1
|
Lequan Q, Yanan F, Xianda Z, Mengyuan B, Chenyu L, Shijin W. Mechanisms and high-value applications of phthalate isomers degradation pathways in bacteria. World J Microbiol Biotechnol 2024; 40:247. [PMID: 38904858 DOI: 10.1007/s11274-024-04060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Phthalate isomers are key intermediates in the biodegradation of pollutants including waste polyethylene terephthalate (PET) plastics and plasticizers. So far, an increasing number of phthalate isomer-degrading strains have been isolated, and their degradation pathways show significant diversity. In this paper, we comprehensively review the current status of research on the degrading bacteria, degradation characteristics, aerobic and anaerobic degradation pathways, and degradation genes (clusters) of phthalate isomers, and discuss the current shortcomings and challenges. Moreover, the degradation process of phthalate isomers produces many important aromatic precursor molecules, which can be used to produce higher-value derivative chemicals, and the modification of their degradation pathways holds good prospects. Therefore, this review also highlights the current progress made in modifying the phthalate isomer degradation pathway and explores its potential for high-value applications.
Collapse
Affiliation(s)
- Qiu Lequan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| | - Fu Yanan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhou Xianda
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Bao Mengyuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Li Chenyu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Wu Shijin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
2
|
Zehnle H, Otersen C, Benito Merino D, Wegener G. Potential for the anaerobic oxidation of benzene and naphthalene in thermophilic microorganisms from the Guaymas Basin. Front Microbiol 2023; 14:1279865. [PMID: 37840718 PMCID: PMC10570749 DOI: 10.3389/fmicb.2023.1279865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Unsubstituted aromatic hydrocarbons (UAHs) are recalcitrant molecules abundant in crude oil, which is accumulated in subsurface reservoirs and occasionally enters the marine environment through natural seepage or human-caused spillage. The challenging anaerobic degradation of UAHs by microorganisms, in particular under thermophilic conditions, is poorly understood. Here, we established benzene- and naphthalene-degrading cultures under sulfate-reducing conditions at 50°C and 70°C from Guaymas Basin sediments. We investigated the microorganisms in the enrichment cultures and their potential for UAH oxidation through short-read metagenome sequencing and analysis. Dependent on the combination of UAH and temperature, different microorganisms became enriched. A Thermoplasmatota archaeon was abundant in the benzene-degrading culture at 50°C, but catabolic pathways remained elusive, because the archaeon lacked most known genes for benzene degradation. Two novel species of Desulfatiglandales bacteria were strongly enriched in the benzene-degrading culture at 70°C and in the naphthalene-degrading culture at 50°C. Both bacteria encode almost complete pathways for UAH degradation and for downstream degradation. They likely activate benzene via methylation, and naphthalene via direct carboxylation, respectively. The two species constitute the first thermophilic UAH degraders of the Desulfatiglandales. In the naphthalene-degrading culture incubated at 70°C, a Dehalococcoidia bacterium became enriched, which encoded a partial pathway for UAH degradation. Comparison of enriched bacteria with related genomes from environmental samples indicated that pathways for benzene degradation are widely distributed, while thermophily and capacity for naphthalene activation are rare. Our study highlights the capacities of uncultured thermophilic microbes for UAH degradation in petroleum reservoirs and in contaminated environments.
Collapse
Affiliation(s)
- Hanna Zehnle
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Carolin Otersen
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - David Benito Merino
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
3
|
Zhen G, Pan Y, Han Y, Gao Y, Ibrahim Gadow S, Zhu X, Yang L, Lu X. Enhanced co-digestion of sewage sludge and food waste using novel electrochemical anaerobic membrane bioreactor (EC-AnMBR). BIORESOURCE TECHNOLOGY 2023; 377:128939. [PMID: 36958678 DOI: 10.1016/j.biortech.2023.128939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Membrane fouling remains a big challenge hindering the wide-application of anaerobic membrane bioreactor (AnMBR) technology. In this study, an electrochemical anaerobic membrane bioreactor (EC-AnMBR) was developed by coupling electrochemical regulation to enhance co-digestion of sewage sludge and food waste and mitigate membrane fouling. The highest methane production (0.12 ± 0.02 L/Lreactor/day) and net energy recovery (31.82 kJ/day) were achieved under the optimum conditions of 0.8 V, hydraulic retention time of 10 days and solids retention time of 50 days. Electrochemical regulation accelerated the mineralization of high-molecular-weight organics and reinforced the membrane antifouling ability by inducing electrostatic repulsive force and electrochemical oxidation. Besides, symbiotic relationships among functional microorganisms (Spirochaetes, Methanolinea, etc.) were enhanced, improving the hydrolysis and methanogenesis processes of complex organics and the long-term stability. This study confirms the technical feasibility of EC-AnMBR in treating high-solid biowastes, and provides the fundamental data to support its application in real-world scenarios.
Collapse
Affiliation(s)
- Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| | - Yang Pan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yule Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yijing Gao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Samir Ibrahim Gadow
- Agriculture and Biology Research Division National Research Center, 12622, 32 El Buhouth St., Dokki, Cairo, Egypt
| | - Xuefeng Zhu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liying Yang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China
| |
Collapse
|
4
|
Anaerobic membrane bioreactor-based treatment of poultry slaughterhouse wastewater: Microbial community adaptation and antibiotic resistance gene profiles. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Junghare M, Frey J, Naji KM, Spiteller D, Vaaje-Kolstad G, Schink B. Isophthalate:coenzyme A ligase initiates anaerobic degradation of xenobiotic isophthalate. BMC Microbiol 2022; 22:227. [PMID: 36171563 PMCID: PMC9516798 DOI: 10.1186/s12866-022-02630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
Background Environmental contamination from synthetic plastics and their additives is a widespread problem. Phthalate esters are a class of refractory synthetic organic compounds which are widely used in plastics, coatings, and for several industrial applications such as packaging, pharmaceuticals, and/or paints. They are released into the environment during production, use and disposal, and some of them are potential mutagens and carcinogens. Isophthalate (1,3-benzenedicarboxylic acid) is a synthetic chemical that is globally produced at a million-ton scale for industrial applications and is considered a priority pollutant. Here we describe the biochemical characterization of an enzyme involved in anaerobic degradation of isophthalate by the syntrophically fermenting bacterium Syntrophorhabdus aromaticivorans strain UI that activate isophthalate to isophthalyl-CoA followed by its decarboxylation to benzoyl-CoA. Results Isophthalate:Coenzyme A ligase (IPCL, AMP-forming) that activates isophthalate to isophthalyl-CoA was heterologously expressed in E. coli (49.6 kDa) for biochemical characterization. IPCL is homologous to phenylacetate-CoA ligase that belongs to the family of ligases that form carbon-sulfur bonds. In the presence of coenzyme A, Mg2+ and ATP, IPCL converts isophthalate to isophthalyl-CoA, AMP and pyrophosphate (PPi). The enzyme was specifically induced after anaerobic growth of S. aromaticivorans in a medium containing isophthalate as the sole carbon source. Therefore, IPCL exhibited high substrate specificity and affinity towards isophthalate. Only substrates that are structurally related to isophthalate, such as glutarate and 3-hydroxybenzoate, could be partially converted to the respective coenzyme A esters. Notably, no activity could be measured with substrates such as phthalate, terephthalate and benzoate. Acetyl-CoA or succinyl-CoA did not serve as CoA donors. The enzyme has a theoretical pI of 6.8 and exhibited optimal activity between pH 7.0 to 7.5. The optimal temperature was between 25 °C and 37 °C. Denaturation temperature (Tm) of IPCL was found to be at about 63 °C. The apparent KM values for isophthalate, CoA, and ATP were 409 μM, 642 μM, and 3580 μM, respectively. Although S. aromaticivorans is a strictly anaerobic bacterium, the enzyme was found to be oxygen-insensitive and catalysed isophthalyl-CoA formation under both anoxic and oxic conditions. Conclusion We have successfully cloned the ipcl gene, expressed and characterized the corresponding IPCL enzyme, which plays a key role in isophthalate activation that initiates its activation and further degradation by S. aromaticivorans. Its biochemical characterization represents an important step in the elucidation of the complete degradation pathway of isophthalate. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02630-x.
Collapse
Affiliation(s)
- Madan Junghare
- General Microbiology and Microbial Ecology, Department of Biology, University of Konstanz, D-78457, Constance, Germany. .,Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1430, Ås, Norway.
| | - Jasmin Frey
- General Microbiology and Microbial Ecology, Department of Biology, University of Konstanz, D-78457, Constance, Germany
| | - Khalid M Naji
- Chemical Ecology and Biological Chemistry, Department of Biology, University of Konstanz, D-78457, Constance, Germany
| | - Dieter Spiteller
- Chemical Ecology and Biological Chemistry, Department of Biology, University of Konstanz, D-78457, Constance, Germany
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1430, Ås, Norway
| | - Bernhard Schink
- General Microbiology and Microbial Ecology, Department of Biology, University of Konstanz, D-78457, Constance, Germany
| |
Collapse
|
6
|
Kuroda K, Narihiro T, Shinshima F, Yoshida M, Yamaguchi H, Kurashita H, Nakahara N, Nobu MK, Noguchi TQP, Yamauchi M, Yamada M. High-rate cotreatment of purified terephthalate and dimethyl terephthalate manufacturing wastewater by a mesophilic upflow anaerobic sludge blanket reactor and the microbial ecology relevant to aromatic compound degradation. WATER RESEARCH 2022; 219:118581. [PMID: 35584587 DOI: 10.1016/j.watres.2022.118581] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Polyethylene terephthalate (PET) is produced worldwide, mainly as material for plastic drink bottles. PET is produced by polymerization of purified terephthalate (PTA) or dimethyl terephthalate (DMT) with ethylene glycol. During the synthetic manufacturing processes of PTA and DMT, high organic loading wastewater is produced, which is typically treated separately by anaerobic wastewater treatment technologies. Given the high demand for PET, manufacturing plants are expanding globally, which will result in an increase in the amounts of PTA and DMT wastewater in need of treatment. In terms of effective treatment, the cotreatment of PTA and DMT wastewater has several advantages, including lower area and energy requirements. In this study, we examined the performance of an upflow anaerobic sludge blanket (UASB) reactor in cotreating PTA and DMT wastewater with high organic loading, evaluating its removal characteristics after 518 days of continuous operation. In addition, we performed a microbiome analysis of the UASB granular sludge to uncover the microbial interactions and metabolic functions within the reactor. By continuous operation, we achieved an organic removal rate of 6.6 kg m-3 day-1. In addition, we confirmed that aromatic compounds in the complex wastewater from the PTA and DMT manufacturing processes are biodegradable in the following order: benzoate > orthophthalate > terephthalate > isophthalate > p-toluic acid. 16S rRNA gene-based network analysis shows that anaerobic Woesearchaeales belonging to phylum Nanoarchaeota has a positive correlation with Methanoregula, Candidatus Methanofastidiosum, and Methanosarcina, suggesting a symbiotic relationship with methanogens in granular sludge. Shotgun metagenomic analysis revealed that terephthalate, isophthalate/orthophthalate, and benzoate were degraded by different members of Pelotomaculaceae and Syntrophorhabdaceae. According to the genomic information, we propose two new possible routes for orthophthalate degradation by the Syntrophorhabdaceae organism.
Collapse
Affiliation(s)
- Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan.
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan.
| | - Futaba Shinshima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan; Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, 473-1 Yoshio-cho, Miyakonojo, Miyazaki 885-8567, Japan
| | - Mio Yoshida
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, 473-1 Yoshio-cho, Miyakonojo, Miyazaki 885-8567, Japan
| | - Haruka Yamaguchi
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, 473-1 Yoshio-cho, Miyakonojo, Miyazaki 885-8567, Japan
| | - Hazuki Kurashita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517 Japan; Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, 473-1 Yoshio-cho, Miyakonojo, Miyazaki 885-8567, Japan
| | - Nozomi Nakahara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Taro Q P Noguchi
- Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, 473-1 Yoshio-cho, Miyakonojo, Miyazaki 885-8567, Japan
| | - Masahito Yamauchi
- Department of Urban Environmental Design and Engineering, National Institute of Technology, Kagoshima College, 1460-1 Shinkou, Hayato, Kirishima, Kagoshima 899-5193, Japan
| | - Masayoshi Yamada
- Department of Urban Environmental Design and Engineering, National Institute of Technology, Kagoshima College, 1460-1 Shinkou, Hayato, Kirishima, Kagoshima 899-5193, Japan
| |
Collapse
|
7
|
Natural Source Zone Depletion (NSZD) Quantification Techniques: Innovations and Future Directions. SUSTAINABILITY 2022. [DOI: 10.3390/su14127027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Natural source zone depletion (NSZD) is an emerging technique for sustainable and cost-effective bioremediation of light non-aqueous phase liquid (LNAPL) in oil spill sites. Depending on regulatory objectives, NSZD has the potential to be used as either the primary or sole LNAPL management technique. To achieve this goal, NSZD rate (i.e., rate of bulk LNAPL mass depletion) should be quantified accurately and precisely. NSZD has certain characteristic features that have been used as surrogates to quantify the NSZD rates. This review highlights the most recent trends in technology development for NSZD data collection and rate estimation, with a focus on the operational and technical advantages and limitations of the associated techniques. So far, four principal techniques are developed, including concentration gradient (CG), dynamic closed chamber (DCC), CO2 trap and thermal monitoring. Discussions revolving around two techniques, “CO2 trap” and “thermal monitoring”, are expanded due to the particular attention to them in the current industry. The gaps of knowledge relevant to the NSZD monitoring techniques are identified and the issues which merit further research are outlined. It is hoped that this review can provide researchers and practitioners with sufficient information to opt the best practice for the research and application of NSZD for the management of LNAPL impacted sites.
Collapse
|
8
|
Gao R, Pan H, Kai L, Han K, Lian J. Microbial degradation and valorization of poly(ethylene terephthalate) (PET) monomers. World J Microbiol Biotechnol 2022; 38:89. [PMID: 35426614 DOI: 10.1007/s11274-022-03270-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022]
Abstract
The polyethylene terephthalate (PET) is one of the major plastics with a huge annual production. Alongside with its mass production and wide applications, PET pollution is threatening and damaging the environment and human health. Although mechanical or chemical methods can deal with PET, the process suffers from high cost and the hydrolyzed monomers will cause secondary pollution. Discovery of plastic-degrading microbes and the corresponding enzymes emerges new hope to cope with this issue. Combined with synthetic biology and metabolic engineering, microbial cell factories not only provide a promising approach to degrade PET, but also enable the conversion of its monomers, ethylene glycol (EG) and terephthalic acid (TPA), into value-added compounds. In this way, PET wastes can be handled in environment-friendly and more potentially cost-effective processes. While PET hydrolases have been extensively reviewed, this review focuses on the microbes and metabolic pathways for the degradation of PET monomers. In addition, recent advances in the biotransformation of TPA and EG into value-added compounds are discussed in detail.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 310027, Hangzhou, China
| | - Haojie Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Lei Kai
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, 22116, Xuzhou, China.,Jiangsu Keybio Co. LTD, 22116, Xuzhou, China
| | - Kun Han
- Jiangsu Keybio Co. LTD, 22116, Xuzhou, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 310027, Hangzhou, China.
| |
Collapse
|
9
|
Kudisi D, Lu X, Zheng C, Wang Y, Cai T, Li W, Hu L, Zhang R, Zhang Y, Zhen G. Long-term performance, membrane fouling behaviors and microbial community in a hollow fiber anaerobic membrane bioreactor (HF-AnMBR) treating synthetic terephthalic acid-containing wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127458. [PMID: 34653863 DOI: 10.1016/j.jhazmat.2021.127458] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Purified terephthalic acid (PTA) wastewater with properties of poor biodegradation and high toxicity is produced from refining and synthesis of petrochemical products. In this study, a lab-scale hollow fiber membrane bioreactor (HF-AnMBR) fed with synthetic PTA wastewater was operated over 200 days with stepwise decreased hydraulic retention time (HRT) to investigate the long-term performance, membrane fouling mechanism and microbial community evolution. Results showed that a stable chemical oxygen demand (COD) removal rate of 65.8 ± 4.1% was achieved at organic loading rate of 3.1 ± 0.3 g-COD/L-reactor/d and HRT 24 h, under which the methane production rate reached 0.33 ± 0.02 L/L-reactor/d. Further shortening HRT, however, led to the decreased COD removal efficiency and low methane bioconversion. A mild membrane fouling occurred due to the production of colloidal biopolymers and the interaction between increased colloidal substances secreted/cracked by microorganisms and membrane interface. Further 16S rRNA analysis indicated that microbial diversity and richness had changed with the variation of HRT while Methanosaeta, and Methanolinea species were always the dominant methanogens responsible for methane production. The results verify that HF-AnMBR is an alternative technology for PTA wastewater treatment along with energy harvesting, and provide a new avenue toward sustainable petrochemical wastewater management.
Collapse
Affiliation(s)
- Dilibaierkezi Kudisi
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China.
| | - Chaoting Zheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yue Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wanjiang Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Lingtan Hu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ruiliang Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yizhi Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, PR China.
| |
Collapse
|
10
|
Lin K, Han S, Zheng S. Application of Corynebacterium glutamicum engineering display system in three generations of biorefinery. Microb Cell Fact 2022; 21:14. [PMID: 35090458 PMCID: PMC8796525 DOI: 10.1186/s12934-022-01741-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/09/2022] [Indexed: 11/29/2022] Open
Abstract
The fermentation production of platform chemicals in biorefineries is a sustainable alternative to the current petroleum refining process. The natural advantages of Corynebacterium glutamicum in carbon metabolism have led to C. glutamicum being used as a microbial cell factory that can use various biomass to produce value-added platform chemicals and polymers. In this review, we discussed the use of C. glutamicum surface display engineering bacteria in the three generations of biorefinery resources, and analyzed the C. glutamicum engineering display system in degradation, transport, and metabolic network reconstruction models. These engineering modifications show that the C. glutamicum engineering display system has great potential to become a cell refining factory based on sustainable biomass, and further optimizes the inherent properties of C. glutamicum as a whole-cell biocatalyst. This review will also provide a reference for the direction of future engineering transformation.
Collapse
Affiliation(s)
- Kerui Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China. .,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
11
|
Understanding Interaction Patterns within Deep-Sea Microbial Communities and Their Potential Applications. Mar Drugs 2022; 20:md20020108. [PMID: 35200637 PMCID: PMC8874374 DOI: 10.3390/md20020108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
Environmental microbes living in communities engage in complex interspecies interactions that are challenging to decipher. Nevertheless, the interactions provide the basis for shaping community structure and functioning, which is crucial for ecosystem service. In addition, microbial interactions facilitate specific adaptation and ecological evolution processes particularly essential for microbial communities dwelling in resource-limiting habitats, such as the deep oceans. Recent technological and knowledge advancements provide an opportunity for the study of interactions within complex microbial communities, such as those inhabiting deep-sea waters and sediments. The microbial interaction studies provide insights into developing new strategies for biotechnical applications. For example, cooperative microbial interactions drive the degradation of complex organic matter such as chitins and celluloses. Such microbiologically-driven biogeochemical processes stimulate creative designs in many applied sciences. Understanding the interaction processes and mechanisms provides the basis for the development of synthetic communities and consequently the achievement of specific community functions. Microbial community engineering has many application potentials, including the production of novel antibiotics, biofuels, and other valuable chemicals and biomaterials. It can also be developed into biotechniques for waste processing and environmental contaminant bioremediation. This review summarizes our current understanding of the microbial interaction mechanisms and emerging techniques for inferring interactions in deep-sea microbial communities, aiding in future biotechnological and therapeutic applications.
Collapse
|
12
|
Zhang Y, Pan X, Zuo J, Hu J. Production of n-caproate using food waste through thermophilic fermentation without addition of external electron donors. BIORESOURCE TECHNOLOGY 2022; 343:126144. [PMID: 34673194 DOI: 10.1016/j.biortech.2021.126144] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The effectiveness of producing n-caproate from food waste without external electron donors (EDs) was investigated through batch and semi-continuous fermentation. The maximum concentration of n-caproate reached 10,226.28 mg COD/L during semi-continuous fermentation. The specificity for n-caproate was the highest at 40.19 ± 3.95%, and the soluble COD conversion rate of n-caproate reached up to 22.50 ± 1.09% at the end of batch fermentation. The production of n-caproate was coupled with the generation of lactate as an ED to facilitate chain elongation reactions. When lactate was used as the only substrate, n-butyrate (64.12 ± 20.11%) markedly dominated the products, instead of n-caproate (0.63 ± 0.07%). Microbial community analysis revealed that Caproiciproducens, Rummeliibacillus, and Clostridium_sensu_stricto_12 were the key genera related to n-caproate production. In addition to n-caproate, n-butyrate dominated the products in batch and semi-continuous fermentation with a maximum specificity of 47.59 ± 3.39%. Clostridium_sensu_stricto_7 was committed to producing n-butyrate from lactate.
Collapse
Affiliation(s)
- Yanyan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xinrong Pan
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| | - Jiamin Hu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Belda I, Cueva C, Tamargo A, Ravarani CN, Acedo A, Bartolomé B, Moreno-Arribas MV. A multi-omics approach for understanding the effects of moderate wine consumption on human intestinal health. Food Funct 2021; 12:4152-4164. [PMID: 33977942 DOI: 10.1039/d0fo02938f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human gut is a highly diverse microbial ecosystem. Although showing a well-defined core of dominant taxa, an interindividual variability exists in microbiome arrangement patterns, and the presence and proportion of specific species, determining individual metabolic features-metabotypes-which govern the health effects of dietary interventions (i.e. polyphenol consumption). Starting with a 19-volunteer human intervention study, divided into low, medium, and high wine-polyphenol-metabolizers, we detected interindividual discrepancies on the effect of wine consumption in gut bacterial alpha-diversity, but a significant homogenization of beta-diversity among moderate wine consumers, independently of their metabotype. In addition, the abundance of key health-related taxa such as Akkermansia sp. increased after moderate wine intake in the group of high polyphenol-metabolizers. Regarding the metabolic activity, significant (p < 0.05) positive correlations in the production of SCFAs were observed after wine intake. Finally, we were able to correlate the microbiome and the metabolome of the three metabotypes, and to identify some metabolites-biomarker species, highlighting the genera Phascolarctobacterium, Pelotomaculum and Prevotella, as positively correlated with polyphenol concentration, and Prevotella, Zymophilus and Eubacterium as positively correlated with SCFAs concentration in faeces. Our results contribute to the evidence of the need of including the microbiome variable in personalized nutrition programs, as different metabotyes respond differently to dietary interventions.
Collapse
Affiliation(s)
- Ignacio Belda
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, 28040-Madrid, Spain and Biome Makers Inc, 95605-West Sacramento, CA, USA
| | - Carolina Cueva
- Institute of Food Science Research (CIAL), CSIC-UAM, C/Nicolás Cabrera 9, 28049-Madrid, Spain.
| | - Alba Tamargo
- Institute of Food Science Research (CIAL), CSIC-UAM, C/Nicolás Cabrera 9, 28049-Madrid, Spain.
| | | | | | - Begoña Bartolomé
- Institute of Food Science Research (CIAL), CSIC-UAM, C/Nicolás Cabrera 9, 28049-Madrid, Spain.
| | | |
Collapse
|
14
|
Aigle A, Bourgeois E, Marjolet L, Houot S, Patureau D, Doelsch E, Cournoyer B, Galia W. Relative Weight of Organic Waste Origin on Compost and Digestate 16S rRNA Gene Bacterial Profilings and Related Functional Inferences. Front Microbiol 2021; 12:667043. [PMID: 34054773 PMCID: PMC8160089 DOI: 10.3389/fmicb.2021.667043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Even though organic waste (OW) recycling via anaerobic digestion (AD) and composting are increasingly used, little is known about the impact of OW origin (fecal matters and food and vegetable wastes) on the end products' bacterial contents. The hypothesis of a predictable bacterial community structure in the end products according to the OW origin was tested. Nine OW treatment plants were selected to assess the genetic structure of bacterial communities found in raw OW according to their content in agricultural and urban wastes and to estimate their modifications through AD and composting. Two main bacterial community structures among raw OWs were observed and matched a differentiation according to the occurrences of urban chemical pollutants. Composting led to similar 16S rRNA gene OTU profiles whatever the OW origin. With a significant shift of about 140 genera (representing 50% of the bacteria), composting was confirmed to largely shape bacterial communities toward similar structures. The enriched taxa were found to be involved in detoxification and bioremediation activities. This process was found to be highly selective and favorable for bacterial specialists. Digestates showed that OTU profiles differentiated into two groups according to their relative content in agricultural (manure) and urban wastes (mainly activated sludge). About one third of the bacterial taxa was significantly affected by AD. In digestates of urban OW, this sorting led to an enrichment of 32 out of the 50 impacted genera, while for those produced from agricultural or mixed urban/agricultural OW (called central OW), a decay of 54 genera over 60 was observed. Bacteria from activated sludge appeared more fit for AD than those of other origins. Functional inferences showed AD enriched genera from all origins to share similar functional traits, e.g., chemoheterotrophy and fermentation, while being often taxonomically distinct. The main functional traits among the dominant genera in activated sludge supported a role in AD. Raw OW content in activated sludge was found to be a critical factor for predicting digestate bacterial contents. Composting generated highly predictable and specialized community patterns whatever the OW origin. AD and composting bacterial changes were driven by functional traits selected by physicochemical factors such as temperature and chemical pollutants.
Collapse
Affiliation(s)
- Axel Aigle
- Univ Lyon, UMR Ecologie Microbienne (LEM), Université Claude Bernard Lyon 1, CNRS 5557, INRAE 1418, VetAgro Sup, Marcy L'Etoile, France
| | - Emilie Bourgeois
- Univ Lyon, UMR Ecologie Microbienne (LEM), Université Claude Bernard Lyon 1, CNRS 5557, INRAE 1418, VetAgro Sup, Marcy L'Etoile, France
| | - Laurence Marjolet
- Univ Lyon, UMR Ecologie Microbienne (LEM), Université Claude Bernard Lyon 1, CNRS 5557, INRAE 1418, VetAgro Sup, Marcy L'Etoile, France
| | - Sabine Houot
- UMR ECOSYS, INRAE, AgroParisTech, Thiverval-Grignon, France
| | | | - Emmanuel Doelsch
- CIRAD, UPR Recyclage et risque, Montpellier, France.,Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| | - Benoit Cournoyer
- Univ Lyon, UMR Ecologie Microbienne (LEM), Université Claude Bernard Lyon 1, CNRS 5557, INRAE 1418, VetAgro Sup, Marcy L'Etoile, France
| | - Wessam Galia
- Univ Lyon, UMR Ecologie Microbienne (LEM), Université Claude Bernard Lyon 1, CNRS 5557, INRAE 1418, VetAgro Sup, Marcy L'Etoile, France
| |
Collapse
|
15
|
Wang D, Gao C, Wang C, Liu N, Qiu C, Yu J, Wang S. Effect of mixed petrochemical wastewater with different effluent sources on anaerobic treatment: organic removal behaviors and microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5880-5891. [PMID: 32975754 DOI: 10.1007/s11356-020-10951-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Petrochemical industrial effluent contains industrial wastewater from various manufacturing processes. The mixed treatment of these different petrochemical wastewater effluents may influence the organic removal performance of the anaerobic processes. In this study, three typical petrochemical effluents, including polyester (PE), polyethylene terephthalate, and purified terephthalic acid wastewater, were collected. The effect of the mixed petrochemical wastewater on the organic removal and microbial community structure was investigated in the anaerobic batch assays via spectroscopy and high-throughput sequencing. The organic removal efficiencies were similar (71-85%) in all the batch assays for 90 h acclimation. The mixture of wastewater, especially the addition of PE wastewater, significantly prolonged organic removal process. It was related to the aromatic removal performance and microbial community structure during the mixed wastewater treatment. The microbial community structure in the mixed wastewater batch assay showed high similarity with that in the PE wastewater batch assay. Ignavibacterium, Syntrophus, and Pelotomaculum were crucial to the degradation of aromatic compounds together with Methanosaeta. The mixture of wastewater, especially the addition of PE wastewater, caused the decay of these functional microbes and resulted in the inefficient removal of the aromatic compounds.
Collapse
Affiliation(s)
- Dong Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, 300384, China.
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, No. 26, Jingjing Road, Xiqing District, Tianjin, 300384, China.
| | - Chuyun Gao
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, 300384, China
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, No. 26, Jingjing Road, Xiqing District, Tianjin, 300384, China
| | - Chenchen Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, 300384, China
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, No. 26, Jingjing Road, Xiqing District, Tianjin, 300384, China
| | - Nannan Liu
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, 300384, China
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, No. 26, Jingjing Road, Xiqing District, Tianjin, 300384, China
| | - Chunsheng Qiu
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, 300384, China
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, No. 26, Jingjing Road, Xiqing District, Tianjin, 300384, China
| | - Jingjie Yu
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, 300384, China
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, No. 26, Jingjing Road, Xiqing District, Tianjin, 300384, China
| | - Shaopo Wang
- Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin, 300384, China
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, No. 26, Jingjing Road, Xiqing District, Tianjin, 300384, China
| |
Collapse
|
16
|
Kim J, Mei R, Wilson FP, Yuan H, Bocher BTW, Liu WT. Ecogenomics-Based Mass Balance Model Reveals the Effects of Fermentation Conditions on Microbial Activity. Front Microbiol 2020; 11:595036. [PMID: 33343535 PMCID: PMC7738435 DOI: 10.3389/fmicb.2020.595036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/16/2020] [Indexed: 01/04/2023] Open
Abstract
Fermentation of waste activated sludge (WAS) is an alternative approach to reduce solid wastes while providing valuable soluble products, such as volatile fatty acids and alcohols. This study systematically identified optimal fermentation conditions and key microbial populations by conducting two sets of experiments under different combinations of biochemical and physical parameters. Based on fermentation product concentrations, methane production, and solid removal, fermentation performance was enhanced under the combined treatments of inoculum heat shock (>60°C), pH 5, 55°C, and short solid retention time (<10 days). An ecogenomics-based mass balance (EGMB) approach was used to determine the net growth rates of individual microbial populations, and classified them into four microbial groups: known syntrophs, known methanogens, fermenters, and WAS-associated populations. Their growth rates were observed to be affected by the treatment conditions. The growth rates of syntrophs and fermenters, such as Syntrophomonas and Parabacteroides increased with a decrease in SRT. In contrast, treatment conditions, such as inoculum heat shock and high incubation temperature inhibited the growth of WAS-associated populations, such as Terrimonas and Bryobacter. There were also populations insensitive to the treatment conditions, such as those related to Microbacter and Rikenellaceae. Overall, the EGMB approach clearly revealed the ecological roles of important microbial guilds in the WAS fermentation system, and guided the selection of optimal conditions for WAS fermentation in future pilot-scale operation.
Collapse
Affiliation(s)
- Jinha Kim
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Ran Mei
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Fernanda P Wilson
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Heyang Yuan
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| | - Benjamin T W Bocher
- British Petroleum America, Petrochemicals Technology, Naperville, IL, United States
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
17
|
Acharya SM, Chakraborty R, Tringe SG. Emerging Trends in Biological Treatment of Wastewater From Unconventional Oil and Gas Extraction. Front Microbiol 2020; 11:569019. [PMID: 33013800 PMCID: PMC7509137 DOI: 10.3389/fmicb.2020.569019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 01/16/2023] Open
Abstract
Unconventional oil and gas exploration generates an enormous quantity of wastewater, commonly referred to as flowback and produced water (FPW). Limited freshwater resources and stringent disposal regulations have provided impetus for FPW reuse. Organic and inorganic compounds released from the shale/brine formation, microbial activity, and residual chemicals added during hydraulic fracturing bestow a unique as well as temporally varying chemical composition to this wastewater. Studies indicate that many of the compounds found in FPW are amenable to biological degradation, indicating biological treatment may be a viable option for FPW processing and reuse. This review discusses commonly characterized contaminants and current knowledge on their biodegradability, including the enzymes and organisms involved. Further, a perspective on recent novel hybrid biological treatments and application of knowledge gained from omics studies in improving these treatments is explored.
Collapse
Affiliation(s)
- Shwetha M Acharya
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Romy Chakraborty
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Susannah G Tringe
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
18
|
Abstract
The reversible (de)carboxylation of unsaturated carboxylic acids is carried out by the UbiX-UbiD system, ubiquitously present in microbes. The biochemical basis of this challenging reaction has recently been uncovered by the discovery of the UbiD cofactor, prenylated FMN (prFMN). This heavily modified flavin is synthesized by the flavin prenyltransferase UbiX, which catalyzes the non-metal dependent prenyl transfer from dimethylallyl(pyro)phosphate (DMAP(P)) to the flavin N5 and C6 positions, creating a fourth non-aromatic ring. Following prenylation, prFMN undergoes oxidative maturation to form the iminium species required for UbiD activity. prFMNiminium acts as a prostethic group and is bound via metal ion mediated interactions between UbiD and the prFMNiminium phosphate moiety. The modified isoalloxazine ring is place adjacent to the E(D)-R-E UbiD signature sequent motif. The fungal ferulic acid decarboxylase Fdc from Aspergillus niger has emerged as a UbiD-model system, and has yielded atomic level insight into the prFMNiminium mediated (de)carboxylation. A wealth of data now supports a mechanism reliant on reversible 1,3 dipolar cycloaddition between substrate and cofactor for this enzyme. This poses the intriguing question whether a similar mechanism is used by all UbiD enzymes, especially those that act as carboxylases on inherently more difficult substrates such as phenylphosphate or benzene/naphthalene. Indeed, considerable variability in terms of oligomerization, domain motion and active site structure is now reported for the UbiD family.
Collapse
Affiliation(s)
- Annica Saaret
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Arune Balaikaite
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - David Leys
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
19
|
Bridier A, Piard JC, Briandet R, Bouchez T. Emergence of a Synergistic Diversity as a Response to Competition in Pseudomonas putida Biofilms. MICROBIAL ECOLOGY 2020; 80:47-59. [PMID: 31844910 DOI: 10.1007/s00248-019-01470-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Genetic diversification through the emergence of variants is one of the known mechanisms enabling the adaptation of bacterial communities. We focused in this work on the adaptation of the model strain Pseudomonas putida KT2440 in association with another P. putida strain (PCL1480) recently isolated from soil to investigate the potential role of bacterial interactions in the diversification process. On the basis of colony morphology, three variants of P. putida KT2440 were obtained from co-culture after 168 h of growth whereas no variant was identified from the axenic KT2440 biofilm. The variants exhibited distinct phenotypes and produced biofilms with specific architecture in comparison with the ancestor. The variants better competed with the P. putida PCL1480 strain in the dual-strain biofilms after 24 h of co-culture in comparison with the ancestor. Moreover, the synergistic interaction of KT2440 ancestor and the variants led to an improved biofilm production and to higher competitive ability versus the PCL1480 strain, highlighting the key role of diversification in the adaptation of P. putida KT2440 in the mixed community. Whole genome sequencing revealed mutations in polysaccharides biosynthesis protein, membrane transporter, or lipoprotein signal peptidase genes in variants.
Collapse
Affiliation(s)
- Arnaud Bridier
- ANSES, Fougères Laboratory, AB2R, 10B rue Claude Bourgelat, 35300, Fougères, France.
- IRSTEA, UR PROSE, 1 rue Pierre-Gilles de Gennes, 92761, Antony Cedex, France.
| | - J C Piard
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - R Briandet
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - T Bouchez
- IRSTEA, UR PROSE, 1 rue Pierre-Gilles de Gennes, 92761, Antony Cedex, France
| |
Collapse
|
20
|
Ma K, Zhang X, Shang Y, Zhu Z, Li X, Li X, Li X. Improved purified terephthalic acid wastewater treatment using combined UAFB-SBR system: At mesophilic and ambient temperature. CHEMOSPHERE 2020; 247:125752. [PMID: 31978668 DOI: 10.1016/j.chemosphere.2019.125752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/09/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
In this study, a combined UAFB-SBR process was introduced to improve the treatment efficiency of PTA wastewater. The techno-economic feasibility of the process was evaluated in terms of organic removal efficiencies under mesophilic (37 °C) and ambient temperature (15-25 °C) during the long-term run. The lab-scale study revealed that all organic compounds present in the PTA wastewater could be efficiently removed under both mesophilic and ambient temperature, and p-toluic acid is probably the critical pollutant regulating the overall process performance in anaerobic stage, which should be seriously considered. The Miseq Sequencing results suggested that, along with the system temperature variation from mesophilic to ambient temperature, greater effects on bacterial community than archaeal community were detected in the UAFB reactor, while only slight variations were observed in the SBR reactor. Further taxonomy analysis demonstrated that within the UAFB reactor, the syntrophic partnership of Syntrophorhabdus, Syntrophus and Desulfovibrio with hydrogenotrophic methanogens were the main impetus for aromatic organics reduction. In the meanwhile, the intensively identified Thauera and Azoarcus groups were speculated of important roles in the aerobic degradation of aromatic compounds.
Collapse
Affiliation(s)
- Kaili Ma
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453000, China.
| | - Xiaohan Zhang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453000, China
| | - Yong Shang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453000, China
| | - Zhenkui Zhu
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453000, China
| | - Xilin Li
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453000, China
| | - Xiaoling Li
- School of Civil Engineering, Chang'an University, Xi'an, China
| | - Xiangkun Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300000, China.
| |
Collapse
|
21
|
Mei R, Nobu MK, Liu WT. Identifying anaerobic amino acids degraders through the comparison of short-term and long-term enrichments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:173-184. [PMID: 31965729 DOI: 10.1111/1758-2229.12821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Degradation of amino acids is an important process in methanogenic environments. Early studies in the 1980s focused on isolated clostridia species to study the degradation behaviours. However, it is now well-recognized that isolated species may not represent those with important roles in situ. This study conducted a continuous enrichment experiment with focus on the comparison of the microbial communities after short-term enrichment (SE) and long-term enrichment (LE). Individual amino acids were used as the substrate, and two different anaerobic digester sludge were used as the inoculum. Based on 16S rRNA and 16S rRNA gene, a clear community shift was observed during a time course of 18 months. The SE communities were dominated by microbial populations such as an uncultured Bacteroidales that was different from known fermenters. In the LE communities, known amino acids fermenters were consistently observed with high abundance, including Peptoclostridium acidaminophilum, Acidaminobacter hydrogenoformans and Propionivibrio pelophilus. The community structures could be classified into four types depending on the diversity of fermenters and syntrophs. A culturability index was developed to compare the SE and LE community and revealed that long-term enrichment tended to select microbial populations closely related to species that has been cultivated whereas larger fractions of the inoculum and SE communities remained uncultured.
Collapse
Affiliation(s)
- Ran Mei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Masaru K Nobu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
22
|
Wu B, Wang J, Hu Z, Yuan S, Wang W. Anaerobic biotransformation and potential impact of quinoline in an anaerobic methanogenic reactor treating synthetic coal gasification wastewater and response of microbial community. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121404. [PMID: 31628062 DOI: 10.1016/j.jhazmat.2019.121404] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/22/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Phenolic and quinoline compounds are the most primary organic pollutants in coal gasification wastewater (CGW), but the biotransformation of quinoline compounds under methanogenic condition and their potential impacts on treatment performance of CGW are still unclear. Anaerobic biotransformation pathways of quinoline in an upflow anaerobic sludge blanket reactor treating synthetic CGW and response of microbial community were firstly investigated. The result indicated that the degradation of 2(1 H)-quinolinone was the rate-limiting step for the complete conversion of quinoline under methanogenic condition. The reactor performed stably at total phenols concentration of 1000 mg L-1 with a gradual increase of quinoline concentration from 100 to 600 mg L-1. However, the reactor performance was rapidly deteriorated from 98% of COD removal to about 80% at quinoline concentration of 1200 mg L-1 resulting from the accumulation of 2(1 H)-quinolinone. Correspondingly, phenol utilization rate of sludge was significantly reduced by 61% while quinoline utilization rate of sludge was increased by 132%. As phenol degraders, Syntrophorhabdus gradually predominated along with the increase of quinoline concentration, but Syntrophus declined inversely. Compared with syntrophs, acetotrophic methanogens could quickly adapt to quinoline toxicity and tolerate higher quinoline stress. Therefore, anaerobic digestion is an effective method for eliminating quinoline and phenol in CGW.
Collapse
Affiliation(s)
- Benteng Wu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jing Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shoujun Yuan
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
23
|
Zhu X, Campanaro S, Treu L, Seshadri R, Ivanova N, Kougias PG, Kyrpides N, Angelidaki I. Metabolic dependencies govern microbial syntrophies during methanogenesis in an anaerobic digestion ecosystem. MICROBIOME 2020; 8:22. [PMID: 32061251 PMCID: PMC7024554 DOI: 10.1186/s40168-019-0780-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/27/2019] [Indexed: 05/03/2023]
Abstract
Methanogenesis, a biological process mediated by complex microbial communities, has attracted great attention due to its contribution to global warming and potential in biotechnological applications. The current study unveiled the core microbial methanogenic metabolisms in anaerobic vessel ecosystems by applying combined genome-centric metagenomics and metatranscriptomics. Here, we demonstrate that an enriched natural system, fueled only with acetate, could support a bacteria-dominated microbiota employing a multi-trophic methanogenic process. Moreover, significant changes, in terms of microbial structure and function, were recorded after the system was supplemented with additional H2. Methanosarcina thermophila, the predominant methanogen prior to H2 addition, simultaneously performed acetoclastic, hydrogenotrophic, and methylotrophic methanogenesis. The methanogenic pattern changed after the addition of H2, which immediately stimulated Methanomicrobia-activity and was followed by a slow enrichment of Methanobacteria members. Interestingly, the essential genes involved in the Wood-Ljungdahl pathway were not expressed in bacterial members. The high expression of a glycine cleavage system indicated the activation of alternative metabolic pathways for acetate metabolism, which were reconstructed in the most abundant bacterial genomes. Moreover, as evidenced by predicted auxotrophies, we propose that specific microbes of the community were forming symbiotic relationships, thus reducing the biosynthetic burden of individual members. These results provide new information that will facilitate future microbial ecology studies of interspecies competition and symbiosis in methanogenic niches. Video abstract.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Environmental Engineering, Technical University of Denmark, Building 115, DK-2800, Kgs. Lyngby, Denmark
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Stefano Campanaro
- Department of Biology, University of Padua, Via U. Bassi 58/b, 35121, Padua, Italy
- CRIBI Biotechnology Center, University of Padua, 35131, Padua, Italy
| | - Laura Treu
- Department of Environmental Engineering, Technical University of Denmark, Building 115, DK-2800, Kgs. Lyngby, Denmark.
- Department of Biology, University of Padua, Via U. Bassi 58/b, 35121, Padua, Italy.
| | - Rekha Seshadri
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Natalia Ivanova
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Panagiotis G Kougias
- Department of Environmental Engineering, Technical University of Denmark, Building 115, DK-2800, Kgs. Lyngby, Denmark.
- Soil and Water Resources Institute, Hellenic Organisation-DEMETER, 57001, Thermi-, Thessaloniki, Greece.
| | - Nikos Kyrpides
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Building 115, DK-2800, Kgs. Lyngby, Denmark
| |
Collapse
|
24
|
Boll M, Geiger R, Junghare M, Schink B. Microbial degradation of phthalates: biochemistry and environmental implications. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:3-15. [PMID: 31364812 DOI: 10.1111/1758-2229.12787] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 05/10/2023]
Abstract
The environmentally relevant xenobiotic esters of phthalic acid (PA), isophthalic acid (IPA) and terephthalic acid (TPA) are produced on a million ton scale annually and are predominantly used as plastic polymers or plasticizers. Degradation by microorganisms is considered as the most effective means of their elimination from the environment and proceeds via hydrolysis to the corresponding PA isomers and alcohols under oxic and anoxic conditions. Further degradation of PA, IPA and TPA differs fundamentally between anaerobic and aerobic microorganisms. The latter introduce hydroxyl functionalities by dioxygenases to facilitate subsequent decarboxylation by either aromatizing dehydrogenases or cofactor-free decarboxylases. In contrast, anaerobic bacteria activate the PA isomers to the respective thioesters using CoA ligases or CoA transferases followed by decarboxylation to the central intermediate benzoyl-CoA. Decarboxylases acting on the three PA CoA thioesters belong to the UbiD enzyme family that harbour a prenylated flavin mononucleotide (FMN) cofactor to achieve the mechanistically challenging decarboxylation. Capture of the extremely instable PA-CoA intermediate is accomplished by a massive overproduction of phthaloyl-CoA decarboxylase and a balanced production of PA-CoA forming/decarboxylating enzymes. The strategy of anaerobic phthalate degradation probably represents a snapshot of an ongoing evolution of a xenobiotic degradation pathway via a short-lived reaction intermediate.
Collapse
Affiliation(s)
- Matthias Boll
- Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Robin Geiger
- Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Madan Junghare
- Department of Biology and Microbial Ecology, University of Konstanz, Constance, Germany
| | - Bernhard Schink
- Department of Biology and Microbial Ecology, University of Konstanz, Constance, Germany
| |
Collapse
|
25
|
Wang L, Hossen EH, Aziz TN, Ducoste JJ, de Los Reyes FL. Increased loading stress leads to convergence of microbial communities and high methane yields in adapted anaerobic co-digesters. WATER RESEARCH 2020; 169:115155. [PMID: 31671296 DOI: 10.1016/j.watres.2019.115155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/29/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Enhancing biogas production, while avoiding inhibition of methanogenesis during co-digestion of grease interceptor waste (GIW), can help water resource recovery facilities reduce their carbon footprint. Here we used pre-adapted and non-adapted digesters to link microbial community structure to digester function. Before disturbance, the pre-adapted and non-adapted digesters showed similar methane production and microbial community diversity but dissimilar community composition. When exposed to an identical disturbance, the pre-adapted digester achieved better performance, while the non-adapted digester was inhibited. When re-exposed to disturbance after recovery, communities and performance of both digesters converged, regardless of the temporal variations. Co-digestion of up to 75% GIW added on a volatile solids (VS) basis was achieved, increasing methane yield by 336% from 0.180 to 0.785 l-methane/g-VS-added, the highest methane yield reported to date for lipid-rich waste. Progressive perturbation substantially enriched fatty acid-degrading Syntrophomonas from less than 1% to 24.6% of total 16S rRNA gene sequences, acetoclastic Methanosaeta from 2.3% to 11.9%, and hydrogenotrophic Methanospirillum from less than 1% to 6.6% in the pre-adapted digester. Specific hydrolytic and fermentative populations also increased. These ecological insights demonstrated how progressive perturbation can be strategically used to influence methanogenic microbiomes and improve co-digestion of GIW.
Collapse
Affiliation(s)
- Ling Wang
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Elvin H Hossen
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Tarek N Aziz
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Joel J Ducoste
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Francis L de Los Reyes
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
26
|
Reis AC, Kolvenbach BA, Chami M, Gales L, Egas C, Corvini PFX, Nunes OC. Comparative genomics reveals a novel genetic organization of the sad cluster in the sulfonamide-degrader 'Candidatus Leucobacter sulfamidivorax' strain GP. BMC Genomics 2019; 20:885. [PMID: 31752666 PMCID: PMC6868719 DOI: 10.1186/s12864-019-6206-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/21/2019] [Indexed: 02/01/2023] Open
Abstract
Background Microbial communities recurrently establish metabolic associations resulting in increased fitness and ability to perform complex tasks, such as xenobiotic degradation. In a previous study, we have described a sulfonamide-degrading consortium consisting of a novel low-abundant actinobacterium, named strain GP, and Achromobacter denitrificans PR1. However, we found that strain GP was unable to grow independently and could not be further purified. Results Previous studies suggested that strain GP might represent a new putative species within the Leucobacter genus (16S rRNA gene similarity < 97%). In this study, we found that average nucleotide identity (ANI) with other Leucobacter spp. ranged between 76.8 and 82.1%, further corroborating the affiliation of strain GP to a new provisional species. The average amino acid identity (AAI) and percentage of conserved genes (POCP) values were near the lower edge of the genus delimitation thresholds (65 and 55%, respectively). Phylogenetic analysis of core genes between strain GP and Leucobacter spp. corroborated these findings. Comparative genomic analysis indicates that strain GP may have lost genes related to tetrapyrrole biosynthesis and thiol transporters, both crucial for the correct assembly of cytochromes and aerobic growth. However, supplying exogenous heme and catalase was insufficient to abolish the dependent phenotype. The actinobacterium harbors at least two copies of a novel genetic element containing a sulfonamide monooxygenase (sadA) flanked by a single IS1380 family transposase. Additionally, two homologs of sadB (4-aminophenol monooxygenase) were identified in the metagenome-assembled draft genome of strain GP, but these were not located in the vicinity of sadA nor of mobile or integrative elements. Conclusions Comparative genomics of the genus Leucobacter suggested the absence of some genes encoding for important metabolic traits in strain GP. Nevertheless, although media and culture conditions were tailored to supply its potential metabolic needs, these conditions were insufficient to isolate the PR1-dependent actinobacterium further. This study gives important insights regarding strain GP metabolism; however, gene expression and functional studies are necessary to characterize and further isolate strain GP. Based on our data, we propose to classify strain GP in a provisional new species within the genus Leucobacter, ‘Candidatus Leucobacter sulfamidivorax‘.
Collapse
Affiliation(s)
- Ana C Reis
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering - LEPABE, Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.,Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Gruendenstrasse 40, 4132, Muttenz, Switzerland
| | - Boris A Kolvenbach
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Gruendenstrasse 40, 4132, Muttenz, Switzerland
| | - Mohamed Chami
- BioEM lab, C-Cina, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Luís Gales
- Instituto de Investigação e Inovação em Saúde - i3S, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,Instituto de Biologia Molecular e Celular - IBMC, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar - ICBAS, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Conceição Egas
- Next Generation Sequencing Unit, Biocant, BiocantPark, Núcleo 04, Lote 8, 3060-197, Cantanhede, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine, Rua Larga, Pólo I, 3004-504, Coimbra, Portugal
| | - Philippe F-X Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Gruendenstrasse 40, 4132, Muttenz, Switzerland
| | - Olga C Nunes
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering - LEPABE, Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
| |
Collapse
|
27
|
Giri S, Waschina S, Kaleta C, Kost C. Defining Division of Labor in Microbial Communities. J Mol Biol 2019; 431:4712-4731. [PMID: 31260694 DOI: 10.1016/j.jmb.2019.06.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 11/15/2022]
Abstract
In order to survive and reproduce, organisms must perform a multitude of tasks. However, trade-offs limit their ability to allocate energy and resources to all of these different processes. One strategy to solve this problem is to specialize in some traits and team up with other organisms that can help by providing additional, complementary functions. By reciprocally exchanging metabolites and/or services in this way, both parties benefit from the interaction. This phenomenon, which has been termed functional specialization or division of labor, is very common in nature and exists on all levels of biological organization. Also, microorganisms have evolved different types of synergistic interactions. However, very often, it remains unclear whether or not a given example represents a true case of division of labor. Here we aim at filling this gap by providing a list of criteria that clearly define division of labor in microbial communities. Furthermore, we propose a set of diagnostic experiments to verify whether a given interaction fulfills these conditions. In contrast to the common use of the term, our analysis reveals that both intraspecific and interspecific interactions meet the criteria defining division of labor. Moreover, our analysis identified non-cooperators of intraspecific public goods interactions as growth specialists that divide labor with conspecific producers, rather than being social parasites. By providing a conceptual toolkit, our work will help to unambiguously identify cases of division of labor and stimulate more detailed investigations of this important and widespread type of inter-microbial interaction.
Collapse
Affiliation(s)
- Samir Giri
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Silvio Waschina
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Christian Kost
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.
| |
Collapse
|
28
|
Ma KL, Li XK, Bao LL. Influence of organic loading rate on purified terephthalic acid wastewater treatment in a temperature staged anaerobic treatment (TSAT) system: Performance and metagenomic characteristics. CHEMOSPHERE 2019; 220:1091-1099. [PMID: 33395796 DOI: 10.1016/j.chemosphere.2019.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 06/12/2023]
Abstract
In this study, a temperature staged anaerobic treatment (TSAT) system featured by thermophilic reactor (R1)-mesophilic reactor (R2) co-digestion was introduced to treat PTA wastewater. The process was successively conducted at three organic loading rates (OLRs): 3.34, 4.45, 6.68 kg COD/(m³·d), respectively (OLRs were R1 basis). The results indicated that TSAT system was highly efficient in PTA wastewater treatment at OLR lower than 4.45 kg COD/(m³·d). Miseq sequencing analysis demonstrated that R1 and R2 were predominated by hydrogenotrophic Methanolinea and acetotrophic Methanosaeta, separately. In addition, TA06, Caldisericia and Acetothermia associated groups were highly abundant in R1, whereas Chlorobiaceae and Syntrophobacteraceae were largely observed in R2. Tax4Fun analysis suggested that the important functional capabilities were significantly different between R1 and R2 (P < 0.05). The pathways related to aromatic compounds degradation mainly occurred in mesophilic stage, while the biosynthesis and metabolism pathways were more favored in thermophilic stage.
Collapse
Affiliation(s)
- Kai-Li Ma
- School of Environment, Henan Normal University, Xinxiang, 453007, China.
| | - Xiang-Kun Li
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300000, China.
| | - Lin-Lin Bao
- School of Environment, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
29
|
Identification of naphthalene carboxylase subunits of the sulfate-reducing culture N47. Biodegradation 2019; 30:147-160. [DOI: 10.1007/s10532-019-09872-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/26/2019] [Indexed: 11/26/2022]
|
30
|
Junghare M, Spiteller D, Schink B. Anaerobic degradation of xenobiotic isophthalate by the fermenting bacterium Syntrophorhabdus aromaticivorans. ISME JOURNAL 2019; 13:1252-1268. [PMID: 30647456 DOI: 10.1038/s41396-019-0348-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 12/13/2022]
Abstract
Syntrophorhabdus aromaticivorans is a syntrophically fermenting bacterium that can degrade isophthalate (3-carboxybenzoate). It is a xenobiotic compound which has accumulated in the environment for more than 50 years due to its global industrial usage and can cause negative effects on the environment. Isophthalate degradation by the strictly anaerobic S. aromaticivorans was investigated to advance our understanding of the degradation of xenobiotics introduced into nature, and to identify enzymes that might have ecological significance for bioremediation. Differential proteome analysis of isophthalate- vs benzoate-grown cells revealed over 400 differentially expressed proteins of which only four were unique to isophthalate-grown cells. The isophthalate-induced proteins include a phenylacetate:CoA ligase, a UbiD-like decarboxylase, a UbiX-like flavin prenyltransferase, and a hypothetical protein. These proteins are encoded by genes forming a single gene cluster that putatively codes for anaerobic conversion of isophthalate to benzoyl-CoA. Subsequently, benzoyl-CoA is metabolized by the enzymes of the anaerobic benzoate degradation pathway that were identified in the proteomic analysis. In vitro enzyme assays with cell-free extracts of isophthalate-grown cells indicated that isophthalate is activated to isophthalyl-CoA by an ATP-dependent isophthalate:CoA ligase (IPCL), and subsequently decarboxylated to benzoyl-CoA by a UbiD family isophthalyl-CoA decarboxylase (IPCD) that requires a prenylated flavin mononucleotide (prFMN) cofactor supplied by UbiX to effect decarboxylation. Phylogenetic analysis revealed that IPCD is a novel member of the functionally diverse UbiD family (de)carboxylases. Homologs of the IPCD encoding genes are found in several other bacteria, such as aromatic compound-degrading denitrifiers, marine sulfate-reducers, and methanogenic communities in a terephthalate-degrading reactor. These results suggest that metabolic strategies adapted for degradation of isophthalate and other phthalate are conserved between microorganisms that are involved in the anaerobic degradation of environmentally relevant aromatic compounds.
Collapse
Affiliation(s)
- Madan Junghare
- Microbial Ecology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| | - Dieter Spiteller
- Chemical Ecology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Bernhard Schink
- Microbial Ecology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| |
Collapse
|
31
|
Martinez MA, Woodcroft BJ, Ignacio Espinoza JC, Zayed AA, Singleton CM, Boyd JA, Li YF, Purvine S, Maughan H, Hodgkins SB, Anderson D, Sederholm M, Temperton B, Bolduc B, Saleska SR, Tyson GW, Rich VI, Saleska SR, Tyson GW, Rich VI. Discovery and ecogenomic context of a global Caldiserica-related phylum active in thawing permafrost, Candidatus Cryosericota phylum nov., Ca. Cryosericia class nov., Ca. Cryosericales ord. nov., Ca. Cryosericaceae fam. nov., comprising the four species Cryosericum septentrionale gen. nov. sp. nov., Ca. C. hinesii sp. nov., Ca. C. odellii sp. nov., Ca. C. terrychapinii sp. nov. Syst Appl Microbiol 2019; 42:54-66. [DOI: 10.1016/j.syapm.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
|
32
|
Narihiro T, Nobu MK, Bocher BTW, Mei R, Liu WT. Co-occurrence network analysis reveals thermodynamics-driven microbial interactions in methanogenic bioreactors. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:673-685. [PMID: 30136425 DOI: 10.1111/1758-2229.12689] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Methanogenic bioreactors have been applied to treat purified terephthalic acid (PTA) wastewater containing complex aromatic compounds, such as terephthalic acid, para-toluic acid and benzoic acid. This study characterized the interaction of microbial populations in 42 samples obtained from 10 PTA-degrading methanogenic bioreactors. Approximately, 54 dominant populations (11 methanogens, 8 syntrophs and 35 functionally unknown clades) that represented 73.9% of total 16S rRNA gene iTag sequence reads were identified. Co-occurrence analysis based on the abundance of dominant OTUs showed two non-overlapping networks centred around aromatic compound- (group AR: Syntrophorhabdaceae, Syntrophus and Pelotomaculum) and fatty acid- (group FA: Smithella and Syntrophobacter) degrading syntrophs. Group AR syntrophs have no direct correlation with hydrogenotrophic methanogens, while those from group FA do. As degradation of aromatic compounds has a wider thermodynamic window than fatty acids, Group AR syntrophs may be less influenced by fluctuations in hydrogenotrophic methanogen abundance or may non-specifically interact with diverse methanogens. In both groups, network analysis reveals full-scale- and lab-scale-specific uncultivated taxa that may mediate interactions between syntrophs and methanogens, suggesting that those uncultivated taxa may support the degradation of aromatic compounds through uncharted ecophysiological traits. These observations suggest that organisms from multiple niches orchestrate their metabolic capacity in multiple interaction networks to effectively degrade PTA wastewater.
Collapse
Affiliation(s)
- Takashi Narihiro
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, 305-8566, Japan
| | - Masaru K Nobu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ben T W Bocher
- Petrochemicals Technology, BP America, Naperville, IL, 60563, USA
| | - Ran Mei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
33
|
Reis AC, Čvančarová M, Liu Y, Lenz M, Hettich T, Kolvenbach BA, Corvini PFX, Nunes OC. Biodegradation of sulfamethoxazole by a bacterial consortium of Achromobacter denitrificans PR1 and Leucobacter sp. GP. Appl Microbiol Biotechnol 2018; 102:10299-10314. [PMID: 30294753 DOI: 10.1007/s00253-018-9411-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 11/26/2022]
Abstract
In the last decade, biological degradation and mineralization of antibiotics have been increasingly reported feats of environmental bacteria. The most extensively described example is that of sulfonamides that can be degraded by several members of Actinobacteria and Proteobacteria. Previously, we reported sulfamethoxazole (SMX) degradation and partial mineralization by Achromobacter denitrificans strain PR1, isolated from activated sludge. However, further studies revealed an apparent instability of this metabolic trait in this strain. Here, we investigated this instability and describe the finding of a low-abundance and slow-growing actinobacterium, thriving only in co-culture with strain PR1. This organism, named GP, shared highest 16S rRNA gene sequence similarity (94.6-96.9%) with the type strains of validly described species of the genus Leucobacter. This microbial consortium was found to harbor a homolog to the sulfonamide monooxygenase gene (sadA) also found in other sulfonamide-degrading bacteria. This gene is overexpressed in the presence of the antibiotic, and evidence suggests that it codes for a group D flavin monooxygenase responsible for the ipso-hydroxylation of SMX. Additional side reactions were also detected comprising an NIH shift and a Baeyer-Villiger rearrangement, which indicate an inefficient biological transformation of these antibiotics in the environment. This work contributes to further our knowledge in the degradation of this ubiquitous micropollutant by environmental bacteria.
Collapse
Affiliation(s)
- Ana C Reis
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Monika Čvančarová
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Ying Liu
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Markus Lenz
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Timm Hettich
- Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Boris A Kolvenbach
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Philippe F-X Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Olga C Nunes
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
34
|
De Vrieze J, De Waele M, Boeckx P, Boon N. Isotope Fractionation in Biogas Allows Direct Microbial Community Stability Monitoring in Anaerobic Digestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6704-6713. [PMID: 29432683 DOI: 10.1021/acs.est.8b00723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Process monitoring of anaerobic digestion is typically based on operational parameters, such as pH and volatile fatty acid concentration, that are lagging on actual microbial community performance. In this study, 13C isotope fractionation in CH4 and CO2 in the biogas was used to monitor process stability of anaerobic digestion in response to salt stress. A gradual and pulsed increase in salt concentration resulted in a decrease in methane production. No clear shift in δ13CH4 was observed in response to the gradual increase in salt concentration, and δ13CO2 of the biogas showed only a clear shift after process failure, compared with the control. In contrast, both δ13CH4 and δ13CO2 in the biogas changed in response to the pulsed increase in salt concentration. This change preceded the decrease in methane production. A significantly different bacterial and archaeal community profile was observed between the DNA and RNA level, which was also reflected in a different relation with the δ13CH4 and δ13CO2 values. This shows that isotope fractionation in the biogas can predict process stability in anaerobic digestion, as it directly reflects shifts in the total and active microbial community, yet, due to its temporal character, further validation is needed.
Collapse
Affiliation(s)
- Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET) , Ghent University , Coupure Links 653 , B-9000 Gent , Belgium
| | - Michiel De Waele
- Center for Microbial Ecology and Technology (CMET) , Ghent University , Coupure Links 653 , B-9000 Gent , Belgium
| | - Pascal Boeckx
- Isotope Bioscience Laboratory - ISOFYS , Ghent University , Coupure Links 653 , B-9000 Gent , Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET) , Ghent University , Coupure Links 653 , B-9000 Gent , Belgium
| |
Collapse
|
35
|
Deng Y, Li B, Zhang T. Bacteria That Make a Meal of Sulfonamide Antibiotics: Blind Spots and Emerging Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3854-3868. [PMID: 29498514 DOI: 10.1021/acs.est.7b06026] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The release of sulfonamide antibiotics into the environment is alarming because the existence of these antibiotics in the environment may promote resistance in clinically relevant microorganisms, which is a potential threat to the effectiveness of antibiotic therapies. Controllable biodegradation processes are of particular significance for the inexpensive yet effective restoration of sulfonamide-contaminated environments. Cultivation-based techniques have already made great strides in successfully isolating bacteria with promising sulfonamide degradation abilities, but the implementation of these isolates in bioremediation has been limited by unknown microbial diversity, vast population responsiveness, and the impact of perturbations from open and complex environments. Advances in DNA sequencing technologies and metagenomic analyses are being used to complement the information derived from cultivation-based procedures. In this Review, we provide an overview of the growing understanding of isolated sulfonamide degraders and identify shortcomings of the prevalent literature in this field. In addition, we propose a technical paradigm that integrates experimental testing with metagenomic analysis to pave the way for improved understanding and exploitation of these ecologically important isolates. Overall, this Review aims to outline how metagenomic studies of isolated sulfonamide degraders are being applied for the advancement of bioremediation strategies for sulfonamide contamination.
Collapse
Affiliation(s)
- Yu Deng
- Environmental Biotechnology Laboratory, Department of Civil Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong , PR China
| | - Bing Li
- Division of Energy & Environment, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , PR China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong , PR China
| |
Collapse
|
36
|
Ju F, Wang Y, Zhang T. Bioreactor microbial ecosystems with differentiated methanogenic phenol biodegradation and competitive metabolic pathways unraveled with genome-resolved metagenomics. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:135. [PMID: 29774049 PMCID: PMC5946492 DOI: 10.1186/s13068-018-1136-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/29/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Methanogenic biodegradation of aromatic compounds depends on syntrophic metabolism. However, metabolic enzymes and pathways of uncultured microorganisms and their ecological interactions with methanogenic consortia are unknown because of their resistance to isolation and limited genomic information. RESULTS Genome-resolved metagenomics approaches were used to reconstruct and dissect 23 prokaryotic genomes from 37 and 20 °C methanogenic phenol-degrading reactors. Comparative genomic evidence suggests that temperature difference leads to the colonization of two distinct cooperative sub-communities that can respire sulfate/sulfite/sulfur or nitrate/nitrite compounds and compete for uptake of methanogenic substrates (e.g., acetate and hydrogen). This competition may differentiate methanogenesis. The uncultured ε-Proteobacterium G1, whose close relatives have broad ecological niches including the deep-sea vents, aquifers, sediment, limestone caves, spring, and anaerobic digesters, is implicated as a Sulfurovum-like facultative anaerobic diazotroph with metabolic versatility and remarkable environmental adaptability. We provide first genomic evidence for butyrate, alcohol, and carbohydrate utilization by a Chloroflexi T78 clade bacterium, and phenol carboxylation and assimilatory sulfite reduction in a Cryptanaerobacter bacterium. CONCLUSION Genome-resolved metagenomics enriches our view on the differentiation of microbial community composition, metabolic pathways, and ecological interactions in temperature-differentiated methanogenic phenol-degrading bioreactors. These findings suggest optimization strategies for methanogenesis on phenol, such as temperature control, protection from light, feed desulfurization, and hydrogen sulfide removal from bioreactors. Moreover, decoding genome-borne properties (e.g., antibiotic, arsenic, and heavy metal resistance) of uncultured bacteria help to bring up alternative schemes to isolate them.
Collapse
Affiliation(s)
- Feng Ju
- Environmental Biotechnology Lab, The University of Hong Kong SAR, Pokfulam Road, Hong Kong, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, 310064 People’s Republic of China
| | - Yubo Wang
- Environmental Biotechnology Lab, The University of Hong Kong SAR, Pokfulam Road, Hong Kong, China
| | - Tong Zhang
- Environmental Biotechnology Lab, The University of Hong Kong SAR, Pokfulam Road, Hong Kong, China
| |
Collapse
|
37
|
Blasche S, Kim Y, Oliveira AP, Patil KR. Model microbial communities for ecosystems biology. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Liu M, Wang S, Nobu MK, Bocher BTW, Kaley SA, Liu WT. Impacts of biostimulation and bioaugmentation on the performance and microbial ecology in methanogenic reactors treating purified terephthalic acid wastewater. WATER RESEARCH 2017; 122:308-316. [PMID: 28614743 DOI: 10.1016/j.watres.2017.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/08/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
Up-flow anaerobic sludge blanket (UASB) processes treating purified terephthalic acid (PTA) wastewater often face challenges associated with biomass loss. As excessive biomass loss could lead to deterioration of PTA removal, biostimulation and bioaugmentation were often practiced without understanding the microbial impact in UASB. Three laboratory-scale UASB reactors were operated with synthetic PTA wastewater as the feed, with two added with co-substrate (glucose or molasses) on Day 170 for 90 days, and one with external granules on Day 118. Throughout the operation, treatment performance was measured together with the analysis of microbial communities of biomass samples using 16S rRNA-based gene Illumina sequencing. Glucose amendment destabilized both terephthalic acid and para-toluic acid removal, while molasses amendment improved para-toluic acid removal. Both substrate addition generally led to decreases in the abundances of syntrophs and methanogens and increases in carbohydrate-fermenting bacteria in the granular sludge. Regarding bioaugmentation, paper mill granule addition led to a temporary crash of terephthalic acid removal for 42 days, and deterioration of para-toluic acid removal throughout the operation. Syntrophs and methanogens were observed to colonize on the paper mill granules after three months, meanwhile growth of methanogens were stimulated on the PTA granules added initially. Overall, proper level of molasses amendment and external granule inoculation could be promising strategies to make up for biomass loss during the operation of PTA-degrading UASB.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Shanquan Wang
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Masaru Konishi Nobu
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | | | - Scott A Kaley
- BP America, Petrochemicals Technology, Naperville, IL, USA
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
39
|
The microbiome as engineering tool: Manufacturing and trading between microorganisms. N Biotechnol 2017; 39:206-214. [DOI: 10.1016/j.nbt.2017.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/21/2017] [Accepted: 07/01/2017] [Indexed: 11/24/2022]
|
40
|
The UbiX-UbiD system: The biosynthesis and use of prenylated flavin (prFMN). Arch Biochem Biophys 2017; 632:209-221. [DOI: 10.1016/j.abb.2017.07.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022]
|
41
|
Ma KL, Li XK, Wang K, Meng LW, Liu GG, Zhang J. Establishment of thermophilic anaerobic terephthalic acid degradation system through one-step temperature increase startup strategy - Revealed by Illumina Miseq Sequencing. CHEMOSPHERE 2017; 184:951-959. [PMID: 28655114 DOI: 10.1016/j.chemosphere.2017.06.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/16/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Over recent years, thermophilic digestion was constantly focused owing to its various advantage over mesophilic digestion. Notably, the startup approach of thermophilic digester needs to be seriously considered as unsuitable startup ways may result in system inefficiency. In this study, one-step temperature increase startup strategy from 37 °C to 55 °C was applied to establish a thermophilic anaerobic system treating terephthalic acid (TA) contained wastewater, meanwhile, the archaeal and bacterial community compositions at steady periods of 37 °C and 55 °C during the experimental process was also compared using Illumina Miseq Sequencing. The process operation demonstrated that the thermophilic TA degradation system was successfully established at 55 °C with over 95% COD reduction. For archaea community, the elevation of operational temperature from 37 °C to 55 °C accordingly increase the enrichment of hydrogenotrophic methanogens but decrease the abundance of the acetotrophic ones. While for bacterial community, the taxonomic analysis suggested that Syntrophorhabdus (27.40%) was the dominant genus promoting the efficient TA degradation under mesophilic condition, whereas OPB95 (24.99%) and TA06 (14.01%) related populations were largely observed and probably take some crucial role in TA degradation under thermophilic condition.
Collapse
Affiliation(s)
- Kai-Li Ma
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, China.
| | - Xiang-Kun Li
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, China.
| | - Ke Wang
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, China.
| | - Ling-Wei Meng
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, China
| | - Gai-Ge Liu
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, China
| | - Jie Zhang
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, China
| |
Collapse
|
42
|
Michas A, Vestergaard G, Trautwein K, Avramidis P, Hatzinikolaou DG, Vorgias CE, Wilkes H, Rabus R, Schloter M, Schöler A. More than 2500 years of oil exposure shape sediment microbiomes with the potential for syntrophic degradation of hydrocarbons linked to methanogenesis. MICROBIOME 2017; 5:118. [PMID: 28893308 PMCID: PMC5594585 DOI: 10.1186/s40168-017-0337-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/03/2017] [Indexed: 05/25/2023]
Abstract
BACKGROUND Natural oil seeps offer the opportunity to study the adaptation of ecosystems and the associated microbiota to long-term oil exposure. In the current study, we investigated a land-to-sea transition ecosystem called "Keri Lake" in Zakynthos Island, Greece. This ecosystem is unique due to asphalt oil springs found at several sites, a phenomenon already reported 2500 years ago. Sediment microbiomes at Keri Lake were studied, and their structure and functional potential were compared to other ecosystems with oil exposure histories of various time periods. RESULTS Replicate sediment cores (up to 3-m depth) were retrieved from one site exposed to oil as well as a non-exposed control site. Samples from three different depths were subjected to chemical analysis and metagenomic shotgun sequencing. At the oil-exposed site, we observed high amounts of asphalt oil compounds and a depletion of sulfate compared to the non-exposed control site. The numbers of reads assigned to genes involved in the anaerobic degradation of hydrocarbons were similar between the two sites. The numbers of denitrifiers and sulfate reducers were clearly lower in the samples from the oil-exposed site, while a higher abundance of methanogens was detected compared to the non-exposed site. Higher abundances of the genes of methanogenesis were also observed in the metagenomes from other ecosystems with a long history of oil exposure, compared to short-term exposed environments. CONCLUSIONS The analysis of Keri Lake metagenomes revealed that microbiomes in the oil-exposed sediment have a higher potential for methanogenesis over denitrification/sulfate reduction, compared to those in the non-exposed site. Comparison with metagenomes from various oil-impacted environments suggests that syntrophic interactions of hydrocarbon degraders with methanogens are favored in the ecosystems with a long-term presence of oil.
Collapse
Affiliation(s)
- Antonios Michas
- Research Unit Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany
| | - Gisle Vestergaard
- Research Unit Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany
| | - Kathleen Trautwein
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Pavlos Avramidis
- Department of Geology, University of Patras, Panepistimioupoli Patron, 26504 Rio-Patras, Greece
| | - Dimitris G. Hatzinikolaou
- Department of Biology, National and Kapodistrian University of Athens, Zografou University Campus, 15784 Athens, Greece
| | - Constantinos E. Vorgias
- Department of Biology, National and Kapodistrian University of Athens, Zografou University Campus, 15784 Athens, Greece
| | - Heinz Wilkes
- Organic Geochemistry, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany
| | - Anne Schöler
- Research Unit Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstaedter Landstraße 1, D-85764 Neuherberg, Germany
| |
Collapse
|
43
|
Lu Q, Yu L, Liang Z, Yan Q, He Z, Luan T, Liang D, Wang S. Dehalococcoides as a Potential Biomarker Evidence for Uncharacterized Organohalides in Environmental Samples. Front Microbiol 2017; 8:1677. [PMID: 28919889 PMCID: PMC5585146 DOI: 10.3389/fmicb.2017.01677] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/18/2017] [Indexed: 12/24/2022] Open
Abstract
The massive production and improper disposal of organohalides resulted in worldwide contamination in soil and water. However, their environmental survey based on chromatographic methods was hindered by challenges in testing the extremely wide variety of organohalides. Dehalococcoides as obligate organohalide-respiring bacteria exclusively use organohalides as electron acceptors to support their growth, of which the presence could be coupled with organohalides and, therefore, could be employed as a biomarker of the organohalide pollution. In this study, Dehalococcoides was screened in various samples of bioreactors and subsurface environments, showing the wide distribution of Dehalococcoides in sludge and sediment. Further laboratory cultivation confirmed the dechlorination activities of those Dehalococcoides. Among those samples, Dehalococcoides accounting for 1.8% of the total microbial community was found in an anaerobic granular sludge sample collected from a full-scale bioreactor treating petroleum wastewater. Experimental evidence suggested that the influent wastewater in the bioreactor contained bromomethane which support the growth of Dehalococcoides. This study demonstrated that Dehalococcoides could be employed as a promising biomarker to test the present of organohalides in wastestreams or other environmental samples.
Collapse
Affiliation(s)
- Qihong Lu
- Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen UniversityGuangzhou, China
| | - Ling Yu
- Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen UniversityGuangzhou, China
| | - Zhiwei Liang
- Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen UniversityGuangzhou, China
| | - Qingyun Yan
- Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen UniversityGuangzhou, China
| | - Zhili He
- Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen UniversityGuangzhou, China
| | - Tiangang Luan
- State Key Laboratory of Pest Control and Resource Utilization, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, China
| | - Dawei Liang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Chemistry and Environment, Beihang UniversityBeijing, China
| | - Shanquan Wang
- Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen UniversityGuangzhou, China.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation TechnologyGuangzhou, China
| |
Collapse
|
44
|
Hirano SI, Matsumoto N. Electrochemically applied potentials induce growth and metabolic shift changes in the hyperthermophilic bacterium Thermotoga maritima MSB8. Biosci Biotechnol Biochem 2017; 81:1619-1626. [DOI: 10.1080/09168451.2017.1329618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Bioelectrochemical systems are an attractive technology for regulating microbial activity. The effect of an applied potential on hydrolysis of starch in Thermotoga maritima as a model bacterium was investigated in this study. A cathodic potential (−0.6 and −0.8 V) induced 5-h earlier growth initiation of T. maritima with starch as the polymeric substrate than that without electrochemical regulation. Moreover, metabolic patterns of starch consumption were altered by the cathodic potential. While acetate, H2, and CO2 were the major products of starch consumption in the control experiment without electrolysis, lactate accumulation was detected rather than decreased acetate and H2 levels in the bioelectrochemical system experiments with the cathodic potential. These results indicate that the applied potential could control microbial activities related to the hydrolysis of polymeric organic substances and shift carbon and electron flux to a lactate-producing reaction in T. maritima.
Collapse
Affiliation(s)
- Shin-ichi Hirano
- Biotechnology Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko-shi, Japan
| | - Norio Matsumoto
- Biotechnology Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko-shi, Japan
| |
Collapse
|
45
|
Shan L, Zhang Z, Yu Y, Ambuchi JJ, Feng Y. Performance of CSTR-EGSB-SBR system for treating sulfate-rich cellulosic ethanol wastewater and microbial community analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14387-14395. [PMID: 28432623 DOI: 10.1007/s11356-017-9022-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
Performance and microbial community composition were evaluated in a two-phase anaerobic and aerobic system treating sulfate-rich cellulosic ethanol wastewater (CEW). The system was operated at five different chemical oxygen demand (COD)/SO42- ratios (63.8, 26.3, 17.8, 13.7, and 10.7). Stable performance was obtained for total COD removal efficiency (94.5%), sulfate removal (89.3%), and methane production rate (11.5 L/day) at an organic loading rate of 32.4 kg COD/(m3·day). The acidogenic reactor made a positive contribution to net VFAs production (2318.1 mg/L) and sulfate removal (60.9%). Acidogenic bacteria (Megasphaera, Parabacteroides, unclassified Ruminococcaceae spp., and Prevotella) and sulfate-reducing bacteria (Butyrivibrio, Megasphaera) were rich in the acidogenic reactor. In the methanogenic reactor, high diversity of microorganisms corresponded with a COD removal contribution of 83.2%. Moreover, methanogens (Methanosaeta) were predominant, suggesting that these organisms played an important role in the acetotrophic methanogenesis pathway. The dominant aerobic bacteria (Truepera) appeared to have been responsible for the COD removal of the SBR. These results indicate that dividing the sulfate reduction process could effectively minimize sulfide toxicity, which is important for the successful operation of system treating sulfate-rich CEW.
Collapse
Affiliation(s)
- Lili Shan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| | - Yanling Yu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - John Justo Ambuchi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
46
|
Kantor RS, Huddy RJ, Iyer R, Thomas BC, Brown CT, Anantharaman K, Tringe S, Hettich RL, Harrison STL, Banfield JF. Genome-Resolved Meta-Omics Ties Microbial Dynamics to Process Performance in Biotechnology for Thiocyanate Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2944-2953. [PMID: 28139919 DOI: 10.1021/acs.est.6b04477] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Remediation of industrial wastewater is important for preventing environmental contamination and enabling water reuse. Biological treatment for one industrial contaminant, thiocyanate (SCN-), relies upon microbial hydrolysis, but this process is sensitive to high loadings. To examine the activity and stability of a microbial community over increasing SCN- loadings, we established and operated a continuous-flow bioreactor fed increasing loadings of SCN-. A second reactor was fed ammonium sulfate to mimic breakdown products of SCN-. Biomass was sampled from both reactors for metagenomics and metaproteomics, yielding a set of genomes for 144 bacteria and one rotifer that constituted the abundant community in both reactors. We analyzed the metabolic potential and temporal dynamics of these organisms across the increasing loadings. In the SCN- reactor, Thiobacillus strains capable of SCN- degradation were highly abundant, whereas the ammonium sulfate reactor contained nitrifiers and heterotrophs capable of nitrate reduction. Key organisms in the SCN- reactor expressed proteins involved in SCN- degradation, sulfur oxidation, carbon fixation, and nitrogen removal. Lower performance at higher loadings was linked to changes in microbial community composition. This work provides an example of how meta-omics can increase our understanding of industrial wastewater treatment and inform iterative process design and development.
Collapse
Affiliation(s)
- Rose S Kantor
- Department of Plant and Microbial Biology, University of California , Berkeley, California 94720, United States
| | - Robert J Huddy
- Centre for Bioprocess Engineering Research, Department of Chemical Engineering, University of Cape Town , Rondebosch, 7701, South Africa
| | - Ramsunder Iyer
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Graduate School of Genome Science and Technology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Brian C Thomas
- Department of Earth and Planetary Sciences, University of California , Berkeley, California 94720, United States
| | - Christopher T Brown
- Department of Plant and Microbial Biology, University of California , Berkeley, California 94720, United States
| | - Karthik Anantharaman
- Department of Earth and Planetary Sciences, University of California , Berkeley, California 94720, United States
| | - Susannah Tringe
- Joint Genome Institute , Walnut Creek, California 94598, United States
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Susan T L Harrison
- Centre for Bioprocess Engineering Research, Department of Chemical Engineering, University of Cape Town , Rondebosch, 7701, South Africa
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California , Berkeley, California 94720, United States
- Department of Environmental Science, Policy, and Management, University of California , Berkeley, California 94720, United States
| |
Collapse
|
47
|
Wang S, Liang Z. Acetate-triggered granular sludge floatation in methanogenic bioreactors. WATER RESEARCH 2016; 107:93-101. [PMID: 27837736 DOI: 10.1016/j.watres.2016.10.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/07/2016] [Accepted: 10/23/2016] [Indexed: 06/06/2023]
Abstract
Methanogenic granular sludge from anaerobic bioreactors plays a primary role in treatment of various high-strength industrial wastewaters. The common problem of sludge floatation can lead to washout of granules from the reactor and severely affect reactor performance. However, an understanding of the specific key trigger-factors and appropriate control strategies for granular sludge floatation remains elusive. In this study, the concentration of acetate, rather than that of other volatile fatty acids (VFAs, i.e. propionate and butyrate) and granular sludge properties, was identified to be positively, linearly correlated with the amount of floating granules. The number of floating granules on propionate (18 ± 6) or butyrate-containing (34 ± 13) wastewater was comparable with that of non-VFA control wastewater (30.5 ± 7.5), and much lower than that of acetate-containing wastewater (80.5 ± 10.5). A scenario of excessive acetate-triggered granular sludge floatation is proposed based on these results as well as on the microbial community profile and spatial distribution, porous structure of granules, and impacts of operational parameters. Two new strategies, acetate-depletion and co-substrate addition, effectively reduced the number of floating granules by 28.5% and 51.6%, respectively. These results deepen our understanding of granular sludge floatation in methanogenic bioreactors and provide effective strategies to control sludge floatation.
Collapse
Affiliation(s)
- Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - Zhiwei Liang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
48
|
Kuroda K, Nobu MK, Mei R, Narihiro T, Bocher BTW, Yamaguchi T, Liu WT. A Single-Granule-Level Approach Reveals Ecological Heterogeneity in an Upflow Anaerobic Sludge Blanket Reactor. PLoS One 2016; 11:e0167788. [PMID: 27936088 PMCID: PMC5147981 DOI: 10.1371/journal.pone.0167788] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/21/2016] [Indexed: 11/18/2022] Open
Abstract
Upflow anaerobic sludge blanket (UASB) reactor has served as an effective process to treat industrial wastewater such as purified terephthalic acid (PTA) wastewater. For optimal UASB performance, balanced ecological interactions between syntrophs, methanogens, and fermenters are critical. However, much of the interactions remain unclear because UASB have been studied at a “macro”-level perspective of the reactor ecosystem. In reality, such reactors are composed of a suite of granules, each forming individual micro-ecosystems treating wastewater. Thus, typical approaches may be oversimplifying the complexity of the microbial ecology and granular development. To identify critical microbial interactions at both macro- and micro- level ecosystem ecology, we perform community and network analyses on 300 PTA–degrading granules from a lab-scale UASB reactor and two full-scale reactors. Based on MiSeq-based 16S rRNA gene sequencing of individual granules, different granule-types co-exist in both full-scale reactors regardless of granule size and reactor sampling depth, suggesting that distinct microbial interactions occur in different granules throughout the reactor. In addition, we identify novel networks of syntrophic metabolic interactions in different granules, perhaps caused by distinct thermodynamic conditions. Moreover, unseen methanogenic relationships (e.g. “Candidatus Aminicenantes” and Methanosaeta) are observed in UASB reactors. In total, we discover unexpected microbial interactions in granular micro-ecosystems supporting UASB ecology and treatment through a unique single-granule level approach.
Collapse
Affiliation(s)
- Kyohei Kuroda
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, North Mathews Ave, Urbana, Illinois, United States of America
- Department of Environmental systems Engineering, Nagaoka University of Technology, Kami-tomioka, Nagaoka, Niigata, Japan
| | - Masaru K. Nobu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, North Mathews Ave, Urbana, Illinois, United States of America
| | - Ran Mei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, North Mathews Ave, Urbana, Illinois, United States of America
| | - Takashi Narihiro
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, North Mathews Ave, Urbana, Illinois, United States of America
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central, Higashi, Tsukuba, Ibaraki, Japan
| | - Benjamin T. W. Bocher
- Petrochemicals Technology, BP America, Naperville, Illinois, United States of America
| | - Takashi Yamaguchi
- Department of Environmental systems Engineering, Nagaoka University of Technology, Kami-tomioka, Nagaoka, Niigata, Japan
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, North Mathews Ave, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
49
|
Bouhajja E, Agathos SN, George IF. Metagenomics: Probing pollutant fate in natural and engineered ecosystems. Biotechnol Adv 2016; 34:1413-1426. [PMID: 27825829 DOI: 10.1016/j.biotechadv.2016.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/01/2016] [Accepted: 10/12/2016] [Indexed: 12/23/2022]
Abstract
Polluted environments are a reservoir of microbial species able to degrade or to convert pollutants to harmless compounds. The proper management of microbial resources requires a comprehensive characterization of their genetic pool to assess the fate of contaminants and increase the efficiency of bioremediation processes. Metagenomics offers appropriate tools to describe microbial communities in their whole complexity without lab-based cultivation of individual strains. After a decade of use of metagenomics to study microbiomes, the scientific community has made significant progress in this field. In this review, we survey the main steps of metagenomics applied to environments contaminated with organic compounds or heavy metals. We emphasize technical solutions proposed to overcome encountered obstacles. We then compare two metagenomic approaches, i.e. library-based targeted metagenomics and direct sequencing of metagenomes. In the former, environmental DNA is cloned inside a host, and then clones of interest are selected based on (i) their expression of biodegradative functions or (ii) sequence homology with probes and primers designed from relevant, already known sequences. The highest score for the discovery of novel genes and degradation pathways has been achieved so far by functional screening of large clone libraries. On the other hand, direct sequencing of metagenomes without a cloning step has been more often applied to polluted environments for characterization of the taxonomic and functional composition of microbial communities and their dynamics. In this case, the analysis has focused on 16S rRNA genes and marker genes of biodegradation. Advances in next generation sequencing and in bioinformatic analysis of sequencing data have opened up new opportunities for assessing the potential of biodegradation by microbes, but annotation of collected genes is still hampered by a limited number of available reference sequences in databases. Although metagenomics is still facing technical and computational challenges, our review of the recent literature highlights its value as an aid to efficiently monitor the clean-up of contaminated environments and develop successful strategies to mitigate the impact of pollutants on ecosystems.
Collapse
Affiliation(s)
- Emna Bouhajja
- Laboratoire de Génie Biologique, Earth and Life Institute, Université Catholique de Louvain, Place Croix du Sud 2, boite L7.05.19, 1348 Louvain-la-Neuve, Belgium
| | - Spiros N Agathos
- Laboratoire de Génie Biologique, Earth and Life Institute, Université Catholique de Louvain, Place Croix du Sud 2, boite L7.05.19, 1348 Louvain-la-Neuve, Belgium; School of Life Sciences and Biotechnology, Yachay Tech University, 100119 San Miguel de Urcuquí, Ecuador
| | - Isabelle F George
- Université Libre de Bruxelles, Laboratoire d'Ecologie des Systèmes Aquatiques, Campus de la Plaine CP 221, Boulevard du Triomphe, 1050 Brussels, Belgium.
| |
Collapse
|
50
|
Oosterkamp MJ, Méndez-García C, Kim CH, Bauer S, Ibáñez AB, Zimmerman S, Hong PY, Cann IK, Mackie RI. Lignocellulose-derived thin stillage composition and efficient biological treatment with a high-rate hybrid anaerobic bioreactor system. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:120. [PMID: 27274357 PMCID: PMC4895995 DOI: 10.1186/s13068-016-0532-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/19/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND This study aims to chemically characterize thin stillage derived from lignocellulosic biomass distillation residues in terms of organic strength, nutrient, and mineral content. The feasibility of performing anaerobic digestion on these stillages at mesophilic (40 °C) and thermophilic (55 °C) temperatures to produce methane was demonstrated. The microbial communities involved were further characterized. RESULTS Energy and sugar cane stillage have a high chemical oxygen demand (COD of 43 and 30 g/L, respectively) and low pH (pH 4.3). Furthermore, the acetate concentration in sugar cane stillage was high (45 mM) but was not detected in energy cane stillage. There was also a high amount of lactate in both types of stillage (35-37 mM). The amount of sugars was 200 times higher in energy cane stillage compared to sugar cane stillage. Although there was a high concentration of sulfate (18 and 23 mM in sugar and energy cane stillage, respectively), both thin stillages were efficiently digested anaerobically with high COD removal under mesophilic and thermophilic temperature conditions and with an organic loading rate of 15-21 g COD/L/d. The methane production rate was 0.2 L/g COD, with a methane percentage of 60 and 64, and 92 and 94 % soluble COD removed, respectively, by the mesophilic and thermophilic reactors. Although both treatment processes were equally efficient, there were different microbial communities involved possibly arising from the differences in the composition of energy cane and sugar cane stillage. There was more acetic acid in sugar cane stillage which may have promoted the occurrence of aceticlastic methanogens to perform a direct conversion of acetate to methane in reactors treating sugar cane stillage. CONCLUSIONS Results showed that thin stillage contains easily degradable compounds suitable for anaerobic digestion and that hybrid reactors can efficiently convert thin stillage to methane under mesophilic and thermophilic conditions. Furthermore, we found that optimal conditions for biological treatment of thin stillage were similar for both mesophilic and thermophilic reactors. Bar-coded pyrosequencing of the 16S rRNA gene identified different microbial communities in mesophilic and thermophilic reactors and these differences in the microbial communities could be linked to the composition of the thin stillage.
Collapse
Affiliation(s)
- Margreet J. Oosterkamp
- />Institute for Genomic Biology, and Department of Animal Sciences, Energy Biosciences Institute, University of Illinois at Urbana-Champaign, 1207 W Gregory Dr, Urbana, IL 61801 USA
| | - Celia Méndez-García
- />Institute for Genomic Biology, and Department of Animal Sciences, Energy Biosciences Institute, University of Illinois at Urbana-Champaign, 1207 W Gregory Dr, Urbana, IL 61801 USA
| | - Chang-H. Kim
- />Institute for Genomic Biology, and Department of Animal Sciences, Energy Biosciences Institute, University of Illinois at Urbana-Champaign, 1207 W Gregory Dr, Urbana, IL 61801 USA
- />Department of Animal, Life and Environment Science, Biogas Research Center, Hankyong National University, 327 Jungang-ro, Anseong-si, Gyeonggi-do 456-749 South Korea
| | - Stefan Bauer
- />Energy Biosciences Institute, University of California at Berkeley, 120A Energy Biosciences Building, 2151 Berkeley Way, MC 5230, Berkeley, CA 94729, USA
| | - Ana B. Ibáñez
- />Energy Biosciences Institute, University of California at Berkeley, 120A Energy Biosciences Building, 2151 Berkeley Way, MC 5230, Berkeley, CA 94729, USA
| | - Sabrina Zimmerman
- />Energy Biosciences Institute, University of California at Berkeley, 120A Energy Biosciences Building, 2151 Berkeley Way, MC 5230, Berkeley, CA 94729, USA
- />BP Biofuels, University of California at Berkeley, 120A Energy Biosciences Building, 2151 Berkeley Way, MC 5230, Berkeley, CA 94729 USA
| | - Pei-Ying Hong
- />Biological and Environmental Sciences and Engineering Division (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 Saudi Arabia
| | - Isaac K. Cann
- />Institute for Genomic Biology, and Department of Animal Sciences, Energy Biosciences Institute, University of Illinois at Urbana-Champaign, 1207 W Gregory Dr, Urbana, IL 61801 USA
| | - Roderick I. Mackie
- />Institute for Genomic Biology, and Department of Animal Sciences, Energy Biosciences Institute, University of Illinois at Urbana-Champaign, 1207 W Gregory Dr, Urbana, IL 61801 USA
| |
Collapse
|