern Patagonia, Chile) during 2009 and 2011-2013. We used 16S rRNA and the nifH gene to analyze the distribution and diversity of diazotrophic cyanobacteria. Our results demonstrate the dominance of the heterocystous genus Mastigocladus (Stigonematales) along the entire temperature gradient of the hot spring (69-38 °C). In situ nitrogenase activity (acetylene reduction), nitrogen fixation rates (cellular uptake of (15)N2) and nifH transcription levels in the microbial mats showed that nitrogen fixation and nifH mRNA expression were light-dependent. Nitrogen fixation activities were detected at temperatures ranging from 58 °C to 46 °C, with maximum daily rates of 600 nmol C2H4 cm(-2) per day and 94.1 nmol N cm(-2) per day. These activity patterns strongly suggest a heterocystous cyanobacterial origin and reveal a correlation between nitrogenase activity and nifH gene expression during diurnal cycles in thermal microbial mats. N and C fixation in the mats contributed ~3 g N m(-2) per year and 27 g C m(-2) per year, suggesting that these vital demands are fully met by the diazotrophic and photoautotrophic capacities of the cyanobacteria in the Porcelana hot spring.
Collapse
Affiliation(s)
- María Estrella Alcamán
- Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Fernandez
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, UPMC Univ Paris 06, UMR 7621, Banyuls/mer, France
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Banyuls/mer, France
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research (INCAR) and COPAS SURAUSTRAL Program, University of Concepción, Concepción, Chile
| | - Antonio Delgado
- Instituto Andaluz de Ciencias de la Tierra (CSIC-Univ. Granada), Armilla, Granada, Spain
| | - Birgitta Bergman
- Department of Ecology, Environment and Plant Sciences and Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, Santiago, Chile
| |
Collapse
|
44
|
Rosen MJ, Davison M, Bhaya D, Fisher DS. Microbial diversity. Fine-scale diversity and extensive recombination in a quasisexual bacterial population occupying a broad niche. Science 2015; 348:1019-23. [PMID: 26023139 DOI: 10.1126/science.aaa4456] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extensive fine-scale genetic diversity is found in many microbial species across varied environments, but for most, the evolutionary scenarios that generate the observed variation remain unclear. Deep sequencing of a thermophilic cyanobacterial population and analysis of the statistics of synonymous single-nucleotide polymorphisms revealed a high rate of homologous recombination and departures from neutral drift consistent with the effects of genetic hitchhiking. A sequenced isolate genome resembled an unlinked random mixture of the allelic diversity at the sampled loci. These observations suggested a quasisexual microbial population that occupies a broad ecological niche, with selection driving frequencies of alleles rather than whole genomes.
Collapse
Affiliation(s)
- Michael J Rosen
- Applied Physics Department, Stanford University, Stanford, CA 94305, USA
| | - Michelle Davison
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Devaki Bhaya
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Daniel S Fisher
- Applied Physics Department, Stanford University, Stanford, CA 94305, USA. Bioengineering Department, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
45
|
Olsen MT, Nowack S, Wood JM, Becraft ED, LaButti K, Lipzen A, Martin J, Schackwitz WS, Rusch DB, Cohan FM, Bryant DA, Ward DM. The molecular dimension of microbial species: 3. Comparative genomics of Synechococcus strains with different light responses and in situ diel transcription patterns of associated putative ecotypes in the Mushroom Spring microbial mat. Front Microbiol 2015; 6:604. [PMID: 26157428 PMCID: PMC4477158 DOI: 10.3389/fmicb.2015.00604] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/01/2015] [Indexed: 11/26/2022] Open
Abstract
Genomes were obtained for three closely related strains of Synechococcus that are representative of putative ecotypes (PEs) that predominate at different depths in the 1 mm-thick, upper-green layer in the 60°C mat of Mushroom Spring, Yellowstone National Park, and exhibit different light adaptation and acclimation responses. The genomes were compared to the published genome of a previously obtained, closely related strain from a neighboring spring, and differences in both gene content and orthologous gene alleles between high-light-adapted and low-light-adapted strains were identified. Evidence of genetic differences that relate to adaptation to light intensity and/or quality, CO2uptake, nitrogen metabolism, organic carbon metabolism, and uptake of other nutrients were found between strains of the different putative ecotypes. In situ diel transcription patterns of genes, including genes unique to either low-light-adapted or high-light-adapted strains and different alleles of an orthologous photosystem gene, revealed that expression is fine-tuned to the different light environments experienced by ecotypes prevalent at various depths in the mat. This study suggests that strains of closely related PEs have different genomic adaptations that enable them to inhabit distinct ecological niches while living in close proximity within a microbial community.
Collapse
Affiliation(s)
- Millie T Olsen
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Shane Nowack
- Department of Mathematical Sciences, Montana State University Bozeman, MT, USA
| | - Jason M Wood
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Eric D Becraft
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Kurt LaButti
- Department of Energy, Joint Genome Institute Walnut Creek, CA, USA
| | - Anna Lipzen
- Department of Energy, Joint Genome Institute Walnut Creek, CA, USA
| | - Joel Martin
- Department of Energy, Joint Genome Institute Walnut Creek, CA, USA
| | | | | | | | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University University Park, PA, USA ; Department of Chemistry and Biochemistry, Montana State University Bozeman, MT, USA
| | - David M Ward
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| |
Collapse
|
46
|
Kim YM, Nowack S, Olsen MT, Becraft ED, Wood JM, Thiel V, Klapper I, Kühl M, Fredrickson JK, Bryant DA, Ward DM, Metz TO. Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms. Front Microbiol 2015; 6:209. [PMID: 25941514 PMCID: PMC4400912 DOI: 10.3389/fmicb.2015.00209] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/02/2015] [Indexed: 11/29/2022] Open
Abstract
Dynamic environmental factors such as light, nutrients, salt, and temperature continuously affect chlorophototrophic microbial mats, requiring adaptive and acclimative responses to stabilize composition and function. Quantitative metabolomics analysis can provide insights into metabolite dynamics for understanding community response to such changing environmental conditions. In this study, we quantified volatile organic acids, polar metabolites (amino acids, glycolytic and citric acid cycle intermediates, nucleobases, nucleosides, and sugars), wax esters, and polyhydroxyalkanoates, resulting in the identification of 104 metabolites and related molecules in thermal chlorophototrophic microbial mat cores collected over a diel cycle in Mushroom Spring, Yellowstone National Park. A limited number of predominant taxa inhabit this community and their functional potentials have been previously identified through metagenomic and metatranscriptomic analyses and in situ metabolisms, and metabolic interactions among these taxa have been hypothesized. Our metabolomics results confirmed the diel cycling of photorespiration (e.g., glycolate) and fermentation (e.g., acetate, propionate, and lactate) products, the carbon storage polymers polyhydroxyalkanoates, and dissolved gasses (e.g., H2 and CO2) in the waters overlying the mat, which were hypothesized to occur in major mat chlorophototrophic community members. In addition, we have formulated the following new hypotheses: (1) the morning hours are a time of biosynthesis of amino acids, DNA, and RNA; (2) photo-inhibited cells may also produce lactate via fermentation as an alternate metabolism; (3) glycolate and lactate are exchanged among Synechococcus and Roseiflexus spp.; and (4) fluctuations in many metabolite pools (e.g., wax esters) at different times of day result from species found at different depths within the mat responding to temporal differences in their niches.
Collapse
Affiliation(s)
- Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, USA
| | - Shane Nowack
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA
- Department of Mathematical Sciences, Montana State UniversityBozeman, MT, USA
| | - Millie T. Olsen
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA
| | - Eric D. Becraft
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA
| | - Jason M. Wood
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA
| | - Vera Thiel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
| | - Isaac Klapper
- Department of Mathematical Sciences, Montana State UniversityBozeman, MT, USA
- Department of Mathematics, Temple UniversityPhiladelphia, PA, USA
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark
- Plant Functional Biology and Climate Change Cluster, University of Technology SydneyUltimo, NSW, Australia
| | - James K. Fredrickson
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, USA
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
- Department of Chemistry and Biochemistry, Montana State UniversityBozeman, MT, USA
| | - David M. Ward
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, USA
| |
Collapse
|
47
|
Clowez S, Godaux D, Cardol P, Wollman FA, Rappaport F. The involvement of hydrogen-producing and ATP-dependent NADPH-consuming pathways in setting the redox poise in the chloroplast of Chlamydomonas reinhardtii in anoxia. J Biol Chem 2015; 290:8666-76. [PMID: 25691575 DOI: 10.1074/jbc.m114.632588] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosynthetic microalgae are exposed to changing environmental conditions. In particular, microbes found in ponds or soils often face hypoxia or even anoxia, and this severely impacts their physiology. Chlamydomonas reinhardtii is one among such photosynthetic microorganisms recognized for its unusual wealth of fermentative pathways and the extensive remodeling of its metabolism upon the switch to anaerobic conditions. As regards the photosynthetic electron transfer, this remodeling encompasses a strong limitation of the electron flow downstream of photosystem I. Here, we further characterize the origin of this limitation. We show that it stems from the strong reducing pressure that builds up upon the onset of anoxia, and this pressure can be relieved either by the light-induced synthesis of ATP, which promotes the consumption of reducing equivalents, or by the progressive activation of the hydrogenase pathway, which provides an electron transfer pathway alternative to the CO2 fixation cycle.
Collapse
Affiliation(s)
- Sophie Clowez
- From the Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 Rue P et M Curie, 75005 Paris, France, and
| | - Damien Godaux
- the Laboratoire de Génétique et Physiologie des Microalgues, Phytosystems, Department of Life Sciences, Institute of Botany, 27 Bld. du Rectorat, University of Liège, B-4000 Liège, Belgium
| | - Pierre Cardol
- the Laboratoire de Génétique et Physiologie des Microalgues, Phytosystems, Department of Life Sciences, Institute of Botany, 27 Bld. du Rectorat, University of Liège, B-4000 Liège, Belgium
| | - Francis-André Wollman
- From the Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 Rue P et M Curie, 75005 Paris, France, and
| | - Fabrice Rappaport
- From the Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 Rue P et M Curie, 75005 Paris, France, and
| |
Collapse
|
48
|
Transcriptional regulators ChlR and CnfR are essential for diazotrophic growth in nonheterocystous cyanobacteria. Proc Natl Acad Sci U S A 2014; 111:6762-7. [PMID: 24753612 DOI: 10.1073/pnas.1323570111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leptolyngbya boryana (Plectonema boryanum) is a diazotrophic cyanobacterium lacking heterocysts. How nitrogen fixation is regulated in filamentous nonheterocystous cyanobacteria remains unclear. Here we describe a large 50-kb nitrogen fixation (nif) gene cluster in L. boryana containing 50 genes. This gene cluster contains 14 nif genes (nifBSUHDKVZT and nifPENXW), two genes encoding transcriptional regulators showing high similarity to ChlR (chlorophyll regulator) and PatB, three genes encoding ferredoxin, three genes encoding cytochrome oxidase subunits, and 28 genes encoding nif-related proteins and proteins with putative or unknown functions. Eleven mutants lacking one gene or a subset of genes were isolated. Five of them did not grow under diazotrophic conditions, including two mutants lacking the transcriptional regulators. Although the chlR homolog-lacking mutant showed a normal level of nitrogenase activity, various intermediates of chlorophyll biosynthesis were accumulated under micro-oxic conditions. The phenotype suggested that ChlR activates the expression of the genes responsible for anaerobic chlorophyll biosynthesis to support energy supply for nitrogen fixation. In another mutant lacking the patB homolog, no transcripts of any nif genes were detected under nitrogen fixation conditions, which was consistent with no activity. Constitutive expression of patB in a shuttle vector resulted in low but significant nitrogenase activity even under nitrate-replete conditions, suggesting that the PatB homolog is the master regulator of nitrogen fixation. We propose to rename the patB homolog as cnfR, after cyanobacterial nitrogen fixation regulator.
Collapse
|
49
|
Phylogenetic analysis of Stenotrophomonas spp. isolates contributes to the identification of nosocomial and community-acquired infections. BIOMED RESEARCH INTERNATIONAL 2014; 2014:151405. [PMID: 24818127 PMCID: PMC4003845 DOI: 10.1155/2014/151405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/17/2014] [Indexed: 11/21/2022]
Abstract
Stenotrophomonas ssp. has a wide environmental distribution and is also found as an opportunistic pathogen, causing nosocomial or community-acquired infections. One species, S. maltophilia, presents multidrug resistance and has been associated with serious infections in pediatric and immunocompromised patients. Therefore, it is relevant to conduct resistance profile and phylogenetic studies in clinical isolates for identifying infection origins and isolates with augmented pathogenic potential. Here, multilocus sequence typing was performed for phylogenetic analysis of nosocomial isolates of Stenotrophomonas spp. and, environmental and clinical strains of S. maltophilia. Biochemical and multidrug resistance profiles of nosocomial and clinical strains were determined. The inferred phylogenetic profile showed high clonal variability, what correlates with the adaptability process of Stenotrophomonas to different habitats. Two clinical isolates subgroups of S. maltophilia sharing high phylogenetic homogeneity presented intergroup recombination, thus indicating the high permittivity to horizontal gene transfer, a mechanism involved in the acquisition of antibiotic resistance and expression of virulence factors. For most of the clinical strains, phylogenetic inference was made using only partial ppsA gene sequence. Therefore, the sequencing of just one specific fragment of this gene would allow, in many cases, determining whether the infection with S. maltophilia was nosocomial or community-acquired.
Collapse
|
50
|
Molero G, Tcherkez G, Araus JL, Nogu S S, Aranjuelo I. On the relationship between C and N fixation and amino acid synthesis in nodulated alfalfa (Medicago sativa). FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:331-341. [PMID: 32480994 DOI: 10.1071/fp13189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/31/2013] [Indexed: 06/11/2023]
Abstract
Legumes such as alfalfa (Medicago sativa L.) are vital N2-fixing crops accounting for a global N2 fixation of ~35MtNyear-1. Although enzymatic and molecular mechanisms of nodule N2 fixation are now well documented, some uncertainty remains as to whether N2 fixation is strictly coupled with photosynthetic carbon fixation. That is, the metabolic origin and redistribution of carbon skeletons used to incorporate nitrogen are still relatively undefined. Here, we conducted isotopic labelling with both 15N2 and 13C-depleted CO2 on alfalfa plants grown under controlled conditions and took advantage of isotope ratio mass spectrometry to investigate the relationship between carbon and nitrogen turn-over in respired CO2, total organic matter and amino acids. Our results indicate that CO2 evolved by respiration had an isotopic composition similar to that in organic matter regardless of the organ considered, suggesting that the turn-over of respiratory pools strictly followed photosynthetic input. However, carbon turn-over was nearly three times greater than N turn-over in total organic matter, suggesting that new organic material synthesised was less N-rich than pre-existing organic material (due to progressive nitrogen elemental dilution) or that N remobilisation occurred to sustain growth. This pattern was not consistent with the total commitment into free amino acids where the input of new C and N appeared to be stoichiometric. The labelling pattern in Asn was complex, with contrasted C and N commitments in different organs, suggesting that neosynthesis and redistribution of new Asn molecules required metabolic remobilisation. We conclude that the production of new organic material during alfalfa growth depends on both C and N remobilisation in different organs. At the plant level, this remobilisation is complicated by allocation and metabolism in the different organs.
Collapse
Affiliation(s)
- Gemma Molero
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco, CP 56130, Mexico
| | - Guillaume Tcherkez
- Plateforme Métabolisme-Métabolome, IFR 87, Bât. 630, Université Paris Sud, 91405 Orsay cedex, France
| | - Jose Luis Araus
- Unitat de Fisologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Salvador Nogu S
- Unitat de Fisologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Iker Aranjuelo
- Unitat de Fisologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|