1
|
Martin-Cuadrado AB, Rubio-Portillo E, Rosselló F, Antón J. The coral Oculina patagonica holobiont and its response to confinement, temperature, and Vibrio infections. MICROBIOME 2024; 12:222. [PMID: 39472959 PMCID: PMC11520598 DOI: 10.1186/s40168-024-01921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/28/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Extensive research on the diversity and functional roles of the microorganisms associated with reef-building corals has been promoted as a consequence of the rapid global decline of coral reefs attributed to climate change. Several studies have highlighted the importance of coral-associated algae (Symbiodinium) and bacteria and their potential roles in promoting coral host fitness and survival. However, the complex coral holobiont extends beyond these components to encompass other entities such as protists, fungi, and viruses. While each constituent has been individually investigated in corals, a comprehensive understanding of their collective roles is imperative for a holistic comprehension of coral health and resilience. RESULTS The metagenomic analysis of the microbiome of the coral Oculina patagonica has revealed that fungi of the genera Aspergillus, Fusarium, and Rhizofagus together with the prokaryotic genera Streptomyces, Pseudomonas, and Bacillus were abundant members of the coral holobiont. This study also assessed changes in microeukaryotic, prokaryotic, and viral communities under three stress conditions: aquaria confinement, heat stress, and Vibrio infections. In general, stress conditions led to an increase in Rhodobacteraceae, Flavobacteraceae, and Vibrionaceae families, accompanied by a decrease in Streptomycetaceae. Concurrently, there was a significant decline in both the abundance and richness of microeukaryotic species and a reduction in genes associated with antimicrobial compound production by the coral itself, as well as by Symbiodinium and fungi. CONCLUSION Our findings suggest that the interplay between microeukaryotic and prokaryotic components of the coral holobiont may be disrupted by stress conditions, such as confinement, increase of seawater temperature, or Vibrio infection, leading to a dysbiosis in the global microbial community that may increase coral susceptibility to diseases. Further, microeukaryotic community seems to exert influence on the prokaryotic community dynamics, possibly through predation or the production of secondary metabolites with anti-bacterial activity. Video Abstract.
Collapse
Affiliation(s)
| | - Esther Rubio-Portillo
- Dpt. Fisiología, Genética y Microbiología, University of Alicante, San Vicente del Raspeig, Spain.
| | - Francesc Rosselló
- Mathematics and Computer Science Dept, University of the Balearic Islands, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
| | - Josefa Antón
- Dpt. Fisiología, Genética y Microbiología, University of Alicante, San Vicente del Raspeig, Spain
| |
Collapse
|
2
|
Nadal-Molero F, Rosselli R, Garcia-Juan S, Campos-Lopez A, Martin-Cuadrado AB. Unveiling host-parasite relationships through conserved MITEs in prokaryote and viral genomes. Nucleic Acids Res 2024:gkae906. [PMID: 39470691 DOI: 10.1093/nar/gkae906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/27/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024] Open
Abstract
Transposable elements (TEs) play a pivotal role in the evolution of genomes across all life domains. 'Miniature Inverted-repeat Transposable-Elements' (MITEs) are non-autonomous TEs mainly located in intergenic regions, relying on external transposases for mobilization. The extent of MITEs' mobilome was explored across nearly 1700 prokaryotic genera, 183 232 genomes, revealing a broad distribution. MITEs were identified in 56.5% of genomes, totaling over 1.4 million cMITEs (cellular MITEs). Cluster analysis revealed that 97.4% of cMITEs were specific within genera boundaries, with up to 23% being species-specific. Subsequently, this genus-specificity was evaluated as a method to link microbial host to their viruses. A total of 51 655 cMITEs had counterparts in viral sequences, termed vMITEs (viral MITEs), resulting in the identification of 2500 viral sequences with them. Among these, 1501 sequences were positively assigned to a previously known host (41.8% were isolated viruses and 12.3% were assigned through CRISPR data), while 379 new host-virus associations were predicted. Deeper analysis in Neisseria and Bacteroidota groups allowed the association of 242 and 530 new viral sequences, respectively. MITEs are proposed as a novel approach to establishing valid virus-host relationships.
Collapse
Affiliation(s)
- Francisco Nadal-Molero
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Riccardo Rosselli
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Silvia Garcia-Juan
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Alicia Campos-Lopez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| | - Ana-Belen Martin-Cuadrado
- Department of Physiology, Genetics and Microbiology, University of Alicante, Carr. de San Vicente del Raspeig, s/n, 03690 San Vicente del Raspeig, Alicante, Spain
| |
Collapse
|
3
|
Li M, Hu X, Ni T, Ni Y, Xue D, Li F. Comparative genomic analyses of the genus Robertmurraya and proposal of the novel species Robertmurraya mangrovi sp. nov., isolated from mangrove soil. Antonie Van Leeuwenhoek 2024; 118:22. [PMID: 39441363 DOI: 10.1007/s10482-024-02032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
A Gram-positive, aerobic, motile, rod-shaped bacterial strain, designated 31A1RT, was isolated from the mangrove soil of Xilian village, Zhanjiang, China. Strain 31A1RT thrives at temperatures ranging from 15 to 45 °C (optimum at 30 °C), pH 6.5-10 (optimum at 8.5), and in the presence of 0-5% (w/v) NaCl (optimum at 1.5%). The strain shares the highest 16S rRNA gene sequence similarity with Robertmurraya crescens (97.24%) and Robertmurraya dakarensis (97.18%). The complete genome of strain 31A1RT spans 4.71 Mbp with a genomic DNA G + C content of 35.9 mol%. The average nucleotide identity and DNA-DNA hybridization values between strain 31A1RT and type strains of other species of the genus Robertmurraya were 71.24-72.11% and 19.90-21.40%, respectively. The amino acid identity values and percentage of conserved proteins ranged from 66.94 to 68.10% and from 58.34 to 61.62%, respectively, aligning with intrageneric cutoff values. The major fatty acids (≥ 5.0%) were iso-C14:0 (5.0%), iso-C15:0 (41.4%), iso-C16:0 (12.6%), C16:1ω7c alcohol (12.2%), and iso-C17:1 ω10c (6.5%). The polar lipids profile was mainly composed of diphosphatidyl glycerol, phosphatidyl glycerol, and phosphatidyl ethanolamine. We also profiled the pan-genome and metabolic features of genomic assemblies of strains belonging to the genus Robertmurraya, which indicated functional capacities and metabolic similarities. Consequently, we propose that strain 31A1RT represents a new species in the genus Robertmurraya, for which the name Robertmurraya mangrovi sp. nov. is proposed, with the type strain being 31A1RT (= GDMCC 1.4378T = JCM 36937T).
Collapse
Affiliation(s)
- Ming Li
- School of Integrated Chinese and Western Medicine (School of Life Sciences), Anhui University of Chinese Medicine, Hefei, China
| | - Xixi Hu
- School of Integrated Chinese and Western Medicine (School of Life Sciences), Anhui University of Chinese Medicine, Hefei, China
| | - Tiancheng Ni
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuan Ni
- School of Integrated Chinese and Western Medicine (School of Life Sciences), Anhui University of Chinese Medicine, Hefei, China
| | - Dong Xue
- School of Integrated Chinese and Western Medicine (School of Life Sciences), Anhui University of Chinese Medicine, Hefei, China.
| | - Feng Li
- School of Integrated Chinese and Western Medicine (School of Life Sciences), Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
4
|
Zhang L, Chen Q, Zeng S, Deng Z, Liu Z, Li X, Hou Q, Zhou R, Bao S, Hou D, Weng S, He J, Huang Z. Succeed to culture a novel lineage symbiotic bacterium of Mollicutes which widely found in arthropods intestine uncovers the potential double-edged sword ecological function. Front Microbiol 2024; 15:1458382. [PMID: 39493855 PMCID: PMC11527720 DOI: 10.3389/fmicb.2024.1458382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024] Open
Abstract
Symbiotic gut bacteria play crucial role in host health. Symbionts are widely distributed in arthropod intestines, but their ecological functions are poorly understood due to the inability to cultivate them. Members of Candidatus Bacilliplasma (CB) are widely distributed in crustacean intestine and maybe commensals with hosts, but the paucity of pure cultures has limited further insights into their physiologies and functions. Here, four strains of representative CB bacteria in shrimp intestine were successfully isolated and identified as members of a novel Order in the Phylum Mycoplasmatota. Through genome assembly, the circular genome maps of the four strains were obtained, and the number of coding genes ranged from 1,886 to 1,980. Genomic analysis suggested that the bacteria were missing genes for many critical pathways including the TCA cycle and biosynthesis pathways for amino acids and coenzyme factors. The analysis of 16S amplification data showed that Shewanella, Pseudomonas and CB were the dominant at the genera level in the intestine of Penaeus vannamei. Ecological functional experiments revealed that the strains were symbionts and colonized shrimp intestines. Our valued findings can greatly enhance our understanding and provides new insights into the potentially significant role of uncultured symbiotic bacteria in modulating host health.
Collapse
Affiliation(s)
- Lingyu Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Qi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Shenzheng Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Zhixuan Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Zhongcheng Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Xuanting Li
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Qilu Hou
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Renjun Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Shicheng Bao
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Dongwei Hou
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Zhijian Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
5
|
Marasco R, Michoud G, Seferji KA, Gonella E, Garuglieri E, Rolli E, Alma A, Mapelli F, Borin S, Daffonchio D, Crotti E. Sorlinia euscelidii gen. nov., sp. nov., a novel acetic acid bacterium isolated from the leafhopper Euscelidius variegatus ( Hemiptera: Cicadellidae). Int J Syst Evol Microbiol 2024; 74:006544. [PMID: 39432413 PMCID: PMC11493185 DOI: 10.1099/ijsem.0.006544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Acetic acid bacteria - belonging to the Acetobacteraceae family - are found in the gut of many sugar-feeding insects. In this study, six strains have been isolated from the hemipteran leafhopper Euscelidius variegatus. While they exhibit high 16S rRNA gene sequence similarities to uncultured members of the Acetobacteraceae family, they could not be unequivocally assigned to any particular type species. Considering the clonality of the six isolates, the EV16PT strain was used as a representative of this group of isolates. The genome sequence of EV16PT is composed of a 2.388 Mbp chromosome, with a DNA G+C content of 57 mol%. Phylogenetic analyses based on the 16S rRNA gene sequence and whole-genome multilocus sequence analysis indicate that EV16PT forms a monophyletic clade with the uncultivated endosymbiont of Diaphorina citri, the Candidatus Kirkpatrickella diaphorinae. Such a phylogenetic clade is positioned between those of Asaia-Swaminathania and Kozakia. The genomic distance metrics based on gene and protein sequences support the proposal that EV16PT is a new species belonging to a yet-undescribed genus. It is a rod-shaped Gram-stain-negative bacterium, strictly aerobic, non-motile, non-spore-forming, showing optimal growth without salt (NaCl) at 30 °C and pH of 6-7. The major quinone is Q10, and the dominant cellular fatty acids (>10%) are C18:l ω7c, C19 : 0 cyclo ω6c, C16 : 0 and C19 : 1 2OH. The polar lipid profile comprises diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine, along with unidentified aminophospholipids, glycophospholipids, aminolipids and lipids. Based on a polyphasic approach, including phylogenetic, phylogenomic, genome relatedness, phenotypic and chemotaxonomic characterisations, EV16PT (= KCTC 8296T, = DSM 117028T) is proposed as a representative of a novel species in a novel genus with the proposed name Sorlinia euscelidii gen. nov., sp. nov., in honour of Prof. Claudia Sorlini, an Italian environmental microbiologist at the University of Milan who inspired the research on microbial diversity, including symbiosis in plants and animals.
Collapse
Affiliation(s)
- Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Grégoire Michoud
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kholoud A. Seferji
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Elena Gonella
- Department of Agricultural, Forest, and Food Sciences (DISAFA), University of Torino, Turin, Italy
| | - Elisa Garuglieri
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Alberto Alma
- Department of Agricultural, Forest, and Food Sciences (DISAFA), University of Torino, Turin, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
6
|
Dai C, Zhang G, Lin W, Luo J. Thiobacillus sedimenti sp. nov., a chemolithoautotrophic sulphur-oxidizing bacterium isolated from freshwater sediment. Antonie Van Leeuwenhoek 2024; 118:9. [PMID: 39316198 DOI: 10.1007/s10482-024-02026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
A sulphur-oxidizing bacterium, designated strain SCUT-2T, was isolated from freshwater sediment collected from the Pearl River in Guangzhou, PR China. This strain was an obligate chemolithoautotroph, utilizing reduced sulphur compounds (elemental sulphur, thiosulphate, tetrathionate and sulphite) as the electron donor. Growth of strain SCUT-2T was observed at 20-40 ℃ (optimum at 30 °C), pH 5.0-9.0 (optimum at 6.0), and NaCl concentration range of 0-9 g L-1 (optimum at 1 g L-1). The major cellular fatty acids were C16:0 ω7c and cyclo-C17:0. The DNA G + C content of the complete genome sequence was 66.8 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain SCUT-2T formed a lineage within the genus Thiobacillus, showing gene sequence identity of 98.0% with its closest relative Thiobacillus thioparus THI 115. The genome of strain SCUT-2T contains multiple genes encoding sulphur-oxidizing enzymes that catalyse the oxidation of reduced sulphur compounds, partial genes that are necessary for denitrification, and the genes encoding cbb3-type cytochrome c oxidase, aa3-type cytochrome c oxidase and bd-type quinol oxidase. Facultative anaerobic growth occurs when using nitrate as the electron acceptor and thiosulphate as the electron donor. On the basis of phenotypic, chemotaxonomic, genotypic and phylogenetic analysis, strain SCUT-2T (= GDMCC 1.4108T = JCM 39443T) is deemed to represent a novel Thiobacillus species, for which we propose the name Thiobacillus sedimenti sp. nov.
Collapse
Affiliation(s)
- Chenming Dai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Guangye Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Weitie Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Jianfei Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
7
|
Silva-Solar S, Viver T, Wang Y, Orellana LH, Knittel K, Amann R. Acidimicrobiia, the actinomycetota of coastal marine sediments: Abundance, taxonomy and genomic potential. Syst Appl Microbiol 2024; 47:126555. [PMID: 39342656 DOI: 10.1016/j.syapm.2024.126555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Microbial communities in marine sediments represent some of the densest and most diverse biological communities known, with up to a billion cells and thousands of species per milliliter. Among this taxonomic diversity, the class Acidimicrobiia, within the phylum Actinomycetota, stands out for its consistent presence, yet its limited taxonomic understanding obscures its ecological role. We used metagenome-assembled genomes from a 5-year Arctic fjord sampling campaign and compared them to publicly available Acidimicrobiia genomes using 16S rRNA gene and whole-genome phylogenies, alongside gene prediction and annotation to study their taxonomy and genomic potential. Overall, we provide a taxonomic overview of the class Acidimicrobiia and show its significant prevalence in Isfjorden and Helgoland coastal sediments, representing over 90% of Actinomycetota 16S rRNA gene sequences, and 3-7% of Bacteria. We propose Benthobacter isfjordensis gen. nov., sp. nov., Hadalibacter litoralis gen. nov., sp. nov., and two new species from Ilumatobacter, following SeqCode guidelines. In addition, we report the first in situ quantification of the family Ilumatobacteraceae, revealing its substantial presence (1-6%) in coastal sediments. This work highlights the need of refining the taxonomy of Acidimicrobiia to better understand their ecological contributions.
Collapse
Affiliation(s)
- Sebastián Silva-Solar
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsius Str 1, 28359 Bremen, Germany
| | - Tomeu Viver
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsius Str 1, 28359 Bremen, Germany
| | - Yueqing Wang
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsius Str 1, 28359 Bremen, Germany
| | - Luis H Orellana
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsius Str 1, 28359 Bremen, Germany
| | - Katrin Knittel
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsius Str 1, 28359 Bremen, Germany
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Celsius Str 1, 28359 Bremen, Germany.
| |
Collapse
|
8
|
Kingkaew E, Kato S, Iino T, Itoh T, Ohkuma M, Phongsopitanun W, Tanasupawat S. Paracraurococcus lichenis sp. nov., isolated from lichen in Thailand. Arch Microbiol 2024; 206:413. [PMID: 39316218 DOI: 10.1007/s00203-024-04129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
A novel bacterium, designated as strain LOR1-02T and isolated from a lichen sample collected from Kham Riang Subdistrict, Kantharawichai District, Maha Sarakham Province, Thailand, underwent thorough investigation utilizing a polyphasic taxonomic approach. Strain LOR1-02T demonstrated growth within a temperature range of 20-42 °C (optimal at 30 °C), pH range of 5.0-7.5 (optimal at pH 7.0), and tolerance to 4.0% (w/v) NaCl. Phylogenetic analysis revealed its close relation to Paracraurococcus ruber JCM 9931T, with a 16S rRNA gene sequence similarity of 97.16%, placing it within the genus Paracraurococcus. The approximate genome size of strain LOR1-02T was determined to be 8.6 Mb, with a G + C content of 70.9 mol%. Additionally, ANIb, ANIm, and AAI values between the whole genomes of strain LOR1-02T and type strains were calculated as 82.6-83.4%, 86.1-86.8%, and 81.4-82.2%, respectively, while the dDDH value was determined to be 26.3-28.5% (C.I. 24.0-31.0%). The predominant fatty acids detected were C18:1ω7c and/or C18:1ω6c, C16:0, and C18:12OH. The major ubiquinone identified was Q-10, and the polar lipids included phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol, along with unidentified phosphoaminolipid, lipids, and an amino lipid. Based on comprehensive phenotypic, chemotaxonomic, and genotypic characterization, it is concluded that strain LOR1-02T represents a novel species within the genus Paracraurococcus, for which the name Paracraurococcus lichenis sp. nov. is proposed. The type strain designation is LOR1-02T (= JCM 33121T = NBRC 112776T = TISTR 2503T).
Collapse
Affiliation(s)
- Engkarat Kingkaew
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Shingo Kato
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Takao Iino
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Takashi Itoh
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Wangmai, Bangkok, 10330, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Wangmai, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Karnachuk OV, Lukina AP, Avakyan MR, Kadnikov VV, Begmatov S, Beletsky AV, Vlasova KG, Novikov AA, Shcherbakova VA, Mardanov AV, Ravin NV. Novel thermophilic genera Geochorda gen. nov. and Carboxydochorda gen. nov. from the deep terrestrial subsurface reveal the ecophysiological diversity in the class Limnochordia. Front Microbiol 2024; 15:1441865. [PMID: 39376703 PMCID: PMC11456536 DOI: 10.3389/fmicb.2024.1441865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/27/2024] [Indexed: 10/09/2024] Open
Abstract
The class Limnochordia harbors a single cultivated member, the mesophilic Limnochorda pilosa, which was isolated from a meromictic lake. Despite numerous molecular signatures reported in various ecosystems, the ecophysiological versatility of this deeply branched lineage of Firmicutes (Bacillota) remains poorly understood. The objective of this study was to use targeted cultivation, based on metagenome-assembled genomes from a deep terrestrial aquifer in Western Siberia, to isolate two new thermophilic members of the class. These isolates, described as Geochorda subterranea gen. nov. sp. nov. and Carboxydochorda subterranea gen. nov. sp. nov. within the Geochordaceae fam. nov., were capable of both anaerobic and aerobic respiration using fumarate and O2, respectively, with simple sugars as electron donors. The cultivated Geochordaceae have demonstrated fermentative growth and degradation of various polymers, including starch, maltose, maltodextrin, xylan, and chitin. The carboxydotrophic C. subterranea sp. nov. exhibited autotrophic growth via the Calvin-Benson-Bassham cycle, using CO, H2, and formate as electron donors and O2 as an electron acceptor, adding metabolic flexibility to the bacterium in the nutrient-depleted "deep biosphere" and supporting the possibility of aerobic metabolism in the deep subsurface. The broad physiological potential deciphered from physiological experiments and comparative genomic data explains the widespread distribution of uncultivated members of the class Limnochordia in various ecosystems, where they can oxidize complex organic substrates through both aerobic and anaerobic respiration, as well as pursue a chemolithotrophic lifestyle through the oxidation of H2 or CO.
Collapse
Affiliation(s)
- Olga V. Karnachuk
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Anastasia P. Lukina
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Marat R. Avakyan
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | - Vitaly V. Kadnikov
- Institute of Bioengineering, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Shahjahon Begmatov
- Institute of Bioengineering, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Ksenia G. Vlasova
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University, Tomsk, Russia
| | | | - Viktoria A. Shcherbakova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center Pushchino Center for Biological Research of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Wang W, Song W, Majzoub ME, Feng X, Xu B, Tao J, Zhu Y, Li Z, Qian PY, Webster NS, Thomas T, Fan L. Decoupling of strain- and intrastrain-level interactions of microbiomes in a sponge holobiont. Nat Commun 2024; 15:8205. [PMID: 39294150 PMCID: PMC11410982 DOI: 10.1038/s41467-024-52464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 09/07/2024] [Indexed: 09/20/2024] Open
Abstract
Holobionts are highly organized assemblages of eukaryotic hosts, cellular microbial symbionts, and viruses, whose interactions and evolution involve complex biological processes. It is largely unknown which specific determinants drive similarity or individuality in genetic diversity between holobionts. Here, we combine short- and long-read sequencing and DNA-proximity-linkage technologies to investigate intraspecific diversity of the microbiomes, including host-resolved viruses, in individuals of a model marine sponge. We find strong impacts of the sponge host and the cellular hosts of viruses on strain-level organization of the holobiont, whereas substantial overlap in nucleotide diversity between holobionts suggests frequent exchanges of microbial cells and viruses at intrastrain level in the local sponge population. Immune-evasive arms races likely restricted virus-host co-evolution at the intrastrain level, generated holobiont-specific genome variations, and linked virus-host genetics through recombination. Our work shows that a decoupling of strain- and intrastrain-level interactions is a key factor in the genetic diversification of holobionts.
Collapse
Affiliation(s)
- Wenxiu Wang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Weizhi Song
- Center for Marine Science and Innovation, University of New South Wales, Sydney, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Marwan E Majzoub
- Center for Marine Science and Innovation, University of New South Wales, Sydney, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Xiaoyuan Feng
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Bu Xu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jianchang Tao
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yuanqing Zhu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Minhang, Shanghai, China
| | - Pei-Yuan Qian
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Nicole S Webster
- The Australian Antarctic Division, Kingston, Tasmania, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Torsten Thomas
- Center for Marine Science and Innovation, University of New South Wales, Sydney, New South Wales, Australia.
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
11
|
Sudarshan AS, Dai Z, Gabrielli M, Oosthuizen-Vosloo S, Konstantinidis KT, Pinto AJ. New Drinking Water Genome Catalog Identifies a Globally Distributed Bacterial Genus Adapted to Disinfected Drinking Water Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16475-16487. [PMID: 39235268 PMCID: PMC11411728 DOI: 10.1021/acs.est.4c05086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Genome-resolved insights into the structure and function of the drinking water microbiome can advance the effective management of drinking water quality. To enable this, we constructed and curated thousands of metagenome-assembled and isolate genomes from drinking water distribution systems globally to develop a Drinking Water Genome Catalog (DWGC). The current DWGC disproportionately represents disinfected drinking water systems due to a paucity of metagenomes from nondisinfected systems. Using the DWGC, we identify core genera of the drinking water microbiome including a genus (UBA4765) within the order Rhizobiales that is frequently detected and highly abundant in disinfected drinking water systems. We demonstrate that this genus has been widely detected but incorrectly classified in previous amplicon sequencing-based investigations of the drinking water microbiome. Further, we show that a single genome variant (genomovar) within this genus is detected in 75% of drinking water systems included in this study. We propose a name for this uncultured bacterium as "Raskinella chloraquaticus" and describe the genus as "Raskinella" (endorsed by SeqCode). Metabolic annotation and modeling-based predictions indicate that this bacterium is capable of necrotrophic growth, is able to metabolize halogenated compounds, proliferates in a biofilm-based environment, and shows clear indications of disinfection-mediated selection.
Collapse
Affiliation(s)
- Ashwin S Sudarshan
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zihan Dai
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Marco Gabrielli
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dubendorf CH-8600, Switzerland
| | - Solize Oosthuizen-Vosloo
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ameet J Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
12
|
Wang L, Cheng X, Guo Y, Cao J, Sun M, Hwang JS, Liu R, Fang J. Novel isolates of hydrogen-oxidizing chemolithoautotrophic Sulfurospirillum provide insight to the functions and adaptation mechanisms of Campylobacteria in shallow-water hydrothermal vents. mSystems 2024; 9:e0014824. [PMID: 39166872 PMCID: PMC11406935 DOI: 10.1128/msystems.00148-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Enhancing the availability of representative isolates from hydrothermal vents (HTVs) is imperative for comprehending the microbial processes that propel the vent ecosystem. In recent years, Campylobacteria have emerged as the predominant and ubiquitous taxon across both shallow and deep-sea vent systems. Nevertheless, only a few isolates have been cultured, primarily originating from deep-sea HTVs. Presently, no cultivable isolates of Campylobacteria are accessible in shallow water vent systems (<200 m), which exhibit markedly distinct environmental conditions from their deep-sea counterparts. In this study, we enriched a novel isolate (genus Sulfurospirillum, Campylobacteria) from shallow-water HTVs of Kueishan Island. Genomic and physiological analysis revealed that this novel Campylobacteria species grows on a variety of substrate and carbon/energy sources. The pan-genome and phenotypic comparisons with 12 previously isolated Sulfurospirillum species from different environments supported the identification of functional features in Sulfurospirillum genomes crucial for adaptation to vent environments, such as sulfur oxidation, carbon fixation, biofilm formation, and benzoate/toluene degradation, as well as diverse genes related with signal transportation. To conclude, the metabolic characteristics of this novel Campylobacteria augment our understanding of Campylobacteria spanning from deep-sea to shallow-water vent systems.IMPORTANCECampylobacteria emerge as the dominant and ubiquitous taxa within vent systems, playing important roles in the vent ecosystems. However, isolated representatives of Campylobacteria have been mainly from the deep-sea hydrothermal fields, leaving a significant knowledge gap regarding the functions, activities, and adaptation strategies of the vent microorganisms in shallow-water hydrothermal vents (HTVs). This study bridges this gap by providing insights into the phenomics and genomic diversity of genus Sulfurospirillum (order Campylobacterales, class Campylobacteria) based on data derived from a novel isolate obtained from shallow-water HTVs. Our mesophilic isolate of Sulfurospirillum not only augments the genus diversity of Campylobacteria pure cultures derived from vent systems but also serves as the inaugural reference isolate for Campylobacteria in shallow-water environments.
Collapse
Affiliation(s)
- Li Wang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Xinyi Cheng
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Yizhe Guo
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Junwei Cao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Mingye Sun
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Rulong Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
13
|
Kumar A, Lakhawat SS, Singh K, Kumar V, Verma KS, Dwivedi U, Kothari SL, Malik N, Sharma PK. Metagenomic analysis of soil from landfill site reveals a diverse microbial community involved in plastic degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135804. [PMID: 39276741 DOI: 10.1016/j.jhazmat.2024.135804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/23/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
In this study, we have investigated microbial communities structure and function using high throughput amplicon sequencing and whole metagenomic sequencing of DNA extracted from different depths of a plastic-laden landfill site. With diverse taxonomic groups inhabiting the plastic-rich soil, our study demonstrates the remarkable adaptability of microbes to use this new substrate as a carbon source. FTIR spectroscopic analysis of soil indicated degradation of plastic as perceived from the carbonyl index of 0.16, 0.72, and 0.44 at 0.6, 0.9 and 1.2 m depth, respectively. Similarly, water contact angles of 108.7 degree, 99.7 degree, 62.7 degree, and 77.8 degree of plastic pieces collected at 0.3, 0.6, 0.9, and 1.2 m depths respectively showed increased wettability and hydrophilicity of the plastic. Amplicon analysis of 16S and 18 S rRNA revealed a high abundance of several plastic-degrading bacterial groups, including Pseudomonas, Rhizobiales, Micrococcaceae, Chaetomium, Methylocaldum, Micromonosporaceae, Rhodothermaceae and fungi, including Trichoderma, Aspergillus, Candida at 0.9 m. The co-existence of specific microbial groups at different depths of landfill site indicates importance of bacterial and fungal interactions for plastic. Whole metagenome analysis of soil sample at 0.9 m depth revealed a high abundance of genes encoding enzymes that participate in the biodegradation of PVC, polyethylene, PET, and polyurethane. Curation of the pathways related to the degradation of these materials provided a blueprint for plastic biodegradation in this ecosystem. Altogether, our study has highlighted the importance of microbial cooperation for the biodegradation of pollutants. Our metagenome-based investigation supports the current perception that consortia of fungi-bacteria are preferable to axenic cultures for effective bioremediation of the environment.
Collapse
Affiliation(s)
- Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | | | - Kashmir Singh
- Department of Biotechnology, Panjab University Chandigarh, India
| | - Vikram Kumar
- Amity Institute of Pharmacy, Amity University Rajasthan, Jaipur, Rajasthan, India
| | | | | | - S L Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India; Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
14
|
Zhao J, Both JP, Rodriguez-R LM, Konstantinidis KT. GSearch: ultra-fast and scalable genome search by combining K-mer hashing with hierarchical navigable small world graphs. Nucleic Acids Res 2024; 52:e74. [PMID: 39011878 PMCID: PMC11381346 DOI: 10.1093/nar/gkae609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Genome search and/or classification typically involves finding the best-match database (reference) genomes and has become increasingly challenging due to the growing number of available database genomes and the fact that traditional methods do not scale well with large databases. By combining k-mer hashing-based probabilistic data structures (i.e. ProbMinHash, SuperMinHash, Densified MinHash and SetSketch) to estimate genomic distance, with a graph based nearest neighbor search algorithm (Hierarchical Navigable Small World Graphs, or HNSW), we created a new data structure and developed an associated computer program, GSearch, that is orders of magnitude faster than alternative tools while maintaining high accuracy and low memory usage. For example, GSearch can search 8000 query genomes against all available microbial or viral genomes for their best matches (n = ∼318 000 or ∼3 000 000, respectively) within a few minutes on a personal laptop, using ∼6 GB of memory (2.5 GB via SetSketch). Notably, GSearch has an O(log(N)) time complexity and will scale well with billions of genomes based on a database splitting strategy. Further, GSearch implements a three-step search strategy depending on the degree of novelty of the query genomes to maximize specificity and sensitivity. Therefore, GSearch solves a major bottleneck of microbiome studies that require genome search and/or classification.
Collapse
Affiliation(s)
- Jianshu Zhao
- Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Luis M Rodriguez-R
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
- Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Konstantinos T Konstantinidis
- Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
15
|
Lata P, Bhargava V, Gupta S, Singh A, Bala K, Lal R. SeqCode: A Nomenclatural Code for Prokaryotes. Indian J Microbiol 2024; 64:859-866. [PMID: 39282201 PMCID: PMC11399350 DOI: 10.1007/s12088-024-01315-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/15/2024] [Indexed: 09/18/2024] Open
Abstract
SeqCode is a nomenclatural code for naming prokaryotes based on genetic information. With the majority of prokaryotes being inaccessible as pure cultures, they are not eligible for naming under the International Code of Nomenclature of Prokaryotes. To address this challenge, a new concept that is SeqCode, which assign names to prokaryotes on the basis of genome sequence, has been announced in 2022. The valid publication of names for prokaryotes based on isolated genome, metagenome-assembled genomes, or single-amplified genome sequences. It operates through a registration portal, SeqCode Registry, where metadata is linked to names and nomenclatural types. This code provides a framework for reproducible nomenclature for all prokaryotes, either culturable or not and facilitates communication across all microbiological disciplines. Additionally, the SeqCode includes provisions for updating and revising names as new data becomes available. By providing a standardized system for naming and classifying these microorganisms based on their genetic information, the SeqCode will facilitate the discovery, understanding and comparison of these microorganisms, helping us to understand their role in the environment and how they contribute to the functioning of the Earth.
Collapse
Affiliation(s)
- Pushp Lata
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Vatsal Bhargava
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Sonal Gupta
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Ajaib Singh
- Department of Zoology, Sri Venkateswara College, University of Delhi, Delhin, 110021 India
| | - Kiran Bala
- Department of Zoology, Deshbandhu College, University of Delhi, Delhi, 110019 India
| | - Rup Lal
- Acharya Narendra Dev College, University of Delhi, Delhi, 110019 India
| |
Collapse
|
16
|
Podosokorskaya OA, Petrova NF, Tikhonova EN, Klyukina AA, Elcheninov AG. Rosettibacter primus gen. nov., sp. nov., and Rosettibacter firmus sp. nov., facultatively anaerobic moderately thermophilic bacteria of the class Ignavibacteria from hot springs of North Ossetia. Syst Appl Microbiol 2024; 47:126528. [PMID: 38959749 DOI: 10.1016/j.syapm.2024.126528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
A novel facultatively anaerobic moderately thermophilic bacteria, strains 4137-MeT and 4148-MeT, were isolated from hot springs of Karmadon and Ursdon, respectively (North Ossetia, Russian Federation). Gram-negative, motile rods were present singly, in pairs, rosettes, and aggregates, or formed biofilms. Both strains grew optimally at 50-55 °C, pH 7.0 and did not require sodium chloride or yeast extract for growth. They were chemoorganoheterotrophs, growing on mono-, di- and polysaccharides (cellulose, starch, xylan, lichenan, galactan, xyloglucan, mannan, xanthan gum, guar gum) as well as proteinaceous substrates (gelatin, peptone, beef and yeast extract). Growth under anaerobic conditions was observed in presence and absence of external electron acceptors. Sulfur, thiosulfate, arsenate, Fe-citrate, and ferrihydrite were reduced with acetate, starch, or yeast extract as electron donors. The respiratory quinone was MK-7. Major cellular fatty acids of both strains were iso-C15:0, anteiso-C17:0, C15:0, iso-C16:0 and additionally iso-C17:0 for strain 4137-MeT. The size of the genome and genomic DNA G + C content of strain 4137-MeT were 3.24 Mb. and 29.9 %, respectively; for strain 4148-MeT - 3.33 Mb and 30.7 %. According to the 16S rRNA gene sequence and conserved protein sequences phylogenies, strains 4137-MeT and 4148-MeT represented a distinct lineage of the family Melioribacteraceae within the class Ignavibacteria. Based on phylogenetic analysis and phenotypic features, the novel isolates were assigned to a novel genus, for which the name Rosettibacter gen. nov. is proposed. Strain 4148-MeT represents its type species Rosettibacter primus sp. nov., while strain 4137-MeT represents a new species Rosettibacter firmus sp. nov.
Collapse
Affiliation(s)
- Olga A Podosokorskaya
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia.
| | - Nika F Petrova
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Ekaterina N Tikhonova
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Alexandra A Klyukina
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Alexander G Elcheninov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| |
Collapse
|
17
|
Fatahi-Bafghi M. Reclassification of Butyrivibrio crossotus Moore et al. 1976 (Approved Lists 1980) into a novel genus as Eshraghiella crossota gen. nov., comb. nov. Int J Syst Evol Microbiol 2024; 74. [PMID: 39226088 DOI: 10.1099/ijsem.0.006509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The reclassification of Butyrivibrio crossotus Moore et al. 1976 (Approved Lists 1980) as Eshraghiella crossota gen. nov., comb. nov. is proposed within the family Lachnospiraceae. This reclassification is based on differences revealed through the analysis of 16S rRNA, groEL, recA, and rpoB genes, as well as genome sequences, distinguishing it from other Butyrivibrio species. Comparative analysis showed that B. crossotus exhibited digital DNA-DNA hybridization (dDDH) values of 19.40-27.20% and average nucleotide identities based on blast (ANIb) values of 67.06-67.64% with other Butyrivibrio species. These values are significantly below the species delineation thresholds (dDDH, 70%; ANIb, 95-96%), justifying the proposed reclassification. Additionally, the results of the average amino acid identity (AAI) analysis indicated that this species shares 59.22-60.17% AAI with the other species of the genus Butyrivibrio, which is below the AAI threshold (65%) for a genus boundary. In addition, biochemical and morphological characteristics also support the proposal that this species is different from other species of the genus Butyrivibrio. The type strain is ATCC 29175T (DSM 2876T=T9-40AT).
Collapse
Affiliation(s)
- Mehdi Fatahi-Bafghi
- Research Center for Health Technology Assessment and Medical Informatics, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
18
|
Hu P, Qian Y, Xu Y, Radian A, Yang Y, Gu JD. A positive contribution to nitrogen removal by a novel NOB in a full-scale duck wastewater treatment system. WATER RESEARCH X 2024; 24:100237. [PMID: 39155949 PMCID: PMC11327836 DOI: 10.1016/j.wroa.2024.100237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
Nitrite-oxidizing bacteria (NOB) are undesirable in the anaerobic ammonium oxidation (anammox)-driven nitrogen removal technologies in the modern wastewater treatment plants (WWTPs). Diverse strategies have been developed to suppress NOB based on their physiological properties that we have understood. But our knowledge of the diversity and mechanisms employed by NOB for survival in the modern WWTPs remains limited. Here, Three NOB species (NOB01-03) were recovered from the metagenomic datasets of a full-scale WWTP treating duck breeding wastewater. Among them, NOB01 and NOB02 were classified as newly identified lineage VII, tentatively named Candidatus (Ca.) Nitrospira NOB01 and Ca. Nitrospira NOB02. Analyses of genomes and in situ transcriptomes revealed that these two novel NOB were active and showed a high metabolic versatility. The transcriptional activity of Ca. Nitrospira could be detected in all tanks with quite different dissolved oxygen (DO) (0.01-5.01 mg/L), illustrating Ca. Nitrospira can survive in fluctuating DO conditions. The much lower Ca. Nitrospira abundance on the anammox bacteria-enriched sponge carrier likely originated from the intensification substrate (NO2 -) competition from anammox and denitrifying bacteria. In particular, a highlight is that Ca. Nitrospira encoded and treanscribed cyanate hydratase (CynS), amine oxidase, urease (UreC), and copper-containing nitrite reductase (NirK) related to ammonium and NO production, driving NOB to interact with the co-existed AOB and anammox bacteria. Ca. Nitrospira strains NOB01 and NOB02 showed quite different niche preference in the same aerobic tank, which dominanted the NOB communities in activated sludge and biofilm, respectively. In addition to the common rTCA cycle for CO2 fixation, a reductive glycine pathway (RGP) was encoded and transcribed by NOB02 likely for CO2 fixation purpose. Additionally, a 3b group hydrogenase and respiratory nitrate reductase were uniquely encoded and transcribed by NOB02, which likely confer a survival advantage to this strain in the fluctuant activated sludge niche. The discovery of this new genus significantly broadens our understanding of the ecophysiology of NOB. Furthermore, the impressive metabolic versatility of the novel NOB revealed in this study advances our understanding of the survival strategy of NOB and provides valuable insight for suppressing NOB in the anammox-based WWTP.
Collapse
Affiliation(s)
- Pengfei Hu
- Civil and Environmental Engineering, Technion – Israel Institute of Technology, Haifa 320003, Israel
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, People’s Republic of China
| | - Youfen Qian
- Civil and Environmental Engineering, Technion – Israel Institute of Technology, Haifa 320003, Israel
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, People’s Republic of China
| | - Yanbin Xu
- School of Environmental Sciences and Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Adi Radian
- Civil and Environmental Engineering, Technion – Israel Institute of Technology, Haifa 320003, Israel
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, Guangdong 510275, People’s Republic of China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, People’s Republic of China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, People’s Republic of China
| |
Collapse
|
19
|
Su L, Marshall IPG, Teske AP, Yao H, Li J. Genomic characterization of the bacterial phylum Candidatus Effluviviacota, a cosmopolitan member of the global seep microbiome. mBio 2024; 15:e0099224. [PMID: 38980039 PMCID: PMC11323493 DOI: 10.1128/mbio.00992-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024] Open
Abstract
The microbial communities of marine seep sediments contain unexplored physiological and phylogenetic diversity. Here, we examined 30 bacterial metagenome-assembled genomes (MAGs) from cold seeps in the South China Sea, the Indian Ocean, the Scotian Basin, and the Gulf of Mexico, as well as from deep-sea hydrothermal sediments in the Guaymas Basin, Gulf of California. Phylogenetic analyses of these MAGs indicate that they form a distinct phylum-level bacterial lineage, which we propose as a new phylum, Candidatus Effluviviacota, in reference to its preferential occurrence at diverse seep areas. Based on tightly clustered high-quality MAGs, we propose two new genus-level candidatus taxa, Candidatus Effluvivivax and Candidatus Effluvibates. Genomic content analyses indicate that Candidatus Effluviviacota are chemoheterotrophs that harbor the Embden-Meyerhof-Parnas glycolysis pathway. They gain energy by fermenting organic substrates. Additionally, they display potential capabilities for the degradation of cellulose, hemicellulose, starch, xylan, and various peptides. Extracellular anaerobic respiration appears to rely on metals as electron acceptors, with electron transfer primarily mediated by multiheme cytochromes and by a flavin-based extracellular electron transfer (EET) mechanism that involves NADH-quinone oxidoreductase-demethylmenaquinone-synthesizing enzymes, uncharacterized membrane proteins, and flavin-binding proteins, also known as the NUO-DMK-EET-FMN complex. The heterogeneity within the Ca. Effluviviacota phylum suggests varying roles in energy metabolism among different genera. While NUO-DMK-EET-FMN electron transfer has been reported predominantly in Gram-positive bacteria, it is now identified in Ca. Effluviviacota as well. We detected the presence of genes associated with bacterial microcompartments in Ca. Effluviviacota, which can promote specific metabolic processes and protect the cytosol from toxic intermediates. IMPORTANCE The newly discovered bacterial phylum Candidatus Effluviviacota is widespread across diverse seepage ecosystems, marine environments, and freshwater environments, with a notable preference for cold seeps. While maintaining an average abundance of approximately 1% in the global gene catalog of cold seep habitats, it has not hitherto been characterized. The metabolic versatility of Ca. Effluviviacota in anaerobic carbon, hydrogen, and metal cycling aligns with its prevalence in anoxic niches, with a preference for cold seep environments. Variations in metabolic potential between Ca. Effluvivivax and Ca. Effluvibates may contribute to shaping their respective habitat distributions.
Collapse
Affiliation(s)
- Lei Su
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
- Department of Biology, Center for Electromicrobiology (CEM), Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Ian P. G. Marshall
- Department of Biology, Center for Electromicrobiology (CEM), Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Andreas P. Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Huiqiang Yao
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Guangzhou, China
| | - Jiangtao Li
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Baek K, Jang S, Goh J, Choi A. Salmonirosea aquatica gen. nov., sp. nov., a Novel Genus within the Family Spirosomaceae, Was Isolated from Brackish Water in the Republic of Korea. Microorganisms 2024; 12:1671. [PMID: 39203513 PMCID: PMC11356934 DOI: 10.3390/microorganisms12081671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
A Gram-stain-negative, obligately aerobic, non-motile, rod-shaped bacterial strain designated SJW1-29T was isolated from brackish water samples collected from the Seomjin River, Republic of Korea. The purpose of this study was to characterize strain SJW1-29T and determine its taxonomic position as a potential new genus within the family Spirosomaceae. The strain grew within the range of 10-30 °C (optimum, 25 °C), pH 5.0-10.0 (optimum, 7.0), and 1-4% NaCl (optimum, 3%). Phylogenetic analysis based on the 16S rRNA gene revealed that strain SJW1-29T belongs to the family Spirosomaceae and is closely related to Persicitalea jodogahamensis Shu-9-SY12-35CT (91.3% similarity), Rhabdobacter roseus R491T (90.6%), and Arundinibacter roseus DMA-K-7aT (90.0%), while the similarities to strains within the order Cytophagales were lower than 90.0%. The genome is 7.1 Mbp with a G+C content of 50.7 mol%. The use of genome-relatedness indices confirmed that this strain belongs to a new genus. The major polar lipid profile consisted of phosphatidylethanolamine, and MK-7 was the predominant menaquinone. The predominant fatty acids were summed feature 3 (C16:1ω7c and/or C16:1ω6c), iso-C15:0, iso-C17:0 3-OH, and C16:0, representing more than 80% of the total fatty acids. The phenotypic, chemotaxonomic, genetic, and phylogenetic properties suggest that strain SJW1-29T represents a novel species within a new genus in the family Spirosomaceae, for which the name Salmonirosea aquatica gen. nov., sp. nov., is proposed. The type strain of Salmonirosea aquatica is SJW1-29T (=KCTC 72493T = NBRC 114061T = FBCC-B16924T).
Collapse
Affiliation(s)
| | | | | | - Ahyoung Choi
- Biological Resources Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Republic of Korea; (K.B.); (S.J.); (J.G.)
| |
Collapse
|
21
|
Huang J, Li S, Liu J, Lu CY, Manzoor S, Dong L, Li WJ. Genome-based reclassification of Kineococcus aureolus Xu et al. 2017 as a later heterotypic synonym of Kineococcus terrestris Xu et al. 2017. Int J Syst Evol Microbiol 2024; 74. [PMID: 39207838 DOI: 10.1099/ijsem.0.006504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
We aimed to elucidate the relationship between Kineococcus terrestris and Kineococcus aureolus through whole-genome-based analysis. The genome-derived 16S rRNA gene sequences of K. terrestris KCTC 39738T and K. aureolus KCTC 39739T shared a 100% similarity. Phylogenetic trees based on 16S rRNA gene and whole-genome sequences revealed that K. terrestris KCTC 39738T and K. aureolus KCTC 39739T formed a robust clade, indicating a close relationship between them. Genomic comparison showed that the two strains shared 99.1% average nucleotide identity, 92.0% digital DNA-DNA hybridization and 98.9% average amino acid identity values, all of which exceeded the recommended threshold values for species classification. Most phenotypic characteristics between the two species were almost identical. Based on the above evidence, we propose the reclassification of Kineococcus aureolus Xu et al. 2017 as a later heterotypic synonym of Kineococcus terrestris Xu et al. 2017. Since these two species were proposed in the same article, the principle of priority does not apply. Our proposal is supported by the fact that the nomenclatural authorities first described Kineococcus terrestris.
Collapse
Affiliation(s)
- Jie Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Jun Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chun-Yan Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Sadia Manzoor
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad 45500, Pakistan
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| |
Collapse
|
22
|
Litti Y, Elcheninov A, Botchkova E, Chernyh N, Merkel A, Vishnyakova A, Popova N, Zhang Y, Safonov A. Metagenomic evidence of a novel anammox community in a cold aquifer with high nitrogen pollution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121629. [PMID: 38944958 DOI: 10.1016/j.jenvman.2024.121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The process of anaerobic ammonium oxidation by nitrite (anammox) is a globally essential part of N cycle. To date, 8 Candidatus genera and more than 22 species of anammox bacteria have been discovered in various anthropogenic and natural habitats, including nitrogen-polluted aquifers. In this work, anammox bacteria were detected for the first time in the groundwater ecosystem with high anthropogenic nitrogen pollution (up to 1760 mg NO3--N/L and 280 mg NH4+-N/L) and low year-round temperature (7-8 °C) in the zone of a uranium sludge repository. Further metagenomic analysis resulted in retrieval of metagenome-assembled genomes of 4 distinct anammox bacteria: a new genus named Ca. Frigussubterria, new species in Ca. Kuenenia, and two strains of a new species in Ca. Scalindua. Analysis of the genomes revealed essential genes involved in anammox metabolism. Both strains of Ca. Scalindua chemeplantae had a high copy number of genes encoding the cold shock proteins CspA/B, which can also function as an antifreeze protein (CspB). Ca. Kuenenia glazoviensis and Ca. Frigussubterria udmurtiae were abundant in less N-polluted site, while Ca. Scalindua chemeplantae inhabited both sites. Genes for urea utilization, reduction of insoluble Fe2O3 or MnO2, assimilatory sulfate reduction, reactive oxygen detoxification, nitrate reduction to ammonium, and putatively arsenate respiration were found. These findings enrich knowledge of the functional and phylogenetic diversity of anammox bacteria and improve understanding of the nitrogen cycle in polluted aquifers.
Collapse
Affiliation(s)
- Yuriy Litti
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312, Moscow, Russia.
| | - Alexander Elcheninov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312, Moscow, Russia.
| | - Ekaterina Botchkova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312, Moscow, Russia.
| | - Nikolay Chernyh
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312, Moscow, Russia.
| | - Alexander Merkel
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312, Moscow, Russia.
| | - Anastasia Vishnyakova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2, 117312, Moscow, Russia.
| | - Nadezhda Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 31, bld.4, Leninsky Prospect, 119071, Moscow, Russia.
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Alexey Safonov
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 31, bld.4, Leninsky Prospect, 119071, Moscow, Russia.
| |
Collapse
|
23
|
Wu K, Zhou L, Tahon G, Liu L, Li J, Zhang J, Zheng F, Deng C, Han W, Bai L, Fu L, Dong X, Zhang C, Ettema TJG, Sousa DZ, Cheng L. Isolation of a methyl-reducing methanogen outside the Euryarchaeota. Nature 2024; 632:1124-1130. [PMID: 39048829 DOI: 10.1038/s41586-024-07728-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Methanogenic archaea are main contributors to methane emissions, and have a crucial role in carbon cycling and global warming. Until recently, methanogens were confined to Euryarchaeota, but metagenomic studies revealed the presence of genes encoding the methyl coenzyme M reductase complex in other archaeal clades1-4, thereby opening up the premise that methanogenesis is taxonomically more widespread. Nevertheless, laboratory cultivation of these non-euryarchaeal methanogens was lacking to corroborate their potential methanogenic ability and physiology. Here we report the isolation of a thermophilic archaeon LWZ-6 from an oil field. This archaeon belongs to the class Methanosuratincolia (originally affiliated with 'Candidatus Verstraetearchaeota') in the phylum Thermoproteota. Methanosuratincola petrocarbonis LWZ-6 is a strict hydrogen-dependent methylotrophic methanogen. Although previous metagenomic studies speculated on the fermentative potential of Methanosuratincolia members, strain LWZ-6 does not ferment sugars, peptides or amino acids. Its energy metabolism is linked only to methanogenesis, with methanol and monomethylamine as electron acceptors and hydrogen as an electron donor. Comparative (meta)genome analysis confirmed that hydrogen-dependent methylotrophic methanogenesis is a widespread trait among Methanosuratincolia. Our findings confirm that the diversity of methanogens expands beyond the classical Euryarchaeota and imply the importance of hydrogen-dependent methylotrophic methanogenesis in global methane emissions and carbon cycle.
Collapse
Affiliation(s)
- Kejia Wu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Lei Zhou
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Guillaume Tahon
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Laiyan Liu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jiang Li
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jianchao Zhang
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Fengfeng Zheng
- Shenzhen Key Laboratory of Marine Geo-Omics Research, Southern University of Science and Technology, Shenzhen, China
| | - Chengpeng Deng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Wenhao Han
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Liping Bai
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Lin Fu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Geo-Omics Research, Southern University of Science and Technology, Shenzhen, China
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands.
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China.
| |
Collapse
|
24
|
Liébana R, Viver T, Ramos-Barbero MD, Bustos-Caparros E, Urdiain M, López C, Amoozegar MA, Antón J, Rossello-Mora R. Extremely halophilic brine community manipulation shows higher robustness of microbiomes inhabiting human-driven solar saltern than naturally driven lake. mSystems 2024; 9:e0053824. [PMID: 38934645 PMCID: PMC11324034 DOI: 10.1128/msystems.00538-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Hypersaline ecosystems display taxonomically similar assemblages with low diversities and highly dense accompanying viromes. The ecological implications of viral infection on natural microbial populations remain poorly understood, especially at finer scales of diversity. Here, we sought to investigate the influence of changes in environmental physicochemical conditions and viral predation pressure by autochthonous and allochthonous viruses on host dynamics. For this purpose, we transplanted two microbiomes coming from distant hypersaline systems (solar salterns of Es Trenc in Spain and the thalassohaline lake of Aran-Bidgol lake in Iran), by exchanging the cellular fractions with the sterile-filtered accompanying brines with and without the free extracellular virus fraction. The midterm exposure (1 month) of the microbiomes to the new conditions showed that at the supraspecific taxonomic range, the assemblies from the solar saltern brine more strongly resisted the environmental changes and viral predation than that of the lake. The metagenome-assembled genomes (MAGs) analysis revealed an intraspecific transition at the ecotype level, mainly driven by changes in viral predation pressure, by both autochthonous and allochthonous viruses. IMPORTANCE Viruses greatly influence succession and diversification of their hosts, yet the effects of viral infection on the ecological dynamics of natural microbial populations remain poorly understood, especially at finer scales of diversity. By manipulating the viral predation pressure by autochthonous and allochthonous viruses, we uncovered potential phage-host interaction, and their important role in structuring the prokaryote community at an ecotype level.
Collapse
Affiliation(s)
- Raquel Liébana
- Marine Microbiology
Group, Department of Animal and Microbial Biodiversity, Mediterranean
Institute for Advanced Studies (IMEDEA,
UIB-CSIC), Esporles,
Spain
| | - Tomeu Viver
- Marine Microbiology
Group, Department of Animal and Microbial Biodiversity, Mediterranean
Institute for Advanced Studies (IMEDEA,
UIB-CSIC), Esporles,
Spain
- Department of
Molecular Ecology, Max Planck Institute for Marine
Microbiology, Bremen,
Germany
| | - María Dolores Ramos-Barbero
- Department of
Physiology, Genetics and Microbiology, University of
Alicante, Alicante,
Spain
- Department of
Genetics, Microbiology and Statistics, University of
Barcelona, Barcelona,
Spain
| | - Esteban Bustos-Caparros
- Marine Microbiology
Group, Department of Animal and Microbial Biodiversity, Mediterranean
Institute for Advanced Studies (IMEDEA,
UIB-CSIC), Esporles,
Spain
| | - Mercedes Urdiain
- Marine Microbiology
Group, Department of Animal and Microbial Biodiversity, Mediterranean
Institute for Advanced Studies (IMEDEA,
UIB-CSIC), Esporles,
Spain
| | - Cristina López
- Department of
Physiology, Genetics and Microbiology, University of
Alicante, Alicante,
Spain
| | - Mohammad Ali Amoozegar
- Extremophiles
Laboratory, Department of Microbiology, School of Biology and Center of
Excellence in Phylogeny of Living Organisms, College of Science,
University of Tehran,
Tehran, Iran
| | - Josefa Antón
- Department of
Physiology, Genetics and Microbiology, University of
Alicante, Alicante,
Spain
| | - Ramon Rossello-Mora
- Marine Microbiology
Group, Department of Animal and Microbial Biodiversity, Mediterranean
Institute for Advanced Studies (IMEDEA,
UIB-CSIC), Esporles,
Spain
| |
Collapse
|
25
|
Machin EV, Roldán DM, Menes RJ. Sphaerotilus uruguayifluvii sp. nov., a novel filamentous bacterium isolated from river water. Antonie Van Leeuwenhoek 2024; 117:96. [PMID: 38980405 DOI: 10.1007/s10482-024-01996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024]
Abstract
Strain C29T, a Gram-staining-negative, straight rod occurring singly, in pairs or short chains, was isolated from floating filamentous biomass of the Uruguay River. The strain was catalase and oxidase positive, chemoorganotrophic, strictly aerobic, non-motile, and grew at pH 6.0-9.0, 15-45 °C, and 0-0.5% (w/v) NaCl. Polyhydroxybutyrate was accumulated in nutrient-limited conditions. Phylogenetic analysis based on the 16S rRNA gene revealed that strain C29T had the highest sequence similarity with Leptothrix discophora SS-1T (97.82%), Ideonella livida TBM-1T (97.82%), Vitreoscilla filiformis L1401-2T (97.52%), Sphaerotilus sulfidivorans D-501T (97.50%) and Sphaerotilus natans DSM 6575T (97.46%). Other type strains with validly published names had similarities below 97.46%. Further phylogenomic analysis showed that strain C29T was affiliated to the family Sphaerotilaceae. Average nucleotide identity (ANI) and in silico DNA-DNA hybridization (dDDH) values with its phylogenetic relatives were lower than 91 and 41%, respectively, revealing that strain C29T represented a new species. The DNA G + C content of strain C29T was 70.9%. The annotation of the genome of the novel strain shows it possessed genes for the degradation of aromatic compounds. It also contained genes that encode sigma factors involved in response regulation of stress resistance, which is an important function for adaptation and survival in natural niches. Based on the results of the phylogenetic and phenotypic analyses, we propose that strain C29T represents a novel species, for which the name Sphaerotilus uruguayifluvii sp. nov. is proposed. The type strain is C29T (= CCM 9043T = DSM 113250T).
Collapse
Affiliation(s)
- Eliana V Machin
- Laboratorio de Ecología Microbiana Medioambiental, Facultad de Química y Unidad Asociada del Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Diego M Roldán
- Laboratorio de Ecología Microbiana Medioambiental, Facultad de Química y Unidad Asociada del Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rodolfo Javier Menes
- Laboratorio de Ecología Microbiana Medioambiental, Facultad de Química y Unidad Asociada del Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
26
|
Behrendt U, Burghard V, Wende S, Ulrich K, Wolf J, Neumann-Schaal M, Ulrich A. Schauerella fraxinea gen. nov., sp. nov., a bacterial species that colonises ash trees tolerant to dieback caused by Hymenoscyphus fraxineus. Syst Appl Microbiol 2024; 47:126516. [PMID: 38772267 DOI: 10.1016/j.syapm.2024.126516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
The tolerance of ash trees against the pathogen Hymenoscyphus fraxineus seems to be associated with the occurrence of specific microbial taxa on leaves. A group of bacterial isolates, primarily identified on tolerant trees, was investigated with regard to their taxonomic classification and their potential to suppress the ash dieback pathogen. Examination of OGRI values revealed a separate species position. A phylogenomic analysis, based on orthologous and marker genes, indicated a separate genus position along with the species Achromobacter aestuarii. Furthermore, analysis of the ratio of average nucleotide identities and genome alignment fractions demonstrated genomic dissimilarities typically observed for inter-genera comparisons within this family. As a result of these investigations, the strains are considered to represent a separate species within a new genus, for which the name Schauerella fraxinea gen. nov., sp. nov. is proposed, with the type strain B3P038T (=LMG 33092 T = DSM 115926 T). Additionally, a reclassification of the species Achromobacter aestuarii as Schauerella aestuarii comb. nov. is proposed. In a co-cultivation assay, the strains were able to inhibit the growth of a H. fraxineus strain. Accordingly, a functional analysis of the genome of S. fraxinea B3P038T revealed genes mediating the production of antifungal substances. This potential, combined with the prevalent presence in the phyllosphere of tolerant ash trees, makes this group interesting for an inoculation experiment with the aim of controlling the pathogen in an integrative approach. For future field trials, a strain-specific qPCR system was developed to establish an efficient method for monitoring the inoculation success.
Collapse
Affiliation(s)
- Undine Behrendt
- Leibniz Center for Agricultural Landscape Research (ZALF), Microbial Biogeochemistry, Eberswalder Str. 84, D-15374 Müncheberg, Germany.
| | - Valentin Burghard
- Leibniz Center for Agricultural Landscape Research (ZALF), Microbial Biogeochemistry, Eberswalder Str. 84, D-15374 Müncheberg, Germany.
| | - Sonja Wende
- Leibniz Center for Agricultural Landscape Research (ZALF), Microbial Biogeochemistry, Eberswalder Str. 84, D-15374 Müncheberg, Germany.
| | - Kristina Ulrich
- Johann Heinrich Von Thünen Institute, Institute of Forest Genetics, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany.
| | - Jacqueline Wolf
- Research Group Bacterial Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany.
| | - Meina Neumann-Schaal
- Research Group Bacterial Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany.
| | - Andreas Ulrich
- Leibniz Center for Agricultural Landscape Research (ZALF), Microbial Biogeochemistry, Eberswalder Str. 84, D-15374 Müncheberg, Germany.
| |
Collapse
|
27
|
Zhang XY, Ye YQ, Feng YJ, Gong HN, Du ZJ, Ye MQ. Elongatibacter sediminis gen. nov., sp. nov., isolated from intertidal sediment, and genomic comparison with all genera in the family Wenzhouxiangellaceae. Int J Syst Evol Microbiol 2024; 74. [PMID: 38958649 DOI: 10.1099/ijsem.0.006440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
A novel slightly halophilic, aerobic, and Gram-stain-negative strain, designated as CH-27T, was isolated during a bacterial resource investigation of intertidal sediment collected from Xiaoshi Island in Weihai, PR China. Cells of strain CH-27T were rod-shaped with widths of 0.3-0.6 µm and lengths of 2.0-11.0 µm. Strain CH-27T grew optimally at 37 °C, pH 7.0 and with 2.0 % (w/v) NaCl. Catalase activity was weakly positive and oxidase activity was positive. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CH-27T was most related to Marinihelvus fidelis KCTC 92639T (93.6 %), followed by Wenzhouxiangella marina MCCC 1K00261T (92.0 %). Based on genome comparisons between strain CH-27T and M. fidelis KCTC 92639T, the average amino acid identity was 63.6 % and the percentage of conserved proteins was 48.3 %. The major cellular fatty acid of strain CH-27T (≥10 %) was iso-C15 : 0 and the sole respiratory quinone was quinone-8. The polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, and aminophospholipid. The DNA G+C content was 62.7 mol%. Based on comprehensive analysis of its phylogenetic, physiological, biochemical, and chemotaxonomic characteristics, strain CH-27T represents a novel species in a novel genus, for which the name Elongatibacter sediminis gen. nov., sp.nov. is proposed. The type strain is CH-27T (=MCCC 1H00480T=KCTC 8011T).
Collapse
Affiliation(s)
- Xin-Yue Zhang
- SDU-ANU Joint Science College, Shandong University, Weihai, Shandong, 264209, PR China
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Yu-Qi Ye
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Yan-Jun Feng
- SDU-ANU Joint Science College, Shandong University, Weihai, Shandong, 264209, PR China
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
| | - Hong-Nan Gong
- SDU-ANU Joint Science College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, Shandong 264209, PR China
| | - Meng-Qi Ye
- Marine College, Shandong University, Weihai, Shandong 264209, PR China
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, Shandong 264209, PR China
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, PR China
| |
Collapse
|
28
|
Ahn S, Choi DHS, Weerawongwiwat V, Kim JH, Sukhoom A, Kim W. Aquibaculum arenosum gen. nov., sp. nov., a novel member of the family Rhodovibrionaceae, isolated from sea sand. Int J Syst Evol Microbiol 2024; 74:006458. [PMID: 38995165 PMCID: PMC11316597 DOI: 10.1099/ijsem.0.006458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
A Gram-negative, non-motile, and creamy-white coloured bacterium, designated CAU 1616T, was isolated from sea sand collected at Ayajin Beach, Goseong-gun, Republic of Korea. The bacterium was found to grow optimally at 37 °C, pH 8.0-8.5, and with 1-5 % (w/v) NaCl. Phylogenetic analyses based on the 16S rRNA gene sequences placed strain CAU 1616T within the order Rhodospirillales. The highest 16S rRNA gene sequence similarity was to Fodinicurvata fenggangensis YIM D812T (94.1 %), Fodinicurvata sediminis YIM D82T (93.7 %), Fodinicurvata halophila BA45ALT (93.6 %) and Algihabitans albus HHTR 118T (92.3 %). Comparing strain CAU 1616T with closely related species (Fodinicurvata fenggangensis YIM D812T and Fodinicurvata sediminis YIM D82T), the average nucleotide identity based on blast+ values were 69.7-69.8 %, the average amino acid identity values were 61.3-61.4 %, and the digital DNA-DNA hybridization values were 18.4-18.5 %. The assembled draft genome of strain CAU 1616T had 29 contigs with an N50 value of 385.8 kbp, a total length of 3 490 371 bp, and a DNA G+C content of 65.1 mol%. The predominant cellular fatty acids were C18 : 1 2-OH, C19 : 0 cyclo ω8c, and summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c). The major respiratory quinone was Q-10. Based on phenotypic, phylogenetic, and chemotaxonomic evidence, strain CAU 1616T represents a novel genus in the family Rhodovibrionaceae, for which the name Aquibaculum arenosum gen. nov., sp. nov. is proposed. The type strain is CAU 1616T (=KCTC 82428T=MCCC 1K06089T).
Collapse
Affiliation(s)
- Soyeon Ahn
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - David Hyung-Sun Choi
- Faculty of Arts and Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Veeraya Weerawongwiwat
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Jong-Hwa Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Ampaitip Sukhoom
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| |
Collapse
|
29
|
Videau P, Shlafstein MD, Oline DK, Givan SA, Chapman LF, Strangman WK, Hahnke RL, Saw JH, Ushijima B. Genome-based taxonomic analysis of the genus Pseudoalteromonas reveals heterotypic synonyms. Environ Microbiol 2024; 26:e16672. [PMID: 39040020 DOI: 10.1111/1462-2920.16672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/31/2024] [Indexed: 07/24/2024]
Abstract
The Pseudoalteromonas genus comprises members that have been demonstrated to play significant ecological roles and produce enzymes, natural products, and activities that are beneficial to the environment and economy. A comprehensive evaluation of the genus revealed that the genomes of several Pseudoalteromonas species are highly similar to each other, exceeding species cutoff values. This evaluation involved determining and comparing the average nucleotide identity, in silico DNA-DNA hybridization, average amino acid identity, and the difference in G + C% between Pseudoalteromonas type strains with publicly available genomes. The genome of the Pseudoalteromonas elyakovii type strain was further assessed through additional sequencing and genomic comparisons to historical sequences. These findings suggest that six Pseudoalteromonas species, namely P. mariniglutinosa, P. donghaensis, P. maricaloris, P. elyakovii, P. profundi, and P. issachenkonii, should be reclassified as later heterotypic synonyms of the following validly published species: P. haloplanktis, P. lipolytica, P. flavipulchra, P. distincta, P. gelatinilytica, and P. tetraodonis. Furthermore, two names without valid standing, 'P. telluritireducens' and 'P. spiralis', should be associated with the validly published Pseudoalteromonas species P. agarivorans and P. tetraodonis, respectively.
Collapse
Affiliation(s)
- Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, Oregon, USA
| | | | - David K Oline
- Department of Biology, Southern Oregon University, Ashland, Oregon, USA
| | - Scott A Givan
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Linda Fleet Chapman
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Wendy K Strangman
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Richard L Hahnke
- Department of Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jimmy H Saw
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| |
Collapse
|
30
|
Ben Gaied R, Sbissi I, Tarhouni M, Huber K, Wolf J, Neumann-Schaal M, Nouioui I, Ghodhbane-Gtari F, Gtari M. Mesorhizobium retamae sp. nov., a novel non-nodulating and non-nitrogen-fixing species isolated from the root nodules of Retama raetam sampled in Tunisia. Int J Syst Evol Microbiol 2024; 74:006478. [PMID: 39078400 PMCID: PMC11316575 DOI: 10.1099/ijsem.0.006478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
A comprehensive polyphasic taxonomic investigation integrating taxongenomic criteria was conducted on strain IRAMC:0171T isolated from the root nodules of Retama raetam in Tunisia. This Gram-stain-negative and aerobic bacterium thrived within a temperature range of 5-45 °C, optimal at 28 °C, and tolerated salt concentrations from 0-6 % NaCl, with an optimal range of 0-3 %. It displayed pH tolerance from pH 4 to 10, thriving best at pH 6.8-7.5. Chemotaxonomically, strain IRAMC:0171T was characterized by diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and phosphatidylethanolamine as polar lipids. Its predominant fatty acid composition was C18 : 1 ω7c (61.2 %), and the primary ubiquinone was Q10 (97 %). Analysis of the 16S rRNA gene of strain IRAMC:0171T showed 99.08 % similarity to Mesorhizobium waimense ICMP 19557T, Mesorhizobium amorphae ACCC 19665T, and Mesorhizobium huakuii IAM 14158. However, digital DNA-DNA hybridization and average nucleotide identity analyses revealed values ranging from 21.1 to 25.2 % and 77.05 to 82.24 %, respectively, signifying significant deviation from established species demarcation thresholds. Phylogenetic studies, encompassing 16S rRNA, whole-genome-based tree reconstruction, and core protein analysis, positioned strain IRAMC:0171T closest to Mesorhizobium terrae KCTC 72278T and 'Mesorhizobium hungaricum' UASWS1009T, forming together a distinct branch within the genus Mesorhizobium. In consideration of this comprehensive data, we propose strain IRAMC:0171T (=DSM 112841T=CECT 30767T) as the type strain of a new species named Mesorhizobium retamae sp. nov.
Collapse
Affiliation(s)
- Roukaya Ben Gaied
- Institute of Arid Lands, Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, University of Gabes, Gabes, Tunisia
| | - Imed Sbissi
- Institute of Arid Lands, Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, University of Gabes, Gabes, Tunisia
| | - Mohamed Tarhouni
- Institute of Arid Lands, Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, University of Gabes, Gabes, Tunisia
| | - Katharina Huber
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Jacqueline Wolf
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Imen Nouioui
- Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Faten Ghodhbane-Gtari
- Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba, Tunisia
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology & Genomic, National Institute of Applied Sciences and Technology, University of Carthage, 1080 Tunis Cedex, Tunis, Tunisia
| | - Maher Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology & Genomic, National Institute of Applied Sciences and Technology, University of Carthage, 1080 Tunis Cedex, Tunis, Tunisia
| |
Collapse
|
31
|
Liu R, Cai R, Wang M, Zhang J, Zhang H, Li C, Sun C. Metagenomic insights into Heimdallarchaeia clades from the deep-sea cold seep and hydrothermal vent. ENVIRONMENTAL MICROBIOME 2024; 19:43. [PMID: 38909236 PMCID: PMC11193907 DOI: 10.1186/s40793-024-00585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Heimdallarchaeia is a class of the Asgardarchaeota, are the most probable candidates for the archaeal protoeukaryote ancestor that have been identified to date. However, little is known about their life habits regardless of their ubiquitous distribution in diverse habitats, which is especially true for Heimdallarchaeia from deep-sea environments. In this study, we obtained 13 metagenome-assembled genomes (MAGs) of Heimdallarchaeia from the deep-sea cold seep and hydrothermal vent. These MAGs belonged to orders o_Heimdallarchaeales and o_JABLTI01, and most of them (9 MAGs) come from the family f_Heimdallarchaeaceae according to genome taxonomy database (GTDB). These are enriched for common eukaryote-specific signatures. Our results show that these Heimdallarchaeia have the metabolic potential to reduce sulfate (assimilatory) and nitrate (dissimilatory) to sulfide and ammonia, respectively, suggesting a previously unappreciated role in biogeochemical cycling. Furthermore, we find that they could perform both TCA and rTCA pathways coupled with pyruvate metabolism for energy conservation, fix CO2 and generate organic compounds through an atypical Wood-Ljungdahl pathway. In addition, many genes closely associated with bacteriochlorophyll and carotenoid biosynthesis, and oxygen-dependent metabolic pathways are identified in these Heimdallarchaeia MAGs, suggesting a potential light-utilization by pigments and microoxic lifestyle. Taken together, our results indicate that Heimdallarchaeia possess a mixotrophic lifestyle, which may give them more flexibility to adapt to the harsh deep-sea conditions.
Collapse
Affiliation(s)
- Rui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ruining Cai
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jing Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaolun Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
32
|
Wang Q, Zhan PC, Han XL, Lu T. Metagenomic and culture-dependent analysis of Rhinopithecius bieti gut microbiota and characterization of a novel genus of Sphingobacteriaceae. Sci Rep 2024; 14:13819. [PMID: 38879636 PMCID: PMC11180105 DOI: 10.1038/s41598-024-64727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/12/2024] [Indexed: 06/19/2024] Open
Abstract
Culture-dependent and metagenomic binning techniques were employed to gain an insight into the diversification of gut bacteria in Rhinopithecius bieti, a highly endangered primate endemic to China. Our analyses revealed that Bacillota_A and Bacteroidota were the dominant phyla. These two phyla species are rich in carbohydrate active enzymes, which could provide nutrients and energy for their own or hosts' survival under different circumstances. Among the culturable bacteria, one novel bacterium, designated as WQ 2009T, formed a distinct branch that had a low similarity to the known species in the family Sphingobacteriaceae, based on the phylogenetic analysis of its 16S rRNA gene sequence or phylogenomic analysis. The ANI, dDDH and AAI values between WQ 2009T and its most closely related strains S. kitahiroshimense 10CT, S. pakistanense NCCP-246T and S. faecium DSM 11690T were significantly lower than the accepted cut-off values for microbial species delineation. All results demonstrated that WQ 2009T represent a novel genus, for which names Rhinopithecimicrobium gen. nov. and Rhinopithecimicrobium faecis sp. nov. (Type strain WQ 2009T = CCTCC AA 2021153T = KCTC 82941T) are proposed.
Collapse
Affiliation(s)
- Qiong Wang
- Yunnan Institute of Microbiology, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650500, PR China
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Peng-Chao Zhan
- Yunnan Institute of Microbiology, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650500, PR China
| | - Xiu-Lin Han
- Yunnan Institute of Microbiology, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650500, PR China.
| | - Tao Lu
- Yunnan Institute of Microbiology, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650500, PR China.
| |
Collapse
|
33
|
Quadri SR, Jin P, Wang K, Qiao H, Dhulappa A, Luo ZH, Wang S, Narsing Rao MP. Taxonomic Reframe of Some Species of the Genera Haloferax and Halobellus. Curr Microbiol 2024; 81:216. [PMID: 38850425 DOI: 10.1007/s00284-024-03695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/08/2024] [Indexed: 06/10/2024]
Abstract
Haloferax and Halobellus are the representatives of the family Haloferacaceae and they are dominant in hypersaline ecosystems. Some Haloferax and Halobellus species exhibit a close evolutionary relationship. Genomic, phylogenetic (based on 16S rRNA gene sequence), and phylogenomic analysis were performed to evaluate the taxonomic positions of the genera Haloferax and Halobellus. Based on the results we propose to reclassify Halobellus ramosii as a later heterotypic synonym of Halobellus inordinatus; Haloferax lucentense and Haloferax alexandrinum as later heterotypic synonyms of Haloferax volcanii.
Collapse
Affiliation(s)
- Syed Raziuddin Quadri
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Northern Borders, Arar, 91431, Kingdom of Saudi Arabia
| | - Pinjiao Jin
- Heilongjiang Academy of Black Soil Conservation and Utilization/Heilongjiang Black Soil Conservation Engineering and Technology Research Center, Harbin, 150086, People's Republic of China
| | - Kangkang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization/Heilongjiang Black Soil Conservation Engineering and Technology Research Center, Harbin, 150086, People's Republic of China
| | - Hui Qiao
- Dengta City Development Reform Affairs Service Center, Dengta, 150499, China
| | - Awalagaway Dhulappa
- Department of Microbiology, Maharani's Science College for Women, Bangalore, 560001, India
| | - Zhen-Hao Luo
- Archaea Biology and Ecogenomics Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030, Vienna, Austria
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shuang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization/Heilongjiang Black Soil Conservation Engineering and Technology Research Center, Harbin, 150086, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| | - Manik Prabhu Narsing Rao
- Facultad de Ingeniería, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Sede Talca, 3460000, Talca, Chile.
| |
Collapse
|
34
|
Yang X, Garuglieri E, Van Goethem MW, Marasco R, Fusi M, Daffonchio D. Mangrovimonas cancribranchiae sp. nov., a novel bacterial species associated with the gills of the fiddler crab Cranuca inversa (Brachyura, Ocypodidae) from Red Sea mangroves. Int J Syst Evol Microbiol 2024; 74:006415. [PMID: 38865172 PMCID: PMC11261673 DOI: 10.1099/ijsem.0.006415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024] Open
Abstract
Two bacteria, UG2_1T and UG2_2, were isolated from the gill tissues of the mangrove fiddler crab Cranuca inversa collected on the east coast of the Red Sea (Thuwal, Saudi Arabia). The cells are Gram-negative, rod-shaped, orange-pigmented, motile by gliding with no flagella, strictly aerobic, and grow at 20-37 °C (optimum, 28-35 °C), at pH 5.0-9.0 (optimum, pH 6.0-7.0), and with 1-11 % (w/v) NaCl (optimum, 2-4 %). They were positive for oxidase and catalase activity. Phylogenetic analysis based on 16S rRNA gene sequences indicated that isolates UG2_1T and UG2_2 belong to the genus Mangrovimonas, showing the highest similarity to Mangrovimonas spongiae HN-E26T (99.4 %). Phylogenomic analysis based on the whole genomes, independently using 49 and 120 concatenated genes, showed that strains UG2_1T and UG2_2 formed a monophyletic lineage in a different cluster from other type strain species within the genus Mangrovimonas. The genome sizes were 3.08 and 3.07 Mbp for UG2_1T and UG2_2, respectively, with a G+C content of 33.8 mol% for both strains. Values of average nucleotide identity and digital DNA-DNA hybridization between the strains and closely related species were 91.0 and 43.5 %, respectively. Chemotaxonomic analysis indicated that both strains had iso-C15 : 0 and iso-C15 : 1 G as dominant fatty acids, and the primary respiratory quinone was identified as MK-6. The major polar lipids comprised phosphatidylethanolamine, one unidentified glycolipid, one unidentified phospholipid, two unidentified aminolipids, and four unidentified lipids. Based on phylogenetic, phylogenomic, genome relatedness, phenotypic, and chemotaxonomical data, the two isolates represent a novel species within the genus Mangrovimonas, with the proposed name Mangrovimonas cancribranchiae sp. nov., and the type strain UG2_1T (=KCTC 102158T=DSM 117025T).
Collapse
Affiliation(s)
- Xinyuan Yang
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Elisa Garuglieri
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Marc W. Van Goethem
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ramona Marasco
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Marco Fusi
- Dove Marine Laboratory, School of Natural and Environmental Sciences Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, UK
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
35
|
Chen H, Huang Z. Marortus luteolus Yu et al. 2019 is a later heterotypic synonym of Zhongshania marina On et al. 2019. Int J Syst Evol Microbiol 2024; 74. [PMID: 38888588 DOI: 10.1099/ijsem.0.006431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Abstract
Phylogeny of 16S rRNA gene sequences showed that Marortus luteolus ZX-21T and Zhongshania marina DSW25-10T are closely related, and form a monophyletic clade affiliated with the genus Zhongshania. Whole genome sequence comparisons showed that M. luteolus ZX-21T and Z. marina DSW25-10T shared 78.8 % digital DNA-DNA hybridization, 97.6 % average nucleotide identity and 98.1 % average amino acid identity. These values exceeded the recommended threshold values for species delineation. Thus, based on the principle of priority, we propose the reclassification of Marortus luteolus Yu et al. 2019 as a later heterotypic synonym of Zhongshania marina On et al. 2019.
Collapse
Affiliation(s)
- Huaiyu Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, PR China
| | - Zhaobin Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, PR China
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou, PR China
| |
Collapse
|
36
|
Li Q, Liu C, Xie F, Lyu L, Zhang S, Li J. Coralliovum pocilloporae gen. nov., sp. nov. and Sanyastnella coralliicola gen. nov., sp. nov. isolated from coral tissue: proposal of two new families, Coralliovaceae fam. nov. and Sanyastnellaceae fam. nov. Int J Syst Evol Microbiol 2024; 74. [PMID: 38900566 DOI: 10.1099/ijsem.0.006427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
A genome-based polyphasic approach was used to determine the taxonomic status of two novel bacterial strains, SCSIO 12594T and SCSIO 12813T, isolated from tissues of a coral. Both strains were Gram-stain-negative and facultatively anaerobic. The genome sizes of strains SCSIO 12594T and SCSIO 12813T were 3.9 Mb and 4.1 Mb, respectively, and they possessed DNA G+C contents of 55.1 and 46.2 mol%, respectively . Both strains were found to be catalase- and oxidase-positive, while SCSIO 12594T also could hydrolyse starch. SCSIO 12594T was observed to grow at between 20 and 37 °C (optimally at 25 °C) and at a pH range from 6 to 7 and in the presence of 3-7 % (w/v) NaCl. The growth of SCSIO 12813T required seawater and occurred at 20-30 °C (optimum, 25 °C), pH 5-8 (optimum, pH 6-7) and in the presence of 3-3.7 % (w/v) NaCl. The results of 16S rRNA gene-based phylogenetic analysis indicated that SCSIO 12594T shared 92.97 % or less sequence similarity with its closest relatives Rhodobium gokarnense JA173T and other members of the order Hyphomicrobiales. The results of 16S rRNA sequences-based phylogenetic analysis of SCSIO 12813T indicated that Croceimicrobium hydrocarbonivorans A20-9T (89.34 %) was the most closely related species. SCSIO 12594T and SCSIO 12813T can be readily separated from their closest relatives, as indicated by the results of phylogenomic analysis, low average nucleotide indexes, average amino acid identity, digital DNA-DNA hybridisation (dDDH) similarities and associated phenotypic and chemical data. Consequently, the two coral isolates are considered to represent two novel genera and species for which the names Coralliovum pocilloporae gen. nov., sp. nov. and Sanyastnella coralliicola gen. nov., sp. nov. are proposed, the type strains are SCSIO 12594T (= JCM 35320T = GDMCC 1.3060T) and SCSIO 12813T (= JCM 35373T = GDMCC 1.3063T), respectively. In addition, two novel families, Coralliovaceae fam. nov. and Sanyastnellaceae fam. nov are proposed to accommodate Coralliovum pocilloporae gen. nov., sp. nov. and Sanyastnella coralliicola gen. nov., sp. nov., respectively.
Collapse
Affiliation(s)
- Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Cong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Feiyang Xie
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
- Sanya Institute of Ocean Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya 572000, PR China
| |
Collapse
|
37
|
Ravin NV, Rudenko TS, Beletsky AV, Smolyakov DD, Mardanov AV, Grabovich MY, Muntyan MS. Phylogeny and Metabolic Potential of New Giant Sulfur Bacteria of the Family Beggiatoaceae from Coastal-Marine Sulfur Mats of the White Sea. Int J Mol Sci 2024; 25:6028. [PMID: 38892213 PMCID: PMC11172852 DOI: 10.3390/ijms25116028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The family Beggiatoaceae is currently represented by 25 genera in the Genome Taxonomy Database, of which only 6 have a definite taxonomic status. Two metagenome-assembled genomes (MAGs), WS_Bin1 and WS_Bin3, were assembled from metagenomes of the sulfur mats coating laminaria remnants in the White Sea. Using the obtained MAGs, we first applied phylogenetic analysis based on whole-genome sequences to address the systematics of Beggiatoaceae, which clarify the taxonomy of this family. According to the average nucleotide identity (ANI) and average amino acid identity (AAI) values, MAG WS_Bin3 was assigned to a new genus and a new species in the family Beggiatoaceae, namely, 'Candidatus Albibeggiatoa psychrophila' gen. nov., sp. nov., thus providing the revised taxonomic status of the candidate genus 'BB20'. Analysis of 16S rRNA gene homology allowed us to identify MAG WS_Bin1 as the only currently described species of the genus 'Candidatus Parabeggiatoa', namely, 'Candidatus Parabeggiatoa communis', and consequently assign the candidate genus 'UBA10656', including four new species, to the genus 'Ca. Parabeggiatoa'. Using comparative whole-genome analysis of the members of the genera 'Candidatus Albibeggiatoa' and 'Ca. Parabeggiatoa', we expanded information on the central pathways of carbon, sulfur and nitrogen metabolism in the family Beggiatoaceae.
Collapse
Affiliation(s)
- Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect, 33-2, 119071 Moscow, Russia; (N.V.R.); (A.V.B.); (A.V.M.)
| | - Tatyana S. Rudenko
- Department of Biochemistry and Cell Physiology, Voronezh State University, Universitetskaya pl., 1, 394018 Voronezh, Russia; (T.S.R.); (D.D.S.)
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect, 33-2, 119071 Moscow, Russia; (N.V.R.); (A.V.B.); (A.V.M.)
| | - Dmitry D. Smolyakov
- Department of Biochemistry and Cell Physiology, Voronezh State University, Universitetskaya pl., 1, 394018 Voronezh, Russia; (T.S.R.); (D.D.S.)
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Prospect, 33-2, 119071 Moscow, Russia; (N.V.R.); (A.V.B.); (A.V.M.)
| | - Margarita Yu. Grabovich
- Department of Biochemistry and Cell Physiology, Voronezh State University, Universitetskaya pl., 1, 394018 Voronezh, Russia; (T.S.R.); (D.D.S.)
| | - Maria S. Muntyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
38
|
Wang S, Dhulappa A, Quadri SR, Jin P, Wang K, Qiao H, Narsing Rao MP. Reclassification of Some Exiguobacterium Species Based on Genome Analysis. Curr Microbiol 2024; 81:186. [PMID: 38775831 DOI: 10.1007/s00284-024-03735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/08/2024] [Indexed: 06/29/2024]
Abstract
The Exiguobacterium genus comprises Gram-stain-positive and facultatively anaerobic bacteria. Some Exiguobacterium species have previously shown significant high 16S rRNA gene sequence similarities with each other. This study evaluates the taxonomic classification of those Exiguobacterium species through comprehensive genome analysis. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values were determined for various Exiguobacterium species pairs. The ANI and dDDH values between Exiguobacterium enclense and Exiguobacterium indicum, Exiguobacterium aquaticum and Exiguobacterium mexicanum, Exiguobacterium soli and Exiguobacterium antarcticum, and Exiguobacterium sibiricum and Exiguobacterium artemiae were above the cut-off level (95-96% for ANI and 70% for dDDH) for species delineation. Based on the findings, we propose to reclassify Exiguobacterium enclense as a later heterotypic synonym of Exiguobacterium indicum, Exiguobacterium aquaticum as a later heterotypic synonym of Exiguobacterium mexicanum, Exiguobacterium soli as a later heterotypic synonym of Exiguobacterium antarcticum and Exiguobacterium sibiricum as a later heterotypic synonym of Exiguobacterium artemiae.
Collapse
Affiliation(s)
- Shuang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization/Heilongjiang Black Soil Conservation Engineering and Technology Research Center, Harbin, 150086, People's Republic of China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Awalagaway Dhulappa
- Department of Microbiology, Maharani's Science College for Women, Bangalore, 560001, India
| | - Syed Raziuddin Quadri
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, 91431, Kingdom of Saudi Arabia
| | - Pinjiao Jin
- Heilongjiang Academy of Black Soil Conservation and Utilization/Heilongjiang Black Soil Conservation Engineering and Technology Research Center, Harbin, 150086, People's Republic of China
| | - Kangkang Wang
- Heilongjiang Academy of Black Soil Conservation and Utilization/Heilongjiang Black Soil Conservation Engineering and Technology Research Center, Harbin, 150086, People's Republic of China
| | - Hui Qiao
- Dengta City Development Reform Affairs Service Center, Dengta, 150499, People's Republic of China
| | - Manik Prabhu Narsing Rao
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Sede Talca, 3460000, Talca, Chile.
| |
Collapse
|
39
|
Sutcliffe IC, Rodriguez-R LM, Venter SN, Whitman WB. Quis custodiet ipsos custodes? A call for community participation in the governance of the SeqCode. Syst Appl Microbiol 2024; 47:126498. [PMID: 38442686 DOI: 10.1016/j.syapm.2024.126498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Codes of nomenclature that provide well-regulated and stable frameworks for the naming of taxa are a fundamental underpinning of biological research. These Codes themselves require systems that govern their administration, interpretation and emendment. Here we review the provisions that have been made for the governance of the recently introduced Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode), which provides a nomenclatural framework for the valid publication of names of Archaea and Bacteria using isolate genome, metagenome-assembled genome or single-amplified genome sequences as type material. The administrative structures supporting the SeqCode are designed to be open and inclusive. Direction is provided by the SeqCode Community, which we encourage those with an interest in prokaryotic systematics to join.
Collapse
Affiliation(s)
- Iain C Sutcliffe
- Faculty of Health & Life Sciences, Northumbria University, Newcastle Upon Tyne, UK.
| | - Luis M Rodriguez-R
- Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Innsbruck 60b0, Austria
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - William B Whitman
- Department of Microbiology, University of Georgia, Athens, GA C060b, USA
| |
Collapse
|
40
|
Gago JF, Viver T, Urdiain M, Ferreira E, Robledo P, Rossello-Mora R. Metagenomics of two aquifers with thermal anomalies in Mallorca Island, and proposal of new uncultivated taxa named following the rules of SeqCode. Syst Appl Microbiol 2024; 47:126506. [PMID: 38640749 DOI: 10.1016/j.syapm.2024.126506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Groundwater offers an intriguing blend of distinctive physical and chemical conditions, constituting a challenge for microbial life. In Mallorca, the largest island of Balearic archipelago, harbours a variety of thermal anomalies (i.e., geothermal manifestation where surface aquifers exhibiting temperatures exceeding the regional average). The metagenomes of two aquifers in the centre and southern of the island showed Pseudomonadota to be the most represented phylum when using extracted 16S rRNA gene sequences. However, the microbial structures within and between aquifers were remarkably diverse but similar in their metabolic profiles as revealed by the metagenome-assembled genomes (MAGs) pointing to a prevalence of aerobic chemolithoautotrophic and heterotrophic metabolisms, especially in the Llucmajor aquifer. Also, some evidences of anaerobic lifestyles were detected, which would indicate that these environments either could suffer episodes of oxygen depletion or the anaerobes had been transported from deeper waters. We believe that the local environmental factors (temperature, external inputs or chemistry) seem to be more relevant than the connection and, eventually, transport of microbial cells within the aquifer in determining the highly divergent structures. Notably, most of the reconstructed genomes belonged to undescribed bacterial lineages and from them two high-quality MAGs could be classified as novel taxa named following the rules of the Code for Nomenclature of Prokaryotes Described from Sequence Data (SeqCode). Accordingly, we propose the new species and genus Costitxia debesea gen. nov., sp. nov., affiliated with the novel family Costitxiaceae fam. nov., order Costitxiales ord. nov. and class Costitxiia class. nov.; and the new new species and genus Lloretia debesea gen. nov. sp. nov. affiliated with the novel family Lloretiaceae fam. nov.
Collapse
Affiliation(s)
- Juan F Gago
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain; The Deep Blue Sea Enterprise S.L., Barcelona, Spain; Lipotrue S.L., Barcelona, Spain.
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain; Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Mercedes Urdiain
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Elaine Ferreira
- The Deep Blue Sea Enterprise S.L., Barcelona, Spain; Lipotrue S.L., Barcelona, Spain
| | - Pedro Robledo
- Unit of Geological and Mining Institute of Spain in Balearic Islands (IGME-CSIC), Palma de Mallorca, Spain
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain.
| |
Collapse
|
41
|
St John E, Reysenbach AL. Genomic comparison of deep-sea hydrothermal genera related to Aeropyrum, Thermodiscus and Caldisphaera, and proposed emended description of the family Acidilobaceae. Syst Appl Microbiol 2024; 47:126507. [PMID: 38703419 DOI: 10.1016/j.syapm.2024.126507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/02/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
Deep-sea hydrothermal vents host archaeal and bacterial thermophilic communities, including taxonomically and functionally diverse Thermoproteota. Despite their prevalence in high-temperature submarine communities, Thermoproteota are chronically under-represented in genomic databases and issues have emerged regarding their nomenclature, particularly within the Aeropyrum-Thermodiscus-Caldisphaera. To resolve some of these problems, we identified 47 metagenome-assembled genomes (MAGs) within this clade, from 20 previously published deep-sea hydrothermal vent and submarine volcano metagenomes, and 24 MAGs from public databases. Using phylogenomic analysis, Genome Taxonomy Database Toolkit (GTDB-Tk) taxonomic assessment, 16S rRNA gene phylogeny, average amino acid identity (AAI) and functional gene patterns, we re-evaluated of the taxonomy of the Aeropyrum-Thermodiscus-Caldisphaera. At least nine genus-level clades were identified with two or more MAGs. In accordance with SeqCode requirements and recommendations, we propose names for three novel genera, viz. Tiamatella incendiivivens, Hestiella acidicharens and Calypsonella navitae. A fourth genus was also identified related to Thermodiscus maritimus, for which no available sequenced genome exists. We propose the novel species Thermodiscus eudorianus to describe our high-quality Thermodiscus MAG, which represents the type genome for the genus. All three novel genera and T. eudorianus are likely anaerobic heterotrophs, capable of fermenting protein-rich carbon sources, while some Tiamatella, Calypsonella and T. eudorianus may also reduce polysulfides, thiosulfate, sulfur and/or selenite, and the likely acidophile, Hestiella, may reduce nitrate and/or perchlorate. Based on phylogenomic evidence, we also propose the family Acidilobaceae be amended to include Caldisphaera, Aeropyrum, Thermodiscus and Stetteria and the novel genera described here.
Collapse
Affiliation(s)
- Emily St John
- Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA.
| | - Anna-Louise Reysenbach
- Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA.
| |
Collapse
|
42
|
Li J, Luo J, Li M, Wang C, Hu S, Lu K, Wang G. Splendidivirga corallicola gen. nov., sp. nov. and Agaribacillus aureus gen. nov., sp. nov., two bacteria isolated from coral Porites lutea, and proposal of Splendidivirgaceae fam. nov. Int J Syst Evol Microbiol 2024; 74. [PMID: 38739684 DOI: 10.1099/ijsem.0.006376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
The Bacteroidota is one of the dominant bacterial phyla in corals. However, the exact taxa of those coral bacteria under the Bacteroidota are still unclear. Two aerobic, Gram-stain-negative, non-motile rods, designated strains BMA10T and BMA12T, were isolated from stony coral Porites lutea collected from Weizhou Island, PR China. Global alignment of 16S rRNA gene sequences indicated that both strains are closest to species of Fulvivirga with the highest identities being lower than 93 %, and the similarity value between these two strains was 92.3 %. Phylogenetic analysis based on 16S rRNA gene and genome sequences indicated that these two strains form an monophylogenetic lineage alongside the families Fulvivirgaceae, Reichenbachiellaceae, Roseivirgaceae, Marivirgaceae, Cyclobacteriaceae, and Cesiribacteraceae in the order Cytophagales, phylum Bacteroidota. The genomic DNA G+C contents of BMA10T and BMA12T were 38.4 and 41.9 mol%, respectively. The major polar lipids of BMA10T were phosphatidylethanolamine, unidentified aminophospholipid, four unidentified aminolipids, and five unidentified lipids. While those of BMA12T were phosphatidylethanolamine, two unidentified aminolipids, and five unidentified lipids. The major cellular fatty acids detected in both isolates were iso-C15 : 0 and C16 : 1 ω5c. Carbohydrate-active enzyme analysis indicated these two strains may utilize coral mucus or chitin. Based on above characteristics, these two strains are suggested to represent two new species in two new genera of a new family in the order Cytophagales, for which the name Splendidivirga corallicola gen. nov., sp. nov., Agaribacillus aureus gen. nov., sp. nov. and Splendidivirgaceae fam. nov. are proposed. The type strain of S. corallicola is BMA10T (=MCCC 1K08300T=KCTC 102045T), and that for A. aureus is BMA12T (=MCCC 1K08309T=KCTC 102046T).
Collapse
Affiliation(s)
- Jin Li
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Jixin Luo
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Mi Li
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Chenyan Wang
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Siyu Hu
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Kun Lu
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Guanghua Wang
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
43
|
Serra Moncadas L, Hofer C, Bulzu PA, Pernthaler J, Andrei AS. Freshwater genome-reduced bacteria exhibit pervasive episodes of adaptive stasis. Nat Commun 2024; 15:3421. [PMID: 38653968 PMCID: PMC11039613 DOI: 10.1038/s41467-024-47767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
The emergence of bacterial species is rooted in their inherent potential for continuous evolution and adaptation to an ever-changing ecological landscape. The adaptive capacity of most species frequently resides within the repertoire of genes encoding the secreted proteome (SP), as it serves as a primary interface used to regulate survival/reproduction strategies. Here, by applying evolutionary genomics approaches to metagenomics data, we show that abundant freshwater bacteria exhibit biphasic adaptation states linked to the eco-evolutionary processes governing their genome sizes. While species with average to large genomes adhere to the dominant paradigm of evolution through niche adaptation by reducing the evolutionary pressure on their SPs (via the augmentation of functionally redundant genes that buffer mutational fitness loss) and increasing the phylogenetic distance of recombination events, most of the genome-reduced species exhibit a nonconforming state. In contrast, their SPs reflect a combination of low functional redundancy and high selection pressure, resulting in significantly higher levels of conservation and invariance. Our findings indicate that although niche adaptation is the principal mechanism driving speciation, freshwater genome-reduced bacteria often experience extended periods of adaptive stasis. Understanding the adaptive state of microbial species will lead to a better comprehension of their spatiotemporal dynamics, biogeography, and resilience to global change.
Collapse
Affiliation(s)
- Lucas Serra Moncadas
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Cyrill Hofer
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Adrian-Stefan Andrei
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland.
| |
Collapse
|
44
|
Pereira-Mora L, Guerrero LD, Erijman L, Fernández-Scavino A. Tartrate fermentation with H 2 production by a new member of Sporomusaceae enriched from rice paddy soil. Appl Environ Microbiol 2024; 90:e0235123. [PMID: 38517167 PMCID: PMC11026083 DOI: 10.1128/aem.02351-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/03/2024] [Indexed: 03/23/2024] Open
Abstract
In rice paddies, soil and plant-derived organic matter are degraded anaerobically to methane (CH4), a powerful greenhouse gas. The highest rate of methane emission occurs during the reproductive stage of the plant when mostly dicarboxylic acids are exudated by the roots. The emission of methane at this stage depends largely on the cooperative interaction between dicarboxylic acid-fermenting bacteria and methanogenic archaea in the rhizosphere. The fermentation of tartrate, one of the major acids exudated, has been scarcely explored in rice paddy soils. In this work, we characterized an anaerobic consortium from rice paddy soil composed of four bacterial strains, whose principal member (LT8) can ferment tartrate, producing H2 and acetate. Tartrate fermentation was accelerated by co-inoculation with a hydrogenotrophic methanogen. The assembled genome of LT8 possesses a Na+-dependent oxaloacetate decarboxylase and shows that this bacterium likely invests part of the H2 produced to reduce NAD(P)+ to assimilate C from tartrate. The phylogenetic analysis of the 16S rRNA gene, the genome-based classification as well as the average amino acid identity (AAI) indicated that LT8 belongs to a new genus within the Sporomusaceae family. LT8 shares a few common features with its closest relatives, for which tartrate degradation has not been described. LT8 is limited to a few environments but is more common in rice paddy soils, where it might contribute to methane emissions from root exudates.IMPORTANCEThis is the first report of the metabolic characterization of a new anaerobic bacterium able to degrade tartrate, a compound frequently associated with plants, but rare as a microbial metabolite. Tartrate fermentation by this bacterium can be coupled to methanogenesis in the rice rhizosphere where tartrate is mainly produced at the reproductive stage of the plant, when the maximum methane rate emission occurs. The interaction between secondary fermentative bacteria, such as LT8, and methanogens could represent a fundamental step in exploring mitigation strategies for methane emissions from rice fields. Possible strategies could include controlling the activity of these secondary fermentative bacteria or selecting plants whose exudates are more difficult to ferment.
Collapse
Affiliation(s)
- Luciana Pereira-Mora
- Laboratorio de Ecología Microbiana y Microbiología Ambiental, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Unidad Asociada de Microbiología del Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Leandro D. Guerrero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Fernández-Scavino
- Laboratorio de Ecología Microbiana y Microbiología Ambiental, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
45
|
Zhao R, Jørgensen SL, Babbin AR. An abundant bacterial phylum with nitrite-oxidizing potential in oligotrophic marine sediments. Commun Biol 2024; 7:449. [PMID: 38605091 PMCID: PMC11009272 DOI: 10.1038/s42003-024-06136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Nitrite-oxidizing bacteria (NOB) are important nitrifiers whose activity regulates the availability of nitrite and dictates the magnitude of nitrogen loss in ecosystems. In oxic marine sediments, ammonia-oxidizing archaea (AOA) and NOB together catalyze the oxidation of ammonium to nitrate, but the abundance ratios of AOA to canonical NOB in some cores are significantly higher than the theoretical ratio range predicted from physiological traits of AOA and NOB characterized under realistic ocean conditions, indicating that some NOBs are yet to be discovered. Here we report a bacterial phylum Candidatus Nitrosediminicolota, members of which are more abundant than canonical NOBs and are widespread across global oligotrophic sediments. Ca. Nitrosediminicolota members have the functional potential to oxidize nitrite, in addition to other accessory functions such as urea hydrolysis and thiosulfate reduction. While one recovered species (Ca. Nitrosediminicola aerophilus) is generally confined within the oxic zone, another (Ca. Nitrosediminicola anaerotolerans) additionally appears in anoxic sediments. Counting Ca. Nitrosediminicolota as a nitrite-oxidizer helps to resolve the apparent abundance imbalance between AOA and NOB in oxic marine sediments, and thus its activity may exert controls on the nitrite budget.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Steffen L Jørgensen
- Centre for Deep-Sea Research, Department of Earth Science, University of Bergen, Bergen, Norway
| | - Andrew R Babbin
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
46
|
Luo J, Li J, Wang C, Li M, Hu S, Lu K, Wang G. Rubellicoccus peritrichatus gen. nov., sp. nov., isolated from crustose coralline algae in a coral aquarium. Int J Syst Evol Microbiol 2024; 74. [PMID: 38568201 DOI: 10.1099/ijsem.0.006325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
A Gram-stain-negative, motile, aerobic, non-spore-forming coccus, designated strain CR14T, was isolated from crustose coralline algae. Cells grew at 20-30 °C (optimum, 25 °C), at pH 6-9 (optimum, pH 7.6) and with NaCl concentrations of 0.5-9 % (w/v; optimum, 2-4 %). Global alignment based on 16S rRNA gene sequences indicated strain CR14T is closest to Ruficoccus amylovorans JCM 31066T with an identity of 92 %. The average nucleotide identity and average amino acid identity values between CR14T and R. amylovorans JCM 31066T were 68.4 and 59.9 %, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CR14T forms an independent branch within the family Cerasicoccaeae, which was consistent with the phylogenomic results. The sole isoprenoid quinone was MK-7. The major fatty acids were C14 : 0, C18 : 1 ω9c, C19 : 0 cyc 9,10 DMA, C16 : 0, and C18 : 2 ω6c. The major cellular polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and two unidentified lipids. The genome DNA G+C content was 48.7 mol%. Based on morphological, physiological and chemotaxonomic characteristics, strain CR14T is suggested to represent a novel species in a new genus, for which the name Rubellicoccus peritrichatus gen. nov., sp. nov. is proposed. The type strain is CR14T (=MCCC 1K03845T=KCTC 72139T).
Collapse
Affiliation(s)
- Jixin Luo
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Jin Li
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Chenyan Wang
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Mi Li
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Siyu Hu
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Kun Lu
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| | - Guanghua Wang
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
47
|
Sánchez-Porro C, Aghdam EM, Montazersaheb S, Tarhriz V, Kazemi E, Amoozegar MA, Ventosa A, Hejazi MS. Marinobacter azerbaijanicus sp. nov., a moderately halophilic bacterium from Urmia Lake, Iran. Int J Syst Evol Microbiol 2024; 74. [PMID: 38568082 DOI: 10.1099/ijsem.0.006308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
A novel moderately halophilic, Gram-stain-negative and facultatively anaerobic bacterium, designated as strain TBZ242T, was isolated from water of Urmia Lake in the Azerbaijan region of Iran. The cells were found to be rod-shaped and motile by a single polar flagellum, producing circular and yellowish colonies. The strain could grow in the presence of 0.5-10 % (w/v) NaCl (optimum, 2.5-5 %). The temperature and pH ranges for growth were 15-45 °C (optimum 30 °C) and pH 7.0-11.0 (optimum pH 8.0) on marine agar. The 16S rRNA gene sequence analysis revealed that strain TBZ242T belonged to the genus Marinobacter, showing the highest similarities to Marinobacter algicola DG893T (98.8 %), Marinobacter vulgaris F01T (98.8 %), Marinobacter salarius R9SW1T (98.5 %), Marinobacter panjinensis PJ-16T (98.4 %), Marinobacter orientalis W62T (98.0 %) and Marinobacter denitrificans JB2H27T (98.0 %). The 16S rRNA and core-genome phylogenetic trees showed that strain TBZ242T formed a distinct branch, closely related to a subclade accommodating M. vulgaris, M. orientalis, M. panjinensis, M. denitrificans, M. algicola, M. salarius and M. iranensis, within the genus Marinobacter. Average nucleotide identity and digital DNA-DNA hybridization values between strain TBZ242T and the type strains of the related species of Marinobacter were ≤85.0 and 28.6 %, respectively, confirming that strain TBZ242T represents a distinct species. The major cellular fatty acids of strain TBZ242T were C16 : 0 and C16 : 1 ω7c/C16 : 1 ω6c and the quinone was ubiquinone Q-9. The genomic DNA G+C content of strain TBZ242T is 57.2 mol%. Based on phenotypic, chemotaxonomic and genomic data, strain TBZ242T represents a novel species within the genus Marinobacter, for which the name Marinobacter azerbaijanicus sp. nov. is proposed. The type strain is TBZ242T (= CECT 30649T = IBRC-M 11466T). Genomic fragment recruitment analysis showed that this species prefers aquatic saline environments with intermediate salinities, being detected on metagenomic databases of Lake Meyghan (Iran) with 5 and 18 % salinity, respectively.
Collapse
Affiliation(s)
- Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Elnaz Mehdizadeh Aghdam
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Elham Kazemi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Guo XY, Zhang QM, Fu JC, Qiu LH. Terrirubrum flagellatum gen. nov., sp. nov. of Terrirubraceae fam. nov. and Lichenibacterium dinghuense sp. nov. from forest soil and proposal of Rhodoblastaceae fam. nov. Int J Syst Evol Microbiol 2024; 74. [PMID: 38652005 DOI: 10.1099/ijsem.0.006348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Two Gram-negative, aerobic, rod-shaped bacterial strains, 7MK25T and 6Y81T, were isolated from forest soil of Dinghushan Biosphere Reserve, Guangdong Province, PR China. Based on the results of 16S rRNA gene sequence analysis, strain 7MK25T showed the highest similarity (93.6 %) to Methyloferula stellata AR4T, followed by Bosea thiooxidans DSM 9653T (93.3 %). Strain 6Y81T had the highest similarity of 97.9 % to Lichenibacterium minor RmlP026T, followed by Lichenibacterium ramalinae RmlP001T (97.2 %). Phylogenomic analysis using the UBCG and PhyloPhlAn methods consistently showed that strain 7MK25T formed a sister clade to Boseaceae, while strain 6Y81T formed an independent clade within the genus Lichenibacterium, both in the order Hyphomicrobiales. The digital DNA-DNA hybridization and average nucleotide identity values between strains 7MK25T, 6Y81T and their close relatives were in the ranges of 19.1-29.9 % and 72.5-85.5 %, respectively. The major fatty acids of 7MK25T were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), C19 : 0 cyclo ω8c, C16 : 0 and C17 : 0 cyclo, while those of 6Y81T were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), C16 : 0 and C16 : 0 3-OH. Strains 7MK25T and 6Y81T took diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine as their dominant polar lipids, and Q-10 as their major respiratory quinone. On the basis of phenotypic and phylogenetic data, strain 7MK25T is proposed to represent a novel species of a novel genus with name Terrirubrum flagellatum gen. nov., sp. nov., within a novel family Terrirubraceae fam. nov., with 7MK25T (=KCTC 62738T=GDMCC 1.1452T) as its type strain. Strain 6Y81T represents a novel species in the genus Lichenibacterium, for which the name Lichenibacterium dinghuense sp. nov. (type strain 6Y81T=KACC 21 727T=GDMCC 1.2176T) is proposed. Rhodoblastaceae fam. nov. with Rhodoblastus as the type genus is also proposed to solve the non-monophylectic problem of the family Roseiarcaceae.
Collapse
Affiliation(s)
- Xiu-Yin Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Qiu-Mei Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jia-Cheng Fu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Li-Hong Qiu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
49
|
Hollender M, Sałek M, Karlicki M, Karnkowska A. Single-cell genomics revealed Candidatus Grellia alia sp. nov. as an endosymbiont of Eutreptiella sp. (Euglenophyceae). Protist 2024; 175:126018. [PMID: 38325049 DOI: 10.1016/j.protis.2024.126018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Though endosymbioses between protists and prokaryotes are widespread, certain host lineages have received disproportionate attention what may indicate either a predisposition to such interactions or limited studies on certain protist groups due to lack of cultures. The euglenids represent one such group in spite of microscopic observations showing intracellular bacteria in some strains. Here, we perform a comprehensive molecular analysis of a previously identified endosymbiont in the Eutreptiella sp. CCMP3347 using a single cell approach and bulk culture sequencing. The genome reconstruction of this endosymbiont allowed the description of a new endosymbiont Candidatus Grellia alia sp. nov. from the family Midichloriaceae. Comparative genomics revealed a remarkably complete conjugative type IV secretion system present in three copies on the plasmid sequences of the studied endosymbiont, a feature missing in the closely related Grellia incantans. This study addresses the challenge of limited host cultures with endosymbionts by showing that the genomes of endosymbionts reconstructed from single host cells have the completeness and contiguity that matches or exceeds those coming from bulk cultures. This paves the way for further studies of endosymbionts in euglenids and other protist groups. The research also provides the opportunity to study the diversity of endosymbionts in natural populations.
Collapse
Affiliation(s)
- Metody Hollender
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Marta Sałek
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Michał Karlicki
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland.
| |
Collapse
|
50
|
Edwin NR, Fitzpatrick AH, Brennan F, Abram F, O'Sullivan O. An in-depth evaluation of metagenomic classifiers for soil microbiomes. ENVIRONMENTAL MICROBIOME 2024; 19:19. [PMID: 38549112 PMCID: PMC10979606 DOI: 10.1186/s40793-024-00561-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/11/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Recent endeavours in metagenomics, exemplified by projects such as the human microbiome project and TARA Oceans, have illuminated the complexities of microbial biomes. A robust bioinformatic pipeline and meticulous evaluation of their methodology have contributed to the success of these projects. The soil environment, however, with its unique challenges, requires a specialized methodological exploration to maximize microbial insights. A notable limitation in soil microbiome studies is the dearth of soil-specific reference databases available to classifiers that emulate the complexity of soil communities. There is also a lack of in-vitro mock communities derived from soil strains that can be assessed for taxonomic classification accuracy. RESULTS In this study, we generated a custom in-silico mock community containing microbial genomes commonly observed in the soil microbiome. Using this mock community, we simulated shotgun sequencing data to evaluate the performance of three leading metagenomic classifiers: Kraken2 (supplemented with Bracken, using a custom database derived from GTDB-TK genomes along with its own default database), Kaiju, and MetaPhlAn, utilizing their respective default databases for a robust analysis. Our results highlight the importance of optimizing taxonomic classification parameters, database selection, as well as analysing trimmed reads and contigs. Our study showed that classifiers tailored to the specific taxa present in our samples led to fewer errors compared to broader databases including microbial eukaryotes, protozoa, or human genomes, highlighting the effectiveness of targeted taxonomic classification. Notably, an optimal classifier performance was achieved when applying a relative abundance threshold of 0.001% or 0.005%. The Kraken2 supplemented with bracken, with a custom database demonstrated superior precision, sensitivity, F1 score, and overall sequence classification. Using a custom database, this classifier classified 99% of in-silico reads and 58% of real-world soil shotgun reads, with the latter identifying previously overlooked phyla using a custom database. CONCLUSION This study underscores the potential advantages of in-silico methodological optimization in metagenomic analyses, especially when deciphering the complexities of soil microbiomes. We demonstrate that the choice of classifier and database significantly impacts microbial taxonomic profiling. Our findings suggest that employing Kraken2 with Bracken, coupled with a custom database of GTDB-TK genomes and fungal genomes at a relative abundance threshold of 0.001% provides optimal accuracy in soil shotgun metagenome analysis.
Collapse
Affiliation(s)
- Niranjana Rose Edwin
- Teagasc, Moorepark Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Functional Environmental Microbiology, School of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
| | | | - Fiona Brennan
- Teagasc, Soils, Environment and Landuse Department, Johnstown Castle, Wexford, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, School of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway, Ireland
| | - Orla O'Sullivan
- Teagasc, Moorepark Food Research Centre, Moorepark, Fermoy, Cork, Ireland.
- VistaMilk SFI Research Centre, Cork, Ireland.
| |
Collapse
|