1
|
Maza-Márquez P, Lee MD, Bebout BM. Community ecology and functional potential of bacteria, archaea, eukarya and viruses in Guerrero Negro microbial mat. Sci Rep 2024; 14:2561. [PMID: 38297006 PMCID: PMC10831059 DOI: 10.1038/s41598-024-52626-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024] Open
Abstract
In this study, the microbial ecology, potential environmental adaptive mechanisms, and the potential evolutionary interlinking of genes between bacterial, archaeal and viral lineages in Guerrero Negro (GN) microbial mat were investigated using metagenomic sequencing across a vertical transect at millimeter scale. The community composition based on unique genes comprised bacteria (98.01%), archaea (1.81%), eukarya (0.07%) and viruses (0.11%). A gene-focused analysis of bacteria archaea, eukarya and viruses showed a vertical partition of the community. The greatest coverages of genes of bacteria and eukarya were detected in first layers, while the highest coverages of genes of archaea and viruses were found in deeper layers. Many genes potentially related to adaptation to the local environment were detected, such as UV radiation, multidrug resistance, oxidative stress, heavy metals, salinity and desiccation. Those genes were found in bacterial, archaeal and viral lineages with 6477, 44, and 1 genes, respectively. The evolutionary histories of those genes were studied using phylogenetic analysis, showing an interlinking between domains in GN mat.
Collapse
Affiliation(s)
- P Maza-Márquez
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA.
- University of Granada, Granada, Spain.
| | - M D Lee
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - B M Bebout
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
2
|
Zhang QY, Ke F, Gui L, Zhao Z. Recent insights into aquatic viruses: Emerging and reemerging pathogens, molecular features, biological effects, and novel investigative approaches. WATER BIOLOGY AND SECURITY 2022; 1:100062. [DOI: 10.1016/j.watbs.2022.100062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Potapov S, Krasnopeev A, Tikhonova I, Podlesnaya G, Gorshkova A, Belykh O. The Viral Fraction Metatranscriptomes of Lake Baikal. Microorganisms 2022; 10:1937. [PMID: 36296212 PMCID: PMC9611531 DOI: 10.3390/microorganisms10101937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
This article characterises viral fraction metatranscriptomes (smaller than 0.2 µm) from the pelagic zone of oligotrophic Lake Baikal (Russia). The study revealed the dominance of transcripts of DNA viruses: bacteriophages and algal viruses. We identified transcripts similar to Pithovirus sibericum, a nucleocytoplasmic large DNA virus (NCLDV) isolated from the permafrost region of Eastern Siberia. Among the families detected were RNA viruses assigned to Retroviridae, Metaviridae, Potyviridae, Astroviridae, and Closteroviridae. Using the PHROG, SEED subsystems databases, and the VOGDB, we indicated that the bulk of transcripts belong to the functional replication of viruses. In a comparative unweighted pair group method with arithmetic mean (UPGMA) analysis, the transcripts from Lake Baikal formed a separate cluster included in the clade with transcripts from other freshwater lakes, as well as marine and oceanic waters, while there was no separation based on the trophic state of the water bodies, the size of the plankton fraction, or salinity.
Collapse
Affiliation(s)
- Sergey Potapov
- Limnological Institute SB RAS, 3, Ulan-Batorskaya, 664033 Irkutsk, Russia
| | | | | | | | | | | |
Collapse
|
4
|
Keown RA, Dums JT, Brumm PJ, MacDonald J, Mead DA, Ferrell BD, Moore RM, Harrison AO, Polson SW, Wommack KE. Novel Viral DNA Polymerases From Metagenomes Suggest Genomic Sources of Strand-Displacing Biochemical Phenotypes. Front Microbiol 2022; 13:858366. [PMID: 35531281 PMCID: PMC9069017 DOI: 10.3389/fmicb.2022.858366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/08/2022] [Indexed: 01/21/2023] Open
Abstract
Viruses are the most abundant and diverse biological entities on the planet and constitute a significant proportion of Earth's genetic diversity. Most of this diversity is not represented by isolated viral-host systems and has only been observed through sequencing of viral metagenomes (viromes) from environmental samples. Viromes provide snapshots of viral genetic potential, and a wealth of information on viral community ecology. These data also provide opportunities for exploring the biochemistry of novel viral enzymes. The in vitro biochemical characteristics of novel viral DNA polymerases were explored, testing hypothesized differences in polymerase biochemistry according to protein sequence phylogeny. Forty-eight viral DNA Polymerase I (PolA) proteins from estuarine viromes, hot spring metagenomes, and reference viruses, encompassing a broad representation of currently known diversity, were synthesized, expressed, and purified. Novel functionality was shown in multiple PolAs. Intriguingly, some of the estuarine viral polymerases demonstrated moderate to strong innate DNA strand displacement activity at high enzyme concentration. Strand-displacing polymerases have important technological applications where isothermal reactions are desirable. Bioinformatic investigation of genes neighboring these strand displacing polymerases found associations with SNF2 helicase-associated proteins. The specific function of SNF2 family enzymes is unknown for prokaryotes and viruses. In eukaryotes, SNF2 enzymes have chromatin remodeling functions but do not separate nucleic acid strands. This suggests the strand separation function may be fulfilled by the DNA polymerase for viruses carrying SNF2 helicase-associated proteins. Biochemical data elucidated from this study expands understanding of the biology and ecological behavior of unknown viruses. Moreover, given the numerous biotechnological applications of viral DNA polymerases, novel viral polymerases discovered within viromes may be a rich source of biological material for further in vitro DNA amplification advancements.
Collapse
Affiliation(s)
- Rachel A. Keown
- Department of Biological Sciences, College of Arts and Sciences, University of Delaware, Newark, DE, United States
| | - Jacob T. Dums
- Biotechnology Program, North Carolina State University, Raleigh, NC, United States
| | | | | | - David A. Mead
- Varigen Biosciences Corporation, Middleton, WI, United States
| | - Barbra D. Ferrell
- Department of Plant and Soil Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE, United States
| | - Ryan M. Moore
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States
| | - Amelia O. Harrison
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States
| | - Shawn W. Polson
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States
- Department of Computer and Information Sciences, College of Arts and Sciences, University of Delaware, Newark, DE, United States
| | - K. Eric Wommack
- Department of Plant and Soil Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE, United States
| |
Collapse
|
5
|
Kurochkina LP, Semenyuk PI, Sokolova OS. Structural and Functional Features of Viral Chaperonins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1-9. [PMID: 35491019 DOI: 10.1134/s0006297922010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chaperonins provide proper folding of proteins in vivo and in vitro and, as was thought until recently, are characteristic of prokaryotes, eukaryotes, and archaea. However, it turned out that some bacteria viruses (bacteriophages) encode their own chaperonins. This review presents results of the investigations of the first representatives of this new chaperonin group: the double-ring EL chaperonin and the single-ring OBP and AR9 chaperonins. Biochemical properties and structure of the phage chaperonins were compared within the group and with other known group I and group II chaperonins.
Collapse
Affiliation(s)
- Lidia P Kurochkina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Pavel I Semenyuk
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga S Sokolova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
6
|
DeLong JP, Al-Sammak MA, Al-Ameeli ZT, Dunigan DD, Edwards KF, Fuhrmann JJ, Gleghorn JP, Li H, Haramoto K, Harrison AO, Marston MF, Moore RM, Polson SW, Ferrell BD, Salsbery ME, Schvarcz CR, Shirazi J, Steward GF, Van Etten JL, Wommack KE. Towards an integrative view of virus phenotypes. Nat Rev Microbiol 2021; 20:83-94. [PMID: 34522049 DOI: 10.1038/s41579-021-00612-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
Understanding how phenotypes emerge from genotypes is a foundational goal in biology. As challenging as this task is when considering cellular life, it is further complicated in the case of viruses. During replication, a virus as a discrete entity (the virion) disappears and manifests itself as a metabolic amalgam between the virus and the host (the virocell). Identifying traits that unambiguously constitute a virus's phenotype is straightforward for the virion, less so for the virocell. Here, we present a framework for categorizing virus phenotypes that encompasses both virion and virocell stages and considers functional and performance traits of viruses in the context of fitness. Such an integrated view of virus phenotype is necessary for comprehensive interpretation of viral genome sequences and will advance our understanding of viral evolution and ecology.
Collapse
Affiliation(s)
- John P DeLong
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Maitham A Al-Sammak
- Tropical Biological Research Unit, College of Science, University of Baghdad, Baghdad, Iraq.,Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Zeina T Al-Ameeli
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA.,Medical Technical Institutes, Middle Technical University, Baghdad, Iraq
| | - David D Dunigan
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Kyle F Edwards
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Jeffry J Fuhrmann
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Jason P Gleghorn
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Hanqun Li
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Kona Haramoto
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.,Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Amelia O Harrison
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.,Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Marcia F Marston
- Department of Biology and Marine Biology, Roger Williams University, Bristol, RI, USA
| | - Ryan M Moore
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Shawn W Polson
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, USA.,Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Barbra D Ferrell
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
| | - Miranda E Salsbery
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Jasmine Shirazi
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Grieg F Steward
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - James L Van Etten
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA.,Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - K Eric Wommack
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, USA. .,Department of Biological Sciences, University of Delaware, Newark, DE, USA. .,Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.
| |
Collapse
|
7
|
Wu R, Davison MR, Gao Y, Nicora CD, Mcdermott JE, Burnum-Johnson KE, Hofmockel KS, Jansson JK. Moisture modulates soil reservoirs of active DNA and RNA viruses. Commun Biol 2021; 4:992. [PMID: 34446837 PMCID: PMC8390657 DOI: 10.1038/s42003-021-02514-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Soil is known to harbor viruses, but the majority are uncharacterized and their responses to environmental changes are unknown. Here, we used a multi-omics approach (metagenomics, metatranscriptomics and metaproteomics) to detect active DNA viruses and RNA viruses in a native prairie soil and to determine their responses to extremes in soil moisture. The majority of transcribed DNA viruses were bacteriophage, but some were assigned to eukaryotic hosts, mainly insects. We also demonstrated that higher soil moisture increased transcription of a subset of DNA viruses. Metaproteome data validated that the specific viral transcripts were translated into proteins, including chaperonins known to be essential for virion replication and assembly. The soil viral chaperonins were phylogenetically distinct from previously described marine viral chaperonins. The soil also had a high abundance of RNA viruses, with highest representation of Reoviridae. Leviviridae were the most diverse RNA viruses in the samples, with higher amounts in wet soil. This study demonstrates that extreme shifts in soil moisture have dramatic impacts on the composition, activity and potential functions of both DNA and RNA soil viruses.
Collapse
Affiliation(s)
- Ruonan Wu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Michelle R Davison
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yuqian Gao
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Carrie D Nicora
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jason E Mcdermott
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kristin E Burnum-Johnson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
8
|
Coutinho FH, Zaragoza-Solas A, López-Pérez M, Barylski J, Zielezinski A, Dutilh BE, Edwards R, Rodriguez-Valera F. RaFAH: Host prediction for viruses of Bacteria and Archaea based on protein content. PATTERNS 2021; 2:100274. [PMID: 34286299 PMCID: PMC8276007 DOI: 10.1016/j.patter.2021.100274] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/23/2020] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Culture-independent approaches have recently shed light on the genomic diversity of viruses of prokaryotes. One fundamental question when trying to understand their ecological roles is: which host do they infect? To tackle this issue we developed a machine-learning approach named Random Forest Assignment of Hosts (RaFAH), that uses scores to 43,644 protein clusters to assign hosts to complete or fragmented genomes of viruses of Archaea and Bacteria. RaFAH displayed performance comparable with that of other methods for virus-host prediction in three different benchmarks encompassing viruses from RefSeq, single amplified genomes, and metagenomes. RaFAH was applied to assembled metagenomic datasets of uncultured viruses from eight different biomes of medical, biotechnological, and environmental relevance. Our analyses led to the identification of 537 sequences of archaeal viruses representing unknown lineages, whose genomes encode novel auxiliary metabolic genes, shedding light on how these viruses interfere with the host molecular machinery. RaFAH is available at https://sourceforge.net/projects/rafah/. RaFAH was developed to predict the hosts of viruses of Bacteria and Archaea RaFAH displayed comparable or superior performance to other host-prediction tools RaFAH performed well across viromes from eight different ecosystems RaFAH identified hundreds of genomic sequences as derived from viruses of Archaea
Viruses that infect Bacteria and Archaea are ubiquitous and extremely abundant. Recent advances have led to the discovery of many thousands of complete and partial genomes of these biological entities. Understanding the biology of these viruses and how they influence their ecosystems depends on knowing which hosts they infect. We developed a tool that uses data from complete or fragmented genomes to predict the hosts of viruses using a machine-learning approach. Our tool, RaFAH, displayed performance comparable with or superior to that of other host-prediction tools. In addition, it identified hundreds of sequences as derived from the genomes of viruses of Archaea, which are one of the least characterized fractions of the global virosphere.
Collapse
Affiliation(s)
- Felipe Hernandes Coutinho
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Aptdo. 18., Ctra. Alicante-Valencia N-332, s/n, San Juan de Alicante, 03550 Alicante, Spain
| | - Asier Zaragoza-Solas
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Aptdo. 18., Ctra. Alicante-Valencia N-332, s/n, San Juan de Alicante, 03550 Alicante, Spain
| | - Mario López-Pérez
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Aptdo. 18., Ctra. Alicante-Valencia N-332, s/n, San Juan de Alicante, 03550 Alicante, Spain
| | - Jakub Barylski
- Molecular Virology Research Unit, Faculty of Biology, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland
| | - Andrzej Zielezinski
- Department of Computational Biology, Faculty of Biology, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland
| | - Bas E Dutilh
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Centre/Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, the Netherlands.,Theoretical Biology and Bioinformatics, Science for Life, Utrecht University (UU), 3584 CH Utrecht, the Netherlands
| | - Robert Edwards
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Aptdo. 18., Ctra. Alicante-Valencia N-332, s/n, San Juan de Alicante, 03550 Alicante, Spain.,Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| |
Collapse
|
9
|
Zhang Z, Qin F, Chen F, Chu X, Luo H, Zhang R, Du S, Tian Z, Zhao Y. Culturing novel and abundant pelagiphages in the ocean. Environ Microbiol 2020; 23:1145-1161. [PMID: 33047445 DOI: 10.1111/1462-2920.15272] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/27/2020] [Accepted: 10/03/2020] [Indexed: 11/26/2022]
Abstract
Viruses play a key role in biogeochemical cycling and host mortality, metabolism, physiology and evolution in the ocean. Viruses that infect the globally abundant SAR11 bacteria (pelagiphages) were reported to be an important component of the marine viral communities. Our current knowledge of pelagiphages is based on a few studies and therefore is limited. In this study, 10 new pelagiphages were isolated and genomically characterized. These pelagiphages represent the first cultivated representatives of four viral lineages only found in metagenomic sequencing datasets previously. Many abundant environmental viral sequences, i.e., single-virus vSAG 37-F6 and several Global Ocean Viromes (GOV) viral populations, are now further confirmed with these pelagiphages. Viromic read mapping reveals that these new pelagiphages are globally distributed in the ocean and can be detected throughout the water column. Remarkably, isolation of these pelagiphages contributed up to 12% of all viromic reads annotated in the analysed viromes. Altogether, this study has greatly broadened our understanding of pelagiphages regarding their morphology, genetic diversity, infection strategies, and distribution pattern. The availability of these newly isolated pelagiphages and their genome sequences will allow us to further explore their infectivities and ecological strategies.
Collapse
Affiliation(s)
- Zefeng Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Fang Qin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Xiao Chu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, Fujian, China
| | - Sen Du
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhen Tian
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
10
|
Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. ISME JOURNAL 2020; 14:3079-3092. [PMID: 32801311 PMCID: PMC7785012 DOI: 10.1038/s41396-020-00739-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/18/2020] [Accepted: 08/05/2020] [Indexed: 02/02/2023]
Abstract
Little is known about viruses in oxygen-deficient water columns (ODWCs). In surface ocean waters, viruses are known to act as gene vectors among susceptible hosts. Some of these genes may have metabolic functions and are thus termed auxiliary metabolic genes (AMGs). AMGs introduced to new hosts by viruses can enhance viral replication and/or potentially affect biogeochemical cycles by modulating key microbial pathways. Here we identify 748 viral populations that cluster into 94 genera along a vertical geochemical gradient in the Cariaco Basin, a permanently stratified and euxinic ocean basin. The viral communities in this ODWC appear to be relatively novel as 80 of these viral genera contained no reference viral sequences, likely due to the isolation and unique features of this system. We identify viral elements that encode AMGs implicated in distinctive processes, such as sulfur cycling, acetate fermentation, signal transduction, [Fe–S] formation, and N-glycosylation. These AMG-encoding viruses include two putative Mu-like viruses, and viral-like regions that may constitute degraded prophages that have been modified by transposable elements. Our results provide an insight into the ecological and biogeochemical impact of viruses oxygen-depleted and euxinic habitats.
Collapse
|
11
|
Bracher A, Paul SS, Wang H, Wischnewski N, Hartl FU, Hayer-Hartl M. Structure and conformational cycle of a bacteriophage-encoded chaperonin. PLoS One 2020; 15:e0230090. [PMID: 32339190 PMCID: PMC7185714 DOI: 10.1371/journal.pone.0230090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/07/2020] [Indexed: 11/19/2022] Open
Abstract
Chaperonins are ubiquitous molecular chaperones found in all domains of life. They form ring-shaped complexes that assist in the folding of substrate proteins in an ATP-dependent reaction cycle. Key to the folding cycle is the transient encapsulation of substrate proteins by the chaperonin. Here we present a structural and functional characterization of the chaperonin gp146 (ɸEL) from the phage EL of Pseudomonas aeruginosa. ɸEL, an evolutionarily distant homolog of bacterial GroEL, is active in ATP hydrolysis and prevents the aggregation of denatured protein in a nucleotide-dependent manner. However, ɸEL failed to refold the encapsulation-dependent model substrate rhodanese and did not interact with E. coli GroES, the lid-shaped co-chaperone of GroEL. ɸEL forms tetradecameric double-ring complexes, which dissociate into single rings in the presence of ATP. Crystal structures of ɸEL (at 3.54 and 4.03 Å) in presence of ATP•BeFx revealed two distinct single-ring conformational states, both with open access to the ring cavity. One state showed uniform ATP-bound subunit conformations (symmetric state), whereas the second combined distinct ATP- and ADP-bound subunit conformations (asymmetric state). Cryo-electron microscopy of apo-ɸEL revealed a double-ring structure composed of rings in the asymmetric state (3.45 Å resolution). We propose that the phage chaperonin undergoes nucleotide-dependent conformational switching between double- and single rings and functions in aggregation prevention without substrate protein encapsulation. Thus, ɸEL may represent an evolutionarily more ancient chaperonin prior to acquisition of the encapsulation mechanism.
Collapse
Affiliation(s)
- Andreas Bracher
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- * E-mail: (AB); (MH-H)
| | - Simanta S. Paul
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Huping Wang
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Nadine Wischnewski
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - F. Ulrich Hartl
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- * E-mail: (AB); (MH-H)
| |
Collapse
|
12
|
Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, Kuhn JH, Lavigne R, Brister JR, Varsani A, Amid C, Aziz RK, Bordenstein SR, Bork P, Breitbart M, Cochrane GR, Daly RA, Desnues C, Duhaime MB, Emerson JB, Enault F, Fuhrman JA, Hingamp P, Hugenholtz P, Hurwitz BL, Ivanova NN, Labonté JM, Lee KB, Malmstrom RR, Martinez-Garcia M, Mizrachi IK, Ogata H, Páez-Espino D, Petit MA, Putonti C, Rattei T, Reyes A, Rodriguez-Valera F, Rosario K, Schriml L, Schulz F, Steward GF, Sullivan MB, Sunagawa S, Suttle CA, Temperton B, Tringe SG, Thurber RV, Webster NS, Whiteson KL, Wilhelm SW, Wommack KE, Woyke T, Wrighton KC, Yilmaz P, Yoshida T, Young MJ, Yutin N, Allen LZ, Kyrpides NC, Eloe-Fadrosh EA. Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat Biotechnol 2019; 37:29-37. [PMID: 30556814 PMCID: PMC6871006 DOI: 10.1038/nbt.4306] [Citation(s) in RCA: 360] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022]
Abstract
We present an extension of the Minimum Information about any (x) Sequence (MIxS) standard for reporting sequences of uncultivated virus genomes. Minimum Information about an Uncultivated Virus Genome (MIUViG) standards were developed within the Genomic Standards Consortium framework and include virus origin, genome quality, genome annotation, taxonomic classification, biogeographic distribution and in silico host prediction. Community-wide adoption of MIUViG standards, which complement the Minimum Information about a Single Amplified Genome (MISAG) and Metagenome-Assembled Genome (MIMAG) standards for uncultivated bacteria and archaea, will improve the reporting of uncultivated virus genomes in public databases. In turn, this should enable more robust comparative studies and a systematic exploration of the global virosphere.
Collapse
Affiliation(s)
- Simon Roux
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | | | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, the Netherlands
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland USA
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
| | - Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland USA
| | - Rob Lavigne
- KU Leuven, Laboratory of Gene Technology, Heverlee, Belgium
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona USA
- Department of Integrative Biomedical Sciences, Structural Biology Research Unit, University of Cape Town, Observatory, Cape Town, South Africa
| | - Clara Amid
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Seth R Bordenstein
- Departments of Biological Sciences and Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee USA
| | - Peer Bork
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, Florida USA
| | - Guy R Cochrane
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Rebecca A Daly
- Soil and Crop Sciences Department, Colorado State University, Fort Collins, Colorado USA
| | - Christelle Desnues
- Aix-Marseille Université, CNRS, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Melissa B Duhaime
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan USA
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, Davis, California USA
| | - François Enault
- LMGE,UMR 6023 CNRS, Université Clermont Auvergne, Aubiére, France
| | - Jed A Fuhrman
- University of Southern California, Los Angeles, Los Angeles, California USA
| | - Pascal Hingamp
- Aix Marseille Université,
- , Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland Australia
| | - Bonnie L Hurwitz
- Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, Arizona USA
- BIO5 Research Institute, University of Arizona, Tucson, Arizona USA
| | - Natalia N Ivanova
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Jessica M Labonté
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas USA
| | - Kyung-Bum Lee
- DDBJ Center, National Institute of Genetics, Mishima, Shizuoka Japan
| | - Rex R Malmstrom
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Ilene Karsch Mizrachi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland USA
| | - Hiroyuki Ogata
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - David Páez-Espino
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Marie-Agnès Petit
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Catherine Putonti
- Department of Biology, Loyola University Chicago, Chicago, Illinois USA
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois USA
- Department of Computer Science, Loyola University Chicago, Chicago, Illinois USA
| | - Thomas Rattei
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology,” University of Vienna, Vienna, Austria
| | - Alejandro Reyes
- Department of Biological Sciences, Max Planck Tandem Group in Computational Biology, Universidad de los Andes, Bogotá, Colombia
| | - Francisco Rodriguez-Valera
- Departamento de Producción Vegetal y Microbiología, Evolutionary Genomics Group, Universidad Miguel Hernández, Alicante, Spain
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, Florida USA
| | - Lynn Schriml
- University of Maryland School of Medicine, Baltimore, Maryland USA
| | - Frederik Schulz
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Grieg F Steward
- Department of Oceanography, Center for Microbial Oceanography: Research and Education, University of Hawai'i at Mānoa, Honolulu, Hawai'i USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, Ohio USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio USA
| | | | - Curtis A Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia Canada
- Institute of Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia Canada
| | - Ben Temperton
- School of Biosciences, University of Exeter, Exeter, UK
| | - Susannah G Tringe
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | | | - Nicole S Webster
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland Australia
- Australian Institute of Marine Science, Townsville, Queensland Australia
| | - Katrine L Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California USA
| | - Steven W Wilhelm
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee USA
| | - K Eric Wommack
- University of Delaware, Delaware Biotechnology Institute, Newark, Delaware USA
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | - Kelly C Wrighton
- Soil and Crop Sciences Department, Colorado State University, Fort Collins, Colorado USA
| | - Pelin Yilmaz
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Kyoto, Japan
| | - Mark J Young
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana USA
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland USA
| | - Lisa Zeigler Allen
- J Craig Venter Institute, La Jolla, California USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA.,
| | - Nikos C Kyrpides
- US Department of Energy Joint Genome Institute, Walnut Creek, California USA
| | | |
Collapse
|
13
|
Nasko DJ, Chopyk J, Sakowski EG, Ferrell BD, Polson SW, Wommack KE. Family A DNA Polymerase Phylogeny Uncovers Diversity and Replication Gene Organization in the Virioplankton. Front Microbiol 2018; 9:3053. [PMID: 30619142 PMCID: PMC6302109 DOI: 10.3389/fmicb.2018.03053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Shotgun metagenomics, which allows for broad sampling of viral diversity, has uncovered genes that are widely distributed among virioplankton populations and show linkages to important biological features of unknown viruses. Over 25% of known dsDNA phage carry the DNA polymerase I (polA) gene, making it one of the most widely distributed phage genes. Because of its pivotal role in DNA replication, this enzyme is linked to phage lifecycle characteristics. Previous research has suggested that a single amino acid substitution might be predictive of viral lifestyle. In this study Chesapeake Bay virioplankton were sampled by shotgun metagenomic sequencing (using long and short read technologies). More polA sequences were predicted from this single viral metagenome (virome) than from 86 globally distributed virome libraries (ca. 2,100, and 1,200, respectively). The PolA peptides predicted from the Chesapeake Bay virome clustered with 69% of PolA peptides from global viromes; thus, remarkably the Chesapeake Bay virome captured the majority of known PolA peptide diversity in viruses. This deeply sequenced virome also expanded the diversity of PolA sequences, increasing the number of PolA clusters by 44%. Contigs containing polA sequences were also used to examine relationships between phylogenetic clades of PolA and other genes within unknown viral populations. Phylogenic analysis revealed five distinct groups of phages distinguished by the amino acids at their 762 (Escherichia coli IAI39 numbering) positions and replication genes. DNA polymerase I sequences from Tyr762 and Phe762 groups were most often neighbored by ring-shaped superfamily IV helicases and ribonucleotide reductases (RNRs). The Leu762 groups had non-ring shaped helicases from superfamily II and were further distinguished by an additional helicase gene from superfamily I and the lack of any identifiable RNR genes. Moreover, we found that the inclusion of ribonucleotide reductase associated with PolA helped to further differentiate phage diversity, chiefly within lytic podovirus populations. Altogether, these data show that DNA Polymerase I is a useful marker for observing the diversity and composition of the virioplankton and may be a driving factor in the divergence of phage replication components.
Collapse
Affiliation(s)
- Daniel J Nasko
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Jessica Chopyk
- School of Public Health, University of Maryland, College Park, MD, United States
| | - Eric G Sakowski
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Barbra D Ferrell
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Shawn W Polson
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - K Eric Wommack
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| |
Collapse
|
14
|
Martinez-Hernandez F, Fornas Ò, Lluesma Gomez M, Garcia-Heredia I, Maestre-Carballa L, López-Pérez M, Haro-Moreno JM, Rodriguez-Valera F, Martinez-Garcia M. Single-cell genomics uncover Pelagibacter as the putative host of the extremely abundant uncultured 37-F6 viral population in the ocean. ISME JOURNAL 2018; 13:232-236. [PMID: 30228380 DOI: 10.1038/s41396-018-0278-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/31/2018] [Accepted: 08/26/2018] [Indexed: 11/09/2022]
Abstract
The identification of relevant virus-host pairs that globally account for a large pool of carbon and nutrients in the ocean is paramount to build accurate ecological models. A previous work using single-virus genomics led to the discovery of the uncultured single-virus vSAG 37-F6, originally sorted from the Mediterranean Sea (Blanes Bay Microbial Observatory), that represents one of the most abundant dsDNA viral population in the marine surface virosphere. Here, from same sampling site, we report that a Pelagibacter single-cell contained a viral member of vSAG 37-F6 population, by means of PCR screening of sorted, genome-amplified single cells with vSAG 37-F6-specific primers and whole-genome sequencing. Furthermore, viruses from this population were also found in three other Pelagibacter single cells from the South Pacific and Atlantic oceans. These new uncultured pelagiphages were genetically different from the previously characterized pelagiphage isolates. Data showed that the uncultured vSAG 37-F6 population represents the Pelagibacter phages that inhabit the sunlit ocean better, and contains a vast unrecognized microdiversity.
Collapse
Affiliation(s)
| | - Òscar Fornas
- Flow Cytometry Unit: Pompeu Fabra University (UPF) and Centre for Genomic Regulation (CRG), The Barcelona Institute for Sciences and Technology (BIST), Barcelona, Spain
| | - Monica Lluesma Gomez
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | | | - Lucia Maestre-Carballa
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan, Alicante, 03550, Spain
| | - Jose M Haro-Moreno
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan, Alicante, 03550, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan, Alicante, 03550, Spain
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain.
| |
Collapse
|
15
|
Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol 2018; 3:754-766. [PMID: 29867096 DOI: 10.1038/s41564-018-0166-y] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 04/20/2018] [Indexed: 11/09/2022]
Abstract
Viruses numerically dominate our oceans; however, we have only just begun to document the diversity, host range and infection dynamics of marine viruses, as well as the subsequent effects of infection on both host cell metabolism and oceanic biogeochemistry. Bacteriophages (that is, phages: viruses that infect bacteria) are highly abundant and are known to play critical roles in bacterial mortality, biogeochemical cycling and horizontal gene transfer. This Review Article summarizes current knowledge of marine viral ecology and highlights the importance of phage particles to the dissolved organic matter pool, as well as the complex interactions between phages and their bacterial hosts. We emphasize the newly recognized roles of phages as puppet masters of their bacterial hosts, where phages are capable of altering the metabolism of infected bacteria through the expression of auxiliary metabolic genes and the redirection of host gene expression patterns. Finally, we propose the 'royal family model' as a hypothesis to describe successional patterns of bacteria and phages over time in marine systems, where despite high richness and significant seasonal differences, only a small number of phages appear to continually dominate a given marine ecosystem. Although further testing is required, this model provides a framework for assessing the specificity and ecological consequences of phage-host dynamics.
Collapse
Affiliation(s)
- Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA.
| | - Chelsea Bonnain
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| | - Kema Malki
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| | - Natalie A Sawaya
- College of Marine Science, University of South Florida, Saint Petersburg, FL, USA
| |
Collapse
|
16
|
Bhatt JM, Enriquez AS, Wang J, Rojo HM, Molugu SK, Hildenbrand ZL, Bernal RA. Single-Ring Intermediates Are Essential for Some Chaperonins. Front Mol Biosci 2018; 5:42. [PMID: 29755985 PMCID: PMC5934643 DOI: 10.3389/fmolb.2018.00042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/13/2018] [Indexed: 11/20/2022] Open
Abstract
Chaperonins are macromolecular complexes found throughout all kingdoms of life that assist unfolded proteins reach a biologically active state. Historically, chaperonins have been classified into two groups based on sequence, subunit structure, and the requirement for a co-chaperonin. Here, we present a brief review of chaperonins that can form double- and single-ring conformational intermediates in their protein-folding catalytic pathway. To date, the bacteriophage encoded chaperonins ϕ-EL and OBP, human mitochondrial chaperonin and most recently, the bacterial groEL/ES systems, have been reported to form single-ring intermediates as part of their normal protein-folding activity. These double-ring chaperonins separate into single-ring intermediates that have the ability to independently fold a protein. We discuss the structural and functional features along with the biological relevance of single-ring intermediates in cellular protein folding. Of special interest are the ϕ-EL and OBP chaperonins which demonstrate features of both group I and II chaperonins in addition to their ability to function via single-ring intermediates.
Collapse
Affiliation(s)
- Jay M Bhatt
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, United States
| | - Adrian S Enriquez
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, United States
| | - Jinliang Wang
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, United States
| | - Humberto M Rojo
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, United States
| | - Sudheer K Molugu
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | | | - Ricardo A Bernal
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
17
|
Abstract
Xanthomonas virus (phage) XacN1 is a novel jumbo myovirus infecting Xanthomonas citri, the causative agent of Asian citrus canker. Its linear 384,670 bp double-stranded DNA genome encodes 592 proteins and presents the longest (66 kbp) direct terminal repeats (DTRs) among sequenced viral genomes. The DTRs harbor 56 tRNA genes, which correspond to all 20 amino acids and represent the largest number of tRNA genes reported in a viral genome. Codon usage analysis revealed a propensity for the phage encoded tRNAs to target codons that are highly used by the phage but less frequently by its host. The existence of these tRNA genes and seven additional translation-related genes as well as a chaperonin gene found in the XacN1 genome suggests a relative independence of phage replication on host molecular machinery, leading to a prediction of a wide host range for this jumbo phage. We confirmed the prediction by showing a wider host range of XacN1 than other X. citri phages in an infection test against a panel of host strains. Phylogenetic analyses revealed a clade of phages composed of XacN1 and ten other jumbo phages, indicating an evolutionary stable large genome size for this group of phages.
Collapse
|
18
|
Krupovic M, Cvirkaite-Krupovic V, Iranzo J, Prangishvili D, Koonin EV. Viruses of archaea: Structural, functional, environmental and evolutionary genomics. Virus Res 2017; 244:181-193. [PMID: 29175107 DOI: 10.1016/j.virusres.2017.11.025] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022]
Abstract
Viruses of archaea represent one of the most enigmatic parts of the virosphere. Most of the characterized archaeal viruses infect extremophilic hosts and display remarkable diversity of virion morphotypes, many of which have never been observed among viruses of bacteria or eukaryotes. The uniqueness of the virion morphologies is matched by the distinctiveness of the genomes of these viruses, with ∼75% of genes encoding unique proteins, refractory to functional annotation based on sequence analyses. In this review, we summarize the state-of-the-art knowledge on various aspects of archaeal virus genomics. First, we outline how structural and functional genomics efforts provided valuable insights into the functions of viral proteins and revealed intricate details of the archaeal virus-host interactions. We then highlight recent metagenomics studies, which provided a glimpse at the diversity of uncultivated viruses associated with the ubiquitous archaea in the oceans, including Thaumarchaeota, Marine Group II Euryarchaeota, and others. These findings, combined with the recent discovery that archaeal viruses mediate a rapid turnover of thaumarchaea in the deep sea ecosystems, illuminate the prominent role of these viruses in the biosphere. Finally, we discuss the origins and evolution of archaeal viruses and emphasize the evolutionary relationships between viruses and non-viral mobile genetic elements. Further exploration of the archaeal virus diversity as well as functional studies on diverse virus-host systems are bound to uncover novel, unexpected facets of the archaeal virome.
Collapse
Affiliation(s)
- Mart Krupovic
- Department of Microbiology, Institut Pasteur, 25 rue du Dr. Roux, Paris 75015, Paris, France.
| | | | - Jaime Iranzo
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - David Prangishvili
- Department of Microbiology, Institut Pasteur, 25 rue du Dr. Roux, Paris 75015, Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| |
Collapse
|