1
|
Wang YC, Lv YH, Wang C, Deng Y, Lin YT, Jiang GY, Hu XR, Crittenden JC. Stochastic processes shape microbial community assembly in biofilters: Hidden role of rare taxa. BIORESOURCE TECHNOLOGY 2024; 402:130838. [PMID: 38740312 DOI: 10.1016/j.biortech.2024.130838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Stochastic and deterministic processes are the major themes governing microbial community assembly; however, their roles in bioreactors are poorly understood. Herein, the mechanisms underlying microbial assembly and the effect of rare taxa were studied in biofilters. Phylogenetic tree analysis revealed differences in microbial communities at various stages. Null model analysis showed that stochastic processes shaped the community assembly, and deterministic processes emerged only in the inoculated activated sludge after domestication. This finding indicates the dominant role of stochastic factors (biofilm formation, accumulation, and aging). The Sloan neutral model corroborated the advantages of stochastic processes and mainly attributed these advantages to rare taxa. Cooccurrence networks revealed the importance of rare taxa, which accounted for more than 85% of the keystones. Overall, these results provide good foundations for understanding community assembly, especially the role of rare taxa, and offer theoretical support for future community design and reactor regulation.
Collapse
Affiliation(s)
- Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ya-Hui Lv
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yu-Ting Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Guan-Yu Jiang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Xu-Rui Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - John C Crittenden
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
2
|
Mugge RL, Moseley RD, Hamdan LJ. Substrate Specificity of Biofilms Proximate to Historic Shipwrecks. Microorganisms 2023; 11:2416. [PMID: 37894074 PMCID: PMC10608953 DOI: 10.3390/microorganisms11102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The number of built structures on the seabed, such as shipwrecks, energy platforms, and pipelines, is increasing in coastal and offshore regions. These structures, typically composed of steel or wood, are substrates for microbial attachment and biofilm formation. The success of biofilm growth depends on substrate characteristics and local environmental conditions, though it is unclear which feature is dominant in shaping biofilm microbiomes. The goal of this study was to understand the substrate- and site-specific impacts of built structures on short-term biofilm composition and functional potential. Seafloor experiments were conducted wherein steel and wood surfaces were deployed for four months at distances extending up to 115 m away from three historic (>50 years old) shipwrecks in the Gulf of Mexico. DNA from biofilms on the steel and wood was extracted, and metagenomes were sequenced on an Illumina NextSeq. A bioinformatics analysis revealed that the taxonomic composition was significantly different between substrates and sites, with substrate being the primary determining factor. Regardless of site, the steel biofilms had a higher abundance of genes related to biofilm formation, and sulfur, iron, and nitrogen cycling, while the wood biofilms showed a higher abundance of manganese cycling and methanol oxidation genes. This study demonstrates how substrate composition shapes biofilm microbiomes and suggests that marine biofilms may contribute to nutrient cycling at depth. Analyzing the marine biofilm microbiome provides insight into the ecological impact of anthropogenic structures on the seabed.
Collapse
Affiliation(s)
- Rachel L. Mugge
- U.S. Naval Research Laboratory, Ocean Sciences Division, Stennis Space Center, MS 39529, USA;
| | - Rachel D. Moseley
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| | - Leila J. Hamdan
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| |
Collapse
|
3
|
Ferrer A, Heath KD, Mosquera SL, Suaréz Y, Dalling JW. Assembly of wood-inhabiting archaeal, bacterial and fungal communities along a salinity gradient: common taxa are broadly distributed but locally abundant in preferred habitats. FEMS Microbiol Ecol 2022; 98:6566339. [PMID: 35404430 DOI: 10.1093/femsec/fiac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022] Open
Abstract
Wood decomposition in water is a key ecosystem process driven by diverse microbial taxa that likely differ in their affinities for freshwater, estuarine, and marine habitats. How these decomposer communities assemble in situ or potentially colonize from other habitats remains poorly understood. At three watersheds on Coiba Island, Panama, we placed replicate sections of branch wood of a single tree species on land, and in freshwater, estuarine and marine habitats that constitute a downstream salinity gradient. We sequenced archaea, bacteria and fungi from wood samples collected after 3, 9, and 15 months to examine microbial community composition, and to examine habitat specificity and abundance patterns. We found these microbial communities were broadly structured by similar factors, with a strong effect of salinity, but little effect of watershed identity on compositional variation. Moreover, common aquatic taxa were also present in wood incubated on land. Our results suggest that taxa either dispersed to both terrestrial and aquatic habitats, or that microbes with broad habitat ranges were initially present in the wood as endophytes. Nonetheless, these habitat generalists varied greatly in abundance across habitats suggesting an important role for habitat filtering in maintaining distinct aquatic communities in freshwater, estuarine and marine habitats.
Collapse
Affiliation(s)
- Astrid Ferrer
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Katy D Heath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Sergio L Mosquera
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| | - Yaraví Suaréz
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| | - James W Dalling
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
4
|
Understanding Interaction Patterns within Deep-Sea Microbial Communities and Their Potential Applications. Mar Drugs 2022; 20:md20020108. [PMID: 35200637 PMCID: PMC8874374 DOI: 10.3390/md20020108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
Environmental microbes living in communities engage in complex interspecies interactions that are challenging to decipher. Nevertheless, the interactions provide the basis for shaping community structure and functioning, which is crucial for ecosystem service. In addition, microbial interactions facilitate specific adaptation and ecological evolution processes particularly essential for microbial communities dwelling in resource-limiting habitats, such as the deep oceans. Recent technological and knowledge advancements provide an opportunity for the study of interactions within complex microbial communities, such as those inhabiting deep-sea waters and sediments. The microbial interaction studies provide insights into developing new strategies for biotechnical applications. For example, cooperative microbial interactions drive the degradation of complex organic matter such as chitins and celluloses. Such microbiologically-driven biogeochemical processes stimulate creative designs in many applied sciences. Understanding the interaction processes and mechanisms provides the basis for the development of synthetic communities and consequently the achievement of specific community functions. Microbial community engineering has many application potentials, including the production of novel antibiotics, biofuels, and other valuable chemicals and biomaterials. It can also be developed into biotechniques for waste processing and environmental contaminant bioremediation. This review summarizes our current understanding of the microbial interaction mechanisms and emerging techniques for inferring interactions in deep-sea microbial communities, aiding in future biotechnological and therapeutic applications.
Collapse
|
5
|
Kalenitchenko D, Peru E, Galand PE. Historical contingency impacts on community assembly and ecosystem function in chemosynthetic marine ecosystems. Sci Rep 2021; 11:13994. [PMID: 34234164 PMCID: PMC8263718 DOI: 10.1038/s41598-021-92613-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
Predicting ecosystem functioning requires an understanding of the mechanisms that drive microbial community assembly. Many studies have explored microbial diversity extensively and environmental factors are thought to be the principal drivers of community composition. Community assembly is, however, also influenced by past conditions that might affect present-day assemblages. Historical events, called legacy effects or historical contingencies, remain poorly studied in the sea and their impact on the functioning of the communities is not known. We tested the influence, if any, of historical contingencies on contemporary community assembly and functions in a marine ecosystem. To do so, we verified if different inoculum communities colonizing the same substrate led to communities with different compositions. We inoculated wood with sea water microbes from different marine environments that differ in ecological and evolutionary history. Using 16S rRNA and metagenomic sequencing, it was demonstrated that historical contingencies change the composition and potential metabolisms of contemporary communities. The effect of historical events was transient, dominated by environmental selection as, over time, species sorting was a more important driver of community assembly. Our study shows not only that historical contingencies affect marine ecosystems but takes the analysis a step further by characterizing this effect as strong but transient.
Collapse
Affiliation(s)
- Dimitri Kalenitchenko
- CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Erwan Peru
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, 66500, Banyuls-sur-Mer, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, 66500, Banyuls-sur-Mer, France.
| |
Collapse
|
6
|
Oberbeckmann S, Bartosik D, Huang S, Werner J, Hirschfeld C, Wibberg D, Heiden SE, Bunk B, Overmann J, Becher D, Kalinowski J, Schweder T, Labrenz M, Markert S. Genomic and proteomic profiles of biofilms on microplastics are decoupled from artificial surface properties. Environ Microbiol 2021; 23:3099-3115. [PMID: 33876529 DOI: 10.1111/1462-2920.15531] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 11/26/2022]
Abstract
Microplastics in marine ecosystems are colonized by diverse prokaryotic and eukaryotic communities. How these communities and their functional profiles are shaped by the artificial surfaces remains broadly unknown. In order to close this knowledge gap, we set up an in situ experiment with pellets of the polyolefin polymer polyethylene (PE), the aromatic hydrocarbon polymer polystyrene (PS), and wooden beads along a coastal to estuarine gradient in the Baltic Sea, Germany. We used an integrated metagenomics/metaproteomics approach to evaluate the genomic potential as well as protein expression levels of aquatic plastic biofilms. Our results suggest that material properties had a minor influence on the plastic-associated assemblages, as genomic and proteomic profiles of communities associated with the structurally different polymers PE and PS were highly similar, hence polymer-unspecific. Instead, it seemed that these communities were shaped by biogeographic factors. Wood, on the other hand, induced the formation of substrate-specific biofilms and served as nutrient source itself. Our study indicates that, while PE and PS microplastics may be relevant in the photic zone as opportunistic colonization grounds for phototrophic microorganisms, they appear not to be subject to biodegradation or serve as vectors for pathogenic microorganisms in marine habitats.
Collapse
Affiliation(s)
- Sonja Oberbeckmann
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Daniel Bartosik
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Sixing Huang
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Johannes Werner
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Claudia Hirschfeld
- Department of Microbial Proteomics, University of Greifswald, Institute of Microbiology, Greifswald, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Stefan E Heiden
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Faculty of Life Science, Braunschweig University of Technology, Institute of Microbiology, Braunschweig, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, University of Greifswald, Institute of Microbiology, Greifswald, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Thomas Schweder
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Matthias Labrenz
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Stephanie Markert
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| |
Collapse
|
7
|
Zhu C, Bass D, Wang Y, Shen Z, Song W, Yi Z. Environmental Parameters and Substrate Type Drive Microeukaryotic Community Structure During Short-Term Experimental Colonization in Subtropical Eutrophic Freshwaters. Front Microbiol 2020; 11:555795. [PMID: 33072015 PMCID: PMC7541896 DOI: 10.3389/fmicb.2020.555795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Microeukaryotes are key components of aquatic ecosystems and play crucial roles in aquatic food webs. However, influencing factors and potential assembly mechanisms for microeukaryotic community on biofilms are rarely studied. Here, those of microeukaryotic biofilms in subtropical eutrophic freshwaters were investigated for the first time based on 2,585 operational taxonomic units (OTUs) from 41 samples, across different environmental conditions and substrate types. Following conclusions were drawn: (1) Environmental parameters were more important than substrate types in structuring microeukaryotic community of biofilms in subtropical eutrophic freshwaters. (2) In the fluctuating river, there was a higher diversity of OTUs and less predictability of community composition than in the stable lake. Sessile species were more likely to be enriched on smooth surfaces of glass slides, while both free-swimming and attached organisms occurred within holes inside PFUs (polyurethane foam units). (3) Both species sorting and neutral process were mechanisms for assembly of microeukaryotic biofilms, but their importance varied depending on different habitats and substrates. (4) The effect of species sorting was slightly higher than the neutral process in river biofilms due to stronger environmental filtering. Species sorting was a stronger force structuring communities on glass slides than PFUs with more niche availability. Our study sheds light on assembly mechanisms for microeukaryotic community on different habitat and substrate types, showing that the resulting communities are determined by both sets of variables, in this case primarily habitat type. The balance of neutral process and species sorting differed between habitats, but the high alpha diversity of microeukaryotes in both led to similar sets of lifecycle traits being selected for in each case.
Collapse
Affiliation(s)
- Changyu Zhu
- Institute of Evolution and Marine Biodiversity, College of Fisheries, Ocean University of China, Qingdao, China.,Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| | - David Bass
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Yutao Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China.,Dongli Planting and Farming Industrial Co., Ltd., Lianzhou, China
| | - Zhuo Shen
- Institute of Microbial Ecology and Matter Cycle, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Weibo Song
- Institute of Evolution and Marine Biodiversity, College of Fisheries, Ocean University of China, Qingdao, China.,Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenzhen Yi
- Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
8
|
Björdal CG, Dayton PK. First evidence of microbial wood degradation in the coastal waters of the Antarctic. Sci Rep 2020; 10:12774. [PMID: 32728072 PMCID: PMC7391713 DOI: 10.1038/s41598-020-68613-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/25/2020] [Indexed: 11/30/2022] Open
Abstract
Wood submerged in saline and oxygenated marine waters worldwide is efficiently degraded by crustaceans and molluscs. Nevertheless, in the cold coastal waters of the Antarctic, these degraders seem to be absent and no evidence of other wood-degrading organisms has been reported so far. Here we examine long-term exposed anthropogenic wood material (Douglas Fir) collected at the seafloor close to McMurdo station, Antarctica. We used light and scanning electron microscopy and demonstrate that two types of specialized lignocellulolytic microbes—soft rot fungi and tunnelling bacteria—are active and degrade wood in this extreme environment. Fungal decay dominates and hyphae penetrate the outer 2–4 mm of the wood surface. Decay rates observed are about two orders of magnitude lower than normal. The fungi and bacteria, as well as their respective cavities and tunnels, are slightly smaller than normal, which might represent an adaptation to the extreme cold environment. Our results establish that there is ongoing wood degradation also in the Antarctic, albeit at a vastly reduced rate compared to warmer environments. Historical shipwrecks resting on the seafloor are most likely still in good condition, although surface details such as wood carvings, tool marks, and paint slowly disintegrate due to microbial decay.
Collapse
Affiliation(s)
- Charlotte G Björdal
- Dept. of Marine Sciences, University of Gothenburg, Carl Skottbergs Gata 22B, 405 30, Gothenburg, Sweden.
| | - Paul K Dayton
- Scripps Institution of Oceanography, 9500 Gilman Drive, Mail Code 0227, La Jolla, CA, 92093, USA
| |
Collapse
|
9
|
Tedeschi G, Guzman-Puyol S, Ceseracciu L, Paul UC, Picone P, Di Carlo M, Athanassiou A, Heredia-Guerrero JA. Multifunctional Bioplastics Inspired by Wood Composition: Effect of Hydrolyzed Lignin Addition to Xylan-Cellulose Matrices. Biomacromolecules 2020; 21:910-920. [PMID: 31940189 PMCID: PMC7993636 DOI: 10.1021/acs.biomac.9b01569] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Multifunctional bioplastics
have been prepared by amorphous reassembly
of cellulose, hemicelluloses (xylan), and hydrolyzed lignin. For this,
the biopolymers were dissolved in a trifluoroacetic acid–trifluoroacetic
anhydride mixture and blended in different percentages, simulating
those found in natural woods. Free-standing and flexible films were
obtained after the complete evaporation of the solvents. By varying
xylan and hydrolyzed lignin contents, the physical properties were
easily tuned. In particular, higher proportions of hydrolyzed lignin
improved hydrodynamics, oxygen barrier, grease resistance, antioxidant,
and antibacterial properties, whereas a higher xylan content was related
to more ductile mechanical behavior, comparable to synthetic and bio-based
polymers commonly used for packaging applications. In addition, these
bioplastics showed high biodegradation rates in seawater. Such new
polymeric materials are presented as alternatives to common man-made
petroleum-based plastics used for food packaging.
Collapse
Affiliation(s)
- Giacomo Tedeschi
- Smart Materials , Istituto Italiano di Tecnologia , Via Morego 30 , Genova 16163 , Italy.,DIBRIS , Università di Genova , Via Opera Pia 13 , Genova 16145 , Italy
| | - Susana Guzman-Puyol
- Smart Materials , Istituto Italiano di Tecnologia , Via Morego 30 , Genova 16163 , Italy.,Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora , Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Mejora Genética y Biotecnología, Estación Experimental La Mayora , Algarrobo-Costa E-29750 , Málaga , Spain
| | - Luca Ceseracciu
- Materials Characterization Facility , Istituto Italiano di Tecnologia , Via Morego 30 , Genova 16163 , Italy
| | - Uttam C Paul
- Smart Materials , Istituto Italiano di Tecnologia , Via Morego 30 , Genova 16163 , Italy
| | - Pasquale Picone
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB) , Consiglio Nazionale delle Ricerche (CNR) , Via Ugo La Malfa 153 , Palermo 90146 , Italy
| | - Marta Di Carlo
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB) , Consiglio Nazionale delle Ricerche (CNR) , Via Ugo La Malfa 153 , Palermo 90146 , Italy
| | - Athanassia Athanassiou
- Smart Materials , Istituto Italiano di Tecnologia , Via Morego 30 , Genova 16163 , Italy
| | - José A Heredia-Guerrero
- Smart Materials , Istituto Italiano di Tecnologia , Via Morego 30 , Genova 16163 , Italy.,Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora , Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Mejora Genética y Biotecnología, Estación Experimental La Mayora , Algarrobo-Costa E-29750 , Málaga , Spain
| |
Collapse
|
10
|
Cragg SM, Friess DA, Gillis LG, Trevathan-Tackett SM, Terrett OM, Watts JEM, Distel DL, Dupree P. Vascular Plants Are Globally Significant Contributors to Marine Carbon Fluxes and Sinks. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:469-497. [PMID: 31505131 DOI: 10.1146/annurev-marine-010318-095333] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
More than two-thirds of global biomass consists of vascular plants. A portion of the detritus they generate is carried into the oceans from land and highly productive blue carbon ecosystems-salt marshes, mangrove forests, and seagrass meadows. This large detrital input receives scant attention in current models of the global carbon cycle, though for blue carbon ecosystems, increasingly well-constrained estimates of biomass, productivity, and carbon fluxes, reviewed in this article, are now available. We show that the fate of this detritus differs markedly from that of strictly marine origin, because the former contains lignocellulose-an energy-rich polymer complex of cellulose, hemicelluloses, and lignin that is resistant to enzymatic breakdown. This complex can be depolymerized for nutritional purposes by specialized marine prokaryotes, fungi, protists, and invertebrates using enzymes such as glycoside hydrolases and lytic polysaccharide monooxygenases to release sugar monomers. The lignin component, however, is less readily depolymerized, and detritus therefore becomes lignin enriched, particularly in anoxic sediments, and forms a major carbon sink in blue carbon ecosystems. Eventual lignin breakdown releases a wide variety of small molecules that may contribute significantly to the oceanic pool of recalcitrant dissolved organic carbon. Marine carbon fluxes and sinks dependent on lignocellulosic detritus are important ecosystem services that are vulnerable to human interventions. These services must be considered when protecting blue carbon ecosystems and planning initiatives aimed at mitigating anthropogenic carbon emissions.
Collapse
Affiliation(s)
- Simon M Cragg
- Institute of Marine Sciences, University of Portsmouth, Portsmouth PO4 9LY, United Kingdom;
| | - Daniel A Friess
- Department of Geography, National University of Singapore, Singapore 117570;
| | - Lucy G Gillis
- Leibniz-Zentrum für Marine Tropenforschung (ZMT), 28359 Bremen, Germany;
| | - Stacey M Trevathan-Tackett
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Burwood, Victoria 3125, Australia;
| | - Oliver M Terrett
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom; ,
| | - Joy E M Watts
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom;
| | - Daniel L Distel
- Ocean Genome Legacy Center of New England Biolabs, Marine Science Center, Northeastern University, Nahant, Massachusetts 01908, USA;
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom; ,
| |
Collapse
|
11
|
Delacuvellerie A, Cyriaque V, Gobert S, Benali S, Wattiez R. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120899. [PMID: 31326835 DOI: 10.1016/j.jhazmat.2019.120899] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 05/20/2023]
Abstract
Most plastics are released to the environment in landfills and around 32% end up in the sea, inducing large ecological and health impacts. The plastics constitute a physical substrate and potential carbon source for microorganisms. The present study compares the structures of bacterial communities from floating plastics, sediment-associated plastics and sediments from the Mediterranean Sea. The 16S rRNA microbiome profiles of surface and sediment plastic-associated microbial biofilms from the same geographic location differ significantly, with the omnipresence of Bacteroidetes and Gammaproteobacteria. Our research confirmed that plastisphere hosts microbial communities were environmental distinct niche. In parallel, this study used environmental samples to investigate the enrichment of potential plastic-degrading bacteria with Low Density PolyEthylene (LDPE), PolyEthylene Terephthalate (PET) and PolyStyrene (PS) plastics as the sole carbon source. In this context, we showed that the bacterial community composition is clearly plastic nature dependent. Hydrocarbon-degrading bacteria such as Alcanivorax, Marinobacter and Arenibacter genera are enriched with LDPE and PET, implying that these bacteria are potential players in plastic degradation. Finally, our data showed for the first time the ability of Alcanivorax borkumensis to form thick biofilms specifically on LDPE and to degrade this petroleum-based plastic.
Collapse
Affiliation(s)
- Alice Delacuvellerie
- Proteomics and Microbiology Department, University of Mons, 20 place du Parc, 7000 Mons, Belgium
| | - Valentine Cyriaque
- Proteomics and Microbiology Department, University of Mons, 20 place du Parc, 7000 Mons, Belgium
| | - Sylvie Gobert
- Oceanology Department, University of Liège, 11 Allée du 6 août, 4000 Liège, Belgium
| | - Samira Benali
- Polymer and Composite Materials Department, University of Mons, 15 Avenue Maistriau, 7000 Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, 20 place du Parc, 7000 Mons, Belgium.
| |
Collapse
|
12
|
Jiang X, Zerfaß C, Feng S, Eichmann R, Asally M, Schäfer P, Soyer OS. Impact of spatial organization on a novel auxotrophic interaction among soil microbes. THE ISME JOURNAL 2018; 12:1443-1456. [PMID: 29572468 PMCID: PMC5955953 DOI: 10.1038/s41396-018-0095-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 01/21/2023]
Abstract
A key prerequisite to achieve a deeper understanding of microbial communities and to engineer synthetic ones is to identify the individual metabolic interactions among key species and how these interactions are affected by different environmental factors. Deciphering the physiological basis of species-species and species-environment interactions in spatially organized environments requires reductionist approaches using ecologically and functionally relevant species. To this end, we focus here on a defined system to study the metabolic interactions in a spatial context among the plant-beneficial endophytic fungus Serendipita indica, and the soil-dwelling model bacterium Bacillus subtilis. Focusing on the growth dynamics of S. indica under defined conditions, we identified an auxotrophy in this organism for thiamine, which is a key co-factor for essential reactions in the central carbon metabolism. We found that S. indica growth is restored in thiamine-free media, when co-cultured with B. subtilis. The success of this auxotrophic interaction, however, was dependent on the spatial and temporal organization of the system; the beneficial impact of B. subtilis was only visible when its inoculation was separated from that of S. indica either in time or space. These findings describe a key auxotrophic interaction in the soil among organisms that are shown to be important for plant ecosystem functioning, and point to the potential importance of spatial and temporal organization for the success of auxotrophic interactions. These points can be particularly important for engineering of minimal functional synthetic communities as plant seed treatments and for vertical farming under defined conditions.
Collapse
Affiliation(s)
- Xue Jiang
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| | - Christian Zerfaß
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, The University of Warwick, Coventry, CV4 7AL, UK
| | - Song Feng
- Los Alamos National Laboratory, Theoretical Division (T-6), Center for Nonlinear Studies, Los Alamos, NM, 87545, USA
| | - Ruth Eichmann
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| | - Munehiro Asally
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
- Warwick Integrative Synthetic Biology Centre, The University of Warwick, Coventry, CV4 7AL, UK
| | - Patrick Schäfer
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Integrative Synthetic Biology Centre, The University of Warwick, Coventry, CV4 7AL, UK.
| | - Orkun S Soyer
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Integrative Synthetic Biology Centre, The University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
13
|
Kalenitchenko D, Le Bris N, Peru E, Galand PE. Ultrarare marine microbes contribute to key sulphur-related ecosystem functions. Mol Ecol 2018; 27:1494-1504. [DOI: 10.1111/mec.14513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Dimitri Kalenitchenko
- Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB); UPMC Univ Paris 06; CNRS; Sorbonne Universités; Observatoire Océanologique; Banyuls sur Mer France
| | - Nadine Le Bris
- Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB); UPMC Univ Paris 06; CNRS; Sorbonne Universités; Observatoire Océanologique; Banyuls sur Mer France
| | - Erwan Peru
- Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB); UPMC Univ Paris 06; CNRS; Sorbonne Universités; Observatoire Océanologique; Banyuls sur Mer France
| | - Pierre E. Galand
- Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB); UPMC Univ Paris 06; CNRS; Sorbonne Universités; Observatoire Océanologique; Banyuls sur Mer France
| |
Collapse
|
14
|
Kalenitchenko D, Péru E, Contreira Pereira L, Petetin C, Galand PE, Le Bris N. The early conversion of deep-sea wood falls into chemosynthetic hotspots revealed by in situ monitoring. Sci Rep 2018; 8:907. [PMID: 29343757 PMCID: PMC5772046 DOI: 10.1038/s41598-017-17463-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/27/2017] [Indexed: 11/21/2022] Open
Abstract
Wood debris on the ocean floor harbor flourishing communities, which include invertebrate taxa thriving in sulfide-rich habitats belonging to hydrothermal vent and methane seep deep-sea lineages. The formation of sulfidic niches from digested wood material produced by woodborers has been known for a long time, but the temporal dynamics and sulfide ranges encountered on wood falls remains unknown. Here, we show that wood falls are converted into sulfidic hotpots, before the colonization by xylophagaid bivalves. Less than a month after immersion at a depth of 520 m in oxygenated seawater the sulfide concentration increased to millimolar levels inside immersed logs. From in situ experiments combining high-frequency chemical and video monitoring, we document the rapid development of a microbial sulfur biofilm at the surface of wood. These findings highlight the fact that sulfide is initially produced from the labile components of wood and supports chemosynthesis as an early pathway of energy transfer to deep-sea wood colonists, as suggested by recent aquarium studies. The study furthermore reveals that woodborers promote sulfide-oxidation at the periphery of their burrows, thus, not only facilitating the development of sulfidic zones in the surrounding of degraded wood falls, but also governing sulfur-cycling within the wood matrix.
Collapse
Affiliation(s)
- D Kalenitchenko
- Sorbonne Universités, UPMC Univ. Paris 6, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France.,Université Laval, Département de Biologie, Québec, Canada
| | - E Péru
- Sorbonne Universités, UPMC Univ. Paris 6, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - L Contreira Pereira
- Sorbonne Universités, UPMC Univ. Paris 6, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France.,Laboratório de Hidroquímica-IO/FURG, Rio Grande, Brazil
| | - C Petetin
- Sorbonne Universités, UPMC Univ. Paris 6, 66650, Banyuls-sur-Mer, France
| | - P E Galand
- Sorbonne Universités, UPMC Univ. Paris 6, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - N Le Bris
- Sorbonne Universités, UPMC Univ. Paris 6, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France.
| |
Collapse
|
15
|
Abstract
Understanding the mechanisms controlling community diversity, functions, succession, and biogeography is a central, but poorly understood, topic in ecology, particularly in microbial ecology. Although stochastic processes are believed to play nonnegligible roles in shaping community structure, their importance relative to deterministic processes is hotly debated. The importance of ecological stochasticity in shaping microbial community structure is far less appreciated. Some of the main reasons for such heavy debates are the difficulty in defining stochasticity and the diverse methods used for delineating stochasticity. Here, we provide a critical review and synthesis of data from the most recent studies on stochastic community assembly in microbial ecology. We then describe both stochastic and deterministic components embedded in various ecological processes, including selection, dispersal, diversification, and drift. We also describe different approaches for inferring stochasticity from observational diversity patterns and highlight experimental approaches for delineating ecological stochasticity in microbial communities. In addition, we highlight research challenges, gaps, and future directions for microbial community assembly research.
Collapse
Affiliation(s)
- Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Daliang Ning
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma, USA
- Consolidated Core Laboratory, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
16
|
Zhou J, Ning D. Stochastic Community Assembly: Does It Matter in Microbial Ecology? Microbiol Mol Biol Rev 2017. [PMID: 29021219 DOI: 10.1128/mmbr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Understanding the mechanisms controlling community diversity, functions, succession, and biogeography is a central, but poorly understood, topic in ecology, particularly in microbial ecology. Although stochastic processes are believed to play nonnegligible roles in shaping community structure, their importance relative to deterministic processes is hotly debated. The importance of ecological stochasticity in shaping microbial community structure is far less appreciated. Some of the main reasons for such heavy debates are the difficulty in defining stochasticity and the diverse methods used for delineating stochasticity. Here, we provide a critical review and synthesis of data from the most recent studies on stochastic community assembly in microbial ecology. We then describe both stochastic and deterministic components embedded in various ecological processes, including selection, dispersal, diversification, and drift. We also describe different approaches for inferring stochasticity from observational diversity patterns and highlight experimental approaches for delineating ecological stochasticity in microbial communities. In addition, we highlight research challenges, gaps, and future directions for microbial community assembly research.
Collapse
Affiliation(s)
- Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Daliang Ning
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma, USA
- Consolidated Core Laboratory, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
17
|
Bacteria alone establish the chemical basis of the wood-fall chemosynthetic ecosystem in the deep-sea. ISME JOURNAL 2017; 12:367-379. [PMID: 28984846 PMCID: PMC5776450 DOI: 10.1038/ismej.2017.163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/29/2017] [Accepted: 08/24/2017] [Indexed: 01/05/2023]
Abstract
Wood-fall ecosystems host chemosynthetic bacteria that use hydrogen sulfide as an electron donor. The production of hydrogen sulfide from decaying wood in the deep-sea has long been suspected to rely on the activity of wood-boring bivalves, Xylophaga spp. However, recent mesocosm experiments have shown hydrogen sulfide production in the absence of wood borers. Here, we combined in situ chemical measurements, amplicon sequencing and metagenomics to test whether the presence of Xylophaga spp.-affected hydrogen sulfide production and wood microbial community assemblages. During a short-term experiment conducted in a deep-sea canyon, we found that wood-fall microbial communities could produce hydrogen sulfide in the absence of Xylophaga spp. The presence of wood borers had a strong impact on the microbial community composition on the wood surface but not in the wood centre, where communities were observed to be homogeneous among different samples. When wood borers were excluded, the wood centre community did not have the genetic potential to degrade cellulose or hemicellulose but could use shorter carbohydrates such as sucrose. We conclude that wood centre communities produce fermentation products that can be used by the sulfate-reducing bacteria detected near the wood surface. We thus demonstrate that microorganisms alone could establish the chemical basis essential for the recruitment of chemolithotrophic organisms in deep-sea wood falls.
Collapse
|
18
|
Li M, Li D, Tang Y, Wu F, Wang J. CytoCluster: A Cytoscape Plugin for Cluster Analysis and Visualization of Biological Networks. Int J Mol Sci 2017; 18:ijms18091880. [PMID: 28858211 PMCID: PMC5618529 DOI: 10.3390/ijms18091880] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/15/2022] Open
Abstract
Nowadays, cluster analysis of biological networks has become one of the most important approaches to identifying functional modules as well as predicting protein complexes and network biomarkers. Furthermore, the visualization of clustering results is crucial to display the structure of biological networks. Here we present CytoCluster, a cytoscape plugin integrating six clustering algorithms, HC-PIN (Hierarchical Clustering algorithm in Protein Interaction Networks), OH-PIN (identifying Overlapping and Hierarchical modules in Protein Interaction Networks), IPCA (Identifying Protein Complex Algorithm), ClusterONE (Clustering with Overlapping Neighborhood Expansion), DCU (Detecting Complexes based on Uncertain graph model), IPC-MCE (Identifying Protein Complexes based on Maximal Complex Extension), and BinGO (the Biological networks Gene Ontology) function. Users can select different clustering algorithms according to their requirements. The main function of these six clustering algorithms is to detect protein complexes or functional modules. In addition, BinGO is used to determine which Gene Ontology (GO) categories are statistically overrepresented in a set of genes or a subgraph of a biological network. CytoCluster can be easily expanded, so that more clustering algorithms and functions can be added to this plugin. Since it was created in July 2013, CytoCluster has been downloaded more than 9700 times in the Cytoscape App store and has already been applied to the analysis of different biological networks. CytoCluster is available from http://apps.cytoscape.org/apps/cytocluster.
Collapse
Affiliation(s)
- Min Li
- School of Information Science and Engineering, Central South University, Changsha 410083, China.
| | - Dongyan Li
- School of software, Central South University, Changsha 410083, China.
| | - Yu Tang
- School of Information Science and Engineering, Central South University, Changsha 410083, China.
| | - Fangxiang Wu
- School of Information Science and Engineering, Central South University, Changsha 410083, China.
- Department of Mechanical Engineering and Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.
| | - Jianxin Wang
- School of Information Science and Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
19
|
Avcı B, Hahnke RL, Chafee M, Fischer T, Gruber-Vodicka H, Tegetmeyer HE, Harder J, Fuchs BM, Amann RI, Teeling H. Genomic and physiological analyses of ‘Reinekea forsetii’ reveal a versatile opportunistic lifestyle during spring algae blooms. Environ Microbiol 2017; 19:1209-1221. [DOI: 10.1111/1462-2920.13646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Burak Avcı
- Max Planck Institute for Marine Microbiology; Celsiusstraße 1 Bremen 28359 Germany
| | - Richard L. Hahnke
- Max Planck Institute for Marine Microbiology; Celsiusstraße 1 Bremen 28359 Germany
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures; Inhoffenstraße 7B Braunschweig 38124 Germany
| | - Meghan Chafee
- Max Planck Institute for Marine Microbiology; Celsiusstraße 1 Bremen 28359 Germany
| | - Tanja Fischer
- Max Planck Institute for Marine Microbiology; Celsiusstraße 1 Bremen 28359 Germany
| | | | - Halina E. Tegetmeyer
- Max Planck Institute for Marine Microbiology; Celsiusstraße 1 Bremen 28359 Germany
- Institute for Genome Research and Systems Biology, Center for Biotechnology, University of Bielefeld; Universitätsstraße 27 Bielefeld 33615 Germany
| | - Jens Harder
- Max Planck Institute for Marine Microbiology; Celsiusstraße 1 Bremen 28359 Germany
| | - Bernhard M. Fuchs
- Max Planck Institute for Marine Microbiology; Celsiusstraße 1 Bremen 28359 Germany
| | - Rudolf I. Amann
- Max Planck Institute for Marine Microbiology; Celsiusstraße 1 Bremen 28359 Germany
| | - Hanno Teeling
- Max Planck Institute for Marine Microbiology; Celsiusstraße 1 Bremen 28359 Germany
| |
Collapse
|
20
|
Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls. PLoS One 2017; 12:e0169906. [PMID: 28122036 PMCID: PMC5266260 DOI: 10.1371/journal.pone.0169906] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/23/2016] [Indexed: 11/19/2022] Open
Abstract
Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (> 3y) on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting chemosynthetic fauna from nearby seep systems. Wood experiments deployed at similar water depths (1100-1700 m), but in hydrographically different oceanic regions harbored different wood-boring bivalves, opportunistic faunal communities, and chemosynthetic species. Similarly, bacterial communities on sunken wood logs were more similar within one geographic region than between different seas. Diverse sulphate-reducing bacteria of the Deltaproteobacteria, the sulphide-oxidizing bacteria Sulfurovum as well as members of the Acidimicrobiia and Bacteroidia dominated the wood falls in the Eastern Mediterranean, while Alphaproteobacteria and Flavobacteriia colonized the Norwegian Sea wood logs. Fauna and bacterial wood-associated communities changed between 1 to 3 years of immersion, with sulphate-reducers and sulphide-oxidizers increasing in proportion, and putative cellulose degraders decreasing with time. Only 6% of all bacterial genera, comprising the core community, were found at any time on the Eastern Mediterranean sunken wooden logs. This study suggests that biogeography and succession play an important role for the composition of bacteria and fauna of wood-associated communities, and that wood can act as stepping-stones for seep biota.
Collapse
|
21
|
Kalenitchenko D, Dupraz M, Le Bris N, Petetin C, Rose C, West NJ, Galand PE. Ecological succession leads to chemosynthesis in mats colonizing wood in sea water. THE ISME JOURNAL 2016; 10:2246-58. [PMID: 26905628 PMCID: PMC4989304 DOI: 10.1038/ismej.2016.12] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 12/31/2022]
Abstract
Chemosynthetic mats involved in cycling sulfur compounds are often found in hydrothermal vents, cold seeps and whale falls. However, there are only few records of wood fall mats, even though the presence of hydrogen sulfide at the wood surface should create a perfect niche for sulfide-oxidizing bacteria. Here we report the growth of microbial mats on wood incubated under conditions that simulate the Mediterranean deep-sea temperature and darkness. We used amplicon and metagenomic sequencing combined with fluorescence in situ hybridization to test whether a microbial succession occurs during mat formation and whether the wood fall mats present chemosynthetic features. We show that the wood surface was first colonized by sulfide-oxidizing bacteria belonging to the Arcobacter genus after only 30 days of immersion. Subsequently, the number of sulfate reducers increased and the dominant Arcobacter phylotype changed. The ecological succession was reflected by a change in the metabolic potential of the community from chemolithoheterotrophs to potential chemolithoautotrophs. Our work provides clear evidence for the chemosynthetic nature of wood fall ecosystems and demonstrates the utility to develop experimental incubation in the laboratory to study deep-sea chemosynthetic mats.
Collapse
Affiliation(s)
- Dimitri Kalenitchenko
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Ecogeochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls sur Mer, France
| | - Marlène Dupraz
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Ecogeochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls sur Mer, France
| | - Nadine Le Bris
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Ecogeochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls sur Mer, France
| | - Carole Petetin
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Observatoire Océanologique de Banyuls (OOB), Banyuls sur Mer, France
| | - Christophe Rose
- UMR EEF INRA/UL, Plateforme Technique d'Ecologie et d'Ecophysiologie Forestières (PTEF), INRA-LORRAINE, Champenoux, France
| | - Nyree J West
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Observatoire Océanologique de Banyuls (OOB), Banyuls sur Mer, France
| | - Pierre E Galand
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Ecogeochimie des Environnements Benthiques (LECOB), Observatoire Océanologique, Banyuls sur Mer, France
| |
Collapse
|
22
|
|