1
|
Chopra A, Bhuvanagiri G, Natu K, Chopra A. Role of CRISPR-Cas systems in periodontal disease pathogenesis and potential for periodontal therapy: A review. Mol Oral Microbiol 2025; 40:1-16. [PMID: 39224035 DOI: 10.1111/omi.12483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) are DNA sequences capable of editing a host genome sequence. CRISPR and its specific CRISPR-associated (Cas) protein complexes have been adapted for various applications. These include activating or inhibiting specific genetic sequences or acting as molecular scissors to cut and modify the host DNA precisely. CRISPR-Cas systems are also naturally present in many oral bacteria, where they aid in nutrition, biofilm formation, inter- and intraspecies communication (quorum sensing), horizontal gene transfer, virulence, inflammation modulation, coinfection, and immune response evasion. It even functions as an adaptive immune system, defending microbes against invading viruses and foreign genetic elements from other bacteria by targeting and degrading their DNA. Recently, CRISPR-Cas systems have been tested as molecular editing tools to manipulate specific genes linked with periodontal disease (such as periodontitis) and as novel methods of delivering antimicrobial agents to overcome antimicrobial resistance. With the rapidly increasing role of CRISPR in treating inflammatory diseases, its application in periodontal disease is also becoming popular. Therefore, this review aims to discuss the different types of CRISPR-Cas in oral microbes and their role in periodontal disease pathogenesis and precision periodontal therapy.
Collapse
Affiliation(s)
- Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Geeta Bhuvanagiri
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kshitija Natu
- School of Dentistry, University of California, Los Angeles, California, USA
| | - Avneesh Chopra
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité-University Medicine Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
2
|
Guo X, Wang X, Shi J, Ren J, Zeng J, Li J, Li Y. A review and new perspective on oral bacteriophages: manifestations in the ecology of oral diseases. J Oral Microbiol 2024; 16:2344272. [PMID: 38698893 PMCID: PMC11064738 DOI: 10.1080/20002297.2024.2344272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
Objective To explore the manifestations of bacteriophages in different oral disease ecologies, including periodontal diseases, dental caries, endodontic infections, and oral cancer, as well as to propel phage therapy for safer and more effective clinical application in the field of dentistry. Methods In this literature review, we outlined interactions between bacteriophages, bacteria and even oral cells in the oral ecosystem, especially in disease states. We also analyzed the current status and future prospects of phage therapy in the perspective of different oral diseases. Results Various oral bacteriophages targeting at periodontal pathogens as Porphyromonas gingivalis, Fusobacterium nucleatum, Treponema denticola and Aggregatibacter actinomycetemcomitans, cariogenic pathogen Streptococcus mutans, endodontic pathogen Enterococcus faecalis were predicted or isolated, providing promising options for phage therapy. In the realm of oral cancer, aside from displaying tumor antigens or participating in tumor-targeted therapies, phage-like particle vaccines demonstrated the potential to prevent oral infections caused by human papillomaviruses (HPVs) associated with head-and-neck cancers. Conclusion Due to their intricate interactions with bacteria and oral cells, bacteriophages are closely linked to the progression and regression of diverse oral diseases. And there is an urgent need for research to explore additional possibilities of bacteriophages in the management of oral diseases.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiayi Ren
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Center for Archaeological Science, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Jackson I, Woodman P, Dowd M, Fibiger L, Cassidy LM. Ancient Genomes From Bronze Age Remains Reveal Deep Diversity and Recent Adaptive Episodes for Human Oral Pathobionts. Mol Biol Evol 2024; 41:msae017. [PMID: 38533900 PMCID: PMC10966897 DOI: 10.1093/molbev/msae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 03/28/2024] Open
Abstract
Ancient microbial genomes can illuminate pathobiont evolution across millenia, with teeth providing a rich substrate. However, the characterization of prehistoric oral pathobiont diversity is limited. In Europe, only preagricultural genomes have been subject to phylogenetic analysis, with none compared to more recent archaeological periods. Here, we report well-preserved microbiomes from two 4,000-year-old teeth from an Irish limestone cave. These contained bacteria implicated in periodontitis, as well as Streptococcus mutans, the major cause of caries and rare in the ancient genomic record. Despite deriving from the same individual, these teeth produced divergent Tannerella forsythia genomes, indicating higher levels of strain diversity in prehistoric populations. We find evidence of microbiome dysbiosis, with a disproportionate quantity of S. mutans sequences relative to other oral streptococci. This high abundance allowed for metagenomic assembly, resulting in its first reported ancient genome. Phylogenetic analysis indicates major postmedieval population expansions for both species, highlighting the inordinate impact of recent dietary changes. In T. forsythia, this expansion is associated with the replacement of older lineages, possibly reflecting a genome-wide selective sweep. Accordingly, we see dramatic changes in T. forsythia's virulence repertoire across this period. S. mutans shows a contrasting pattern, with deeply divergent lineages persisting in modern populations. This may be due to its highly recombining nature, allowing for maintenance of diversity through selective episodes. Nonetheless, an explosion in recent coalescences and significantly shorter branch lengths separating bacteriocin-carrying strains indicate major changes in S. mutans demography and function coinciding with sugar popularization during the industrial period.
Collapse
Affiliation(s)
- Iseult Jackson
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
- The SFI Centre for Research Training in Genomics Data Science, University of Galway, Galway, Ireland
| | - Peter Woodman
- Department of Archaeology, University College Cork, Cork, Ireland
| | - Marion Dowd
- Faculty of Science, Atlantic Technological University, Sligo, Ireland
| | - Linda Fibiger
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Lara M Cassidy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
4
|
Morales-Olavarría M, Nuñez-Belmar J, González D, Vicencio E, Rivas-Pardo JA, Cortez C, Cárdenas JP. Phylogenomic analysis of the Porphyromonas gingivalis - Porphyromonas gulae duo: approaches to the origin of periodontitis. Front Microbiol 2023; 14:1226166. [PMID: 37538845 PMCID: PMC10394638 DOI: 10.3389/fmicb.2023.1226166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
Porphyromonas gingivalis is an oral human pathogen associated with the onset and progression of periodontitis, a chronic immune-inflammatory disease characterized by the destruction of the teeth-supporting tissue. P. gingivalis belongs to the genus Porphyromonas, which is characterized by being composed of Gram-negative, asaccharolytic, non-spore-forming, non-motile, obligatory anaerobic species, inhabiting niches such as the oral cavity, urogenital tract, gastrointestinal tract and infected wound from different mammals including humans. Among the Porphyromonas genus, P. gingivalis stands out for its specificity in colonizing the human oral cavity and its keystone pathogen role in periodontitis pathogenesis. To understand the evolutionary process behind P. gingivalis in the context of the Pophyoromonas genus, in this study, we performed a comparative genomics study with publicly available Porphyromonas genomes, focused on four main objectives: (A) to confirm the phylogenetic position of P. gingivalis in the Porphyromonas genus by phylogenomic analysis; (B) the definition and comparison of the pangenomes of P. gingivalis and its relative P. gulae; and (C) the evaluation of the gene family gain/loss events during the divergence of P. gingivalis and P. gulae; (D) the evaluation of the evolutionary pressure (represented by the calculation of Tajima-D values and dN/dS ratios) comparing gene families of P. gingivalis and P. gulae. Our analysis found 84 high-quality assemblies representing P. gingivalis and 14 P. gulae strains (from a total of 233 Porphyromonas genomes). Phylogenomic analysis confirmed that P. gingivalis and P. gulae are highly related lineages, close to P. loveana. Both organisms harbored open pangenomes, with a strong core-to-accessory ratio for housekeeping genes and a negative ratio for unknown function genes. Our analyses also characterized the gene set differentiating P. gulae from P. gingivalis, mainly associated with unknown functions. Relevant virulence factors, such as the FimA, Mfa1, and the hemagglutinins, are conserved in P. gulae, P. gingivalis, and P. loveana, suggesting that the origin of those factors occurred previous to the P. gulae - P. gingivalis divergence. These results suggest an unexpected evolutionary relationship between the P. gulae - P. gingivalis duo and P. loveana, showing more clues about the origin of the role of those organisms in periodontitis.
Collapse
Affiliation(s)
- Mauricio Morales-Olavarría
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Josefa Nuñez-Belmar
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Dámariz González
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Emiliano Vicencio
- Escuela de Tecnología Médica, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jaime Andres Rivas-Pardo
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Cristian Cortez
- Escuela de Tecnología Médica, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan P. Cárdenas
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| |
Collapse
|
5
|
Kedlaya MN, Puzhankara L, Prasad R, Raj A. Periodontal Disease Pathogens, Pathogenesis, and Therapeutics: The CRISPR-Cas Effect. CRISPR J 2023; 6:90-98. [PMID: 36939849 DOI: 10.1089/crispr.2022.0094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Periodontal disease (PD) is an immune-inflammatory disease affecting the supporting structures of the teeth, which results in progressive destruction of the hard and soft tissues surrounding teeth, ultimately resulting in tooth loss. The primary etiological factor for this disease is the presence of pathogenic microorganisms. Pathogenic bacteria face antagonistic conditions and foreign DNA components during the infection stage and depend on defense mechanisms such as clustered regularly interspaced short palindromic repeats (CRISPR)-Cas to counter them. Virulence genes regulated by the CRISPR-Cas system are often expressed by bacteria as part of the stress response to the presence of stress conditions and foreign elements. There is ever-growing evidence regarding the role of CRISPR-Cas in virulence of periodontal pathogens. The same CRISPR-Cas system may also be targeted to reduce bacterial virulence and it may also be utilized to develop diagnostic and therapeutic strategies for prevention and control of PD progression. This review article describes the CRISPR-Cas systems in the periodontal dysbiotic microbial communities, their role in the virulence of periodontal pathogens, and their potential role in understanding the pathogenesis of periodontitis and treatment of PD.
Collapse
Affiliation(s)
- Madhurya N Kedlaya
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, India; Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, India
| | - Lakshmi Puzhankara
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, India; Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, India
| | - Rohit Prasad
- Department of Periodontology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, India
| | - Akshatha Raj
- Department of Periodontology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bengaluru, India
| |
Collapse
|
6
|
Książek M, Goulas T, Mizgalska D, Rodríguez-Banqueri A, Eckhard U, Veillard F, Waligórska I, Benedyk-Machaczka M, Sochaj-Gregorczyk AM, Madej M, Thøgersen IB, Enghild JJ, Cuppari A, Arolas JL, de Diego I, López-Pelegrín M, Garcia-Ferrer I, Guevara T, Dive V, Zani ML, Moreau T, Potempa J, Gomis-Rüth FX. A unique network of attack, defence and competence on the outer membrane of the periodontitis pathogen Tannerella forsythia. Chem Sci 2023; 14:869-888. [PMID: 36755705 PMCID: PMC9890683 DOI: 10.1039/d2sc04166a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Periodontopathogenic Tannerella forsythia uniquely secretes six peptidases of disparate catalytic classes and families that operate as virulence factors during infection of the gums, the KLIKK-peptidases. Their coding genes are immediately downstream of novel ORFs encoding the 98-132 residue potempins (Pot) A, B1, B2, C, D and E. These are outer-membrane-anchored lipoproteins that specifically and potently inhibit the respective downstream peptidase through stable complexes that protect the outer membrane of T. forsythia, as shown in vivo. Remarkably, PotA also contributes to bacterial fitness in vivo and specifically inhibits matrix metallopeptidase (MMP) 12, a major defence component of oral macrophages, thus featuring a novel and highly-specific physiological MMP inhibitor. Information from 11 structures and high-confidence homology models showed that the potempins are distinct β-barrels with either a five-stranded OB-fold (PotA, PotC and PotD) or an eight-stranded up-and-down fold (PotE, PotB1 and PotB2), which are novel for peptidase inhibitors. Particular loops insert like wedges into the active-site cleft of the genetically-linked peptidases to specifically block them either via a new "bilobal" or the classic "standard" mechanism of inhibition. These results discover a unique, tightly-regulated proteolytic armamentarium for virulence and competence, the KLIKK-peptidase/potempin system.
Collapse
Affiliation(s)
- Mirosław Książek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland .,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry Louisville 40202 KY USA
| | - Theodoros Goulas
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain .,Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly Temponera str. Karditsa 43100 Greece
| | - Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland
| | - Arturo Rodríguez-Banqueri
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain
| | - Ulrich Eckhard
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain
| | - Florian Veillard
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland
| | - Irena Waligórska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland
| | - Małgorzata Benedyk-Machaczka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland
| | - Alicja M. Sochaj-Gregorczyk
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityGronostajowa 7Kraków 30-387Poland
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland
| | - Ida B. Thøgersen
- Department of Molecular Biology and Genetics, Aarhus UniversityUniversitetsbyen 81Aarhus C 8000Denmark
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus UniversityUniversitetsbyen 81Aarhus C 8000Denmark
| | - Anna Cuppari
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain
| | - Joan L. Arolas
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Parkc/Baldiri Reixac, 15-21Barcelona 08028CataloniaSpain
| | - Iñaki de Diego
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain .,Sample Environment and Characterization Group, European XFEL GmbH Holzkoppel 4 Schenefeld 22869 Germany
| | - Mar López-Pelegrín
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain
| | - Irene Garcia-Ferrer
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain
| | - Tibisay Guevara
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park c/Baldiri Reixac, 15-21 Barcelona 08028 Catalonia Spain
| | - Vincent Dive
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), ERL CNRS 9004Gif-sur-Yvette 91191France
| | - Marie-Louise Zani
- Departement de Biochimie, Université de Tours10 Bd. TonelléTours Cedex 37032France
| | | | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Gronostajowa 7 Kraków 30-387 Poland .,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry Louisville 40202 KY USA
| | - F. Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Parkc/Baldiri Reixac, 15-21Barcelona 08028CataloniaSpain
| |
Collapse
|
7
|
Contribution of -Omics Technologies in the Study of Porphyromonas gingivalis during Periodontitis Pathogenesis: A Minireview. Int J Mol Sci 2022; 24:ijms24010620. [PMID: 36614064 PMCID: PMC9820714 DOI: 10.3390/ijms24010620] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 12/31/2022] Open
Abstract
Periodontitis is a non-communicable chronic inflammatory disease characterized by the progressive and irreversible breakdown of the soft periodontal tissues and resorption of teeth-supporting alveolar bone. The etiology of periodontitis involves dysbiotic shifts in the diversity of microbial communities inhabiting the subgingival crevice, which is dominated by anaerobic Gram-negative bacteria, including Porphyromonas gingivalis. Indeed, P. gingivalis is a keystone pathogen with a repertoire of attributes that allow it to colonize periodontal tissues and influence the metabolism, growth rate, and virulence of other periodontal bacteria. The pathogenic potential of P. gingivalis has been traditionally analyzed using classical biochemical and molecular approaches. However, the arrival of new techniques, such as whole-genome sequencing, metagenomics, metatranscriptomics, proteomics, and metabolomics, allowed the generation of high-throughput data, offering a suitable option for bacterial analysis, allowing a deeper understanding of the pathogenic properties of P. gingivalis and its interaction with the host. In the present review, we revise the use of the different -omics technologies and techniques used to analyze bacteria and discuss their potential in studying the pathogenic potential of P. gingivalis.
Collapse
|
8
|
Devi V, Harjai K, Chhibber S. CRISPR-Cas systems: role in cellular processes beyond adaptive immunity. Folia Microbiol (Praha) 2022; 67:837-850. [PMID: 35854181 PMCID: PMC9296112 DOI: 10.1007/s12223-022-00993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022]
Abstract
Clustered regularly interspaced short palindromic repeats and associated Cas proteins (CRISPR-Cas) are the only known adaptive immune system in prokaryotes. CRISPR-Cas system provides sequence-specific immunity against invasion by foreign genetic elements. It carries out its functions by incorporating a small part of the invading DNA sequence, termed as spacer into the CRISPR array. Although the CRISPR-Cas systems are mainly responsible for adaptive immune functions, their alternative role in the gene regulation, bacterial pathophysiology, virulence, and evolution has started to unravel. In several species, these systems are revealed to regulate the processes beyond adaptive immunity by employing various components of CRISPR-Cas machinery, independently or in combination. The molecular mechanisms entailing the regulatory processes are not clear in most of the instances. In this review, we have discussed some well-known and some recently established noncanonical functions of CRISPR-Cas system and its fast-extending applications in other biological processes.
Collapse
Affiliation(s)
- Veena Devi
- Department of Microbiology, Panjab University, Chandigarh, India
- , Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
9
|
Discrimination of Bacterial Community Structures among Healthy, Gingivitis, and Periodontitis Statuses through Integrated Metatranscriptomic and Network Analyses. mSystems 2021; 6:e0088621. [PMID: 34698525 PMCID: PMC8547322 DOI: 10.1128/msystems.00886-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Periodontal disease is an inflammatory condition caused by polymicrobial infection. The inflammation is initiated at the gingiva (gingivitis) and then extends to the alveolar bone, leading to tooth loss (periodontitis). Previous studies have shown differences in bacterial composition between periodontal healthy and diseased sites. However, bacterial metabolic activities during the health-to-periodontitis microbiome shift are still inadequately understood. This study was performed to investigate the bacterial characteristics of healthy, gingivitis, and periodontitis statuses through metatranscriptomic analysis. Subgingival plaque samples of healthy, gingivitis, and periodontitis sites in the same oral cavity were collected from 21 patients. Bacterial compositions were then determined based on 16S rRNA reads; taxonomic and functional profiles derived from genes based on mRNA reads were estimated. The results showed clear differences in bacterial compositions and functional profiles between healthy and periodontitis sites. Co-occurrence networks were constructed for each group by connecting two bacterial species if their mRNA abundances were positively correlated. The clustering coefficient values were 0.536 for healthy, 0.600 for gingivitis, and 0.371 for periodontitis sites; thus, network complexity increased during gingivitis development, whereas it decreased during progression to periodontitis. Taxa, including Eubacterium nodatum, Eubacterium saphenum, Filifactor alocis, and Fretibacterium fastidiosum, showed greater transcriptional activities than those of red complex bacteria, in conjunction with disease progression. These taxa were associated with periodontal disease progression, and the health-to-periodontitis microbiome shift was accompanied by alterations in bacterial network structure and complexity. IMPORTANCE The characteristics of the periodontal microbiome influence clinical periodontal status. Gingivitis involves reversible gingival inflammation without alveolar bone resorption. In contrast, periodontitis is an irreversible disease characterized by inflammatory destruction in both soft and hard tissues. An imbalance of the microbiome is present in both gingivitis and periodontitis. However, differences in microbiomes and their functional activities in the healthy, gingivitis, and periodontitis statuses are still inadequately understood. Furthermore, some inflamed gingival statuses do not consistently cause attachment loss. In this study, metatranscriptomic analyses were used to investigate the specific bacterial composition and gene expression patterns of the microbiomes of the healthy, gingivitis, and periodontitis statuses. In addition, co-occurrence network analysis revealed that the gingivitis site included features of networks observed in both the healthy and periodontitis sites. These results provide transcriptomic evidence to support gingivitis as an intermediate state between the healthy and periodontitis statuses.
Collapse
|
10
|
Izawa K, Okamoto-Shibayama K, Kita D, Tomita S, Saito A, Ishida T, Ohue M, Akiyama Y, Ishihara K. Taxonomic and Gene Category Analyses of Subgingival Plaques from a Group of Japanese Individuals with and without Periodontitis. Int J Mol Sci 2021; 22:ijms22105298. [PMID: 34069916 PMCID: PMC8157553 DOI: 10.3390/ijms22105298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is an inflammation of tooth-supporting tissues, which is caused by bacteria in the subgingival plaque (biofilm) and the host immune response. Traditionally, subgingival pathogens have been investigated using methods such as culturing, DNA probes, or PCR. The development of next-generation sequencing made it possible to investigate the whole microbiome in the subgingival plaque. Previous studies have implicated dysbiosis of the subgingival microbiome in the etiology of periodontitis. However, details are still lacking. In this study, we conducted a metagenomic analysis of subgingival plaque samples from a group of Japanese individuals with and without periodontitis. In the taxonomic composition analysis, genus Bacteroides and Mycobacterium demonstrated significantly different compositions between healthy sites and sites with periodontal pockets. The results from the relative abundance of functional gene categories, carbohydrate metabolism, glycan biosynthesis and metabolism, amino acid metabolism, replication and repair showed significant differences between healthy sites and sites with periodontal pockets. These results provide important insights into the shift in the taxonomic and functional gene category abundance caused by dysbiosis, which occurs during the progression of periodontal disease.
Collapse
Affiliation(s)
- Kazuki Izawa
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan; (K.I.); (T.I.); (M.O.); (Y.A.)
| | | | - Daichi Kita
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 101-0061, Japan; (D.K.); (S.T.); (A.S.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Sachiyo Tomita
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 101-0061, Japan; (D.K.); (S.T.); (A.S.)
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 101-0061, Japan; (D.K.); (S.T.); (A.S.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Takashi Ishida
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan; (K.I.); (T.I.); (M.O.); (Y.A.)
| | - Masahito Ohue
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan; (K.I.); (T.I.); (M.O.); (Y.A.)
| | - Yutaka Akiyama
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan; (K.I.); (T.I.); (M.O.); (Y.A.)
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College, Chiyoda-ku, Tokyo 101-0061, Japan;
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 101-0061, Japan
- Correspondence: ; Tel.: +81–3-6380−9558
| |
Collapse
|
11
|
Philips A, Stolarek I, Handschuh L, Nowis K, Juras A, Trzciński D, Nowaczewska W, Wrzesińska A, Potempa J, Figlerowicz M. Analysis of oral microbiome from fossil human remains revealed the significant differences in virulence factors of modern and ancient Tannerella forsythia. BMC Genomics 2020; 21:402. [PMID: 32539695 PMCID: PMC7296668 DOI: 10.1186/s12864-020-06810-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recent advances in the next-generation sequencing (NGS) allowed the metagenomic analyses of DNA from many different environments and sources, including thousands of years old skeletal remains. It has been shown that most of the DNA extracted from ancient samples is microbial. There are several reports demonstrating that the considerable fraction of extracted DNA belonged to the bacteria accompanying the studied individuals before their death. RESULTS In this study we scanned 344 microbiomes from 1000- and 2000- year-old human teeth. The datasets originated from our previous studies on human ancient DNA (aDNA) and on microbial DNA accompanying human remains. We previously noticed that in many samples infection-related species have been identified, among them Tannerella forsythia, one of the most prevalent oral human pathogens. Samples containing sufficient amount of T. forsythia aDNA for a complete genome assembly were selected for thorough analyses. We confirmed that the T. forsythia-containing samples have higher amounts of the periodontitis-associated species than the control samples. Despites, other pathogens-derived aDNA was found in the tested samples it was too fragmented and damaged to allow any reasonable reconstruction of these bacteria genomes. The anthropological examination of ancient skulls from which the T. forsythia-containing samples were obtained revealed the pathogenic alveolar bone loss in tooth areas characteristic for advanced periodontitis. Finally, we analyzed the genetic material of ancient T. forsythia strains. As a result, we assembled four ancient T. forsythia genomes - one 2000- and three 1000- year-old. Their comparison with contemporary T. forsythia genomes revealed a lower genetic diversity within the four ancient strains than within contemporary strains. We also investigated the genes of T. forsythia virulence factors and found that several of them (KLIKK protease and bspA genes) differ significantly between ancient and modern bacteria. CONCLUSIONS In summary, we showed that NGS screening of the ancient human microbiome is a valid approach for the identification of disease-associated microbes. Following this protocol, we provided a new set of information on the emergence, evolution and virulence factors of T. forsythia, the member of the oral dysbiotic microbiome.
Collapse
Affiliation(s)
- Anna Philips
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Ireneusz Stolarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Luiza Handschuh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Katarzyna Nowis
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Anna Juras
- Department of Human Evolutionary Biology, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
| | - Dawid Trzciński
- Department of Human Evolutionary Biology, Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614, Poznan, Poland
| | - Wioletta Nowaczewska
- Department of Human Biology, Faculty of Biological Sciences, Wroclaw University, 50-138, Wroclaw, Poland
| | - Anna Wrzesińska
- Anthropological Laboratory, Museum of the First Piasts at Lednica, 62-261, Lednogora, Poland
| | - Jan Potempa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.,Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40202, USA
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland. .,Institute of Computing Science, Poznan University of Technology, 60-965, Poznan, Poland.
| |
Collapse
|
12
|
Lund Håheim L, Schwarze PE, Thelle DS, Nafstad P, Rønningen KS, Olsen I. Low levels of antibodies for the oral bacterium Tannerella forsythia predict cardiovascular disease mortality in men with myocardial infarction: A prospective cohort study. Med Hypotheses 2020; 138:109575. [PMID: 32088522 DOI: 10.1016/j.mehy.2020.109575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/01/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
Antibody levels to periodontal pathogens in prediction of cardiovascular disease (CVD) mortality were explored using data from a health survey in Oslo in 2000 (Oslo II-study) with 12 1/2 years follow-up. IgG antibodies to four common periodontal pathogens; Tannerella forsythia (TF), Porphyromonas gingivalis (PG), and Treponema denticola (TD) all termed collectively the "red complex", and Aggregatibacter actinomycetemcomitans(AA) were analysed. The study sample consisted of 1172 men drawn from a cohort of 6,530 men who participated in the Oslo II-study, where they provided information on medical and dental history. Of the study sample, 548 men had reported prior myocardial infarction (MI) at baseline whereas the remaining 624 men were randomly drawn from the ostensibly healthy participants for comparative analyses. Dental anamnestic information included tooth extractions and oral infections. An inverse relation was found for trend by the quartile risk level of TF predicting CVD mortality, p-value for trend = 0.017. Comparison of the first to fourth quartile of TF antibodies resulted in hazard ratio (HR) = 1.82, 95% confidence interval 1.12-2.94, p = 0.015, adjusted for age, education, diabetes, daily smoking, and systolic blood pressure. Specificity comparing decile 1 to deciles 2-10 of TF predicting mortality was 92.3%. We found an increased HR by low levels of antibodies to the bacterium T. forsythia predicting CVD mortality in a 12 ½ years follow-up in persons who had experienced an MI but not among non-MI men. This novel finding constitutes a plausible causal link between oral infections and CVD mortality.
Collapse
Affiliation(s)
- Lise Lund Håheim
- Department of Oral Biology, Dental Faculty, University of Oslo, Norway.
| | - P E Schwarze
- Norwegian Institute for Public Health, Oslo, Norway
| | - D S Thelle
- Institute of Basic Medical Sciences, Medical Faculty, University of Oslo, Norway; Department of Community Medicine and Public Health, University of Gothenburg, Sweden
| | - P Nafstad
- Norwegian Institute for Public Health, Oslo, Norway; Institute of Health and Society, Medical Faculty, University of Oslo, Norway
| | - K S Rønningen
- Department of Paediatric Research, Division for Women and Children, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - I Olsen
- Department of Oral Biology, Dental Faculty, University of Oslo, Norway
| |
Collapse
|
13
|
Gong T, Zeng J, Tang B, Zhou X, Li Y. CRISPR‐Cas systems in oral microbiome: From immune defense to physiological regulation. Mol Oral Microbiol 2020; 35:41-48. [PMID: 31995666 DOI: 10.1111/omi.12279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Tao Gong
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital Sichuan University Chengdu China
| | - Boyu Tang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu China
| |
Collapse
|
14
|
Zwickl NF, Stralis-Pavese N, Schäffer C, Dohm JC, Himmelbauer H. Comparative genome characterization of the periodontal pathogen Tannerella forsythia. BMC Genomics 2020; 21:150. [PMID: 32046654 PMCID: PMC7014623 DOI: 10.1186/s12864-020-6535-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/23/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Tannerella forsythia is a bacterial pathogen implicated in periodontal disease. Numerous virulence-associated T. forsythia genes have been described, however, it is necessary to expand the knowledge on T. forsythia's genome structure and genetic repertoire to further elucidate its role within pathogenesis. Tannerella sp. BU063, a putative periodontal health-associated sister taxon and closest known relative to T. forsythia is available for comparative analyses. In the past, strain confusion involving the T. forsythia reference type strain ATCC 43037 led to discrepancies between results obtained from in silico analyses and wet-lab experimentation. RESULTS We generated a substantially improved genome assembly of T. forsythia ATCC 43037 covering 99% of the genome in three sequences. Using annotated genomes of ten Tannerella strains we established a soft core genome encompassing 2108 genes, based on orthologs present in > = 80% of the strains analysed. We used a set of known and hypothetical virulence factors for comparisons in pathogenic strains and the putative periodontal health-associated isolate Tannerella sp. BU063 to identify candidate genes promoting T. forsythia's pathogenesis. Searching for pathogenicity islands we detected 38 candidate regions in the T. forsythia genome. Only four of these regions corresponded to previously described pathogenicity islands. While the general protein O-glycosylation gene cluster of T. forsythia ATCC 43037 has been described previously, genes required for the initiation of glycan synthesis are yet to be discovered. We found six putative glycosylation loci which were only partially conserved in other bacteria. Lastly, we performed a comparative analysis of translational bias in T. forsythia and Tannerella sp. BU063 and detected highly biased genes. CONCLUSIONS We provide resources and important information on the genomes of Tannerella strains. Comparative analyses enabled us to assess the suitability of T. forsythia virulence factors as therapeutic targets and to suggest novel putative virulence factors. Further, we report on gene loci that should be addressed in the context of elucidating T. forsythia's protein O-glycosylation pathway. In summary, our work paves the way for further molecular dissection of T. forsythia biology in general and virulence of this species in particular.
Collapse
Affiliation(s)
- Nikolaus F. Zwickl
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Nancy Stralis-Pavese
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Juliane C. Dohm
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Heinz Himmelbauer
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
15
|
Chen T, Olsen I. Porphyromonas gingivalis and its CRISPR-Cas system. J Oral Microbiol 2019; 11:1638196. [PMID: 31303969 PMCID: PMC6609313 DOI: 10.1080/20002297.2019.1638196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 02/08/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated proteins (Cas) are immune systems in prokaryotes present in most Bacteria and Archaea. They provide adaptive immunity against foreign elements such as bacteriophages/viruses, plasmids and transposons. During immunization a small sequence of foreign DNA, a so-called spacer is integrated into the CRISPR locus in the host cell. Spacers are then transcribed into small RNA guides that direct cleavage of foreign DNA by Cas nucleases. Immunization through spacer acquisition is transferred vertically to the progeny. It is possible that this genetic immune system of bacteria participates in modulating the microbiome of ‘chronic’ periodontitis, in which Porphyromonas gingivalis has been identified as a keystone pathogen causing microbial dysbiosis. An in-depth review of our current knowledge on the CRISPR-Cas systems in P. gingivalis is given in this paper with the attempt to understand how this anaerobic bacterium may protect itself in the periodontal pocket where bacteriophages are abundant and even out-number bacteria.
Collapse
Affiliation(s)
- Tsute Chen
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA.,Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Martinez MN, Watts JL, Gilbert JM. Questions associated with the development of novel drugs intended for the treatment of bacterial infections in veterinary species. Vet J 2019; 248:79-85. [PMID: 31113568 DOI: 10.1016/j.tvjl.2019.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 11/17/2022]
Abstract
The emergence of multi-drug resistant bacteria has limited therapeutic options for the treatment of bacterial diseases in both human and veterinary medicine. This has resulted in an urgent need for novel agents to treat infectious diseases. Veterinary medicine is further constrained by the need to ensure that our emerging therapeutics have minimal or no impact on resistance in human pathogens. Thus, there has recently been increased attention given to the development of alternative treatments for infectious disease in animals. The domain of alternative therapies, which includes antimicrobial peptides, bacteriophages, probiotics, and immunomodulators, provides a means to directly inhibit the ability of a pathogen to damage the host while optimally, not imposing a selective pressure favouring antibiotic resistance. However, it is recognized that bacterial pathogens have the capability of expressing a variety of virulence factors, necessitating a clear understanding of the specific target for that therapeutic intervention. This manuscript explores the various virulence mechanisms, the potential utility of developing novel anti-virulence agents for counteracting the expression of diseases associated with veterinary species, and some of the unique regulatory hurdles to be addressed within the framework of a new animal drug application. We conclude with the public health concerns to be considered as these agents are integrated into the veterinary therapeutic arsenal. Our hope is that this manuscript will provide a platform to stimulate discussions on the critical questions that need to be addressed.
Collapse
Affiliation(s)
- Marilyn N Martinez
- US FDA Center for Veterinary Medicine, Rockville, MD 20855, United States.
| | - Jeffrey L Watts
- Zoetis, Inc., 333 Portage Street, Kalamazoo, MI 49007, United States
| | - Jeffrey M Gilbert
- US FDA Center for Veterinary Medicine, Rockville, MD 20855, United States
| |
Collapse
|
17
|
Chigasaki O, Takeuchi Y, Aoki A, Sasaki Y, Mizutani K, Aoyama N, Ikeda Y, Gokyu M, Umeda M, Ishikawa I, Izumi Y. A cross-sectional study on the periodontal status and prevalence of red complex periodontal pathogens in a Japanese population. J Oral Sci 2018; 60:293-303. [PMID: 29925714 DOI: 10.2334/josnusd.17-0223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This large-scale study cross-sectionally examined the periodontal status and prevalence of "red complex" bacteria (Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia) in Japanese adults. A total of 977 participants were enrolled in the study. Probing depth (PD), bleeding on probing (BOP), and bone crest level (BCL) were recorded, and the presence of red complex bacteria in the saliva was examined using polymerase chain reaction. The mean BCL value and the percentage of sites with a PD ≥4 mm or the presence of BOP were significantly higher in older participants. The detection rates of P. gingivalis, T. denticola, and T. forsythia were 46.3%, 76.4%, and 61.1%, respectively. The P. gingivalis detection rate significantly increased with age, while those of T. denticola and T. forsythia were comparably high for all age groups. A close correlation between P. gingivalis and the percentage of sites with PD ≥4 mm was indicated by nonlinear canonical correlation analysis. Current smokers exhibited a more advanced disease condition and a significantly higher P. gingivalis detection rate than non-smokers. In conclusion, periodontal condition worsens with age, and P. gingivalis appears to be the red complex bacterium most closely associated with periodontitis.
Collapse
Affiliation(s)
- Otofumi Chigasaki
- Tsukuba Healthcare Dental Clinic.,Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Yasuo Takeuchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Yoshiyuki Sasaki
- Research and Industry-University Alliance Organization, Tokyo Medical and Dental University
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Norio Aoyama
- Division of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University
| | - Yuichi Ikeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Misa Gokyu
- Tsukuba Healthcare Dental Clinic.,Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University
| | - Isao Ishikawa
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| |
Collapse
|
18
|
Velsko IM, Shaddox LM. Consistent and reproducible long-term in vitro growth of health and disease-associated oral subgingival biofilms. BMC Microbiol 2018; 18:70. [PMID: 29996764 PMCID: PMC6042318 DOI: 10.1186/s12866-018-1212-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Several in vitro oral biofilm growth systems can reliably construct oral microbiome communities in culture, yet their stability and reproducibility through time has not been well characterized. Long-term in vitro growth of natural biofilms would enable use of these biofilms in both in vitro and in vivo studies that require complex microbial communities with minimal variation over a period of time. Understanding biofilm community dynamics in continuous culture, and whether they maintain distinct signatures of health and disease, is necessary to determine the reliability and applicability of such models to broader studies. To this end, we performed next-generation sequencing on biofilms grown from healthy and disease-site subgingival plaque for 80 days to assess stability and reliability of continuous oral biofilm growth. RESULTS Biofilms were grown from subgingival plaque collected from periodontitis-affected sites and healthy individuals for ten eight-day long generations, using hydroxyapatite disks. The bacterial community in each generation was determined using Human Oral Microbe Identification by Next-Generation Sequencing (HOMINGS) technology, and analyzed in QIIME. Profiles were steady through the ten generations, as determined by species abundance and prevalence, Spearman's correlation coefficient, and Faith's phylogenetic distance, with slight variation predominantly in low abundance species. Community profiles were distinct between healthy and disease site-derived biofilms as demonstrated by weighted UniFrac distance throughout the ten generations. Differentially abundant species between healthy and disease site-derived biofilms were consistent throughout the generations. CONCLUSIONS Healthy and disease site-derived biofilms can reliably maintain consistent communities through ten generations of in vitro growth. These communities maintain signatures of health and disease and of individual donors despite culture in identical environments. This subgingival oral biofilm growth and perpetuation model may prove useful to studies involving oral infection or cell stimulation, or those measuring microbial interactions, which require the same biofilms over a period of time.
Collapse
Affiliation(s)
- Irina M Velsko
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA
- Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3QY, UK
- Present Address: Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Luciana M Shaddox
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA.
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
19
|
Assis RDAB, Polloni LC, Patané JSL, Thakur S, Felestrino ÉB, Diaz-Caballero J, Digiampietri LA, Goulart LR, Almeida NF, Nascimento R, Dandekar AM, Zaini PA, Setubal JC, Guttman DS, Moreira LM. Identification and analysis of seven effector protein families with different adaptive and evolutionary histories in plant-associated members of the Xanthomonadaceae. Sci Rep 2017; 7:16133. [PMID: 29170530 PMCID: PMC5700972 DOI: 10.1038/s41598-017-16325-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023] Open
Abstract
The Xanthomonadaceae family consists of species of non-pathogenic and pathogenic γ-proteobacteria that infect different hosts, including humans and plants. In this study, we performed a comparative analysis using 69 fully sequenced genomes belonging to this family, with a focus on identifying proteins enriched in phytopathogens that could explain the lifestyle and the ability to infect plants. Using a computational approach, we identified seven phytopathogen-enriched protein families putatively secreted by type II secretory system: PheA (CM-sec), LipA/LesA, VirK, and four families involved in N-glycan degradation, NixE, NixF, NixL, and FucA1. In silico and phylogenetic analyses of these protein families revealed they all have orthologs in other phytopathogenic or symbiotic bacteria, and are involved in the modulation and evasion of the immune system. As a proof of concept, we performed a biochemical characterization of LipA from Xac306 and verified that the mutant strain lost most of its lipase and esterase activities and displayed reduced virulence in citrus. Since this study includes closely related organisms with distinct lifestyles and highlights proteins directly related to adaptation inside plant tissues, novel approaches might use these proteins as biotechnological targets for disease control, and contribute to our understanding of the coevolution of plant-associated bacteria.
Collapse
Affiliation(s)
- Renata de A B Assis
- Center of Research in Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | | | - José S L Patané
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Shalabh Thakur
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, Ontario, M5S 3B2, Canada
| | - Érica B Felestrino
- Center of Research in Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Julio Diaz-Caballero
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, Ontario, M5S 3B2, Canada
| | | | - Luiz Ricardo Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Nalvo F Almeida
- School of Computing, Federal University of Mato Grosso do Sul, Mato Grosso do Sul, MS, Brazil
| | - Rafael Nascimento
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Paulo A Zaini
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil.,Department of Plant Sciences, University of California, Davis, CA, USA
| | - João C Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, Ontario, M5S 3B2, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, Ontario, M5S 3B2, Canada
| | - Leandro Marcio Moreira
- Center of Research in Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil. .,Department of Biological Science, Institute of Exact and Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil.
| |
Collapse
|
20
|
Chen J, Li T, Zhou X, Cheng L, Huo Y, Zou J, Li Y. Characterization of the clustered regularly interspaced short palindromic repeats sites in Streptococcus mutans isolated from early childhood caries patients. Arch Oral Biol 2017; 83:174-180. [PMID: 28783550 DOI: 10.1016/j.archoralbio.2017.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aim of this study was to analyze the characteristics of the clustered regularly interspaced short palindromic repeats (CRISPR) sites in 45 clinical Streptococcus mutans strains and their relationship to the clinical manifestations of early childhood caries (ECC). METHODS Forty-five S. mutans strains were isolated from the plaque samples taken from sixty-three children. CRISPR sites were sequenced and BLAST was used to compare these sites to those in the CRISPRTarget database. The association between the distribution of CRISPR sites and the manifestation of caries was analyzed by Chi-Square test. Further, biofilm formation (by crystal violet staining) and the synthesis of polysaccharide (by anthrone-sulfuric method) of all clinical isolated S. mutans strains with both CRISPR sites and no CRISPR site were comapared. Finally, acidogenicity and acidurity of two typical strains were determined using pH drop and acid tolerance assays. Biofilm formation and EPS synthesis by two typical strains were compared by 3D CLSM (Confocal Laser Scanning Microscope) assays and the expression of gtf genes were evaluated using qPCR. RESULTS We found that most of the spacers in the clinical S. mutans strains were derived from Streptococcus phages APCM01 and M102. The number of CRISPR sites in these strains was associated with the clinical manifestations of ECC. Moreover, we found that the biofilm formation and EPS synthesis ability of the S. mutans strains with both CRISPR sites was significant improved. CONCLUSIONS An association was found between the distribution of CRISPR sites and the clinical manifestations of caries. The CRISPR sites might contribute to the cariogenic potential of S. mutans.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tiancheng Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuanyuan Huo
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
Martínez‐Rivera J, Xibillé‐Friedmann DX, González‐Christen J, de la Garza‐Ramos MA, Carrillo‐Vázquez SM, Montiel‐Hernández J. Salivary ammonia levels and Tannerella forsythia are associated with rheumatoid arthritis: A cross sectional study. Clin Exp Dent Res 2017; 3:107-114. [PMID: 29744187 PMCID: PMC5719825 DOI: 10.1002/cre2.68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 02/03/2023] Open
Abstract
The aim of this paper is to evaluate the relationship of salivary ammonium levels and the presence of bacteria with rheumatoid arthritis (RA) clinical disease activity in a cross-sectional study of Mexican patients. From a periodontal and disease activity standpoint, 132 consecutive RA patients fulfilling clinical criteria were evaluated. Ammonia levels (including peptidyl arginine deiminase activity) were evaluated by colorimetric assay and the presence of Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia was evaluated by polymerase chain reaction (PCR) technique. After a multivariate analysis, adjusting for clinical and serological parameters, a significant association was only observed between severe periodontitis and probing depth with high RA disease activity. Additionally, in contrast to P. gingivalis, the presence of T. forsythia was significantly associated with high disease RA activity even after multivariable adjustment analysis. There was also a significant increase in ammonium levels in the high RA activity group and a significant correlation between salivary ammonia and RA disease activity but not with autoantibody titers. Similarly, we observed a significant increase in the ammonium levels derived from the cultures of P. gingivalis and T. forsythia, with respect to P. intermedia and S. gordonii cultures, or even healthy donors. These results suggest that RA activity is associated with severe periodontitis, high salivary ammonium levels and the presence of T. forsythia.
Collapse
Affiliation(s)
- José‐Iván Martínez‐Rivera
- CISEIInstituto Nacional de Salud PúblicaCuernavacaMorelos62100Mexico
- Facultad de FarmaciaUniversidad Autónoma del Estado de MorelosCuernavacaMorelos62209Mexico
| | - Daniel X. Xibillé‐Friedmann
- SEIC-Servicios de Salud de MorelosMexico
- Facultad de FarmaciaUniversidad Autónoma del Estado de MorelosCuernavacaMorelos62209Mexico
| | | | | | | | | |
Collapse
|
22
|
Distinct interacting core taxa in co-occurrence networks enable discrimination of polymicrobial oral diseases with similar symptoms. Sci Rep 2016; 6:30997. [PMID: 27499042 PMCID: PMC4976368 DOI: 10.1038/srep30997] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/12/2016] [Indexed: 12/30/2022] Open
Abstract
Polymicrobial diseases, which can be life threatening, are caused by the presence and interactions of multiple microbes. Peri-implantitis and periodontitis are representative polymicrobial diseases that show similar clinical symptoms. To establish a means of differentiating between them, we compared microbial species and functional genes in situ by performing metatranscriptomic analyses of peri-implantitis and periodontitis samples obtained from the same subjects (n = 12 each). Although the two diseases differed in terms of 16S rRNA-based taxonomic profiles, they showed similarities with respect to functional genes and taxonomic and virulence factor mRNA profiles. The latter—defined as microbial virulence types—differed from those of healthy periodontal sites. We also showed that networks based on co-occurrence relationships of taxonomic mRNA abundance (co-occurrence networks) were dissimilar between the two diseases. Remarkably, these networks consisted mainly of taxa with a high relative mRNA-to-rRNA ratio, with some showing significant co-occurrence defined as interacting core taxa, highlighting differences between the two groups. Thus, peri-implantitis and periodontitis have shared as well as distinct microbiological characteristics. Our findings provide insight into microbial interactions in polymicrobial diseases with unknown etiologies.
Collapse
|
23
|
Ng HM, Kin LX, Dashper SG, Slakeski N, Butler CA, Reynolds EC. Bacterial interactions in pathogenic subgingival plaque. Microb Pathog 2016; 94:60-9. [DOI: 10.1016/j.micpath.2015.10.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/18/2022]
|
24
|
Association of Common Variants in MMPs with Periodontitis Risk. DISEASE MARKERS 2016; 2016:1545974. [PMID: 27194818 PMCID: PMC4853955 DOI: 10.1155/2016/1545974] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/18/2016] [Accepted: 03/16/2016] [Indexed: 01/18/2023]
Abstract
Background. Matrix metalloproteinases (MMPs) are considered to play an important role during tissue remodeling and extracellular matrix degradation. And functional polymorphisms in MMPs genes have been reported to be associated with the increased risk of periodontitis. Recently, many studies have investigated the association between MMPs polymorphisms and periodontitis risk. However, the results remain inconclusive. In order to quantify the influence of MMPs polymorphisms on the susceptibility to periodontitis, we performed a meta-analysis and systematic review. Results. Overall, this comprehensive meta-analysis included a total of 17 related studies, including 2399 cases and 2002 healthy control subjects. Our results revealed that although studies of the association between MMP-8 −799 C/T variant and the susceptibility to periodontitis have not yielded consistent results, MMP-1 (−1607 1G/2G, −519 A/G, and −422 A/T), MMP-2 (−1575 G/A, −1306 C/T, −790 T/G, and −735 C/T), MMP-3 (−1171 5A/6A), MMP-8 (−381 A/G and +17 C/G), MMP-9 (−1562 C/T and +279 R/Q), and MMP-12 (−357 Asn/Ser), as well as MMP-13 (−77 A/G, 11A/12A) SNPs are not related to periodontitis risk. Conclusions. No association of these common MMPs variants with the susceptibility to periodontitis was found; however, further larger-scale and multiethnic genetic studies on this topic are expected to be conducted to validate our results.
Collapse
|
25
|
Xie M, Ren M, Yang C, Yi H, Li Z, Li T, Zhao J. Metagenomic Analysis Reveals Symbiotic Relationship among Bacteria in Microcystis-Dominated Community. Front Microbiol 2016; 7:56. [PMID: 26870018 PMCID: PMC4735357 DOI: 10.3389/fmicb.2016.00056] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/13/2016] [Indexed: 11/13/2022] Open
Abstract
Microcystis bloom, a cyanobacterial mass occurrence often found in eutrophicated water bodies, is one of the most serious threats to freshwater ecosystems worldwide. In nature, Microcystis forms aggregates or colonies that contain heterotrophic bacteria. The Microcystis-bacteria colonies were persistent even when they were maintained in lab culture for a long period. The relationship between Microcystis and the associated bacteria was investigated by a metagenomic approach in this study. We developed a visualization-guided method of binning for genome assembly after total colony DNA sequencing. We found that the method was effective in grouping sequences and it did not require reference genome sequence. Individual genomes of the colony bacteria were obtained and they provided valuable insights into microbial community structures. Analysis of metabolic pathways based on these genomes revealed that while all heterotrophic bacteria were dependent upon Microcystis for carbon and energy, Vitamin B12 biosynthesis, which is required for growth by Microcystis, was accomplished in a cooperative fashion among the bacteria. Our analysis also suggests that individual bacteria in the colony community contributed a complete pathway for degradation of benzoate, which is inhibitory to the cyanobacterial growth, and its ecological implication for Microcystis bloom is discussed.
Collapse
Affiliation(s)
- Meili Xie
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of SciencesWuhan, China; University of Chinese Academy of SciencesBeijing, China
| | - Minglei Ren
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of SciencesWuhan, China; University of Chinese Academy of SciencesBeijing, China
| | - Chen Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of SciencesWuhan, China; University of Chinese Academy of SciencesBeijing, China
| | - Haisi Yi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of SciencesWuhan, China; University of Chinese Academy of SciencesBeijing, China
| | - Zhe Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences Beijing, China
| | - Tao Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences Wuhan, China
| | - Jindong Zhao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of SciencesWuhan, China; College of Life Science, Peking UniversityBeijing, China
| |
Collapse
|
26
|
Yost S, Duran-Pinedo AE, Teles R, Krishnan K, Frias-Lopez J. Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Med 2015; 7:27. [PMID: 25918553 PMCID: PMC4410737 DOI: 10.1186/s13073-015-0153-3] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/09/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Periodontitis is a polymicrobial biofilm-induced inflammatory disease that affects 743 million people worldwide. The current model to explain periodontitis progression proposes that changes in the relative abundance of members of the oral microbiome lead to dysbiosis in the host-microbiome crosstalk and then to inflammation and bone loss. Using combined metagenome/metatranscriptome analysis of the subgingival microbiome in progressing and non-progressing sites, we have characterized the distinct molecular signatures of periodontitis progression. METHODS Metatranscriptome analysis was conducted on samples from subgingival biofilms from progressing and stable sites from periodontitis patients. Community-wide expression profiles were obtained using Next Generation Sequencing (Illumina). Sequences were aligned using 'bowtie2' against a constructed oral microbiome database. Differential expression analysis was performed using the non-parametric algorithm implemented on the R package 'NOISeqBio'. We summarized global functional activities of the oral microbial community by set enrichment analysis based on the Gene Ontology (GO) orthology. RESULTS Gene ontology enrichment analysis showed an over-representation in the baseline of active sites of terms related to cell motility, lipid A and peptidoglycan biosynthesis, and transport of iron, potassium, and amino acids. Periodontal pathogens (Tannerella forsythia and Porphyromonas gingivalis) upregulated different TonB-dependent receptors, peptidases, proteases, aerotolerance genes, iron transport genes, hemolysins, and CRISPR-associated genes. Surprisingly, organisms that have not been usually associated with the disease (Streptococcus oralis, Streptococcus mutans, Streptococcus intermedius, Streptococcus mitis, Veillonella parvula, and Pseudomonas fluorenscens) were highly active transcribing putative virulence factors. We detected patterns of activities associated with progression of clinical traits. Among those we found that the profiles of expression of cobalamin biosynthesis, proteolysis, and potassium transport were associated with the evolution towards disease. CONCLUSIONS We identified metabolic changes in the microbial community associated with the initial stages of dysbiosis. Regardless of the overall composition of the community, certain metabolic signatures are consistent with disease progression. Our results suggest that the whole community, and not just a handful of oral pathogens, is responsible for an increase in virulence that leads to progression. TRIAL REGISTRATION NCT01489839, 6 December 2011.
Collapse
Affiliation(s)
- Susan Yost
- />Forsyth Institute, 245 First Street, Cambridge, Massachusetts 02142 USA
| | - Ana E Duran-Pinedo
- />Forsyth Institute, 245 First Street, Cambridge, Massachusetts 02142 USA
| | - Ricardo Teles
- />University of North Carolina Chapel Hill, School of Dentistry, Chapel Hill, NC 27599-7450 USA
| | - Keerthana Krishnan
- />Forsyth Institute, 245 First Street, Cambridge, Massachusetts 02142 USA
| | - Jorge Frias-Lopez
- />Forsyth Institute, 245 First Street, Cambridge, Massachusetts 02142 USA
- />Harvard School of Dental Medicine, 188 Longwood Ave, Boston, MA 02115 USA
| |
Collapse
|