1
|
Zhang Z. Laws of Genome Nucleotide Composition. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae061. [PMID: 39213341 PMCID: PMC11514846 DOI: 10.1093/gpbjnl/qzae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/12/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Zhang Zhang
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Fomina M, Gromozova O, Gadd GM. Morphological responses of filamentous fungi to stressful environmental conditions. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:115-169. [PMID: 39389704 DOI: 10.1016/bs.aambs.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The filamentous growth mode of fungi, with its modular design, facilitates fungal adaptation to stresses they encounter in diverse terrestrial and anthropogenic environments. Surface growth conditions elicit diverse morphological responses in filamentous fungi, particularly demonstrating the remarkable adaptability of mycelial systems to metal- and mineral-rich environments. These responses are coupled with fungal biogeochemical activity and can ameliorate hostile conditions. A tessellated agar tile system, mimicking natural environmental heterogeneity, revealed negative chemotropism to toxic metals, distinct extreme growth strategies, such as phalanx and guerrilla movements and transitions between them, and the formation of aggregated re-allocation structures (strands, cords, synnemata). Other systems showed intrahyphal growth, intense biomineralization, and extracellular hair-like structures. Studies on submerged mycelial growth, using the thermophilic fungus Thielavia terrestris as an example, provided mechanistic insights into the morphogenesis of two extreme forms of fungal submerged culture-pelleted and dispersed growth. It was found that the development of fungal pellets was related to fungal adaptation to unfavorable stressful conditions. The two key elements affecting morphogenesis leading to the formation of either pelleted or dispersed growth were found to be (1) a lag phase (or conidia swelling stage) as a specific period of fungal morphogenesis when a certain growth form is programmed in response to morphogenic stressors, and (2) cAMP as a secondary messenger of cell signaling, defining the implementation of the particular growth strategy. These findings can contribute to knowledge of fungal-based biotechnologies, providing a means for controllable industrial processes at both morphological and physiological levels.
Collapse
Affiliation(s)
- Marina Fomina
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - Olena Gromozova
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom; State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, P.R. China
| |
Collapse
|
3
|
Yang Y, Ke Y, Liu X, Zhang Z, Zhang R, Tian F, Zhi L, Zhao G, Lv B, Hua S, Wu H. Navigating the B vitamins: Dietary diversity, microbial synthesis, and human health. Cell Host Microbe 2024; 32:12-18. [PMID: 38211561 DOI: 10.1016/j.chom.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
B vitamins are intricately involved in various physiological processes vital for health. Their significance is complicated by the heterogeneous landscape of B vitamin distribution in diets and the contributions of the gut microbiota. Here, we delve into the impact of these factors on B vitamins and introduce strategies, with a focus on microbiota-based therapeutic options, to enhance their availability for improved well-being. Additionally, we provide an ecological and evolutionary perspective on the importance of B vitamins to human-microbiota interactions. In the dynamic realms of nutrition and microbiome science, these essential micronutrients continue to play a fundamental role in our understanding of disease development.
Collapse
Affiliation(s)
- Yudie Yang
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Yize Ke
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Xinyan Liu
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Zhidong Zhang
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Rongji Zhang
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Fang Tian
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Luqian Zhi
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Guoping Zhao
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Bomin Lv
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China.
| | - Sha Hua
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Hao Wu
- State Key Laboratory of Genetic Engineering, Fudan Microbiome Center, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China; Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
4
|
Reis AA, Monteiro MF, Bonilha GM, Saraiva L, Araújo C, Santamaria MP, Casati MZ, Kumar P, Casarin RCV. Parents with periodontitis drive the early acquisition of dysbiotic microbiomes in their offspring. J Clin Periodontol 2023; 50:890-904. [PMID: 37086047 DOI: 10.1111/jcpe.13815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/23/2023]
Abstract
AIM To evaluate the microbial colonization in different dentition phases on individuals from 0 to 18 years of age belonging to families with a history of periodontitis compared to descendants of periodontally healthy parents. MATERIALS AND METHODS The offspring of subjects with periodontitis ('Perio' group) and the offspring of periodontally healthy subjects ('Healthy' group), matched for gender and age, were included in this cross-sectional study and divided according to the dentition phase: pre-dentate, primary, mixed and permanent. The patients were clinically assessed, and their saliva was collected. DNA was extracted, and V1-V3 and V4-V5 regions of the 16S rRNA gene were sequenced. RESULTS Fifty children of parents with periodontitis and 50 from healthy parents were included in the study and divided according to the dentition phase: pre-dentate (n = 5/group), primary dentition (n = 15/group), mixed dentition (n = 15/group) and permanent dentition (n = 15/group) in each group. The microbiome composition was different between dentitions for both groups. Children of the Perio group presented a microbial diversity different from that of the Healthy group in mixed and permanent dentitions. The more intense shift in the community occurred between primary and mixed dentition in the Perio group, while the transition between mixed and permanent dentition was the period with greater changes in the microbiome for the Healthy group. Furthermore, a pathogen-rich environment-higher prevalence and abundance of periodontitis-associated species such as Prevotella spp., Selenomonas spp., Leptotrichia spp., Filifactor alocis, Prevotella intermedia, Treponema denticola and Tannerella forsythia- was observed in the Perio group. CONCLUSIONS The parents' periodontal status significantly affects the microbiome composition of their offspring from an early age. The mixed dentition was the phase associated with establishing a dysbiotic and pathogen-rich microbiome in descendants of parents with periodontitis.
Collapse
Affiliation(s)
| | | | | | - Luciana Saraiva
- School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Cassia Araújo
- Institute of Health Science, São Paulo State University, São Paulo, Brazil
| | | | | | - Purnima Kumar
- School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
5
|
The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell Metab 2020; 32:379-390.e3. [PMID: 32652044 DOI: 10.1016/j.cmet.2020.06.011] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/17/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
The link between the gut microbiota and type 2 diabetes (T2D) warrants further investigation because of known confounding effects from antidiabetic treatment. Here, we profiled the gut microbiota in a discovery (n = 1,011) and validation (n = 484) cohort comprising Swedish subjects naive for diabetes treatment and grouped by glycemic status. We observed that overall gut microbiota composition was altered in groups with impaired glucose tolerance, combined glucose intolerance and T2D, but not in those with impaired fasting glucose. In addition, the abundance of several butyrate producers and functional potential for butyrate production were decreased both in prediabetes and T2D groups. Multivariate analyses and machine learning microbiome models indicated that insulin resistance was strongly associated with microbial variations. Therefore, our study indicates that the gut microbiota represents an important modifiable factor to consider when developing precision medicine approaches for the prevention and/or delay of T2D.
Collapse
|
6
|
Yu J. From Mutation Signature to Molecular Mechanism in the RNA World: A Case of SARS-CoV-2. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:627-639. [PMID: 32739507 PMCID: PMC7391168 DOI: 10.1016/j.gpb.2020.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Jun Yu
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
7
|
Villa F, Cappitelli F. The Ecology of Subaerial Biofilms in Dry and Inhospitable Terrestrial Environments. Microorganisms 2019; 7:microorganisms7100380. [PMID: 31547498 PMCID: PMC6843906 DOI: 10.3390/microorganisms7100380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 11/23/2022] Open
Abstract
The ecological relationship between minerals and microorganisms arguably represents one of the most important associations in dry terrestrial environments, since it strongly influences major biochemical cycles and regulates the productivity and stability of the Earth’s food webs. Despite being inhospitable ecosystems, mineral substrata exposed to air harbor form complex and self-sustaining communities called subaerial biofilms (SABs). Using life on air-exposed minerals as a model and taking inspiration from the mechanisms of some microorganisms that have adapted to inhospitable conditions, we illustrate the ecology of SABs inhabiting natural and built environments. Finally, we advocate the need for the convergence between the experimental and theoretical approaches that might be used to characterize and simulate the development of SABs on mineral substrates and SABs’ broader impacts on the dry terrestrial environment.
Collapse
Affiliation(s)
- Federica Villa
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| | - Francesca Cappitelli
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
8
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc 2019; 94:1443-1476. [PMID: 31021528 PMCID: PMC6850671 DOI: 10.1111/brv.12510] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts). Throughout this review we use an evolutionary and comparative-genomics perspective to understand fungal ecological diversity. Finally, we highlight the importance of genome-enabled inferences to envision plausible narratives and scenarios for important transitions.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF)08003BarcelonaSpain
- ICREA, Pg. Lluís Companys 2308010BarcelonaSpain
| |
Collapse
|
9
|
Liu S, Du MZ, Wen QF, Kang J, Dong C, Xiong L, Huang J, Guo FB. Comprehensive exploration of the enzymes catalysing oxygen-involved reactions and COGs relevant to bacterial oxygen utilization. Environ Microbiol 2018; 20:3836-3850. [PMID: 30187624 DOI: 10.1111/1462-2920.14399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
To better understand the mechanisms of bacterial adaptation in oxygen environments, we explored the aerobic living-associated genes in bacteria by comparing Clusters of Orthologous Groups of proteins' (COGs) frequencies and gene expression analyses and 38 COGs were detected at significantly higher frequencies (p-value less than 1e-6) in aerobes than in anaerobes. Differential expression analyses between two conditions further narrowed the prediction to 27 aerobe-specific COGs. Then, we annotated the enzymes associated with these COGs. Literature review revealed that 14 COGs contained enzymes catalysing oxygen-involved reactions or products involved in aerobic pathways, suggesting their important roles for survival in aerobic environments. Additionally, protein-protein interaction analyses and step length comparisons of metabolic networks suggested that the other 13 COGs may function relevantly with the 14 enzymes-corresponding COGs, indicating that these genes may be highly associated with oxygen utilization. Phylogenetic and evolutionary analyses showed that the 27 COGs did not have similar trees, and all suffered purifying selection pressures. The divergent times of species containing or lacking aerobic COGs validated that the appearing time of oxygen-utilizing gene was approximately 2.80 Gyr ago. In addition to help better understand oxygen adaption, our method may be extended to identify genes relevant to other living environments.
Collapse
Affiliation(s)
- Shuo Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Meng-Ze Du
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qing-Feng Wen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Juanjuan Kang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chuan Dong
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lifeng Xiong
- Department of Microbiology, University of Hong Kong, Special Administrative Region, Hong Kong, 999077, China
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Feng-Biao Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
10
|
Dini-Andreote F, van Elsas JD, Olff H, Salles JF. Dispersal-competition tradeoff in microbiomes in the quest for land colonization. Sci Rep 2018; 8:9451. [PMID: 29930350 PMCID: PMC6013473 DOI: 10.1038/s41598-018-27783-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/05/2018] [Indexed: 11/09/2022] Open
Abstract
Ancestor microbes started colonizing inland habitats approximately 2.7 to 3.5 billion years ago. With some exceptions, the key physiological adaptations of microbiomes associated with marine-to-land transitions have remained elusive. This is essentially caused by the lack of suitable systems that depict changes in microbiomes across sufficiently large time scales. Here, we investigate the adaptive routes taken by microbiomes along a contemporary gradient of land formation. Using functional trait-based metagenomics, we show that a switch from a microbial 'dispersal' to a 'competition' response modus best characterizes the microbial trait changes during this eco-evolutionary trajectory. The 'dispersal' modus prevails in microbiomes at the boundary sites between land and sea. It encompasses traits conferring cell chemosensory and motile behaviors, thus allowing the local microbes to exploit short-lived nutritional patches in high-diffusion microhabitats. A systematic transition towards the 'competition' modus occurs progressively as the soil matures, which is likely due to forces of viscosity or strain that favor traits for competition and chemical defense. Concomitantly, progressive increases in the abundances of genes encoding antibiotic resistance and complex organic substrate degradation were found. Our findings constitute a novel perspective on the ecology and evolution of microbiome traits, tracking back one of the most seminal transitions in the evolutionary history of life.
Collapse
Affiliation(s)
- Francisco Dini-Andreote
- Microbial Ecology cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands.
| | - Jan Dirk van Elsas
- Microbial Ecology cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Han Olff
- Conservation Ecology group, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Joana Falcão Salles
- Microbial Ecology cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Sun Y, Tamarit D, Andersson SGE. Switches in Genomic GC Content Drive Shifts of Optimal Codons under Sustained Selection on Synonymous Sites. Genome Biol Evol 2018; 9:2560-2579. [PMID: 27540085 PMCID: PMC5629928 DOI: 10.1093/gbe/evw201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2016] [Indexed: 12/16/2022] Open
Abstract
The major codon preference model suggests that codons read by tRNAs in high concentrations are preferentially utilized in highly expressed genes. However, the identity of the optimal codons differs between species although the forces driving such changes are poorly understood. We suggest that these questions can be tackled by placing codon usage studies in a phylogenetic framework and that bacterial genomes with extreme nucleotide composition biases provide informative model systems. Switches in the background substitution biases from GC to AT have occurred in Gardnerella vaginalis (GC = 32%), and from AT to GC in Lactobacillus delbrueckii (GC = 62%) and Lactobacillus fermentum (GC = 63%). We show that despite the large effects on codon usage patterns by these switches, all three species evolve under selection on synonymous sites. In G. vaginalis, the dramatic codon frequency changes coincide with shifts of optimal codons. In contrast, the optimal codons have not shifted in the two Lactobacillus genomes despite an increased fraction of GC-ending codons. We suggest that all three species are in different phases of an on-going shift of optimal codons, and attribute the difference to a stronger background substitution bias and/or longer time since the switch in G. vaginalis. We show that comparative and correlative methods for optimal codon identification yield conflicting results for genomes in flux and discuss possible reasons for the mispredictions. We conclude that switches in the direction of the background substitution biases can drive major shifts in codon preference patterns even under sustained selection on synonymous codon sites.
Collapse
Affiliation(s)
- Yu Sun
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Daniel Tamarit
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Siv G E Andersson
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Tecon R, Or D. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol Rev 2017; 41:599-623. [PMID: 28961933 PMCID: PMC5812502 DOI: 10.1093/femsre/fux039] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
Soil, the living terrestrial skin of the Earth, plays a central role in supporting life and is home to an unimaginable diversity of microorganisms. This review explores key drivers for microbial life in soils under different climates and land-use practices at scales ranging from soil pores to landscapes. We delineate special features of soil as a microbial habitat (focusing on bacteria) and the consequences for microbial communities. This review covers recent modeling advances that link soil physical processes with microbial life (termed biophysical processes). Readers are introduced to concepts governing water organization in soil pores and associated transport properties and microbial dispersion ranges often determined by the spatial organization of a highly dynamic soil aqueous phase. The narrow hydrological windows of wetting and aqueous phase connectedness are crucial for resource distribution and longer range transport of microorganisms. Feedbacks between microbial activity and their immediate environment are responsible for emergence and stabilization of soil structure-the scaffolding for soil ecological functioning. We synthesize insights from historical and contemporary studies to provide an outlook for the challenges and opportunities for developing a quantitative ecological framework to delineate and predict the microbial component of soil functioning.
Collapse
Affiliation(s)
- Robin Tecon
- Soil and Terrestrial Environmental Physics, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Dani Or
- Soil and Terrestrial Environmental Physics, Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
13
|
Peng R, Chen JH, Feng WW, Zhang Z, Yin J, Li ZS, Li YZ. Error-prone DnaE2 Balances the Genome Mutation Rates in Myxococcus xanthus DK1622. Front Microbiol 2017; 8:122. [PMID: 28203231 PMCID: PMC5285347 DOI: 10.3389/fmicb.2017.00122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/17/2017] [Indexed: 11/24/2022] Open
Abstract
dnaE is an alpha subunit of the tripartite protein complex of DNA polymerase III that is responsible for the replication of bacterial genome. The dnaE gene is often duplicated in many bacteria, and the duplicated dnaE gene was reported dispensable for cell survivals and error-prone in DNA replication in a mystery. In this study, we found that all sequenced myxobacterial genomes possessed two dnaE genes. The duplicate dnaE genes were both highly conserved but evolved divergently, suggesting their importance in myxobacteria. Using Myxococcus xanthus DK1622 as a model, we confirmed that dnaE1 (MXAN_5844) was essential for cell survival, while dnaE2 (MXAN_3982) was dispensable and encoded an error-prone enzyme for replication. The deletion of dnaE2 had small effects on cellular growth and social motility, but significantly decreased the development and sporulation abilities, which could be recovered by the complementation of dnaE2. The expression of dnaE1 was always greatly higher than that of dnaE2 in either the growth or developmental stage. However, overexpression of dnaE2 could not make dnaE1 deletable, probably due to their protein structural and functional divergences. The dnaE2 overexpression not only improved the growth, development and sporulation abilities, but also raised the genome mutation rate of M. xanthus. We argued that the low-expressed error-prone DnaE2 played as a balancer for the genome mutation rates, ensuring low mutation rates for cell adaptation in new environments but avoiding damages from high mutation rates to cells.
Collapse
Affiliation(s)
- Ran Peng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Jiang-He Chen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Wan-Wan Feng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Jun Yin
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Ze-Shuo Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University Jinan, China
| |
Collapse
|
14
|
Ishaq SL, Johnson SP, Miller ZJ, Lehnhoff EA, Olivo S, Yeoman CJ, Menalled FD. Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure. MICROBIAL ECOLOGY 2017; 73:417-434. [PMID: 27677892 DOI: 10.1007/s00248-016-0861-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
Farming practices affect the soil microbial community, which in turn impacts crop growth and crop-weed interactions. This study assessed the modification of soil bacterial community structure by organic or conventional cropping systems, weed species identity [Amaranthus retroflexus L. (redroot pigweed) or Avena fatua L. (wild oat)], and living or sterilized inoculum. Soil from eight paired USDA-certified organic and conventional farms in north-central Montana was used as living or autoclave-sterilized inoculant into steam-pasteurized potting soil, planted with Am. retroflexus or Av. fatua and grown for two consecutive 8-week periods to condition soil nutrients and biota. Subsequently, the V3-V4 regions of the microbial 16S rRNA gene were sequenced by Illumina MiSeq. Treatments clustered significantly, with living or sterilized inoculum being the strongest delineating factor, followed by organic or conventional cropping system, then individual farm. Living inoculum-treated soil had greater species richness and was more diverse than sterile inoculum-treated soil (observed OTUs, Chao, inverse Simpson, Shannon, P < 0.001) and had more discriminant taxa delineating groups (linear discriminant analysis). Living inoculum soil contained more Chloroflexi and Acidobacteria, while the sterile inoculum soil had more Bacteroidetes, Firmicutes, Gemmatimonadetes, and Verrucomicrobia. Organically farmed inoculum-treated soil had greater species richness, more diversity (observed OTUs, Chao, Shannon, P < 0.05), and more discriminant taxa than conventionally farmed inoculum-treated soil. Cyanobacteria were higher in pots growing Am. retroflexus, regardless of inoculum type, for three of the four organic farms. Results highlight the potential of cropping systems and species identity to modify soil bacterial communities, subsequently modifying plant growth and crop-weed competition.
Collapse
Affiliation(s)
- Suzanne L Ishaq
- Department of Animal and Range Sciences, Montana State University, P.O. Box 172900, Bozeman, MT, 59717, USA
- Department of Land Resources and Environmental Sciences, Montana State University, P.O. Box 173120, Bozeman, MT, 59717, USA
| | - Stephen P Johnson
- Department of Land Resources and Environmental Sciences, Montana State University, P.O. Box 173120, Bozeman, MT, 59717, USA
| | - Zach J Miller
- Western Agriculture Research Center, Montana State University, Bozeman, MT, USA
| | - Erik A Lehnhoff
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, USA
| | - Sarah Olivo
- Department of Animal and Range Sciences, Montana State University, P.O. Box 172900, Bozeman, MT, 59717, USA
| | - Carl J Yeoman
- Department of Animal and Range Sciences, Montana State University, P.O. Box 172900, Bozeman, MT, 59717, USA.
| | - Fabian D Menalled
- Department of Land Resources and Environmental Sciences, Montana State University, P.O. Box 173120, Bozeman, MT, 59717, USA.
| |
Collapse
|
15
|
Functional divergence of HBHA from Mycobacterium tuberculosis and its evolutionary relationship with TadA from Rhodococcus opacus. Biochimie 2016; 127:241-8. [DOI: 10.1016/j.biochi.2016.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022]
|
16
|
Zhang H, Ning K. The Tara Oceans Project: New Opportunities and Greater Challenges Ahead. GENOMICS PROTEOMICS & BIOINFORMATICS 2015; 13:275-7. [PMID: 26546828 PMCID: PMC4678785 DOI: 10.1016/j.gpb.2015.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/16/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Houjin Zhang
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Kang Ning
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
17
|
Reichenberger ER, Rosen G, Hershberg U, Hershberg R. Prokaryotic nucleotide composition is shaped by both phylogeny and the environment. Genome Biol Evol 2015; 7:1380-9. [PMID: 25861819 PMCID: PMC4453058 DOI: 10.1093/gbe/evv063] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2015] [Indexed: 02/07/2023] Open
Abstract
The causes of the great variation in nucleotide composition of prokaryotic genomes have long been disputed. Here, we use extensive metagenomic and whole-genome data to demonstrate that both phylogeny and the environment shape prokaryotic nucleotide content. We show that across environments, various phyla are characterized by different mean guanine and cytosine (GC) values as well as by the extent of variation on that mean value. At the same time, we show that GC-content varies greatly as a function of environment, in a manner that cannot be entirely explained by disparities in phylogenetic composition. We find environmentally driven differences in nucleotide content not only between highly diverged environments (e.g., soil, vs. aquatic vs. human gut) but also within a single type of environment. More specifically, we demonstrate that some human guts are associated with a microbiome that is consistently more GC-rich across phyla, whereas others are associated with a more AT-rich microbiome. These differences appear to be driven both by variations in phylogenetic composition and by environmental differences-which are independent of these phylogenetic composition differences. Combined, our results demonstrate that both phylogeny and the environment significantly affect nucleotide composition and that the environmental differences affecting nucleotide composition are far subtler than previously appreciated.
Collapse
Affiliation(s)
- Erin R Reichenberger
- Department of Biomedical Engineering, Science & Health Systems, Drexel University
| | - Gail Rosen
- Department of Computer and Electrical Engineering, Drexel University
| | - Uri Hershberg
- Department of Biomedical Engineering, Science & Health Systems, Drexel University Department of Microbiology and Immunology, Drexel University College of Medicine
| | - Ruth Hershberg
- Rachel and Menachem Mendelovitch Evolutionary Processes of Mutation and Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
18
|
Land M, Hauser L, Jun SR, Nookaew I, Leuze MR, Ahn TH, Karpinets T, Lund O, Kora G, Wassenaar T, Poudel S, Ussery DW. Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics 2015; 15:141-61. [PMID: 25722247 PMCID: PMC4361730 DOI: 10.1007/s10142-015-0433-4] [Citation(s) in RCA: 422] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/18/2022]
Abstract
Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome sequencing? There are many practical applications, such as genome-scale metabolic modeling, biosurveillance, bioforensics, and infectious disease epidemiology. In the near future, high-throughput sequencing of patient metagenomic samples could revolutionize medicine in terms of speed and accuracy of finding pathogens and knowing how to treat them.
Collapse
Affiliation(s)
- Miriam Land
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Loren Hauser
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Joint Institute for Biological Sciences, University of Tennessee, Knoxville, TN 37996 USA
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996 USA
| | - Se-Ran Jun
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Intawat Nookaew
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Michael R. Leuze
- Computer Science and Mathematics Division, Computer Science Research Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Tae-Hyuk Ahn
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Computer Science and Mathematics Division, Computer Science Research Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Tatiana Karpinets
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Ole Lund
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Kgs. Lyngby, 2800 Denmark
| | - Guruprased Kora
- Computer Science and Mathematics Division, Computer Science Research Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Trudy Wassenaar
- Molecular Microbiology and Genomics Consultants, Tannenstr 7, 55576 Zotzenheim, Germany
| | - Suresh Poudel
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| | - David W. Ussery
- Comparative Genomics Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Joint Institute for Biological Sciences, University of Tennessee, Knoxville, TN 37996 USA
- Center for Biological Sequence Analysis, Department of Systems Biology, The Technical University of Denmark, Kgs. Lyngby, 2800 Denmark
- Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|