1
|
Cheng X, Zhao R, Bodelier PLE, Song Y, Yang K, Tuovinen OH, Wang H. Differential response of subterranean microbiome to exogenous organic matter input in a cave ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176584. [PMID: 39349195 DOI: 10.1016/j.scitotenv.2024.176584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
As a recurrent climatic phenomenon in the context of climate change, extreme rainstorms induce vertical translocation of organic matter and increase moisture content in terrestrial ecosystems. However, it remains unclear whether heavy rainstorms can impact microbial communities in the deep biosphere by modulating organic matter input. In this study, we present findings on the different responses of bacterial and fungal communities in a subsurface cave to rainstorms and moisture variations through field surveys and microcosm experiments. During periods of rainstorms, the influx of dissolved organic matter (DOM) from soil overlying the cave into cave sediments significantly enhanced the correlation between core bacteria and environmental factors, particularly fluorescence spectral indices. The resource utilization of core bacteria was diminished, while the functional diversity of core fungi remained relatively unaltered. We also performed simulated experiments with restricted external DOM inputs, in which DOM content was observed to decrease and microbial diversity increase in response to artificially increased moisture content (MC). The niche breadth of core bacteria decreased and became more closely associated with DOM as the MC increased, while the niche breadth of core fungi remained predominantly unchanged. Compared to fungi, cave bacteria exhibited higher sensitivity towards variations in DOM. The core microbiome can efficiently utilize the available organic matter and participate in nitrogen- and sulfur-related metabolic processes. The study systematically revealed distinct microbial responses to rainstorm events, thereby providing valuable insights for future investigations into energy utilization within deep biospheres.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| | - Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| | - Yuyang Song
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Kang Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Olli H Tuovinen
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
2
|
Garvin ZK, Abades SR, Trefault N, Alfaro FD, Sipes K, Lloyd KG, Onstott TC. Prevalence of trace gas-oxidizing soil bacteria increases with radial distance from Polloquere hot spring within a high-elevation Andean cold desert. THE ISME JOURNAL 2024; 18:wrae062. [PMID: 38625060 PMCID: PMC11094475 DOI: 10.1093/ismejo/wrae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
High-elevation arid regions harbor microbial communities reliant on metabolic niches and flexibility to survive under biologically stressful conditions, including nutrient limitation that necessitates the utilization of atmospheric trace gases as electron donors. Geothermal springs present "oases" of microbial activity, diversity, and abundance by delivering water and substrates, including reduced gases. However, it is unknown whether these springs exhibit a gradient of effects, increasing their impact on trace gas-oxidizers in the surrounding soils. We assessed whether proximity to Polloquere, a high-altitude geothermal spring in an Andean salt flat, alters the diversity and metabolic structure of nearby soil bacterial populations compared to the surrounding cold desert. Recovered DNA and metagenomic analyses indicate that the spring represents an oasis for microbes in this challenging environment, supporting greater biomass with more diverse metabolic functions in proximal soils that declines sharply with radial distance from the spring. Despite the sharp decrease in biomass, potential rates of atmospheric hydrogen (H2) and carbon monoxide (CO) uptake increase away from the spring. Kinetic estimates suggest this activity is due to high-affinity trace gas consumption, likely as a survival strategy for energy/carbon acquisition. These results demonstrate that Polloquere regulates a gradient of diverse microbial communities and metabolisms, culminating in increased activity of trace gas-oxidizers as the influence of the spring yields to that of the regional salt flat environment. This suggests the spring holds local importance within the context of the broader salt flat and potentially represents a model ecosystem for other geothermal systems in high-altitude desert environments.
Collapse
Affiliation(s)
- Zachary K Garvin
- Department of Geosciences, Princeton University, Princeton, NJ 08544, United States
| | - Sebastián R Abades
- GEMA Center for Genomics, Ecology and Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, 8580745, Santiago, Chile
| | - Nicole Trefault
- GEMA Center for Genomics, Ecology and Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, 8580745, Santiago, Chile
| | - Fernando D Alfaro
- GEMA Center for Genomics, Ecology and Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, 8580745, Santiago, Chile
| | - Katie Sipes
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Karen G Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
3
|
Hoover RL, Keffer JL, Polson SW, Chan CS. Gallionellaceae pangenomic analysis reveals insight into phylogeny, metabolic flexibility, and iron oxidation mechanisms. mSystems 2023; 8:e0003823. [PMID: 37882557 PMCID: PMC10734462 DOI: 10.1128/msystems.00038-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Neutrophilic iron-oxidizing bacteria (FeOB) produce copious iron (oxyhydr)oxides that can profoundly influence biogeochemical cycles, notably the fate of carbon and many metals. To fully understand environmental microbial iron oxidation, we need a thorough accounting of iron oxidation mechanisms. In this study, we show the Gallionellaceae FeOB genomes encode both characterized iron oxidases as well as uncharacterized multiheme cytochromes (MHCs). MHCs are predicted to transfer electrons from extracellular substrates and likely confer metabolic capabilities that help Gallionellaceae occupy a range of different iron- and mineral-rich niches. Gallionellaceae appear to specialize in iron oxidation, so it would be advantageous for them to have multiple mechanisms to oxidize various forms of iron, given the many iron minerals on Earth, as well as the physiological and kinetic challenges faced by FeOB. The multiple iron/mineral oxidation mechanisms may help drive the widespread ecological success of Gallionellaceae.
Collapse
Affiliation(s)
- Rene L. Hoover
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| | - Jessica L. Keffer
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
| | - Shawn W. Polson
- Department of Computer and Information Sciences, University of Delaware, Newark, Delaware, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, USA
| | - Clara S. Chan
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
4
|
Hart R, Cardace D. Mineral Indicators of Geologically Recent Past Habitability on Mars. Life (Basel) 2023; 13:2349. [PMID: 38137950 PMCID: PMC10744562 DOI: 10.3390/life13122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
We provide new support for habitable microenvironments in the near-subsurface of Mars, hosted in Fe- and Mg-rich rock units, and present a list of minerals that can serve as indicators of specific water-rock reactions in recent geologic paleohabitats for follow-on study. We modeled, using a thermodynamic basis without selective phase suppression, the reactions of published Martian meteorites and Jezero Crater igneous rock compositions and reasonable planetary waters (saline, alkaline waters) using Geochemist's Workbench Ver. 12.0. Solid-phase inputs were meteorite compositions for ALH 77005, Nakhla, and Chassigny, and two rock units from the Mars 2020 Perseverance rover sites, Máaz and Séítah. Six plausible Martian groundwater types [NaClO4, Mg(ClO4)2, Ca(ClO4)2, Mg-Na2(ClO4)2, Ca-Na2(ClO4)2, Mg-Ca(ClO4)2] and a unique Mars soil-water analog solution (dilute saline solution) named "Rosy Red", related to the Phoenix Lander mission, were the aqueous-phase inputs. Geophysical conditions were tuned to near-subsurface Mars (100 °C or 373.15 K, associated with residual heat from a magmatic system, impact event, or a concentration of radionuclides, and 101.3 kPa, similar to <10 m depth). Mineral products were dominated by phyllosilicates such as serpentine-group minerals in most reaction paths, but differed in some important indicator minerals. Modeled products varied in physicochemical properties (pH, Eh, conductivity), major ion activities, and related gas fugacities, with different ecological implications. The microbial habitability of pore spaces in subsurface groundwater percolation systems was interrogated at equilibrium in a thermodynamic framework, based on Gibbs Free Energy Minimization. Models run with the Chassigny meteorite produced the overall highest H2 fugacity. Models reliant on the Rosy Red soil-water analog produced the highest sustained CH4 fugacity (maximum values observed for reactant ALH 77005). In general, Chassigny meteorite protoliths produced the best yield regarding Gibbs Free Energy, from an astrobiological perspective. Occurrences of serpentine and saponite across models are key: these minerals have been observed using CRISM spectral data, and their formation via serpentinization would be consistent with geologically recent-past H2 and CH4 production and sustained energy sources for microbial life. We list index minerals to be used as diagnostic for paleo water-rock models that could have supported geologically recent-past microbial activity, and suggest their application as criteria for future astrobiology study-site selections.
Collapse
Affiliation(s)
- Roger Hart
- Department of Physics and Engineering, Community College of Rhode Island, Lincoln, RI 02865, USA
- Department of Geosciences, University of Rhode Island, Kingston, RI 02881, USA;
| | - Dawn Cardace
- Department of Geosciences, University of Rhode Island, Kingston, RI 02881, USA;
| |
Collapse
|
5
|
Danilova OV, Oshkin IY, Belova SE, Miroshnikov KK, Ivanova AA, Dedysh SN. One Step Closer to Enigmatic USCα Methanotrophs: Isolation of a Methylocapsa-like Bacterium from a Subarctic Soil. Microorganisms 2023; 11:2800. [PMID: 38004811 PMCID: PMC10672854 DOI: 10.3390/microorganisms11112800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The scavenging of atmospheric trace gases has been recognized as one of the lifestyle-defining capabilities of microorganisms in terrestrial polar ecosystems. Several metagenome-assembled genomes of as-yet-uncultivated methanotrophic bacteria, which consume atmospheric CH4 in these ecosystems, have been retrieved in cultivation-independent studies. In this study, we isolated and characterized a representative of these methanotrophs, strain D3K7, from a subarctic soil of northern Russia. Strain D3K7 grows on methane and methanol in a wide range of temperatures, between 5 and 30 °C. Weak growth was also observed on acetate. The presence of acetate in the culture medium stimulated growth at low CH4 concentrations (~100 p.p.m.v.). The finished genome sequence of strain D3K7 is 4.15 Mb in size and contains about 3700 protein-encoding genes. According to the result of phylogenomic analysis, this bacterium forms a common clade with metagenome-assembled genomes obtained from the active layer of a permafrost thaw gradient in Stordalen Mire, Abisco, Sweden, and the mineral cryosol at Axel Heiberg Island in the Canadian High Arctic. This clade occupies a phylogenetic position in between characterized Methylocapsa methanotrophs and representatives of the as-yet-uncultivated upland soil cluster alpha (USCα). As shown by the global distribution analysis, D3K7-like methanotrophs are not restricted to polar habitats but inhabit peatlands and soils of various climatic zones.
Collapse
Affiliation(s)
| | | | | | | | | | - Svetlana N. Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences Leninsky Ave. 33/2, Moscow 119071, Russia; (O.V.D.); (I.Y.O.); (S.E.B.); (A.A.I.)
| |
Collapse
|
6
|
Voigt C, Virkkala AM, Hould Gosselin G, Bennett KA, Black TA, Detto M, Chevrier-Dion C, Guggenberger G, Hashmi W, Kohl L, Kou D, Marquis C, Marsh P, Marushchak ME, Nesic Z, Nykänen H, Saarela T, Sauheitl L, Walker B, Weiss N, Wilcox EJ, Sonnentag O. Arctic soil methane sink increases with drier conditions and higher ecosystem respiration. NATURE CLIMATE CHANGE 2023; 13:1095-1104. [PMID: 37810622 PMCID: PMC10550823 DOI: 10.1038/s41558-023-01785-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/31/2023] [Indexed: 10/10/2023]
Abstract
Arctic wetlands are known methane (CH4) emitters but recent studies suggest that the Arctic CH4 sink strength may be underestimated. Here we explore the capacity of well-drained Arctic soils to consume atmospheric CH4 using >40,000 hourly flux observations and spatially distributed flux measurements from 4 sites and 14 surface types. While consumption of atmospheric CH4 occurred at all sites at rates of 0.092 ± 0.011 mgCH4 m-2 h-1 (mean ± s.e.), CH4 uptake displayed distinct diel and seasonal patterns reflecting ecosystem respiration. Combining in situ flux data with laboratory investigations and a machine learning approach, we find biotic drivers to be highly important. Soil moisture outweighed temperature as an abiotic control and higher CH4 uptake was linked to increased availability of labile carbon. Our findings imply that soil drying and enhanced nutrient supply will promote CH4 uptake by Arctic soils, providing a negative feedback to global climate change.
Collapse
Affiliation(s)
- Carolina Voigt
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- Département de géographie & Centre d’études nordiques, Université de Montréal, Montréal, Quebec Canada
- Institute of Soil Science, Universität Hamburg, Hamburg, Germany
| | | | - Gabriel Hould Gosselin
- Département de géographie & Centre d’études nordiques, Université de Montréal, Montréal, Quebec Canada
- Department of Geography and Environmental Studies & Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, Ontario Canada
| | - Kathryn A. Bennett
- Département de géographie & Centre d’études nordiques, Université de Montréal, Montréal, Quebec Canada
| | - T. Andrew Black
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia Canada
| | - Matteo Detto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ USA
| | - Charles Chevrier-Dion
- Département de géographie & Centre d’études nordiques, Université de Montréal, Montréal, Quebec Canada
| | - Georg Guggenberger
- Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany
| | - Wasi Hashmi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lukas Kohl
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dan Kou
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Charlotte Marquis
- Département de géographie & Centre d’études nordiques, Université de Montréal, Montréal, Quebec Canada
| | - Philip Marsh
- Department of Geography and Environmental Studies & Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, Ontario Canada
| | - Maija E. Marushchak
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Zoran Nesic
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia Canada
| | - Hannu Nykänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Taija Saarela
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Leopold Sauheitl
- Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany
| | - Branden Walker
- Department of Geography and Environmental Studies & Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, Ontario Canada
| | - Niels Weiss
- Department of Geography and Environmental Studies & Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, Ontario Canada
- Northwest Territories Geological Survey, Yellowknife, Northwest Territories Canada
| | - Evan J. Wilcox
- Department of Geography and Environmental Studies & Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, Ontario Canada
| | - Oliver Sonnentag
- Département de géographie & Centre d’études nordiques, Université de Montréal, Montréal, Quebec Canada
| |
Collapse
|
7
|
Lee J, Yun J, Yang Y, Jung JY, Lee YK, Yuan J, Ding W, Freeman C, Kang H. Attenuation of Methane Oxidation by Nitrogen Availability in Arctic Tundra Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2647-2659. [PMID: 36719133 DOI: 10.1021/acs.est.2c05228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
CH4 emission in the Arctic has large uncertainty due to the lack of mechanistic understanding of the processes. CH4 oxidation in Arctic soil plays a critical role in the process, whereby removal of up to 90% of CH4 produced in soils by methanotrophs can occur before it reaches the atmosphere. Previous studies have reported on the importance of rising temperatures in CH4 oxidation, but because the Arctic is typically an N-limited system, fewer studies on the effects of inorganic nitrogen (N) have been reported. However, climate change and an increase of available N caused by anthropogenic activities have recently been reported, which may cause a drastic change in CH4 oxidation in Arctic soils. In this study, we demonstrate that excessive levels of available N in soil cause an increase in net CH4 emissions via the reduction of CH4 oxidation in surface soil in the Arctic tundra. In vitro experiments suggested that N in the form of NO3- is responsible for the decrease in CH4 oxidation via influencing soil bacterial and methanotrophic communities. The findings of our meta-analysis suggest that CH4 oxidation in the boreal biome is more susceptible to the addition of N than in other biomes. We provide evidence that CH4 emissions in Arctic tundra can be enhanced by an increase of available N, with profound implications for modeling CH4 dynamics in Arctic regions.
Collapse
Affiliation(s)
- Jaehyun Lee
- School of Civil and Environmental Engineering, Yonsei University, Seoul03722, South Korea
| | - Jeongeun Yun
- School of Civil and Environmental Engineering, Yonsei University, Seoul03722, South Korea
| | - Yerang Yang
- School of Civil and Environmental Engineering, Yonsei University, Seoul03722, South Korea
| | - Ji Young Jung
- Korea Polar Research Institute, Incheon21990, South Korea
| | - Yoo Kyung Lee
- Korea Polar Research Institute, Incheon21990, South Korea
| | - Junji Yuan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
| | - Weixin Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
| | - Chris Freeman
- School of Natural Sciences, Bangor University, BangorLL57 2UW, U.K
| | - Hojeong Kang
- School of Civil and Environmental Engineering, Yonsei University, Seoul03722, South Korea
| |
Collapse
|
8
|
Newsham KK, Danielsen BK, Biersma EM, Elberling B, Hillyard G, Kumari P, Priemé A, Woo C, Yamamoto N. Rapid Response to Experimental Warming of a Microbial Community Inhabiting High Arctic Patterned Ground Soil. BIOLOGY 2022; 11:biology11121819. [PMID: 36552329 PMCID: PMC9775327 DOI: 10.3390/biology11121819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
The influence of climate change on microbial communities inhabiting the sparsely vegetated patterned ground soils that are widespread across the High Arctic is poorly understood. Here, in a four-year experiment on Svalbard, we warmed patterned ground soil with open top chambers and biannually irrigated the soil to predict the responses of its microbial community to rising temperatures and precipitation. A 1 °C rise in summertime soil temperature caused 44% and 78% increases in CO2 efflux and CH4 consumption, respectively, and a 32% increase in the frequency of bacterial 16S ribosomal RNA genes. Bacterial alpha diversity was unaffected by the treatments, but, of the 40 most frequent bacterial taxa, warming caused 44-45% reductions in the relative abundances of a Sphingomonas sp. and Ferruginibacter sp. and 33-91% increases in those of a Phenylobacterium sp. and a member of the Acetobacteraceae. Warming did not influence the frequency of fungal internal transcribed spacer 2 copies, and irrigation had no effects on the measured variables. Our study suggests rapid changes to the activities and abundances of microbes, and particularly bacteria, in High Arctic patterned ground soils as they warm. At current rates of soil warming on Svalbard (0.8 °C per decade), we anticipate that similar effects to those reported here will manifest themselves in the natural environment by approximately the mid 2030s.
Collapse
Affiliation(s)
- Kevin K. Newsham
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK
- Correspondence:
| | - Birgitte Kortegaard Danielsen
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Volgade 10, DK-1350 Copenhagen, Denmark
| | | | - Bo Elberling
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Volgade 10, DK-1350 Copenhagen, Denmark
| | - Guy Hillyard
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Priyanka Kumari
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Anders Priemé
- Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Volgade 10, DK-1350 Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Cheolwoon Woo
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Naomichi Yamamoto
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Diversity and Composition of Methanotroph Communities in Caves. Microbiol Spectr 2022; 10:e0156621. [PMID: 35943259 PMCID: PMC9430973 DOI: 10.1128/spectrum.01566-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Methane oxidizing microorganisms (methanotrophs) are ubiquitous in the environment and represent a major sink for the greenhouse gas methane (CH4). Recent studies have demonstrated methanotrophs are abundant and contribute to CH4 dynamics in caves. However, very little is known about what controls the distribution and abundance of methanotrophs in subterranean ecosystems. Here, we report a survey of soils collected from > 20 caves in North America to elucidate the factors shaping cave methanotroph communities. Using 16S rRNA sequencing, we recovered methanotrophs from nearly all (98%) of the samples, including cave sites where CH4 concentrations were at or below detection limits (≤0.3 ppmv). We identified a core methanotroph community among caves comprised of high-affinity methanotrophs. Although associated with local-scale mineralogy, methanotroph composition did not systematically vary between the entrances and interior of caves, where CH4 concentrations varied. We also observed methanotrophs are able to disperse readily between cave systems showing these organisms have low barriers to dispersal. Lastly, the relative abundance of methanotrophs was positively correlated with cave-air CH4 concentrations, suggesting these microorganisms contribute to CH4 flux in subterranean ecosystems. IMPORTANCE Recent observations have shown the atmospheric greenhouse gas methane (CH4) is consumed by microorganisms (methanotrophs) in caves at rates comparable to CH4 oxidation in surface soils. Caves are abundant in karst landscapes that comprise 14% of Earth’s land surface area, and therefore may represent a potentially important, but overlooked, CH4 sink. We sampled cave soils to gain a better understand the community composition and structure of cave methanotrophs. Our results show the members of the USC-γ clade are dominant in cave communities and can easily disperse through the environment, methanotroph relative abundance was correlated with local scale mineralogy of soils, and the relative abundance of methanotrophs was positively correlated with CH4 concentrations in cave air.
Collapse
|
10
|
Hermesdorf L, Elberling B, D'Imperio L, Xu W, Lambæk A, Ambus PL. Effects of fire on CO 2 , CH 4 , and N 2 O exchange in a well-drained Arctic heath ecosystem. GLOBAL CHANGE BIOLOGY 2022; 28:4882-4899. [PMID: 35543023 PMCID: PMC9544550 DOI: 10.1111/gcb.16222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Wildfire frequency and expanse in the Arctic have increased in recent years and are projected to increase further with changes in climatic conditions due to warmer and drier summers. Yet, there is a lack of knowledge about the impacts such events may have on the net greenhouse gas (GHG) balances in Arctic ecosystems. We investigated in situ effects of an experimental fire in 2017 on carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O) surface fluxes in the most abundant tundra ecosystem in West Greenland in ambient and warmer conditions. Measurements from the growing seasons 2017 to 2019 showed that burnt areas became significant net CO2 sources for the entire study period, driven by increased ecosystem respiration (ER) immediately after the fire and decreased gross ecosystem production (GEP). Warming by open-top chambers significantly increased both ER and GEP in control, but not in burnt plots. In contrast to CO2 , measurements suggest that the overall sink capacity of atmospheric CH4 , as well as net N2 O emissions, were not affected by fire in the short term, but only immediately after the fire. The minor effects on CH4 and N2 O, which was surprising given the significantly higher nitrate availability observed in burnt plots. However, the minor effects are aligned with the lack of significant effects of fire on soil moisture and soil temperature. Net uptake and emissions of all three GHG from burnt soils were less temperature-sensitive than in the undisturbed control plots. Overall, this study highlights that wildfires in a typical tundra ecosystem in Greenland may not lead to markedly increased net GHG emissions other than CO2 . Additional investigations are needed to assess the consequences of more severe fires.
Collapse
Affiliation(s)
- Lena Hermesdorf
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Bo Elberling
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Ludovica D'Imperio
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
- University of Copenhagen, IGN, Section for Forest, Nature and BiomassFrederiksberg CDenmark
| | - Wenyi Xu
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Anders Lambæk
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Per L. Ambus
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
11
|
Schmidt MP, Mamet SD, Senger C, Schebel A, Ota M, Tian TW, Aziz U, Stein LY, Regier T, Stanley K, Peak D, Siciliano SD. Positron-emitting radiotracers spatially resolve unexpected biogeochemical relationships linked with methane oxidation in Arctic soils. GLOBAL CHANGE BIOLOGY 2022; 28:4211-4224. [PMID: 35377512 DOI: 10.1111/gcb.16188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/21/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Arctic soils are marked by cryoturbic features, which impact soil-atmosphere methane (CH4 ) dynamics vital to global climate regulation. Cryoturbic diapirism alters C/N chemistry within frost boils by introducing soluble organic carbon and nutrients, potentially influencing microbial CH4 oxidation. CH4 oxidation in soils, however, requires a spatio-temporal convergence of ecological factors to occur. Spatial delineation of microbial activity with respect to these key microbial and biogeochemical factors at relevant scales is experimentally challenging in inherently complex and heterogeneous natural soil matrices. This work aims to overcome this barrier by spatially linking microbial CH4 oxidation with C/N chemistry and metagenomic characteristics. This is achieved by using positron-emitting radiotracers to visualize millimeter-scale active CH4 uptake areas in Arctic soils with and without diapirism. X-ray absorption spectroscopic speciation of active and inactive areas shows CH4 uptake spatially associates with greater proportions of inorganic N in diapiric frost boils. Metagenomic analyses reveal Ralstonia pickettii associates with CH4 uptake across soils along with pertinent CH4 and inorganic N metabolism associated genes. This study highlights the critical relationship between CH4 and N cycles in Arctic soils, with potential implications for better understanding future climate. Furthermore, our experimental framework presents a novel, widely applicable strategy for unraveling ecological relationships underlying greenhouse gas dynamics under global change.
Collapse
Affiliation(s)
- Michael P Schmidt
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- USDA-ARS United States Salinity Laboratory, Riverside, California, USA
| | - Steven D Mamet
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Curtis Senger
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alixandra Schebel
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mitsuaki Ota
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tony W Tian
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Umair Aziz
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tom Regier
- Canadian Light Source, Inc., Saskatoon, Saskatchewan, Canada
| | - Kevin Stanley
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Derek Peak
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Steven D Siciliano
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
12
|
Keuschnig C, Larose C, Rudner M, Pesqueda A, Doleac S, Elberling B, Björk RG, Klemedtsson L, Björkman MP. Reduced methane emissions in former permafrost soils driven by vegetation and microbial changes following drainage. GLOBAL CHANGE BIOLOGY 2022; 28:3411-3425. [PMID: 35285570 PMCID: PMC9314937 DOI: 10.1111/gcb.16137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
In Arctic regions, thawing permafrost soils are projected to release 50 to 250 Gt of carbon by 2100. This data is mostly derived from carbon-rich wetlands, although 71% of this carbon pool is stored in faster-thawing mineral soils, where ecosystems close to the outer boundaries of permafrost regions are especially vulnerable. Although extensive data exists from currently thawing sites and short-term thawing experiments, investigations of the long-term changes following final thaw and co-occurring drainage are scarce. Here we show ecosystem changes at two comparable tussock tundra sites with distinct permafrost thaw histories, representing 15 and 25 years of natural drainage, that resulted in a 10-fold decrease in CH4 emissions (3.2 ± 2.2 vs. 0.3 ± 0.4 mg C-CH4 m-2 day-1 ), while CO2 emissions were comparable. These data extend the time perspective from earlier studies based on short-term experimental drainage. The overall microbial community structures did not differ significantly between sites, although the drier top soils at the most advanced site led to a loss of methanogens and their syntrophic partners in surface layers while the abundance of methanotrophs remained unchanged. The resulting deeper aeration zones likely increased CH4 oxidation due to the longer residence time of CH4 in the oxidation zone, while the observed loss of aerenchyma plants reduced CH4 diffusion from deeper soil layers directly to the atmosphere. Our findings highlight the importance of including hydrological, vegetation and microbial specific responses when studying long-term effects of climate change on CH4 emissions and underscores the need for data from different soil types and thaw histories.
Collapse
Affiliation(s)
- Christoph Keuschnig
- Environmental Microbial GenomicsLaboratoire AmpereEcole Centrale de LyonEcullyFrance
| | - Catherine Larose
- Environmental Microbial GenomicsLaboratoire AmpereEcole Centrale de LyonEcullyFrance
| | - Mario Rudner
- Department of Earth SciencesUniversity of GothenburgGothenburgSweden
| | - Argus Pesqueda
- Department of Earth SciencesUniversity of GothenburgGothenburgSweden
- Present address:
Center for Ecological Research and Forestry Applications (CREAF)‐Edifici CUniversitat Autonoma de BarcelonaBellaterra, BarcelonaSpain
| | - Stéphane Doleac
- Department of Earth SciencesUniversity of GothenburgGothenburgSweden
- Ecole PolytechniquePalaiseauFrance
| | - Bo Elberling
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagenDenmark
| | - Robert G. Björk
- Department of Earth SciencesUniversity of GothenburgGothenburgSweden
- Gothenburg Global Biodiversity CentreGothenburgSweden
| | - Leif Klemedtsson
- Department of Earth SciencesUniversity of GothenburgGothenburgSweden
| | - Mats P. Björkman
- Department of Earth SciencesUniversity of GothenburgGothenburgSweden
- Gothenburg Global Biodiversity CentreGothenburgSweden
| |
Collapse
|
13
|
Cowan DA, Ferrari BC, McKay CP. Out of Thin Air? Astrobiology and Atmospheric Chemotrophy. ASTROBIOLOGY 2022; 22:225-232. [PMID: 35025628 PMCID: PMC8861918 DOI: 10.1089/ast.2021.0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The emerging understanding of microbial trace gas chemotrophy as a metabolic strategy to support energy and carbon acquisition for microbial survival and growth has significant implications in the search for past, and even extant, life beyond Earth. The use of trace gases, including hydrogen and carbon monoxide as substrates for microbial oxidation, potentially offers a viable strategy with which to support life on planetary bodies that possess a suitable atmospheric composition, such as Mars and Titan. Here, we discuss the current state of knowledge of this process and explore its potential in the field of astrobiological exploration.
Collapse
Affiliation(s)
- Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Address correspondence to: Don A. Cowan, Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Building NW2, Room 3-12, Hatfield Campus, Lynnwood Road, Pretoria 0002, South Africa
| | - Belinda C. Ferrari
- School of Biotechnology and Biomolecular Sciences, Australian Centre for Astrobiology, UNSW Sydney, Randwick, Australia
| | | |
Collapse
|
14
|
Altshuler I, Raymond-Bouchard I, Magnuson E, Tremblay J, Greer CW, Whyte LG. Unique high Arctic methane metabolizing community revealed through in situ 13CH 4-DNA-SIP enrichment in concert with genome binning. Sci Rep 2022; 12:1160. [PMID: 35064149 PMCID: PMC8782848 DOI: 10.1038/s41598-021-04486-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Greenhouse gas (GHG) emissions from Arctic permafrost soils create a positive feedback loop of climate warming and further GHG emissions. Active methane uptake in these soils can reduce the impact of GHG on future Arctic warming potential. Aerobic methane oxidizers are thought to be responsible for this apparent methane sink, though Arctic representatives of these organisms have resisted culturing efforts. Here, we first used in situ gas flux measurements and qPCR to identify relative methane sink hotspots at a high Arctic cytosol site, we then labeled the active microbiome in situ using DNA Stable Isotope Probing (SIP) with heavy 13CH4 (at 100 ppm and 1000 ppm). This was followed by amplicon and metagenome sequencing to identify active organisms involved in CH4 metabolism in these high Arctic cryosols. Sequencing of 13C-labeled pmoA genes demonstrated that type II methanotrophs (Methylocapsa) were overall the dominant active methane oxidizers in these mineral cryosols, while type I methanotrophs (Methylomarinovum) were only detected in the 100 ppm SIP treatment. From the SIP-13C-labeled DNA, we retrieved nine high to intermediate quality metagenome-assembled genomes (MAGs) belonging to the Proteobacteria, Gemmatimonadetes, and Chloroflexi, with three of these MAGs containing genes associated with methanotrophy. A novel Chloroflexi MAG contained a mmoX gene along with other methane oxidation pathway genes, identifying it as a potential uncultured methane oxidizer. This MAG also contained genes for copper import, synthesis of biopolymers, mercury detoxification, and ammonia uptake, indicating that this bacterium is strongly adapted to conditions in active layer permafrost and providing new insights into methane biogeochemical cycling. In addition, Betaproteobacterial MAGs were also identified as potential cross-feeders with methanotrophs in these Arctic cryosols. Overall, in situ SIP labeling combined with metagenomics and genome binning demonstrated to be a useful tool for discovering and characterizing novel organisms related to specific microbial functions or biogeochemical cycles of interest. Our findings reveal a unique and active Arctic cryosol microbial community potentially involved in CH4 cycling.
Collapse
Affiliation(s)
- Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, 21,111 Lakeshore Rd., Ste. Anne de Bellevue, QC, H9X 3V9, Canada.
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences NMBU, Universitetstunet 3, 1430, Ås, Norway.
| | - Isabelle Raymond-Bouchard
- Department of Natural Resource Sciences, McGill University, 21,111 Lakeshore Rd., Ste. Anne de Bellevue, QC, H9X 3V9, Canada
| | - Elisse Magnuson
- Department of Natural Resource Sciences, McGill University, 21,111 Lakeshore Rd., Ste. Anne de Bellevue, QC, H9X 3V9, Canada
| | - Julien Tremblay
- Energy, Mining and Environment Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, QC, H4P 2R2, Canada
| | - Charles W Greer
- Department of Natural Resource Sciences, McGill University, 21,111 Lakeshore Rd., Ste. Anne de Bellevue, QC, H9X 3V9, Canada
- Energy, Mining and Environment Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, QC, H4P 2R2, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, 21,111 Lakeshore Rd., Ste. Anne de Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|
15
|
Raymond-Bouchard I, Maggiori C, Brennan L, Altshuler I, Manchado JM, Parro V, Whyte LG. Assessment of Automated Nucleic Acid Extraction Systems in Combination with MinION Sequencing As Potential Tools for the Detection of Microbial Biosignatures. ASTROBIOLOGY 2022; 22:87-103. [PMID: 34962136 DOI: 10.1089/ast.2020.2349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The utilization of nanopore technologies for the detection of organic biogenic compounds has garnered significant focus in recent years. Oxford Nanopore Technologies' (ONT) MinION instrument, which can detect and sequence nucleic acids (NAs), is one such example. These technologies have much promise for unambiguous life detection but require significant development in terms of methods for extraction and preparation of NAs for biosignature detection and their feasibility for use in astrobiology-focused field missions. In this study, we tested pre-existing, automated, or semiautomated NA extraction technologies, coupled with automated ONT VolTRAX NA sample preparation, and verification with Nanopore MinION sequencing. All of the extraction systems tested (SuperFastPrep2, ClaremontX1, and SOLID-Sample Preparation Unit) showed potential for extracting DNA from Canadian High Arctic environments analogous to Mars, Europa, and Enceladus, which could subsequently be detected and sequenced with the MinION. However, they differed with regard to efficacy, yield, purity, and sequencing and annotation quality. Overall, bead beating-based systems performed the best for these parameters. In addition, we showed that the MinION could sequence unpurified DNA contained in crude cell lysates. This is valuable from an astrobiology perspective because purification steps are time-consuming and complicate the requirements for an automated extraction and life detection system. Our results indicate that semiautomated NA extraction and preparation technologies hold much promise, and with increased optimization and automation could be coupled to a larger platform incorporating nanopore detection and sequencing of NAs for life detection applications.
Collapse
Affiliation(s)
| | - Catherine Maggiori
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| | - Laura Brennan
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| | | | - Victor Parro
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| |
Collapse
|
16
|
Waschulin V, Borsetto C, James R, Newsham KK, Donadio S, Corre C, Wellington E. Biosynthetic potential of uncultured Antarctic soil bacteria revealed through long-read metagenomic sequencing. THE ISME JOURNAL 2022; 16:101-111. [PMID: 34253854 PMCID: PMC8692599 DOI: 10.1038/s41396-021-01052-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022]
Abstract
The growing problem of antibiotic resistance has led to the exploration of uncultured bacteria as potential sources of new antimicrobials. PCR amplicon analyses and short-read sequencing studies of samples from different environments have reported evidence of high biosynthetic gene cluster (BGC) diversity in metagenomes, indicating their potential for producing novel and useful compounds. However, recovering full-length BGC sequences from uncultivated bacteria remains a challenge due to the technological restraints of short-read sequencing, thus making assessment of BGC diversity difficult. Here, long-read sequencing and genome mining were used to recover >1400 mostly full-length BGCs that demonstrate the rich diversity of BGCs from uncultivated lineages present in soil from Mars Oasis, Antarctica. A large number of highly divergent BGCs were not only found in the phyla Acidobacteriota, Verrucomicrobiota and Gemmatimonadota but also in the actinobacterial classes Acidimicrobiia and Thermoleophilia and the gammaproteobacterial order UBA7966. The latter furthermore contained a potential novel family of RiPPs. Our findings underline the biosynthetic potential of underexplored phyla as well as unexplored lineages within seemingly well-studied producer phyla. They also showcase long-read metagenomic sequencing as a promising way to access the untapped genetic reservoir of specialised metabolite gene clusters of the uncultured majority of microbes.
Collapse
Affiliation(s)
| | - Chiara Borsetto
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | | | | | - Christophe Corre
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | | |
Collapse
|
17
|
Wu X, Chauhan A, Layton AC, Lau Vetter MCY, Stackhouse BT, Williams DE, Whyte L, Pfiffner SM, Onstott TC, Vishnivetskaya TA. Comparative Metagenomics of the Active Layer and Permafrost from Low-Carbon Soil in the Canadian High Arctic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12683-12693. [PMID: 34472853 DOI: 10.1021/acs.est.1c00802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Approximately 87% of the Arctic consists of low-organic carbon mineral soil, but knowledge of microbial activity in low-carbon permafrost (PF) and active layer soils remains limited. This study investigated the taxonomic composition and genetic potential of microbial communities at contrasting depths of the active layer (5, 35, and 65 cm below surface, bls) and PF (80 cm bls). We showed microbial communities in PF to be taxonomically and functionally different from those in the active layer. 16S rRNA gene sequence analysis revealed higher biodiversity in the active layer than in PF, and biodiversity decreased significantly with depth. The reconstructed 91 metagenome-assembled genomes showed that PF was dominated by heterotrophic, fermenting Bacteroidota using nitrite as their main electron acceptor. Prevalent microbes identified in the active layer belonged to bacterial taxa, gaining energy via aerobic respiration. Gene abundance in metagenomes revealed enrichment of genes encoding the plant-derived polysaccharide degradation and metabolism of nitrate and sulfate in PF, whereas genes encoding methane/ammonia oxidation, cold-shock protein, and two-component systems were generally more abundant in the active layer, particularly at 5 cm bls. The results of this study deepen our understanding of the low-carbon Arctic soil microbiome and improve prediction of the impacts of thawing PF.
Collapse
Affiliation(s)
- Xiaofen Wu
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Archana Chauhan
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Alice C Layton
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Maggie C Y Lau Vetter
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Brandon T Stackhouse
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniel E Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Tatiana A Vishnivetskaya
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
18
|
Shen L, Liu Y, Allen MA, Xu B, Wang N, Williams TJ, Wang F, Zhou Y, Liu Q, Cavicchioli R. Linking genomic and physiological characteristics of psychrophilic Arthrobacter to metagenomic data to explain global environmental distribution. MICROBIOME 2021; 9:136. [PMID: 34118971 PMCID: PMC8196931 DOI: 10.1186/s40168-021-01084-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microorganisms drive critical global biogeochemical cycles and dominate the biomass in Earth's expansive cold biosphere. Determining the genomic traits that enable psychrophiles to grow in cold environments informs about their physiology and adaptive responses. However, defining important genomic traits of psychrophiles has proven difficult, with the ability to extrapolate genomic knowledge to environmental relevance proving even more difficult. RESULTS Here we examined the bacterial genus Arthrobacter and, assisted by genome sequences of new Tibetan Plateau isolates, defined a new clade, Group C, that represents isolates from polar and alpine environments. Group C had a superior ability to grow at -1°C and possessed genome G+C content, amino acid composition, predicted protein stability, and functional capacities (e.g., sulfur metabolism and mycothiol biosynthesis) that distinguished it from non-polar or alpine Group A Arthrobacter. Interrogation of nearly 1000 metagenomes identified an over-representation of Group C in Canadian permafrost communities from a simulated spring-thaw experiment, indicative of niche adaptation, and an under-representation of Group A in all polar and alpine samples, indicative of a general response to environmental temperature. CONCLUSION The findings illustrate a capacity to define genomic markers of specific taxa that potentially have value for environmental monitoring of cold environments, including environmental change arising from anthropogenic impact. More broadly, the study illustrates the challenges involved in extrapolating from genomic and physiological data to an environmental setting. Video Abstract.
Collapse
Affiliation(s)
- Liang Shen
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou, 730000, China.
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Baiqing Xu
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ninglian Wang
- College of Urban and Environmental Science, Northwest University, Xian, 710069, China
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Feng Wang
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuguang Zhou
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing Liu
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
19
|
Durán J, Rodríguez A, Fangueiro D, De Los Ríos A. In-situ soil greenhouse gas fluxes under different cryptogamic covers in maritime Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144557. [PMID: 33508664 DOI: 10.1016/j.scitotenv.2020.144557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/24/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Soils can influence climate by sequestering or emitting greenhouse gases (GHG) such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). We are far from understanding the direct influence of cryptogamic covers on soil GHG fluxes, particularly in areas free of potential anthropogenic confounding factors. We assessed the role of well-developed cryptogamic covers in soil attributes, as well as in the in-situ exchange of GHG between Antarctic soils and the atmosphere during the austral summer. We found lower values of soil organic matter, total organic carbon, and total nitrogen in bare areas than in soils covered by mosses and, particularly, lichens. These differences, together with concomitant decreases and increases in soil temperature and moisture, respectively, resulted in increases in in-situ CO2 emission (i.e. ecosystem respiration) and decreases in CH4 uptake but no significant changes in N2O fluxes. We found consistent linear positive and negative relationships between soil attributes (i.e. soil organic matter, total organic carbon and total nitrogen) and CO2 emissions and CH4 uptake, respectively, and polynomial relationships between these soil attributes and net N2O fluxes. Our results indicate that any increase in the area occupied by cryptogams in terrestrial Antarctic ecosystems (due to increased growing season and increasingly warming conditions) will likely result in parallel increases in soil fertility as well as in an enhanced capacity to emit CO2 and a decreased capacity to uptake CH4. Such changes, unless offset by parallel C uptake processes, would represent a paradigmatic example of a positive climate change feedback. Further, we show that the fate of these terrestrial ecosystems under future climate scenarios, as well as their capacity to exchange GHG with the atmosphere might depend on the relative ability of different aboveground cryptogams to thrive under the new conditions.
Collapse
Affiliation(s)
- J Durán
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal.
| | - A Rodríguez
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - D Fangueiro
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - A De Los Ríos
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN), CSIC, E-28006 Madrid, Spain
| |
Collapse
|
20
|
Varsadiya M, Urich T, Hugelius G, Bárta J. Microbiome structure and functional potential in permafrost soils of the Western Canadian Arctic. FEMS Microbiol Ecol 2021; 97:6102547. [PMID: 33452882 DOI: 10.1093/femsec/fiab008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/13/2021] [Indexed: 01/12/2023] Open
Abstract
Substantial amounts of topsoil organic matter (OM) in Arctic Cryosols have been translocated by the process of cryoturbation into deeper soil horizons (cryoOM), reducing its decomposition. Recent Arctic warming deepens the Cryosols´ active layer, making more topsoil and cryoOM carbon accessible for microbial transformation. To quantify bacteria, archaea and selected microbial groups (methanogens - mcrA gene and diazotrophs - nifH gene) and to investigate bacterial and archaeal diversity, we collected 83 soil samples from four different soil horizons of three distinct tundra types located in Qikiqtaruk (Hershel Island, Western Canada). In general, the abundance of bacteria and diazotrophs decreased from topsoil to permafrost, but not for cryoOM. No such difference was observed for archaea and methanogens. CryoOM was enriched with oligotrophic (slow-growing microorganism) taxa capable of recalcitrant OM degradation. We found distinct microbial patterns in each tundra type: topsoil from wet-polygonal tundra had the lowest abundance of bacteria and diazotrophs, but the highest abundance of methanogens. Wet-polygonal tundra, therefore, represented a hotspot for methanogenesis. Oligotrophic and copiotrophic (fast-growing microorganism) genera of methanogens and diazotrophs were distinctly distributed in topsoil and cryoOM, resulting in different rates of nitrogen flux into these horizons affecting OM vulnerability and potential CO2 and CH4 release.
Collapse
Affiliation(s)
- Milan Varsadiya
- Department of Ecosystems Biology, University of South Bohemia in České Budějovice, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8 17487 Greifswald, Germany
| | - Gustaf Hugelius
- Department of Physical Geography, Stockholm University, 106 91, Stockholm, Sweden
| | - Jiří Bárta
- Department of Ecosystems Biology, University of South Bohemia in České Budějovice, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
21
|
Belova SE, Danilova OV, Ivanova AA, Merkel AY, Dedysh SN. Methane-Oxidizing Communities in Lichen-Dominated Forested Tundra Are Composed Exclusively of High-Affinity USCα Methanotrophs. Microorganisms 2020; 8:microorganisms8122047. [PMID: 33371270 PMCID: PMC7766663 DOI: 10.3390/microorganisms8122047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 01/04/2023] Open
Abstract
Upland soils of tundra function as a constant sink for atmospheric CH4 but the identity of methane oxidizers in these soils remains poorly understood. Methane uptake rates of -0.4 to -0.6 mg CH4-C m-2 day-1 were determined by the static chamber method in a mildly acidic upland soil of the lichen-dominated forested tundra, North Siberia, Russia. The maximal CH4 oxidation activity was localized in an organic surface soil layer underlying the lichen cover. Molecular identification of methanotrophic bacteria based on retrieval of the pmoA gene revealed Upland Soil Cluster Alpha (USCα) as the only detectable methanotroph group. Quantification of these pmoA gene fragments by means of specific qPCR assay detected ~107pmoA gene copies g-1 dry soil. The pmoA diversity was represented by seven closely related phylotypes; the most abundant phylotype displayed 97.5% identity to pmoA of Candidatus Methyloaffinis lahnbergensis. Further analysis of prokaryote diversity in this soil did not reveal 16S rRNA gene fragments from well-studied methanotrophs of the order Methylococcales and the family Methylocystaceae. The largest group of reads (~4% of all bacterial 16S rRNA gene fragments) that could potentially belong to methanotrophs was classified as uncultivated Beijerinckiaceae bacteria. These reads displayed 96-100 and 95-98% sequence similarity to 16S rRNA gene of Candidatus Methyloaffinis lahnbergensis and "Methylocapsa gorgona" MG08, respectively, and were represented by eight species-level operational taxonomic units (OTUs), two of which were highly abundant. These identification results characterize subarctic upland soils, which are exposed to atmospheric methane concentrations only, as a unique habitat colonized mostly by USCα methanotrophs.
Collapse
|
22
|
Cai Y, Zhou X, Shi L, Jia Z. Atmospheric Methane Oxidizers Are Dominated by Upland Soil Cluster Alpha in 20 Forest Soils of China. MICROBIAL ECOLOGY 2020; 80:859-871. [PMID: 32803363 DOI: 10.1007/s00248-020-01570-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 08/03/2020] [Indexed: 05/25/2023]
Abstract
Upland soil clusters alpha and gamma (USCα and USCγ) are considered a major biological sink of atmospheric methane and are often detected in forest and grassland soils. These clusters are phylogenetically classified using the particulate methane monooxygenase gene pmoA because of the difficulty of cultivation. Recent studies have established a direct link of pmoA genes to 16S rRNA genes based on their isolated strain or draft genomes. However, whether the results of pmoA-based assays could be largely represented by 16S rRNA gene sequencing in upland soils remains unclear. In this study, we collected 20 forest soils across China and compared methane-oxidizing bacterial (MOB) communities by high-throughput sequencing of 16S rRNA and pmoA genes using different primer sets. The results showed that 16S rRNA gene sequencing and the semi-nested polymerase chain reaction (PCR) of the pmoA gene (A189/A682r nested with a mixture of mb661 and A650) consistently revealed the dominance of USCα (accounting for more than 50% of the total MOB) in 12 forest soils. A189f/A682r successfully amplified pmoA genes (mainly RA14 of USCα) in only three forest soils. A189f/mb661 could amplify USCα (mainly JR1) in several forest soils but showed a strong preferential amplification of Methylocystis and many other type I MOB groups. A189f/A650 almost exclusively amplified USCα (mainly JR1) and largely discriminated against Methylocystis and most of the other MOB groups. The semi-nested PCR approach weakened the bias of A189f/mb661 and A189f/A650 for JR1 and balanced the coverage of all USCα members. The canonical correspondence analysis indicated that soil NH4+-N and pH were the main environmental factors affecting the MOB community of Chinese forest soils. The RA14 of the USCα group prefers to live in soils with low pH, low temperature, low elevation, high precipitation, and rich in nitrogen. JR1's preferences for temperature and elevation were opposite to RA14. Our study suggests that combining the deep sequencing of 16S rRNA and pmoA genes to characterize MOB in forest soils is the best choice.
Collapse
Affiliation(s)
- Yuanfeng Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China
| | - Xue Zhou
- College of agricultural science and engineering, Hohai University, Nanjing, 210098, Jiangsu Province, China
| | - Limei Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China.
| |
Collapse
|
23
|
Messan KS, Jones RM, Doherty SJ, Foley K, Douglas TA, Barbato RA. The role of changing temperature in microbial metabolic processes during permafrost thaw. PLoS One 2020; 15:e0232169. [PMID: 32353013 PMCID: PMC7192436 DOI: 10.1371/journal.pone.0232169] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Approximately one fourth of the Earth's Northern Hemisphere is underlain by permafrost, earth materials (soil, organic matter, or bedrock), that has been continuously frozen for at least two consecutive years. Numerous studies point to evidence of accelerated climate warming in the Arctic and sub-Arctic where permafrost is located. Changes to permafrost biochemical processes may critically impact ecosystem processes at the landscape scale. Here, we sought to understand how the permafrost metabolome responds to thaw and how this response differs based on location (i.e. chronosequence of permafrost formation constituting diverse permafrost types). We analyzed metabolites from microbial cells originating from Alaskan permafrost. Overall, permafrost thaw induced a shift in microbial metabolic processes. Of note were the dissimilarities in biochemical structure between frozen and thawed samples. The thawed permafrost metabolomes from different locations were highly similar. In the intact permafrost, several metabolites with antagonist properties were identified, illustrating the competitive survival strategy required to survive a frozen state. Interestingly, the intensity of these antagonistic metabolites decreased with warmer temperature, indicating a shift in ecological strategies in thawed permafrost. These findings illustrate the impact of change in temperature and spatial variability as permafrost undergoes thaw, knowledge that will become crucial for predicting permafrost biogeochemical dynamics as the Arctic and Antarctic landscapes continue to warm.
Collapse
Affiliation(s)
- Komi S. Messan
- US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, United States of America
| | - Robert M. Jones
- US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, United States of America
| | - Stacey J. Doherty
- US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, United States of America
| | - Karen Foley
- US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, United States of America
| | - Thomas A. Douglas
- US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Fairbanks, Alaska, United States of America
| | - Robyn A. Barbato
- US Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, United States of America
| |
Collapse
|
24
|
Metagenome-Assembled Genome of USCα AHI, a Potential High-Affinity Methanotroph from Axel Heiberg Island, Canadian High Arctic. Microbiol Resour Announc 2019; 8:8/46/e01178-19. [PMID: 31727712 PMCID: PMC6856278 DOI: 10.1128/mra.01178-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metagenomic sequencing of active-layer cryosols from the Canadian High Arctic has yielded a nearly complete genome for an atmospheric CH4-oxidizing bacterium belonging to upland soil cluster α (USCα). This genome contains genes involved in CH4 metabolism, H2 metabolism, and multiple carbon assimilation pathways. Metagenomic sequencing of active-layer cryosols from the Canadian High Arctic has yielded a nearly complete genome for an atmospheric CH4-oxidizing bacterium belonging to upland soil cluster α (USCα). This genome contains genes involved in CH4 metabolism, H2 metabolism, and multiple carbon assimilation pathways.
Collapse
|
25
|
Onstott T, Ehlmann B, Sapers H, Coleman M, Ivarsson M, Marlow J, Neubeck A, Niles P. Paleo-Rock-Hosted Life on Earth and the Search on Mars: A Review and Strategy for Exploration. ASTROBIOLOGY 2019; 19:1230-1262. [PMID: 31237436 PMCID: PMC6786346 DOI: 10.1089/ast.2018.1960] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/25/2019] [Indexed: 05/19/2023]
Abstract
Here we review published studies on the abundance and diversity of terrestrial rock-hosted life, the environments it inhabits, the evolution of its metabolisms, and its fossil biomarkers to provide guidance in the search for life on Mars. Key findings are (1) much terrestrial deep subsurface metabolic activity relies on abiotic energy-yielding fluxes and in situ abiotic and biotic recycling of metabolic waste products rather than on buried organic products of photosynthesis; (2) subsurface microbial cell concentrations are highest at interfaces with pronounced chemical redox gradients or permeability variations and do not correlate with bulk host rock organic carbon; (3) metabolic pathways for chemolithoautotrophic microorganisms evolved earlier in Earth's history than those of surface-dwelling phototrophic microorganisms; (4) the emergence of the former occurred at a time when Mars was habitable, whereas the emergence of the latter occurred at a time when the martian surface was not continually habitable; (5) the terrestrial rock record has biomarkers of subsurface life at least back hundreds of millions of years and likely to 3.45 Ga with several examples of excellent preservation in rock types that are quite different from those preserving the photosphere-supported biosphere. These findings suggest that rock-hosted life would have been more likely to emerge and be preserved in a martian context. Consequently, we outline a Mars exploration strategy that targets subsurface life and scales spatially, focusing initially on identifying rocks with evidence for groundwater flow and low-temperature mineralization, then identifying redox and permeability interfaces preserved within rock outcrops, and finally focusing on finding minerals associated with redox reactions and associated traces of carbon and diagnostic chemical and isotopic biosignatures. Using this strategy on Earth yields ancient rock-hosted life, preserved in the fossil record and confirmable via a suite of morphologic, organic, mineralogical, and isotopic fingerprints at micrometer scale. We expect an emphasis on rock-hosted life and this scale-dependent strategy to be crucial in the search for life on Mars.
Collapse
Affiliation(s)
- T.C. Onstott
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
- Address correspondence to: T.C. Onstott, Department of Geosciences, Princeton University,, Princeton, NJ 008544
| | - B.L. Ehlmann
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- B.L. Ehlmann, Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - H. Sapers
- Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - M. Coleman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- NASA Astrobiology Institute, Pasadena, California, USA
| | - M. Ivarsson
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - J.J. Marlow
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - A. Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - P. Niles
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
26
|
Marcolefas E, Leung T, Okshevsky M, McKay G, Hignett E, Hamel J, Aguirre G, Blenner-Hassett O, Boyle B, Lévesque RC, Nguyen D, Gruenheid S, Whyte L. Culture-Dependent Bioprospecting of Bacterial Isolates From the Canadian High Arctic Displaying Antibacterial Activity. Front Microbiol 2019; 10:1836. [PMID: 31447822 PMCID: PMC6696727 DOI: 10.3389/fmicb.2019.01836] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/25/2019] [Indexed: 12/19/2022] Open
Abstract
The goal of this study was to isolate, screen, and characterize Arctic microbial isolates from Expedition Fjord, Axel Heiberg Island, Nunavut, Canada capable of inhibiting the growth of foodborne and clinically relevant pathogens. Arctic bacteria were isolated from twelve different high Arctic habitats pertaining to active layer permafrost soil, saline spring sediments, lake sediments, and endoliths. This was achieved using (1) the cryo-iPlate, an innovative in situ cultivation device within active layer permafrost soil and (2) bulk plating of Arctic samples by undergraduate students that applied standard culturing methods. To mitigate the possibility of identifying isolates with already-known antibacterial activities, a cell-based dereplication platform was used. Ten out of the twelve Arctic habitats tested were found to yield cold-adapted isolates with antibacterial activity. Eight cold-adapted Arctic isolates were identified with the ability to inhibit the entire dereplication platform, suggesting the possibility of new mechanisms of action. Two promising isolates, initially cultured from perennial saline spring sediments and from active layer permafrost soil (Paenibacillus sp. GHS.8.NWYW.5 and Pseudomonas sp. AALPS.10.MNAAK.13, respectively), displayed antibacterial activity against foodborne and clinically relevant pathogens. Paenibacillus sp. GHS.8.NWYW.5 was capable of inhibiting methicillin resistant and susceptible Staphylococcus aureus (MRSA and MSSA), Listeria monocytogenes, Salmonella enterica and Escherichia coli O157:H7. Pseudomonas sp. AALPS.10.MNAAK.13 was observed to have antagonistic activity against MRSA, MSSA, Acinetobacter baumanii, Enterococcus faecium, and Enterococcus faecalis. After whole genome sequencing and mining, the genome of Paenibacillus sp. GHS.8.NWYW.5 was found to contain seven putative secondary metabolite biosynthetic gene clusters that displayed low homology (<50% coverage, <30% identity, and e-values > 0) to clusters identified within the genome of the type strain pertaining to the same species. These findings suggest that cold-adapted Arctic microbes may be a promising source of novel secondary metabolites for potential use in both industrial and medical settings.
Collapse
Affiliation(s)
- Evangelos Marcolefas
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Tiffany Leung
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Mira Okshevsky
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Geoffrey McKay
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Emma Hignett
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Jérémie Hamel
- Institute for Integrative Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Gabriela Aguirre
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Olivia Blenner-Hassett
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Brian Boyle
- Institute for Integrative Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Roger C. Lévesque
- Institute for Integrative Systems Biology, Université Laval, Quebec City, QC, Canada
| | - Dao Nguyen
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
27
|
Predominance of Anaerobic, Spore-Forming Bacteria in Metabolically Active Microbial Communities from Ancient Siberian Permafrost. Appl Environ Microbiol 2019; 85:AEM.00560-19. [PMID: 31152014 DOI: 10.1128/aem.00560-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/22/2019] [Indexed: 11/20/2022] Open
Abstract
The prevalence of microbial life in permafrost up to several million years (Ma) old has been well documented. However, the long-term survivability, evolution, and metabolic activity of the entombed microbes over this time span remain underexplored. We integrated aspartic acid (Asp) racemization assays with metagenomic sequencing to characterize the microbial activity, phylogenetic diversity, and metabolic functions of indigenous microbial communities across a ∼0.01- to 1.1-Ma chronosequence of continuously frozen permafrost from northeastern Siberia. Although Asp in the older bulk sediments (0.8 to 1.1 Ma) underwent severe racemization relative to that in the youngest sediment (∼0.01 Ma), the much lower d-Asp/l-Asp ratio (0.05 to 0.14) in the separated cells from all samples suggested that indigenous microbial communities were viable and metabolically active in ancient permafrost up to 1.1 Ma. The microbial community in the youngest sediment was the most diverse and was dominated by the phyla Actinobacteria and Proteobacteria In contrast, microbial diversity decreased dramatically in the older sediments, and anaerobic, spore-forming bacteria within Firmicutes became overwhelmingly dominant. In addition to the enrichment of sporulation-related genes, functional genes involved in anaerobic metabolic pathways such as fermentation, sulfate reduction, and methanogenesis were more abundant in the older sediments. Taken together, the predominance of spore-forming bacteria and associated anaerobic metabolism in the older sediments suggest that a subset of the original indigenous microbial community entrapped in the permafrost survived burial over geological time.IMPORTANCE Understanding the long-term survivability and associated metabolic traits of microorganisms in ancient permafrost frozen millions of years ago provides a unique window into the burial and preservation processes experienced in general by subsurface microorganisms in sedimentary deposits because of permafrost's hydrological isolation and exceptional DNA preservation. We employed aspartic acid racemization modeling and metagenomics to determine which microbial communities were metabolically active in the 1.1-Ma permafrost from northeastern Siberia. The simultaneous sequencing of extracellular and intracellular genomic DNA provided insight into the metabolic potential distinguishing extinct from extant microorganisms under frozen conditions over this time interval. This in-depth metagenomic sequencing advances our understanding of the microbial diversity and metabolic functions of extant microbiomes from early Pleistocene permafrost. Therefore, these findings extend our knowledge of the survivability of microbes in permafrost from 33,000 years to 1.1 Ma.
Collapse
|
28
|
Altshuler I, Hamel J, Turney S, Magnuson E, Lévesque R, Greer CW, Whyte LG. Species interactions and distinct microbial communities in high Arctic permafrost affected cryosols are associated with the CH 4 and CO 2 gas fluxes. Environ Microbiol 2019; 21:3711-3727. [PMID: 31206918 DOI: 10.1111/1462-2920.14715] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 05/27/2019] [Accepted: 06/10/2019] [Indexed: 11/29/2022]
Abstract
Microbial metabolism of the thawing organic carbon stores in permafrost results in a positive feedback loop of greenhouse gas emissions. CO2 and CH4 fluxes and the associated microbial communities in Arctic cryosols are important in predicting future warming potential of the Arctic. We demonstrate that topography had an impact on CH4 and CO2 flux at a high Arctic ice-wedge polygon terrain site, with higher CO2 emissions and lower CH4 uptake at troughs compared to polygon interior soils. The pmoA sequencing suggested that USCα cluster of uncultured methanotrophs is likely responsible for observed methane sink. Community profiling revealed distinct assemblages across the terrain at different depths. Deeper soils contained higher abundances of Verrucomicrobia and Gemmatimonadetes, whereas the polygon interior had higher Acidobacteria and lower Betaproteobacteria and Deltaproteobacteria abundances. Genome sequencing of isolates from the terrain revealed presence of carbon cycling genes including ones involved in serine and ribulose monophosphate pathways. A novel hybrid network analysis identified key members that had positive and negative impacts on other species. Operational Taxonomic Units (OTUs) with numerous positive interactions corresponded to Proteobacteria, Candidatus Rokubacteria and Actinobacteria phyla, while Verrucomicrobia and Acidobacteria members had negative impacts on other species. Results indicate that topography and microbial interactions impact community composition.
Collapse
Affiliation(s)
- Ianina Altshuler
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Jérémie Hamel
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, QC, Québec, Canada
| | - Shaun Turney
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Elisse Magnuson
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Roger Lévesque
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, QC, Québec, Canada
| | - Charles W Greer
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada.,National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|
29
|
Tripathi BM, Kim HM, Jung JY, Nam S, Ju HT, Kim M, Lee YK. Distinct Taxonomic and Functional Profiles of the Microbiome Associated With Different Soil Horizons of a Moist Tussock Tundra in Alaska. Front Microbiol 2019; 10:1442. [PMID: 31316487 PMCID: PMC6610311 DOI: 10.3389/fmicb.2019.01442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/07/2019] [Indexed: 11/13/2022] Open
Abstract
Permafrost-underlain tundra soils in Northern Hemisphere are one of the largest reservoirs of terrestrial carbon, which are highly sensitive to microbial decomposition due to climate warming. However, knowledge about the taxonomy and functions of microbiome residing in different horizons of permafrost-underlain tundra soils is still limited. Here we compared the taxonomic and functional composition of microbiome between different horizons of soil cores from a moist tussock tundra ecosystem in Council, Alaska, using 16S rRNA gene and shotgun metagenomic sequencing. The composition, diversity, and functions of microbiome varied significantly between soil horizons, with top soil horizon harboring more diverse communities than sub-soil horizons. The vertical gradient in soil physico-chemical parameters were strongly associated with composition of microbial communities across permafrost soil horizons; however, a large fraction of the variation in microbial communities remained unexplained. The genes associated with carbon mineralization were more abundant in top soil horizon, while genes involved in acetogenesis, fermentation, methane metabolism (methanogenesis and methanotrophy), and N cycling were dominant in sub-soil horizons. The results of phylogenetic null modeling analysis showed that stochastic processes strongly influenced the composition of the microbiome in different soil horizons, except the bacterial community composition in top soil horizon, which was largely governed by homogeneous selection. Our study expands the knowledge on the structure and functional potential of microbiome associated with different horizons of permafrost soil, which could be useful in understanding the effects of environmental change on microbial responses in tundra ecosystems.
Collapse
Affiliation(s)
| | - Hye Min Kim
- Environmental Safety Research Institute, NeoEnBiz, Bucheon, South Korea
| | - Ji Young Jung
- Korea Polar Research Institute, Incheon, South Korea
| | - Sungjin Nam
- Korea Polar Research Institute, Incheon, South Korea
| | - Hyeon Tae Ju
- Korea Polar Research Institute, Incheon, South Korea
| | - Mincheol Kim
- Korea Polar Research Institute, Incheon, South Korea
| | - Yoo Kyung Lee
- Korea Polar Research Institute, Incheon, South Korea
| |
Collapse
|
30
|
Voigt C, Marushchak ME, Mastepanov M, Lamprecht RE, Christensen TR, Dorodnikov M, Jackowicz-Korczyński M, Lindgren A, Lohila A, Nykänen H, Oinonen M, Oksanen T, Palonen V, Treat CC, Martikainen PJ, Biasi C. Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw. GLOBAL CHANGE BIOLOGY 2019; 25:1746-1764. [PMID: 30681758 DOI: 10.1111/gcb.14574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long-term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2 ) and methane (CH4 ) to the atmosphere, but how much, at which time-span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant-soil systems (mesocosms) allowed us to simulate permafrost thaw under near-natural conditions. We monitored GHG flux dynamics via high-resolution flow-through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10-15 cm of permafrost under dry conditions increased CO2 emissions to the atmosphere (without vegetation: 0.74 ± 0.49 vs. 0.84 ± 0.60 g CO2 -C m-2 day-1 ; with vegetation: 1.20 ± 0.50 vs. 1.32 ± 0.60 g CO2 -C m-2 day-1 , mean ± SD, pre- and post-thaw, respectively). Radiocarbon dating (14 C) of respired CO2 , supported by an independent curve-fitting approach, showed a clear contribution (9%-27%) of old carbon to this enhanced post-thaw CO2 flux. Elevated concentrations of CO2 , CH4 , and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH4 in the peat column, however, prevented CH4 release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost-carbon feedback by adding to the atmospheric CO2 burden post-thaw. However, as long as the water table remains low, our results reveal a strong CH4 sink capacity in these types of Arctic ecosystems pre- and post-thaw, with the potential to compensate part of the permafrost CO2 losses over longer timescales.
Collapse
Affiliation(s)
- Carolina Voigt
- Department of Geography, University of Montréal, Montréal, Québec, Canada
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maija E Marushchak
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Mikhail Mastepanov
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Richard E Lamprecht
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Torben R Christensen
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Maxim Dorodnikov
- Department of Soil Science of Temperate Ecosystems, Georg-August-University, Göttingen, Germany
| | - Marcin Jackowicz-Korczyński
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Amelie Lindgren
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
- Department of Physical Geography, Stockholm University, Stockholm, Sweden
| | | | - Hannu Nykänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Markku Oinonen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Timo Oksanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vesa Palonen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Claire C Treat
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pertti J Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Christina Biasi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
31
|
Altshuler I, Ronholm J, Layton A, Onstott TC, W. Greer C, Whyte LG. Denitrifiers, nitrogen-fixing bacteria and N2O soil gas flux in high Arctic ice-wedge polygon cryosols. FEMS Microbiol Ecol 2019; 95:5481522. [DOI: 10.1093/femsec/fiz049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ianina Altshuler
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21,111 Lakeshore Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21,111 Lakeshore Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Alice Layton
- Center for Environmental Biotechnology, University of Tennessee – Knoxville, 676 Dabney-Buehler Hall, 1416 Circle Drive, TN 37996-1605, USA
| | - Tullis C Onstott
- Geomicrobiology, Geosciences, Princeton University, Princeton, NJ 08544, USA
| | - Charles W. Greer
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
- National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|
32
|
Margesin R, Collins T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl Microbiol Biotechnol 2019; 103:2537-2549. [PMID: 30719551 PMCID: PMC6443599 DOI: 10.1007/s00253-019-09631-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/28/2022]
Abstract
Microorganisms in cold ecosystems play a key ecological role in their natural habitats. Since these ecosystems are especially sensitive to climate changes, as indicated by the worldwide retreat of glaciers and ice sheets as well as permafrost thawing, an understanding of the role and potential of microbial life in these habitats has become crucial. Emerging technologies have added significantly to our knowledge of abundance, functional activity, and lifestyles of microbial communities in cold environments. The current knowledge of microbial ecology in glacial habitats and permafrost, the most studied habitats of the cryosphere, is reported in this review.
Collapse
Affiliation(s)
- Rosa Margesin
- Institute of Microbiology, University of Innsbruck, 6020, Innsbruck, Austria.
| | - Tony Collins
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| |
Collapse
|
33
|
Dynamics of microbial communities and CO 2 and CH 4 fluxes in the tundra ecosystems of the changing Arctic. J Microbiol 2019; 57:325-336. [PMID: 30656588 DOI: 10.1007/s12275-019-8661-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 10/27/2022]
Abstract
Arctic tundra ecosystems are rapidly changing due to the amplified effects of global warming within the northern high latitudes. Warming has the potential to increase the thawing of the permafrost and to change the landscape and its geochemical characteristics, as well as terrestrial biota. It is important to investigate microbial processes and community structures, since soil microorganisms play a significant role in decomposing soil organic carbon in the Arctic tundra. In addition, the feedback from tundra ecosystems to climate change, including the emission of greenhouse gases into the atmosphere, is substantially dependent on the compositional and functional changes in the soil microbiome. This article reviews the current state of knowledge of the soil microbiome and the two most abundant greenhouse gas (CO2 and CH4) emissions, and summarizes permafrost thaw-induced changes in the Arctic tundra. Furthermore, we discuss future directions in microbial ecological research coupled with its link to CO2 and CH4 emissions.
Collapse
|
34
|
Bodelier PLE, Pérez G, Veraart AJ, Krause SMB. Methanotroph Ecology, Environmental Distribution and Functioning. METHANOTROPHS 2019. [DOI: 10.1007/978-3-030-23261-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Hakobyan A, Liesack W, Glatter T. Crude-MS Strategy for in-Depth Proteome Analysis of the Methane-Oxidizing Methylocystis sp. strain SC2. J Proteome Res 2018; 17:3086-3103. [DOI: 10.1021/acs.jproteome.8b00216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Werner Liesack
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Karl-von-Frisch-Str. 16, D-35043 Marburg, Germany
| | | |
Collapse
|
36
|
Methanotrophy across a natural permafrost thaw environment. ISME JOURNAL 2018; 12:2544-2558. [PMID: 29955139 PMCID: PMC6155033 DOI: 10.1038/s41396-018-0065-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/09/2022]
Abstract
The fate of carbon sequestered in permafrost is a key concern for future global warming as this large carbon stock is rapidly becoming a net methane source due to widespread thaw. Methane release from permafrost is moderated by methanotrophs, which oxidise 20-60% of this methane before emission to the atmosphere. Despite the importance of methanotrophs to carbon cycling, these microorganisms are under-characterised and have not been studied across a natural permafrost thaw gradient. Here, we examine methanotroph communities from the active layer of a permafrost thaw gradient in Stordalen Mire (Abisko, Sweden) spanning three years, analysing 188 metagenomes and 24 metatranscriptomes paired with in situ biogeochemical data. Methanotroph community composition and activity varied significantly as thaw progressed from intact permafrost palsa, to partially thawed bog and fully thawed fen. Thirteen methanotroph population genomes were recovered, including two novel genomes belonging to the uncultivated upland soil cluster alpha (USCα) group and a novel potentially methanotrophic Hyphomicrobiaceae. Combined analysis of porewater δ13C-CH4 isotopes and methanotroph abundances showed methane oxidation was greatest below the oxic-anoxic interface in the bog. These results detail the direct effect of thaw on autochthonous methanotroph communities, and their consequent changes in population structure, activity and methane moderation potential.
Collapse
|
37
|
Lau MCY, Harris RL, Oh Y, Yi MJ, Behmard A, Onstott TC. Taxonomic and Functional Compositions Impacted by the Quality of Metatranscriptomic Assemblies. Front Microbiol 2018; 9:1235. [PMID: 29973918 PMCID: PMC6019464 DOI: 10.3389/fmicb.2018.01235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/22/2018] [Indexed: 02/03/2023] Open
Abstract
Metatranscriptomics has recently been applied to investigate the active biogeochemical processes and elemental cycles, and in situ responses of microbiomes to environmental stimuli and stress factors. De novo assembly of RNA-Sequencing (RNA-Seq) data can reveal a more detailed description of the metabolic interactions amongst the active microbial communities. However, the quality of the assemblies and the depiction of the metabolic network provided by various de novo assemblers have not yet been thoroughly assessed. In this study, we compared 15 de novo metatranscriptomic assemblies for a fracture fluid sample collected from a borehole located at 1.34 km below land surface in a South African gold mine. These assemblies were constructed from total, non-coding, and coding reads using five de novo transcriptomic assemblers (Trans-ABySS, Trinity, Oases, IDBA-tran, and Rockhopper). They were evaluated based on the number of transcripts, transcript length, range of transcript coverage, continuity, percentage of transcripts with confident annotation assignments, as well as taxonomic and functional diversity patterns. The results showed that these parameters varied considerably among the assemblies, with Trans-ABySS and Trinity generating the best assemblies for non-coding and coding RNA reads, respectively, because the high number of transcripts assembled covered a wide expression range, and captured extensively the taxonomic and metabolic gene diversity, respectively. We concluded that the choice of de novo transcriptomic assemblers impacts substantially the taxonomic and functional compositions. Care should be taken to obtain high-quality assemblies for informing the in situ metabolic landscape.
Collapse
Affiliation(s)
- Maggie C Y Lau
- Department of Geosciences, Princeton University, Princeton, NJ, United States
| | - Rachel L Harris
- Department of Geosciences, Princeton University, Princeton, NJ, United States
| | - Youmi Oh
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, United States
| | - Min Joo Yi
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Aida Behmard
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ, United States
| | - Tullis C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ, United States
| |
Collapse
|
38
|
Landscape topography structures the soil microbiome in arctic polygonal tundra. Nat Commun 2018; 9:777. [PMID: 29472560 PMCID: PMC5823929 DOI: 10.1038/s41467-018-03089-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/18/2018] [Indexed: 11/08/2022] Open
Abstract
In the Arctic, environmental factors governing microbial degradation of soil carbon (C) in active layer and permafrost are poorly understood. Here we determined the functional potential of soil microbiomes horizontally and vertically across a cryoperturbed polygonal landscape in Alaska. With comparative metagenomics, genome binning of novel microbes, and gas flux measurements we show that microbial greenhouse gas (GHG) production is strongly correlated to landscape topography. Active layer and permafrost harbor contrasting microbiomes, with increasing amounts of Actinobacteria correlating with decreasing soil C in permafrost. While microbial functions such as fermentation and methanogenesis were dominant in wetter polygons, in drier polygons genes for C mineralization and CH4 oxidation were abundant. The active layer microbiome was poised to assimilate N and not to release N2O, reflecting low N2O flux measurements. These results provide mechanistic links of microbial metabolism to GHG fluxes that are needed for the refinement of model predictions. The role of ecosystem structure in microbial activity related to greenhouse gas production is poorly understood. Here, Taş and colleagues show that microbial communities and ecosystem function vary across fine-scale topography in a polygonal tundra.
Collapse
|
39
|
Utilization of a Detergent-Based Method for Direct Microbial Cellular Lysis/Proteome Extraction from Soil Samples for Metaproteomics Studies. Methods Mol Biol 2018; 1841:293-302. [PMID: 30259494 DOI: 10.1007/978-1-4939-8695-8_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Soil metaproteomics is a rapidly developing and rather complex field aimed at understanding the functionalities of soil microbial communities. One of the main challenges of such an approach is the availability of a robust and efficient protocol to extract proteins from soil microbes inhabiting this complex matrix. The wide range of soil types and the innumerable variations in soil properties confound this experimental goal. Here we present a detergent based, heat-assisted cellular lysis method coupled with trichloroacetic acid (TCA) precipitation of soil microbial proteins that has been developed in our lab and found to be reasonably robust and unbiased in extracting microbial proteins from a broad range of soils for downstream mass spectrometric characterizations of microbial metabolic activities in natural ecosystems.
Collapse
|
40
|
Goordial J, Altshuler I, Hindson K, Chan-Yam K, Marcolefas E, Whyte LG. In Situ Field Sequencing and Life Detection in Remote (79°26'N) Canadian High Arctic Permafrost Ice Wedge Microbial Communities. Front Microbiol 2017; 8:2594. [PMID: 29326684 PMCID: PMC5742409 DOI: 10.3389/fmicb.2017.02594] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/12/2017] [Indexed: 11/18/2022] Open
Abstract
Significant progress is being made in the development of the next generation of low cost life detection instrumentation with much smaller size, mass and energy requirements. Here, we describe in situ life detection and sequencing in the field in soils over laying ice wedges in polygonal permafrost terrain on Axel Heiberg Island, located in the Canadian high Arctic (79°26'N), an analog to the polygonal permafrost terrain observed on Mars. The life detection methods used here include (1) the cryo-iPlate for culturing microorganisms using diffusion of in situ nutrients into semi-solid media (2) a Microbial Activity Microassay (MAM) plate (BIOLOG Ecoplate) for detecting viable extant microorganisms through a colourimetric assay, and (3) the Oxford Nanopore MinION for nucleic acid detection and sequencing of environmental samples and the products of MAM plate and cryo-iPlate. We obtained 39 microbial isolates using the cryo-iPlate, which included several putatively novel strains based on the 16S rRNA gene, including a Pedobacter sp. (96% closest similarity in GenBank) which we partially genome sequenced using the MinION. The MAM plate successfully identified an active community capable of L-serine metabolism, which was used for metagenomic sequencing with the MinION to identify the active and enriched community. A metagenome on environmental ice wedge soil samples was completed, with base calling and uplink/downlink carried out via satellite internet. Validation of MinION sequencing using the Illumina MiSeq platform was consistent with the results obtained with the MinION. The instrumentation and technology utilized here is pre-existing, low cost, low mass, low volume, and offers the prospect of equipping micro-rovers and micro-penetrators with aggressive astrobiological capabilities. Since potentially habitable astrobiology targets have been identified (RSLs on Mars, near subsurface water ice on Mars, the plumes and oceans of Europa and Enceladus), future astrobiology missions will certainly target these areas and there is a need for direct life detection instrumentation.
Collapse
Affiliation(s)
- J Goordial
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
| | - Katherine Hindson
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
| | - Kelly Chan-Yam
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
| | - Evangelos Marcolefas
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
| |
Collapse
|
41
|
Draft Genome Sequence of Uncultured Upland Soil Cluster Gammaproteobacteria Gives Molecular Insights into High-Affinity Methanotrophy. GENOME ANNOUNCEMENTS 2017; 5:5/17/e00047-17. [PMID: 28450499 PMCID: PMC5408097 DOI: 10.1128/genomea.00047-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aerated soils form the second largest sink for atmospheric CH4. A near-complete genome of uncultured upland soil cluster Gammaproteobacteria that oxidize CH4 at <2.5 ppmv was obtained from incubated Antarctic mineral cryosols. This first genome of high-affinity methanotrophs can help resolve the mysteries about their phylogenetic affiliation and metabolic potential.
Collapse
|
42
|
D'Imperio L, Nielsen CS, Westergaard-Nielsen A, Michelsen A, Elberling B. Methane oxidation in contrasting soil types: responses to experimental warming with implication for landscape-integrated CH 4 budget. GLOBAL CHANGE BIOLOGY 2017; 23:966-976. [PMID: 27416869 DOI: 10.1111/gcb.13400] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/17/2016] [Indexed: 06/06/2023]
Abstract
Arctic ecosystems are characterized by a wide range of soil moisture conditions and thermal regimes and contribute differently to the net methane (CH4 ) budget. Yet, it is unclear how climate change will affect the capacity of those systems to act as a net source or sink of CH4 . Here, we present results of in situ CH4 flux measurements made during the growing season 2014 on Disko Island (west Greenland) and quantify the contribution of contrasting soil and landscape types to the net CH4 budget and responses to summer warming. We compared gas flux measurements from a bare soil and a dry heath, at ambient conditions and increased air temperature, using open-top chambers (OTCs). Throughout the growing season, bare soil consumed 0.22 ± 0.03 g CH4 -C m-2 (8.1 ± 1.2 g CO2 -eq m-2 ) at ambient conditions, while the dry heath consumed 0.10 ± 0.02 g CH4 -C m-2 (3.9 ± 0.6 g CO2 -eq m-2 ). These uptake rates were subsequently scaled to the entire study area of 0.15 km2 , a landscape also consisting of wetlands with a seasonally integrated methane release of 0.10 ± 0.01 g CH4 -C m-2 (3.7 ± 1.2 g CO2 -eq m-2 ). The result was a net landscape sink of 12.71 kg CH4 -C (0.48 tonne CO2 -eq) during the growing season. A nonsignificant trend was noticed in seasonal CH4 uptake rates with experimental warming, corresponding to a 2% reduction at the bare soil, and 33% increase at the dry heath. This was due to the indirect effect of OTCs on soil moisture, which exerted the main control on CH4 fluxes. Overall, the net landscape sink of CH4 tended to increase by 20% with OTCs. Bare and dry tundra ecosystems should be considered in the net CH4 budget of the Arctic due to their potential role in counterbalancing CH4 emissions from wetlands - not the least when taking the future climatic scenarios of the Arctic into account.
Collapse
Affiliation(s)
- Ludovica D'Imperio
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
- Section for Forest, Nature and Biomass, Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, Frederiksberg, 1958 C, Denmark
| | - Cecilie Skov Nielsen
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| | - Andreas Westergaard-Nielsen
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| | - Anders Michelsen
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, DK-2100 Ø, Denmark
| | - Bo Elberling
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen, Denmark
| |
Collapse
|
43
|
Stackhouse B, Lau MCY, Vishnivetskaya T, Burton N, Wang R, Southworth A, Whyte L, Onstott TC. Atmospheric CH 4 oxidation by Arctic permafrost and mineral cryosols as a function of water saturation and temperature. GEOBIOLOGY 2017; 15:94-111. [PMID: 27474434 DOI: 10.1111/gbi.12193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 05/09/2016] [Indexed: 06/06/2023]
Abstract
The response of methanotrophic bacteria capable of oxidizing atmospheric CH4 to climate warming is poorly understood, especially for those present in Arctic mineral cryosols. The atmospheric CH4 oxidation rates were measured in microcosms incubated at 4 °C and 10 °C along a 1-m depth profile and over a range of water saturation conditions for mineral cryosols containing type I and type II methanotrophs from Axel Heiberg Island (AHI), Nunavut, Canada. The cryosols exhibited net consumption of ~2 ppmv CH4 under all conditions, including during anaerobic incubations. Methane oxidation rates increased with temperature and decreased with increasing water saturation and depth, exhibiting the highest rates at 10 °C and 33% saturation at 5 cm depth (260 ± 60 pmol CH4 gdw-1 d-1 ). Extrapolation of the CH4 oxidation rates to the field yields net CH4 uptake fluxes ranging from 11 to 73 μmol CH4 m-2 d-1 , which are comparable to field measurements. Stable isotope mass balance indicates ~50% of the oxidized CH4 is incorporated into the biomass regardless of temperature or saturation. Future atmospheric CH4 uptake rates at AHI with increasing temperatures will be determined by the interplay of increasing CH4 oxidation rates vs. water saturation and the depth to the water table during summer thaw.
Collapse
Affiliation(s)
- B Stackhouse
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - M C Y Lau
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - T Vishnivetskaya
- The Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
| | - N Burton
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - R Wang
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - A Southworth
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - L Whyte
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - T C Onstott
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| |
Collapse
|
44
|
Chen Y, Lehmann KK, Peng Y, Pratt LM, White JR, Cadieux SB, Sherwood Lollar B, Lacrampe-Couloume G, Onstott TC. Hydrogen Isotopic Composition of Arctic and Atmospheric CH 4 Determined by a Portable Near-Infrared Cavity Ring-Down Spectrometer with a Cryogenic Pre-Concentrator. ASTROBIOLOGY 2016; 16:787-797. [PMID: 27732068 DOI: 10.1089/ast.2015.1395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, near-infrared continuous wave cavity ring-down spectroscopy was applied to the measurement of the δ2H of methane (CH4). The cavity ring-down spectrometer (CRDS) system consisted of multiple DFB laser diodes to optimize selection of spectral line pairs. By rapidly switching measurements between spectral line peaks and the baseline regions, the long-term instrumental drift was minimized, substantially increasing measurement precision. The CRDS system coupled with a cryogenic pre-concentrator measured the δ2H of terrestrial atmospheric CH4 from 3 standard liters of air with a precision of ±1.7‰. The rapidity with which both C and H isotopic measurements of CH4 can be made with the CRDS will enable hourly monitoring of diurnal variations in terrestrial atmospheric CH4 signatures that can be used to increase the resolution of global climate models for the CH4 cycle. Although the current instrument is not capable of measuring the δ2H of 10 ppbv of martian CH4, current technology does exist that could make this feasible for future spaceflight missions. As biological and abiotic CH4 sources have overlapping carbon isotope signatures, dual-element (C and H) analysis is key to reliable differentiation of these sources. Such an instrument package would therefore offer improved ability to determine whether or not the CH4 recently detected in the martian atmosphere is biogenic in origin. Key Words: Arctic-Hydrogen isotopes-Atmospheric CH4-CRDS-Laser. Astrobiology 16, 787-797.
Collapse
Affiliation(s)
- Y Chen
- Department of Geosciences, Princeton University , Princeton, New Jersey, USA
| | - Kevin K Lehmann
- Department of Chemistry, University of Virginia , Charlottesville, Virginia, USA
| | - Y Peng
- Department of Geological Sciences, Indiana University , Bloomington, Indiana, USA
| | - L M Pratt
- Department of Geological Sciences, Indiana University , Bloomington, Indiana, USA
| | - J R White
- School of Public and Environmental Affairs, Indiana University , Bloomington, Indiana, USA
| | - S B Cadieux
- Department of Geological Sciences, Indiana University , Bloomington, Indiana, USA
| | - B Sherwood Lollar
- Department of Earth Sciences, University of Toronto , Toronto, Canada
| | | | - T C Onstott
- Department of Geosciences, Princeton University , Princeton, New Jersey, USA
| |
Collapse
|
45
|
Shcherbakova V, Yoshimura Y, Ryzhmanova Y, Taguchi Y, Segawa T, Oshurkova V, Rivkina E. Archaeal communities of Arctic methane-containing permafrost. FEMS Microbiol Ecol 2016; 92:fiw135. [DOI: 10.1093/femsec/fiw135] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2016] [Indexed: 01/06/2023] Open
|