1
|
Gupta K, Tian Y, Eudes A, Scheller HV, Singh AK, Adams PD, Andeer PF, Northen TR. EcoFAB 3.0: a sterile system for studying sorghum that replicates previous field and greenhouse observations. FRONTIERS IN PLANT SCIENCE 2024; 15:1440728. [PMID: 39435021 PMCID: PMC11491363 DOI: 10.3389/fpls.2024.1440728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024]
Abstract
Introduction Studying plant-microbe interactions is one of the key elements in understanding the path to sustainable agricultural practices. These interactions play a crucial role in ensuring survival of healthy plants, soil and microbial communities. Many platforms have been developed over the years to isolate these highly complex interactions however, these are designed for small model plants. This creates a need for complementary devices for larger plants, such as sorghum. Methods This work introduces a novel platform, EcoFAB 3.0, which is designed to enable studying bioenergy plants such as sorghum for up to 4 weeks in a controlled sterile environment. Several other advantages of this platform such as dark root chambers and user-friendly assembly are also discussed in this work. Results and discussion EcoFAB 3.0 was found to replicate previous greenhouse and field observations when comparing an engineered sorghum line overproducing 4-hydroxybenzoic acid (4-HBA) and wildtype (variety BTx430). Consistent with greenhouse and field observations, it was found that the engineered line of sorghum grown in EcoFAB 3.0 had a higher 4-HBA content and a lower dry biomass.
Collapse
Affiliation(s)
- Kshitiz Gupta
- Technology Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Yang Tian
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Aymerick Eudes
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Henrik V. Scheller
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anup K. Singh
- Technology Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Paul D. Adams
- Technology Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Peter F. Andeer
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Trent R. Northen
- Technology Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
2
|
Hanusch M, He X, Böll L, Junker RR. Testing the sequence of successional processes in miniature ecosystems. Microbiol Spectr 2024; 12:e0122724. [PMID: 39190635 PMCID: PMC11448199 DOI: 10.1128/spectrum.01227-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
Dispersal, environmental filtering, and biotic interactions define the species inventory of local communities. Along successional gradients, these assembly processes are predicted to sequentially vary in their relative importance with dispersal as the dominating process early in succession, followed by environmental filtering and biotic interactions at later stages. While observational data from field studies supported this prediction, controlled experiments confirming a sequence of successional processes are still lacking. We designed miniature ecosystems to explicitly test these assumptions under controlled laboratory conditions. Our "Ecosystems on a Plate" (EsoaP) are 3D-printed customized microplates with 24 connected wells allowing us to track dispersal, niche filtering, and biotic interactions among bacteria and plants in time and space. Within EsoaPs, we created heterogeneous habitat landscapes by well-specific nutrient levels or by providing plant seedlings as mutualistic partners in a checkerboard pattern. Bacteria of a single strain were released in one well and subsequently distributed themselves within the plates. We measured the spatial distribution of bacterial abundances at two time points as a function of abiotic or biotic heterogeneity. Bacterial abundance distribution confirmed a shift from initial dispersal-dominated processes to later niche filtering and biotic interactions as more important processes. Our approach follows the principles of open science as the affordable availability of 3D printers as well as shared STL files makes EsoaPs disseminatable and accessible to all levels of society, facilitating future experimental research. IMPORTANCE Hypotheses regarding the underlying processes of ecological successions have primarily emerged from and have been tested in observational studies, lacking substantial support through controlled experiments. The design of such experiments should focus on testing contemporary ecological theories at the intersection of community assembly and successional research. To achieve this, we developed and employed 3D-printed "Ecosystems on a Plate" (EsoaP) within controlled laboratory settings. EsoaPs surmount several limitations of nanoscale instruments that had hindered their application in ecologically meaningful research. By sharing 3D printing designs, experimental protocols, and data openly, we facilitate reproducibility of our experiments by researchers across diverse ecological disciplines. Moreover, our approach facilitates cost-effective replication of experiments, democratizing access to tools for ecological research, and thus holds the potential to serve as a model for future studies and educational purposes.
Collapse
Affiliation(s)
- Maximilian Hanusch
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, Marburg, Germany
- Department of Environment and Biodiversity, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Xie He
- Department of Environment and Biodiversity, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Laura Böll
- Department of Environment and Biodiversity, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Robert R. Junker
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, Marburg, Germany
- Department of Environment and Biodiversity, Paris-Lodron-University Salzburg, Salzburg, Austria
| |
Collapse
|
3
|
Clark AJ, Masters-Clark E, Moratto E, Junier P, Stanley CE. Visualizing liquid distribution across hyphal networks with cellular resolution. BIOMICROFLUIDICS 2024; 18:054109. [PMID: 39381835 PMCID: PMC11460992 DOI: 10.1063/5.0231656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Filamentous fungi and fungal-like organisms contribute to a wide range of important ecosystem functions. Evidence has shown the movement of liquid across mycelial networks in unsaturated environments, such as soil. However, tools to investigate liquid movement along hyphae at the level of the single cell are still lacking. Microfluidic devices permit the study of fungal and fungal-like organisms with cellular resolution as they can confine hyphae to a single optical plane, which is compatible with microscopy imaging over longer timescales and allows for precise control of the microchannel environment. The aim of this study was to develop a method that enables the visualization and quantification of liquid movement on hyphae of fungal and fungal-like microorganisms. For this, the fungal-fungal interaction microfluidic device was modified to allow for the maintenance of unsaturated microchannel conditions. Fluorescein-containing growth medium solidified with agar was used to track liquid transported by hyphae via fluorescence microscopy. Our key findings highlight the suitability of this novel methodology for the visualization of liquid movement by hyphae over varying time scales and the ability to quantify the movement of liquid along hyphae. Furthermore, we showed that at the cellular level, extracellular movement of liquid along hyphae can be bidirectional and highly dynamic, uncovering a possible link between liquid movement and hyphal growth characteristics. We envisage that this method can be applied to facilitate future research probing the parameters contributing to hyphal liquid movement and is an essential step for studying the phenomenon of fungal highways.
Collapse
Affiliation(s)
- Amelia J. Clark
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Emily Masters-Clark
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Eleonora Moratto
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Pilar Junier
- Laboritoire de microbiologie, University of Neuchâtel, Neuchâtel CH-2000, Switzerland
| | - Claire E. Stanley
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
4
|
Wu B, Wang J, Dai H, Yuan H, Ma J, Yu W, Zheng X, Ma B, Chen B, Chu C. Radial Oxygen Loss Triggers Diel Fluctuation of Cadmium Dissolution in the Rhizosphere of Rice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14718-14725. [PMID: 39110125 DOI: 10.1021/acs.est.4c04690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Cadmium (Cd) contamination poses a significant global threat to human health, primarily through dietary intake, with rice serving as a major source. While Cd predominantly resides in bound states in soil, the physiological processes by which rice facilitates Cd absorption in the rhizosphere remain largely elusive. This study delves into the mechanisms governing Cd uptake by rice plants in the rhizosphere, emphasizing the impact of daytime and nighttime fluctuations in microenvironmental conditions. Employing a microfluidic chip setup, the research reveals that radial oxygen loss from rice roots triggers dissolution of Cd in the rhizosphere. Notably, Cd mobility exhibits distinct diurnal fluctuations, peaking at 44.0 ± 4.1 nM during the daytime and dropping to 8.3 ± 1.3 nM during the nighttime. Further investigations reveal that variations in dissolved oxygen and hydroxyl radical concentrations influence Cd release, while pH changes and microbial reduction reactions play crucial roles in Cd immobilization. These findings provide insights into the intricate processes governing Cd mobilization in the rice rhizosphere, highlighting the importance of regulating these processes for effective Cd adsorption control in rice crops and safeguarding public health.
Collapse
Affiliation(s)
- Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jingyi Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Hengyi Dai
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honghong Yuan
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Junye Ma
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Wanchao Yu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshan Zheng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Bin Ma
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Kelliher JM, Johnson LYD, Robinson AJ, Longley R, Hanson BT, Cailleau G, Bindschedler S, Junier P, Chain PSG. Fabricated devices for performing bacterial-fungal interaction experiments across scales. Front Microbiol 2024; 15:1380199. [PMID: 39171270 PMCID: PMC11335632 DOI: 10.3389/fmicb.2024.1380199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Diverse and complex microbiomes are found in virtually every environment on Earth. Bacteria and fungi often co-dominate environmental microbiomes, and there is growing recognition that bacterial-fungal interactions (BFI) have significant impacts on the functioning of their associated microbiomes, environments, and hosts. Investigating BFI in vitro remains a challenge, particularly when attempting to examine interactions at multiple scales of system complexity. Fabricated devices can provide control over both biotic composition and abiotic factors within an experiment to enable the characterization of diverse BFI phenotypes such as modulation of growth rate, production of biomolecules, and alterations to physical movements. Engineered devices ranging from microfluidic chips to simulated rhizosphere systems have been and will continue to be invaluable to BFI research, and it is anticipated that such devices will continue to be developed for diverse applications in the field. This will allow researchers to address specific questions regarding the nature of BFI and how they impact larger microbiome and environmental processes such as biogeochemical cycles, plant productivity, and overall ecosystem resilience. Devices that are currently used for experimental investigations of bacteria, fungi, and BFI are discussed herein along with some of the associated challenges and several recommendations for future device design and applications.
Collapse
Affiliation(s)
- Julia M. Kelliher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Leah Y. D. Johnson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Aaron J. Robinson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Reid Longley
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Buck T. Hanson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Patrick S. G. Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
6
|
Carreira C, Lønborg C, Acharya B, Aryal L, Buivydaite Z, Borim Corrêa F, Chen T, Lorenzen Elberg C, Emerson JB, Hillary L, Khadka RB, Langlois V, Mason-Jones K, Netherway T, Sutela S, Trubl G, Wa Kang'eri A, Wang R, White RA, Winding A, Zhao T, Sapkota R. Integrating viruses into soil food web biogeochemistry. Nat Microbiol 2024:10.1038/s41564-024-01767-x. [PMID: 39095499 DOI: 10.1038/s41564-024-01767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
The soil microbiome is recognized as an essential component of healthy soils. Viruses are also diverse and abundant in soils, but their roles in soil systems remain unclear. Here we argue for the consideration of viruses in soil microbial food webs and describe the impact of viruses on soil biogeochemistry. The soil food web is an intricate series of trophic levels that span from autotrophic microorganisms to plants and animals. Each soil system encompasses contrasting and dynamic physicochemical conditions, with labyrinthine habitats composed of particles. Conditions are prone to shifts in space and time, and this variability can obstruct or facilitate interactions of microorganisms and viruses. Because viruses can infect all domains of life, they must be considered as key regulators of soil food web dynamics and biogeochemical cycling. We highlight future research avenues that will enable a more robust understanding of the roles of viruses in soil function and health.
Collapse
Affiliation(s)
- Cátia Carreira
- Department of Environmental Science, Aarhus University, Roskilde, Denmark.
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal.
| | | | - Basistha Acharya
- Directorate of Agricultural Research, Nepal Agricultural Research Council, Khajura, Nepal
| | - Laxman Aryal
- Nepal Agricultural Research Council, National Wheat Research Program, Bhairahawa, Nepal
| | - Zivile Buivydaite
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Felipe Borim Corrêa
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Tingting Chen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | | | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Luke Hillary
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Ram B Khadka
- National Plant Pathology Research Center, Nepal Agricultural Research Council, Lalitpur, Nepal
| | - Valérie Langlois
- Département de Biochimie, Microbiologie et Bio-informatique, Université Laval, Québec City, Québec, Canada
| | - Kyle Mason-Jones
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Suvi Sutela
- Natural Resources Institute Finland, Helsinki, Finland
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - Ruiqi Wang
- Department of Environmental Biology, Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Richard Allen White
- Computational Intelligence to Predict Health and Environmental Risks, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
- North Carolina Research Campus, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Anne Winding
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Tianci Zhao
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
7
|
Gallardo-Navarro O, Aguilar-Salinas B, Rocha J, Olmedo-Álvarez G. Higher-order interactions and emergent properties of microbial communities: The power of synthetic ecology. Heliyon 2024; 10:e33896. [PMID: 39130413 PMCID: PMC11315108 DOI: 10.1016/j.heliyon.2024.e33896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 08/13/2024] Open
Abstract
Humans have long relied on microbial communities to create products, produce energy, and treat waste. The microbiota residing within our bodies directly impacts our health, while the soil and rhizosphere microbiomes influence the productivity of our crops. However, the complexity and diversity of microbial communities make them challenging to study and difficult to develop into applications, as they often exhibit the emergence of unpredictable higher-order phenomena. Synthetic ecology aims at simplifying complexity by constituting synthetic or semi-natural microbial communities with reduced diversity that become easier to study and analyze. This strategy combines methodologies that simplify existing complex systems (top-down approach) or build the system from its constituent components (bottom-up approach). Simplified communities are studied to understand how interactions among populations shape the behavior of the community and to model and predict their response to external stimuli. By harnessing the potential of synthetic microbial communities through a multidisciplinary approach, we can advance knowledge of ecological concepts and address critical public health, agricultural, and environmental issues more effectively.
Collapse
Affiliation(s)
- Oscar Gallardo-Navarro
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| | - Bernardo Aguilar-Salinas
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| | - Jorge Rocha
- Centro de Investigaciones Biológicas del Noroeste, S. C., La Paz, Mexico
| | - Gabriela Olmedo-Álvarez
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| |
Collapse
|
8
|
Voigtländer A, Houssais M, Bacik KA, Bourg IC, Burton JC, Daniels KE, Datta SS, Del Gado E, Deshpande NS, Devauchelle O, Ferdowsi B, Glade R, Goehring L, Hewitt IJ, Jerolmack D, Juanes R, Kudrolli A, Lai CY, Li W, Masteller C, Nissanka K, Rubin AM, Stone HA, Suckale J, Vriend NM, Wettlaufer JS, Yang JQ. Soft matter physics of the ground beneath our feet. SOFT MATTER 2024. [PMID: 39012310 DOI: 10.1039/d4sm00391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The soft part of the Earth's surface - the ground beneath our feet - constitutes the basis for life and natural resources, yet a general physical understanding of the ground is still lacking. In this critical time of climate change, cross-pollination of scientific approaches is urgently needed to better understand the behavior of our planet's surface. The major topics in current research in this area cross different disciplines, spanning geosciences, and various aspects of engineering, material sciences, physics, chemistry, and biology. Among these, soft matter physics has emerged as a fundamental nexus connecting and underpinning many research questions. This perspective article is a multi-voice effort to bring together different views and approaches, questions and insights, from researchers that work in this emerging area, the soft matter physics of the ground beneath our feet. In particular, we identify four major challenges concerned with the dynamics in and of the ground: (I) modeling from the grain scale, (II) near-criticality, (III) bridging scales, and (IV) life. For each challenge, we present a selection of topics by individual authors, providing specific context, recent advances, and open questions. Through this, we seek to provide an overview of the opportunities for the broad Soft Matter community to contribute to the fundamental understanding of the physics of the ground, strive towards a common language, and encourage new collaborations across the broad spectrum of scientists interested in the matter of the Earth's surface.
Collapse
Affiliation(s)
- Anne Voigtländer
- German Research Centre for Geosciences (GFZ), Geomorphology, Telegrafenberg, 14473 Potsdam, Germany.
- Lawrence Berkeley National Laboratory (LBNL), Energy Geosciences Division, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Morgane Houssais
- Department of Physics, Clark University, 950 Main St, Worcester, MA 01610, USA
| | - Karol A Bacik
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ian C Bourg
- Civil and Environmental Engineering (CEE) and High Meadows Environmental Institute (HMEI), Princeton University, E208 EQuad, Princeton, NJ 08540, USA
| | - Justin C Burton
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA 30033, USA
| | - Karen E Daniels
- North Carolina State University, 2401 Stinson Dr, Raleigh, NC 27607, USA
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Emanuela Del Gado
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC, USA
| | - Nakul S Deshpande
- North Carolina State University, 2401 Stinson Dr, Raleigh, NC 27607, USA
| | - Olivier Devauchelle
- Institut de Physique du Globe de Paris, Université Paris Cité, 1 rue Jussieu, CNRS, F-75005 Paris, France
| | - Behrooz Ferdowsi
- Department of Civil and Environmental Engineering, jUniversity of Houston, Houston, TX 77204, USA
| | - Rachel Glade
- Earth & Environmental Sciences Department and Mechanical Engineering Department, University of Rochester, 227 Hutchison Hall, P.O. Box 270221, Rochester, NY 14627, USA
| | - Lucas Goehring
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Ian J Hewitt
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Douglas Jerolmack
- Department of Earth & Environmental Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruben Juanes
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Arshad Kudrolli
- Department of Physics, Clark University, 950 Main St, Worcester, MA 01610, USA
| | - Ching-Yao Lai
- Department of Geophysics, Stanford University, Stanford, CA 94305, USA
| | - Wei Li
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Stony Brook University, Department of Civil Engineering, Stony Brook, NY 11794, USA
| | - Claire Masteller
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Kavinda Nissanka
- Department of Physics, Emory University, 400 Dowman Dr, Atlanta, GA 30033, USA
| | - Allan M Rubin
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jenny Suckale
- Computational and Mathematical Engineering, and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | - Nathalie M Vriend
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - John S Wettlaufer
- Departments of Earth & Planetary Sciences, Mathematics and Physics, Yale University, New Haven, CT 06520, USA
- Nordic Institute for Theoretical Physics, 106 91, Stockholm, Sweden
| | - Judy Q Yang
- Saint Anthony Falls Laboratory and Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Salek MM, Carrara F, Zhou J, Stocker R, Jimenez‐Martinez J. Multiscale Porosity Microfluidics to Study Bacterial Transport in Heterogeneous Chemical Landscapes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310121. [PMID: 38445967 PMCID: PMC11132056 DOI: 10.1002/advs.202310121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Indexed: 03/07/2024]
Abstract
Microfluidic models are proving to be powerful systems to study fundamental processes in porous media, due to their ability to replicate topologically complex environments while allowing detailed, quantitative observations at the pore scale. Yet, while porous media such as living tissues, geological substrates, or industrial systems typically display a porosity that spans multiple scales, most microfluidic models to date are limited to a single porosity or a small range of pore sizes. Here, a novel microfluidic system with multiscale porosity is presented. By embedding polyacrylamide (PAAm) hydrogel structures through in-situ photopolymerization in a landscape of microfabricated polydimethylsiloxane (PDMS) pillars with varying spacing, micromodels with porosity spanning several orders of magnitude, from nanometers to millimeters are created. Experiments conducted at different porosity patterns demonstrate the potential of this approach to characterize fundamental and ubiquitous biological and geochemical transport processes in porous media. Accounting for multiscale porosity allows studies of the resulting heterogeneous fluid flow and concentration fields of transported chemicals, as well as the biological behaviors associated with this heterogeneity, such as bacterial chemotaxis. This approach brings laboratory studies of transport in porous media a step closer to their natural counterparts in the environment, industry, and medicine.
Collapse
Affiliation(s)
- M. Mehdi Salek
- Department of Biological Engineering, School of EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of CivilEnvironmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurichSwitzerland
| | - Francesco Carrara
- Department of CivilEnvironmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurichSwitzerland
| | - Jiande Zhou
- Department of CivilEnvironmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurichSwitzerland
- Microsystems LaboratoryInstitute of MicroengineeringSchool of EngineeringEPFLLausanneSwitzerland
| | - Roman Stocker
- Department of CivilEnvironmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurichSwitzerland
| | - Joaquin Jimenez‐Martinez
- Department of CivilEnvironmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurichSwitzerland
- Department of Water Resources and Drinking WaterEawagDubendorfSwitzerland
| |
Collapse
|
10
|
Li X, Zhu L, Zhang SY, Li J, Lin D, Wang M. Characterization of microbial contamination in agricultural soil: A public health perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169139. [PMID: 38070547 DOI: 10.1016/j.scitotenv.2023.169139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
Soil is widely recognized as a reservoir of microbial contaminants including antibiotic resistance genes (ARGs) and human bacterial pathogens (HBPs), which are major public health concerns. Although the risks associated with soil safety in different soil habitats have been studied, the results are not comprehensive. In this study, dryland soils used for vegetable, corn, and soybean planting, and submerged soils used for rice planting and crab farming were collected and subjected to metagenomic sequencing to characterize HBPs, ARGs, and virulence factor genes (VFGs). The results showed that submerged soils had a higher abundance of HBP than dryland soils. In addition, the submerged soil microbiome acquired significantly higher levels of high-risk ARGs than the dryland soil microbiome and these ARGs were mainly assigned to bacA, sul1, and aadA genes submerged. Network analysis revealed that 11 HBPs, including Yersinia enterocolitica, Vibrio cholerae, Escherichia coli, and Leptospira interrogans, were high-risk because of their close association with ARGs, VFGs, and mobile genetic elements (MGEs). Procrustes and network analyses showed that HBPs and ARGs were more closely linked in submerged soil. This study confirms that submerged field has higher ecological environment risk and human health risk than dryland soil.
Collapse
Affiliation(s)
- Xiaodi Li
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lin Zhu
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Si-Yu Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Jingpeng Li
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Da Lin
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Meizhen Wang
- International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development & Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
11
|
Ahkami AH, Qafoku O, Roose T, Mou Q, Lu Y, Cardon ZG, Wu Y, Chou C, Fisher JB, Varga T, Handakumbura P, Aufrecht JA, Bhattacharjee A, Moran JJ. Emerging sensing, imaging, and computational technologies to scale nano-to macroscale rhizosphere dynamics - Review and research perspectives. SOIL BIOLOGY & BIOCHEMISTRY 2024; 189:109253. [PMID: 39238778 PMCID: PMC11376622 DOI: 10.1016/j.soilbio.2023.109253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The soil region influenced by plant roots, i.e., the rhizosphere, is one of the most complex biological habitats on Earth and significantly impacts global carbon flow and transformation. Understanding the structure and function of the rhizosphere is critically important for maintaining sustainable plant ecosystem services, designing engineered ecosystems for long-term soil carbon storage, and mitigating the effects of climate change. However, studying the biological and ecological processes and interactions in the rhizosphere requires advanced integrated technologies capable of decoding such a complex system at different scales. Here, we review how emerging approaches in sensing, imaging, and computational modeling can advance our understanding of the complex rhizosphere system. Particularly, we provide our perspectives and discuss future directions in developing in situ rhizosphere sensing technologies that could potentially correlate local-scale interactions to ecosystem scale impacts. We first review integrated multimodal imaging techniques for tracking inorganic elements and organic carbon flow at nano- to microscale in the rhizosphere, followed by a discussion on the use of synthetic soil and plant habitats that bridge laboratory-to-field studies on the rhizosphere processes. We then describe applications of genetically encoded biosensors in monitoring nutrient and chemical exchanges in the rhizosphere, and the novel nanotechnology-mediated delivery approaches for introducing biosensors into the root tissues. Next, we review the recent progress and express our vision on field-deployable sensing technologies such as planar optodes for quantifying the distribution of chemical and analyte gradients in the rhizosphere under field conditions. Moreover, we provide perspectives on the challenges of linking complex rhizosphere interactions to ecosystem sensing for detecting biological traits across scales, which arguably requires using the best-available model predictions including the model-experiment and image-based modeling approaches. Experimental platforms relevant to field conditions like SMART (Sensors at Mesoscales with Advanced Remote Telemetry) soils testbed, coupled with ecosystem sensing and predictive models, can be effective tools to explore coupled ecosystem behavior and responses to environmental perturbations. Finally, we envision that with the advent of novel high-resolution imaging capabilities at nano- to macroscale, and remote biosensing technologies, combined with advanced computational models, future studies will lead to detection and upscaling of rhizosphere processes toward ecosystem and global predictions.
Collapse
Affiliation(s)
- Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Odeta Qafoku
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Tiina Roose
- Bioengineering Sciences Research Group, Faculty of Engineering and Environment, University of Southampton, University Road, Southampton, England, SO17 1BJ
| | - Quanbing Mou
- Department of Chemistry, The University of Texas at Austin, 105 East 24 Street, Austin, TX 78712, USA
| | - Yi Lu
- Department of Chemistry, The University of Texas at Austin, 105 East 24 Street, Austin, TX 78712, USA
| | - Zoe G Cardon
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Yuxin Wu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
| | - Chunwei Chou
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA
| | - Joshua B Fisher
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA, 92866, USA
| | - Tamas Varga
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Pubudu Handakumbura
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Jayde A Aufrecht
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - Arunima Bhattacharjee
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
| | - James J Moran
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, 99454, USA
- Michigan State University, Department of Integrative Biology and Department of Plant, Soil, and Microbial Sciences, East Lansing, MI, 48824, USA
| |
Collapse
|
12
|
Liao H, Hao X, Li Y, Ma S, Gao S, Cai P, Chen W, Huang Q. Protists regulate microbially mediated organic carbon turnover in soil aggregates. GLOBAL CHANGE BIOLOGY 2024; 30:e17102. [PMID: 38273557 DOI: 10.1111/gcb.17102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 01/27/2024]
Abstract
Soil protists, the major predator of bacteria and fungi, shape the taxonomic and functional structure of soil microbiome via trophic regulation. However, how trophic interactions between protists and their prey influence microbially mediated soil organic carbon turnover remains largely unknown. Here, we investigated the protistan communities and microbial trophic interactions across different aggregates-size fractions in agricultural soil with long-term fertilization regimes. Our results showed that aggregate sizes significantly influenced the protistan community and microbial hierarchical interactions. Bacterivores were the predominant protistan functional group and were more abundant in macroaggregates and silt + clay than in microaggregates, while omnivores showed an opposite distribution pattern. Furthermore, partial least square path modeling revealed positive impacts of omnivores on the C-decomposition genes and soil organic matter (SOM) contents, while bacterivores displayed negative impacts. Microbial trophic interactions were intensive in macroaggregates and silt + clay but were restricted in microaggregates, as indicated by the intensity of protistan-bacterial associations and network complexity and connectivity. Cercozoan taxa were consistently identified as the keystone species in SOM degradation-related ecological clusters in macroaggregates and silt + clay, indicating the critical roles of protists in SOM degradation by regulating bacterial and fungal taxa. Chemical fertilization had a positive effect on soil C sequestration through suppressing SOM degradation-related ecological clusters in macroaggregate and silt + clay. Conversely, the associations between the trophic interactions and SOM contents were decoupled in microaggregates, suggesting limited microbial contributions to SOM turnovers. Our study demonstrates the importance of protists-driven trophic interactions on soil C cycling in agricultural ecosystems.
Collapse
Affiliation(s)
- Hao Liao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| | - Xiuli Hao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| | - Yiting Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Silin Ma
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| | - Shenghan Gao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| | - Peng Cai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan, China
| |
Collapse
|
13
|
Mafla-Endara PM, Meklesh V, Beech JP, Ohlsson P, Pucetaite M, Hammer EC. Exposure to polystyrene nanoplastics reduces bacterial and fungal biomass in microfabricated soil models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166503. [PMID: 37633381 DOI: 10.1016/j.scitotenv.2023.166503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Nanoplastics have been proven to induce toxicity in diverse organisms, yet their effect on soil microbes like bacteria and fungi remains largely unexplored. In this paper, we used micro-engineered soil models to investigate the effect of polystyrene (PS) nanospheres on Pseudomonas putida and Coprinopsis cinerea. Specifically, we explored the effects of increasing concentrations of 60 nm carboxylated bovine serum albumin (BSA) coated nanospheres (0, 0.5, 2, and 10 mg/L) on these bacterial and fungal model organisms respectively, over time. We found that both microorganisms could disperse through the PS solution, but long-distance dispersal was reduced by high concentrations. Microbial biomass decreased in all treatments, in which bacteria showed a linear dose response with the strongest effect at 10 mg/L concentration, and fungi showed a non-linear response with the strongest effect at 2 mg/L concentration. At the highest nanoplastics concentration, the first colonizing fungal hyphae adsorbed most of the PS nanospheres present in their vicinity, in a process that we termed the 'vacuum cleaner effect'. As a result, the toxicity effect of the original treatment on subsequently growing fungal hyphae was reduced to a growth level indistinguishable from the control. We did not find evidence that nanoplastics are able to penetrate bacterial nor fungal cell walls. Overall, our findings provide evidence that nanoplastics can cause a direct negative effect on soil microbes and highlight the need for further studies that can explain how the microbial stress response might affect soil functions.
Collapse
Affiliation(s)
- Paola M Mafla-Endara
- Centre for Environmental and Climate Science (CEC), Lund University, Lund, Sweden; Department of Biology, Lund University, Lund, Sweden.
| | - Viktoriia Meklesh
- Centre for Environmental and Climate Science (CEC), Lund University, Lund, Sweden; Physical Chemistry Division, Department of Chemistry, Lund University, Lund, Sweden
| | - Jason P Beech
- Division of Solid State Physics, Department of Physics and NanoLund, Lund University, Lund, Sweden
| | - Pelle Ohlsson
- Department of Biomedical Engineering, Faculty of Engineering (LTH), Lund University, Lund, Sweden
| | | | - Edith C Hammer
- Centre for Environmental and Climate Science (CEC), Lund University, Lund, Sweden; Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Kumari P, Deepa N, Trivedi PK, Singh BK, Srivastava V, Singh A. Plants and endophytes interaction: a "secret wedlock" for sustainable biosynthesis of pharmaceutically important secondary metabolites. Microb Cell Fact 2023; 22:226. [PMID: 37925404 PMCID: PMC10625306 DOI: 10.1186/s12934-023-02234-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Many plants possess immense pharmacological properties because of the presence of various therapeutic bioactive secondary metabolites that are of great importance in many pharmaceutical industries. Therefore, to strike a balance between meeting industry demands and conserving natural habitats, medicinal plants are being cultivated on a large scale. However, to enhance the yield and simultaneously manage the various pest infestations, agrochemicals are being routinely used that have a detrimental impact on the whole ecosystem, ranging from biodiversity loss to water pollution, soil degradation, nutrient imbalance and enormous health hazards to both consumers and agricultural workers. To address the challenges, biological eco-friendly alternatives are being looked upon with high hopes where endophytes pitch in as key players due to their tight association with the host plants. The intricate interplay between plants and endophytic microorganisms has emerged as a captivating subject of scientific investigation, with profound implications for the sustainable biosynthesis of pharmaceutically important secondary metabolites. This review delves into the hidden world of the "secret wedlock" between plants and endophytes, elucidating their multifaceted interactions that underpin the synthesis of bioactive compounds with medicinal significance in their plant hosts. Here, we briefly review endophytic diversity association with medicinal plants and highlight the potential role of core endomicrobiome. We also propose that successful implementation of in situ microbiome manipulation through high-end techniques can pave the way towards a more sustainable and pharmaceutically enriched future.
Collapse
Affiliation(s)
- Poonam Kumari
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Nikky Deepa
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prabodh Kumar Trivedi
- Division of Plant Biotechnology, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, 106 91, Stockholm, Sweden.
| | - Akanksha Singh
- Division of Crop Production and Protection, Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
15
|
Buffi M, Cailleau G, Kuhn T, Li Richter XY, Stanley CE, Wick LY, Chain PS, Bindschedler S, Junier P. Fungal drops: a novel approach for macro- and microscopic analyses of fungal mycelial growth. MICROLIFE 2023; 4:uqad042. [PMID: 37965130 PMCID: PMC10642649 DOI: 10.1093/femsml/uqad042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
This study presents an inexpensive approach for the macro- and microscopic observation of fungal mycelial growth. The 'fungal drops' method allows to investigate the development of a mycelial network in filamentous microorganisms at the colony and hyphal scales. A heterogeneous environment is created by depositing 15-20 µl drops on a hydrophobic surface at a fixed distance. This system is akin to a two-dimensional (2D) soil-like structure in which aqueous-pockets are intermixed with air-filled pores. The fungus (spores or mycelia) is inoculated into one of the drops, from which hyphal growth and exploration take place. Hyphal structures are assessed at different scales using stereoscopic and microscopic imaging. The former allows to evaluate the local response of regions within the colony (modular behaviour), while the latter can be used for fractal dimension analyses to describe the hyphal network architecture. The method was tested with several species to underpin the transferability to multiple species. In addition, two sets of experiments were carried out to demonstrate its use in fungal biology. First, mycelial reorganization of Fusarium oxysporum was assessed as a response to patches containing different nutrient concentrations. Second, the effect of interactions with the soil bacterium Pseudomonas putida on habitat colonization by the same fungus was assessed. This method appeared as fast and accessible, allowed for a high level of replication, and complements more complex experimental platforms. Coupled with image analysis, the fungal drops method provides new insights into the study of fungal modularity both macroscopically and at a single-hypha level.
Collapse
Affiliation(s)
- Matteo Buffi
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Thierry Kuhn
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
- Laboratory of Eco-Ethology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Xiang-Yi Li Richter
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
- Laboratory of Eco-Ethology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Claire E Stanley
- Department of Bioengineering, Imperial College London, B304, Bessemer Building, South Kensington Campus, SW7 2AZ, London, United Kingdom
| | - Lukas Y Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Patrick S Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, P.O. Box 1663, NM 87545, United States
| | - Saskia Bindschedler
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
16
|
Parente R, Fumagalli MR, Di Claudio A, Cárdenas Rincón CL, Erreni M, Zanini D, Iapichino G, Protti A, Garlanda C, Rusconi R, Doni A. A Multilayered Imaging and Microfluidics Approach for Evaluating the Effect of Fibrinolysis in Staphylococcus aureus Biofilm Formation. Pathogens 2023; 12:1141. [PMID: 37764949 PMCID: PMC10534389 DOI: 10.3390/pathogens12091141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The recognition of microbe and extracellular matrix (ECM) is a recurring theme in the humoral innate immune system. Fluid-phase molecules of innate immunity share regulatory roles in ECM. On the other hand, ECM elements have immunological functions. Innate immunity is evolutionary and functionally connected to hemostasis. Staphylococcus aureus (S. aureus) is a major cause of hospital-associated bloodstream infections and the most common cause of several life-threatening conditions such as endocarditis and sepsis through its ability to manipulate hemostasis. Biofilm-related infection and sepsis represent a medical need due to the lack of treatments and the high resistance to antibiotics. We designed a method combining imaging and microfluidics to dissect the role of elements of the ECM and hemostasis in triggering S. aureus biofilm by highlighting an essential role of fibrinogen (FG) in adhesion and formation. Furthermore, we ascertained an important role of the fluid-phase activation of fibrinolysis in inhibiting biofilm of S. aureus and facilitating an antibody-mediated response aimed at pathogen killing. The results define FG as an essential element of hemostasis in the S. aureus biofilm formation and a role of fibrinolysis in its inhibition, while promoting an antibody-mediated response. Understanding host molecular mechanisms influencing biofilm formation and degradation is instrumental for the development of new combined therapeutic approaches to prevent the risk of S. aureus biofilm-associated diseases.
Collapse
Affiliation(s)
- Raffaella Parente
- Multiscale ImmunoImaging Unit (mIIu), IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Maria Rita Fumagalli
- Multiscale ImmunoImaging Unit (mIIu), IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Alessia Di Claudio
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Cindy Lorena Cárdenas Rincón
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Marco Erreni
- Multiscale ImmunoImaging Unit (mIIu), IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Damiano Zanini
- Multiscale ImmunoImaging Unit (mIIu), IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Giacomo Iapichino
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Alessandro Protti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Roberto Rusconi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Andrea Doni
- Multiscale ImmunoImaging Unit (mIIu), IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
17
|
Akbari Z, Raoufi MA, Mirjalali S, Aghajanloo B. A review on inertial microfluidic fabrication methods. BIOMICROFLUIDICS 2023; 17:051504. [PMID: 37869745 PMCID: PMC10589053 DOI: 10.1063/5.0163970] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
In recent decades, there has been significant interest in inertial microfluidics due to its high throughput, ease of fabrication, and no need for external forces. The focusing efficiency of inertial microfluidic systems relies entirely on the geometrical features of microchannels because hydrodynamic forces (inertial lift forces and Dean drag forces) are the main driving forces in inertial microfluidic devices. In the past few years, novel microchannel structures have been propounded to improve particle manipulation efficiency. However, the fabrication of these unconventional structures has remained a serious challenge. Although researchers have pushed forward the frontiers of microfabrication technologies, the fabrication techniques employed for inertial microfluidics have not been discussed comprehensively. This review introduces the microfabrication approaches used for creating inertial microchannels, including photolithography, xurography, laser cutting, micromachining, microwire technique, etching, hot embossing, 3D printing, and injection molding. The advantages and disadvantages of these methods have also been discussed. Then, the techniques are reviewed regarding resolution, structures, cost, and materials. This review provides a thorough insight into the manufacturing methods of inertial microchannels, which could be helpful for future studies to improve the harvesting yield and resolution by choosing a proper fabrication technique.
Collapse
Affiliation(s)
- Zohreh Akbari
- Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Sheyda Mirjalali
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Behrouz Aghajanloo
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Maqsood Q, Sumrin A, Waseem R, Hussain M, Imtiaz M, Hussain N. Bioengineered microbial strains for detoxification of toxic environmental pollutants. ENVIRONMENTAL RESEARCH 2023; 227:115665. [PMID: 36907340 DOI: 10.1016/j.envres.2023.115665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 05/08/2023]
Abstract
Industrialization and other anthropogenic human activities pose significant environmental risks. As a result of the hazardous pollution, numerous living organisms may suffer from undesirable diseases in their separate habitats. Bioremediation, which removes hazardous compounds from the environment using microbes or their biologically active metabolites, is one of the most successful remediation approaches. According to the United Nations Environment Program (UNEP), deteriorating soil health negatively impacts food security and human health over time. Soil health restoration is critical right now. Microbes are widely known for their importance in cleaning up toxins present in the soil, such as heavy metals, pesticides, and hydrocarbons. However, the capacity of local bacteria to digest these pollutants is limited, and the process takes an extended time. Genetically modified organisms (GMOs), whose altered metabolic pathways promote the over-secretion of a variety of proteins favorable to the bioremediation process, can speed up the breakdown process. The need for remediation procedures, degrees of soil contamination, site circumstances, broad adoptions, and numerous possibilities occurring at various cleaning stages are all studied in detail. Massive efforts to restore contaminated soils have also resulted in severe issues. This review focuses on the enzymatic removal of hazardous pollutants from the environment, such as pesticides, heavy metals, dyes, and plastics. There are also in-depth assessments of present discoveries and future plans for efficient enzymatic degradation of hazardous pollutants.
Collapse
Affiliation(s)
- Quratulain Maqsood
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Aleena Sumrin
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Rafia Waseem
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maria Hussain
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mehwish Imtiaz
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
19
|
Kaiser CF, Perilli A, Grossmann G, Meroz Y. Studying root-environment interactions in structured microdevices. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad122. [PMID: 37042515 PMCID: PMC10353529 DOI: 10.1093/jxb/erad122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 06/19/2023]
Abstract
In negotiating with the environment, plant roots integrate sensory information over space and time, as the basis of decision making in roots under non-uniform conditions. The complexity and dynamic properties of soil across spatial and temporal scales pose a significant technical challenge for research on mechanisms that drive metabolism, growth and development in roots, as well as on inter-organismal networks in the rhizosphere. Synthetic environments, combining microscopic access and manipulation capabilities with soil-like heterogeneity, are needed to elucidate the intriguing tug-of-war that characterises subsurface ecosystems. Microdevices have provided opportunities for innovative approaches to observe, analyse and manipulate plant roots and advanced our understanding of their development, physiology and interactions with the environment. Initially conceived as perfusion platforms for root cultivation under hydroponic conditions, microdevice design has, in recent years, increasingly shifted to better reflect the complex growth conditions in soil. Heterogeneous micro-environments have been created through co-cultivation with microbes, laminar flow-based local stimulation and physical obstacles and constraints. As such, structured microdevices provide an experimental entry point to the complex network behaviour of soil communities.
Collapse
Affiliation(s)
- Christian-Frederic Kaiser
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Alessia Perilli
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
- CEPLAS - Cluster of Excellence on Plant Sciences, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Yasmine Meroz
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
20
|
Ning Z, Wang S, Guo C, Zhang M. The impact of environmental factors on the transport and survival of pathogens in agricultural soils from karst areas of Yunnan province, China: Laboratory column simulated leaching experiments. Front Microbiol 2023; 14:1143900. [PMID: 37007467 PMCID: PMC10060967 DOI: 10.3389/fmicb.2023.1143900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionGroundwater is considered the best candidate for drinking water supply in the karst area. The groundwater water resources, however, are vulnerable to pathogenic microorganism contamination because of the typically thin soil layers overlying aquifers and the high permeability of the aquifer host rock, resulting in short residence times and low natural attenuation capacities. Until now, little attention has been paid to the critical environmental factors affecting the pathogenic microorganism contamination in soil-groundwater systems in the karst area.MethodsIn the study, orthogonality column experiments with controlling ambient temperatures, pH values of inlet water, and soil porosities were carried out to investigate the transport and lifespan of pathogenic microorganisms in the leachate of agricultural soils in the karst area of Yunnan province, China. The pathogenic indicators, i.e., total bacteria count (TBC) and total coliforms count (TCC), and hydrochemical parameters, i.e., pH and permanganate index (CODMn) in the leaching water, were systematically monitored.Results and DiscussionThe results showed that bacteria including coliforms can survive for prolonged periods of time in karst soils. The soils overlying the karst rocks were unable to impede the bacteria from seeping into the groundwater. The soils, in turn, likely served as both reservoirs and incubators for pathogenic bacteria. The ambient temperature was the most predominant influential factor affecting both TBC and TCC. The bacteria concentrations were proportional to the temperature in the leachate. Therefore, more attention should be paid to temperature variations in protecting the water supply, particularly in the high-temperature period, such as during the summer months.
Collapse
Affiliation(s)
- Zhuo Ning
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
- Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Zhengding, China
| | - Shuaiwei Wang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
- *Correspondence: Shuaiwei Wang,
| | - Caijuan Guo
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
| | - Min Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, China
- Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Zhengding, China
- Min Zhang,
| |
Collapse
|
21
|
Datta SS, Battiato I, Fernø MA, Juanes R, Parsa S, Prigiobbe V, Santanach-Carreras E, Song W, Biswal SL, Sinton D. Lab on a chip for a low-carbon future. LAB ON A CHIP 2023; 23:1358-1375. [PMID: 36789954 DOI: 10.1039/d2lc00020b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transitioning our society to a sustainable future, with low or net-zero carbon emissions to the atmosphere, will require a wide-spread transformation of energy and environmental technologies. In this perspective article, we describe how lab-on-a-chip (LoC) systems can help address this challenge by providing insight into the fundamental physical and geochemical processes underlying new technologies critical to this transition, and developing the new processes and materials required. We focus on six areas: (I) subsurface carbon sequestration, (II) subsurface hydrogen storage, (III) geothermal energy extraction, (IV) bioenergy, (V) recovering critical materials, and (VI) water filtration and remediation. We hope to engage the LoC community in the many opportunities within the transition ahead, and highlight the potential of LoC approaches to the broader community of researchers, industry experts, and policy makers working toward a low-carbon future.
Collapse
Affiliation(s)
- Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton NJ, USA.
| | - Ilenia Battiato
- Department of Energy Science and Engineering, Stanford University, Palo Alto CA, USA
| | - Martin A Fernø
- Department of Physics and Technology, University of Bergen, 5020, Bergen, Norway
| | - Ruben Juanes
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Shima Parsa
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester NY, USA
| | - Valentina Prigiobbe
- Department of Civil, Environmental, and Ocean Engineering, Stevens Institute of Technology, Hoboken NJ, USA
- Department of Geosciences, University of Padova, Padova, Italy
| | | | - Wen Song
- Hildebrand Department of Petroleum and Geosystems Engineering, University of Texas at Austin, Austin TX, USA
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto ON, Canada.
| |
Collapse
|
22
|
Microbiome engineering for bioremediation of emerging pollutants. Bioprocess Biosyst Eng 2023; 46:323-339. [PMID: 36029349 DOI: 10.1007/s00449-022-02777-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/12/2022] [Indexed: 11/02/2022]
Abstract
Axenic microbial applications in the open environment are unrealistic and may not be always practically viable. Therefore, it is important to use mixed microbial cultures and their interactions with the microbiome in the targeted ecosystem to perform robust functions towards their sustainability in harsh environmental conditions. Emerging pollutants like phthalates and hydrocarbons that are toxic to several aquatic and terrestrial life forms in the water bodies and lands are an alarming situation. The present review explores the possibility of devising an inclusive eco-friendly strategy like microbiome engineering which proves to be a unique and crucial technology involving the power of microbial communication through quorum sensing. This review discusses the interspecies and intra-species communications between different microbial groups with their respective environments. Moreover, this review also envisages the efforts for designing the next level of microbiome-host engineering concept (MHEC). The focus of the review also extended toward using omics and metabolic network analysis-based tools for effective microbiome engineering. These approaches might be quite helpful in the future to understand such microbial interactions but it will be challenging to implement in the real environment to get the desired functions. Finally, the review also discusses multiple approaches for the bioremediation of toxic chemicals from the soil environment.
Collapse
|
23
|
Mishra A, Singh L, Singh D. Unboxing the black box-one step forward to understand the soil microbiome: A systematic review. MICROBIAL ECOLOGY 2023; 85:669-683. [PMID: 35112151 PMCID: PMC9957845 DOI: 10.1007/s00248-022-01962-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Soil is one of the most important assets of the planet Earth, responsible for maintaining the biodiversity and managing the ecosystem services for both managed and natural ecosystems. It encompasses large proportion of microscopic biodiversity, including prokaryotes and the microscopic eukaryotes. Soil microbiome is critical in managing the soil functions, but their activities have diminutive recognition in few systems like desert land and forest ecosystems. Soil microbiome is highly dependent on abiotic and biotic factors like pH, carbon content, soil structure, texture, and vegetation, but it can notably vary with ecosystems and the respective inhabitants. Thus, unboxing this black box is essential to comprehend the basic components adding to the soil systems and supported ecosystem services. Recent advancements in the field of molecular microbial ecology have delivered commanding tools to examine this genetic trove of soil biodiversity. Objective of this review is to provide a critical evaluation of the work on the soil microbiome, especially since the advent of the NGS techniques. The review also focuses on advances in our understanding of soil communities, their interactions, and functional capabilities along with understanding their role in maneuvering the biogeochemical cycle while underlining and tapping the unprecedented metagenomics data to infer the ecological attributes of yet undiscovered soil microbiome. This review focuses key research directions that could shape the future of basic and applied research into the soil microbiome. This review has led us to understand that it is difficult to generalize that soil microbiome plays a substantiated role in shaping the soil networks and it is indeed a vital resource for sustaining the ecosystem functioning. Exploring soil microbiome will help in unlocking their roles in various soil network. It could be resourceful in exploring and forecasting its impacts on soil systems and for dealing with alleviating problems like rapid climate change.
Collapse
Affiliation(s)
- Apurva Mishra
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, 201002, India
- Environmental Biotechnology and Genomics Division, , CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, , CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Dharmesh Singh
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Trogerstrasse 30, 81675, Munich, Bavaria, Germany.
| |
Collapse
|
24
|
Ceriotti G, Borisov SM, Berg JS, de Anna P. Morphology and Size of Bacterial Colonies Control Anoxic Microenvironment Formation in Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17471-17480. [PMID: 36414252 DOI: 10.1021/acs.est.2c05842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacterial metabolisms using electron acceptors other than oxygen (e.g., methanogenesis and fermentation) largely contribute to element cycling and natural contaminant attenuation/mobilization, even in well-oxygenated porous environments, such as shallow aquifers. This paradox is commonly explained by the occurrence of small-scale anoxic microenvironments generated by the coupling of bacterial respiration and dissolved oxygen (O2) transport by pore water. Such microenvironments allow facultative anaerobic bacteria to proliferate in oxic environments. Microenvironment dynamics are still poorly understood due to the challenge of directly observing biomass and O2 distributions at the microscale within an opaque sediment matrix. To overcome these limitations, we integrated a microfluidic device with transparent O2 planar optical sensors to measure the temporal behavior of dissolved O2 concentrations and biomass distributions with time-lapse videomicroscopy. Our results reveal that bacterial colony morphology, which is highly variable in flowing porous systems, controls the formation of anoxic microenvironments. We rationalize our observations through a colony-scale Damköhler number comparing dissolved O2 diffusion and a bacterial O2 uptake rate. Our Damköhler number enables us to predict the pore space fraction occupied by anoxic microenvironments in our system for a given bacterial organization.
Collapse
Affiliation(s)
- Giulia Ceriotti
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne1015, Switzerland
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz8010, Austria
| | - Jasmine S Berg
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne1015, Switzerland
| | - Pietro de Anna
- Institute of Earth Sciences, University of Lausanne, Lausanne1015, Switzerland
| |
Collapse
|
25
|
Wetherington MT, Nagy K, Dér L, Ábrahám Á, Noorlag J, Galajda P, Keymer JE. Ecological succession and the competition-colonization trade-off in microbial communities. BMC Biol 2022; 20:262. [PMID: 36447225 PMCID: PMC9710175 DOI: 10.1186/s12915-022-01462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND During range expansion in spatially distributed habitats, organisms differ from one another in terms of their patterns of localization versus propagation. To exploit locations or explore the landscape? This is the competition-colonization trade-off, a dichotomy at the core of ecological succession. In bacterial communities, this trade-off is a fundamental mechanism towards understanding spatio-temporal fluxes in microbiome composition. RESULTS Using microfluidics devices as structured bacterial habitats, we show that, in a synthetic two-species community of motile strains, Escherichia coli is a fugitive species, whereas Pseudomonas aeruginosa is a slower colonizer but superior competitor. We provide evidence highlighting the role of succession and the relevance of this trade-off in the community assembly of bacteria in spatially distributed patchy landscapes. Furthermore, aggregation-dependent priority effects enhance coexistence which is not possible in well-mixed environments. CONCLUSIONS Our findings underscore the interplay between micron-scale landscape structure and dispersal in shaping biodiversity patterns in microbial ecosystems. Understanding this interplay is key to unleash the technological revolution of microbiome applications.
Collapse
Affiliation(s)
- Miles T. Wetherington
- grid.7870.80000 0001 2157 0406Department of Ecology, School of Biological Sciences, P. Catholic University of Chile, Santiago, Chile ,grid.481813.7Biological Research Centre, Institute of Biophysics, Szeged, Hungary ,grid.5386.8000000041936877XSchool of Applied and Engineering Physics, Cornell University, Ithaca, USA
| | - Krisztina Nagy
- grid.481813.7Biological Research Centre, Institute of Biophysics, Szeged, Hungary
| | - László Dér
- grid.481813.7Biological Research Centre, Institute of Biophysics, Szeged, Hungary
| | - Ágnes Ábrahám
- grid.481813.7Biological Research Centre, Institute of Biophysics, Szeged, Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Janneke Noorlag
- grid.7870.80000 0001 2157 0406Department of Ecology, School of Biological Sciences, P. Catholic University of Chile, Santiago, Chile ,grid.501187.a0000000463647645Department of Natural Sciences and Technology, University of Aysén, Coyhaique, Chile
| | - Peter Galajda
- grid.481813.7Biological Research Centre, Institute of Biophysics, Szeged, Hungary
| | - Juan E. Keymer
- grid.7870.80000 0001 2157 0406Department of Ecology, School of Biological Sciences, P. Catholic University of Chile, Santiago, Chile ,grid.7870.80000 0001 2157 0406Institute of Physics, School of Physics, P. Catholic University of Chile, Santiago, Chile ,grid.501187.a0000000463647645Department of Natural Sciences and Technology, University of Aysén, Coyhaique, Chile
| |
Collapse
|
26
|
Khanna K, Kohli SK, Sharma N, Kour J, Devi K, Bhardwaj T, Dhiman S, Singh AD, Sharma N, Sharma A, Ohri P, Bhardwaj R, Ahmad P, Alam P, Albalawi TH. Phytomicrobiome communications: Novel implications for stress resistance in plants. Front Microbiol 2022; 13:912701. [PMID: 36274695 PMCID: PMC9583171 DOI: 10.3389/fmicb.2022.912701] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The agricultural sector is a foremost contributing factor in supplying food at the global scale. There are plethora of biotic as well as abiotic stressors that act as major constraints for the agricultural sector in terms of global food demand, quality, and security. Stresses affect rhizosphere and their communities, root growth, plant health, and productivity. They also alter numerous plant physiological and metabolic processes. Moreover, they impact transcriptomic and metabolomic changes, causing alteration in root exudates and affecting microbial communities. Since the evolution of hazardous pesticides and fertilizers, productivity has experienced elevation but at the cost of impeding soil fertility thereby causing environmental pollution. Therefore, it is crucial to develop sustainable and safe means for crop production. The emergence of various pieces of evidence depicting the alterations and abundance of microbes under stressed conditions proved to be beneficial and outstanding for maintaining plant legacy and stimulating their survival. Beneficial microbes offer a great potential for plant growth during stresses in an economical manner. Moreover, they promote plant growth with regulating phytohormones, nutrient acquisition, siderophore synthesis, and induce antioxidant system. Besides, acquired or induced systemic resistance also counteracts biotic stresses. The phytomicrobiome exploration is crucial to determine the growth-promoting traits, colonization, and protection of plants from adversities caused by stresses. Further, the intercommunications among rhizosphere through a direct/indirect manner facilitate growth and form complex network. The phytomicrobiome communications are essential for promoting sustainable agriculture where microbes act as ecological engineers for environment. In this review, we have reviewed our building knowledge about the role of microbes in plant defense and stress-mediated alterations within the phytomicrobiomes. We have depicted the defense biome concept that infers the design of phytomicrobiome communities and their fundamental knowledge about plant-microbe interactions for developing plant probiotics.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
- Department of Microbiology, DAV University, Jalandhar, India
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Nandni Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Shalini Dhiman
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S.P. College Srinagar, Jammu and Kashmir, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Thamer H. Albalawi
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
27
|
Zhu F, Fang Y, Wang Z, Wang P, Yang K, Xiao L, Wang R. Salicylic acid remodeling of the rhizosphere microbiome induces watermelon root resistance against Fusarium oxysporum f. sp. niveum infection. Front Microbiol 2022; 13:1015038. [PMID: 36212858 PMCID: PMC9539938 DOI: 10.3389/fmicb.2022.1015038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium wilt disease poses a severe threat to watermelon cultivation by affecting the yield and quality of the fruit. We had previously found that the rhizosphere microbiome has a significant impact on the ability of watermelon plants to resist Fusarium wilt development and that salicylic acid (SA) is closely related to this phenomenon. Therefore, in this study, the role of SA as a mediator between plants and microbes in activating resistance against Fusarium oxysporum f. sp. niveum (FON) infection was explored through physiological, biochemical, and metagenomic sequencing experiments. We demonstrated that exogenous SA treatment could specifically increase some beneficial rhizosphere species that can confer resistance against FON inoculation, such as Rhodanobacter, Sphingomonas, and Micromonospora. Functional annotation analysis indicated that SA application significantly increased the relative abundance of glycoside hydrolase and polysaccharide lyase genes in the microbiome, which may play an essential role in increasing plant lipids. Moreover, network interaction analysis suggested that the highly expressed AAC6_IIC gene may be manipulated through SA signal transduction pathways. In conclusion, these results provide a novel strategy for controlling Fusarium wilt in watermelons from the perspective of environmental ecology, that is, by manipulating the rhizosphere microbiome through SA to control Fusarium wilt.
Collapse
Affiliation(s)
- Feiying Zhu
- Hunan Academy of Agricultural Sciences, Changsha, China
- Hunan Provincial Key Laboratory of Phytohormones, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yong Fang
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhiwei Wang
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Pei Wang
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Kankan Yang
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- *Correspondence: Ruozhong Wang,
| |
Collapse
|
28
|
Pradhan S, Tyagi R, Sharma S. Combating biotic stresses in plants by synthetic microbial communities: Principles, applications, and challenges. J Appl Microbiol 2022; 133:2742-2759. [PMID: 36039728 DOI: 10.1111/jam.15799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
Presently, agriculture worldwide is facing the major challenge of feeding the increasing population sustainably. The conventional practices have not only failed to meet the projected needs, but also led to tremendous environmental consequences. Hence, to ensure a food-secure and environmentally sound future, the major thrust is on sustainable alternatives. Due to challenges associated with conventional means of application of biocontrol agents in the management of biotic stresses in agro-ecosystems, significant transformations in this context is needed. The crucial role played by soil microbiomes in efficiently and sustainably managing the agricultural production has unfolded a newer approach of rhizospheric engineering that shows immense promise in mitigating biotic stresses in an eco-friendly manner. The strategy of generating synthetic microbial communities (SynCom), by integrating omics approaches with traditional techniques of enumeration and in-depth analysis of plant-microbe interactions, is encouraging. The review discusses the significance of the rhizospheric microbiome in plant's fitness, and its manipulation for enhancing plant attributes. The focus of the review is to critically analyze the potential tools for the design and utilization of SynCom as a sustainable approach for rhizospheric engineering to ameliorate biotic stresses in plants. Further, based on the synthesis of reports in the area, we have put forth possible solutions to some of the critical issues that impair the large-scale application of SynComs in agriculture.
Collapse
Affiliation(s)
- Salila Pradhan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi
| | - Rashi Tyagi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi
| |
Collapse
|
29
|
Abstract
Soil matrix properties influence microbial behaviors that underlie nutrient cycling, greenhouse gas production, and soil formation. However, the dynamic and heterogeneous nature of soils makes it challenging to untangle the effects of different matrix properties on microbial behaviors. To address this challenge, we developed a tunable artificial soil recipe and used these materials to study the abiotic mechanisms driving soil microbial growth and communication. When we used standardized matrices with varying textures to culture gas-reporting biosensors, we found that a Gram-negative bacterium (Escherichia coli) grew best in synthetic silt soils, remaining active over a wide range of soil matric potentials, while a Gram-positive bacterium (Bacillus subtilis) preferred sandy soils, sporulating at low water potentials. Soil texture, mineralogy, and alkalinity all attenuated the bioavailability of an acyl-homoserine lactone (AHL) signaling molecule that controls community-level microbial behaviors. Texture controlled the timing of AHL sensing, while AHL bioavailability was decreased ~105-fold by mineralogy and ~103-fold by alkalinity. Finally, we built artificial soils with a range of complexities that converge on the properties of one Mollisol. As artificial soil complexity increased to more closely resemble the Mollisol, microbial behaviors approached those occurring in the natural soil, with the notable exception of organic matter. IMPORTANCE Understanding environmental controls on soil microbes is difficult because many abiotic parameters vary simultaneously and uncontrollably when different natural soils are compared, preventing mechanistic determination of any individual soil parameter's effect on microbial behaviors. We describe how soil texture, mineralogy, pH, and organic matter content can be varied individually within artificial soils to study their effects on soil microbes. Using microbial biosensors that report by producing a rare indicator gas, we identify soil properties that control microbial growth and attenuate the bioavailability of a diffusible chemical used to control community-level behaviors. We find that artificial soils differentially affect signal bioavailability and the growth of Gram-negative (Escherichia coli) and Gram-positive (Bacillus subtilis) microbes. These artificial soils are useful for studying the mechanisms that underlie soil controls on microbial fitness, signaling, and gene transfer.
Collapse
|
30
|
Codutti A, Charsooghi MA, Cerdá-Doñate E, Taïeb HM, Robinson T, Faivre D, Klumpp S. Interplay of surface interaction and magnetic torque in single-cell motion of magnetotactic bacteria in microfluidic confinement. eLife 2022; 11:71527. [PMID: 35852850 PMCID: PMC9365388 DOI: 10.7554/elife.71527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Swimming microorganisms often experience complex environments in their natural habitat. The same is true for microswimmers in envisioned biomedical applications. The simple aqueous conditions typically studied in the lab differ strongly from those found in these environments and often exclude the effects of small volume confinement or the influence that external fields have on their motion. In this work, we investigate magnetically steerable microswimmers, specifically magnetotactic bacteria, in strong spatial confinement and under the influence of an external magnetic field. We trap single cells in micrometer-sized microfluidic chambers and track and analyze their motion, which shows a variety of different trajectories, depending on the chamber size and the strength of the magnetic field. Combining these experimental observations with simulations using a variant of an active Brownian particle model, we explain the variety of trajectories by the interplay between the wall interactions and the magnetic torque. We also analyze the pronounced cell-to-cell heterogeneity, which makes single-cell tracking essential for an understanding of the motility patterns. In this way, our work establishes a basis for the analysis and prediction of microswimmer motility in more complex environments.
Collapse
Affiliation(s)
- Agnese Codutti
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces
| | | | - Elisa Cerdá-Doñate
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces
| | - Hubert M Taïeb
- Biomaterials Department, Max Planck Institute of Colloids and Interfaces
| | - Tom Robinson
- Theory and Bio‐systems Department, Max Planck Institute of Colloids and Interfaces
| | | | - Stefan Klumpp
- Institute for the Dynamics of Complex Systems, University of Göttingen
| |
Collapse
|
31
|
Ecological drivers of division of labour in Streptomyces. Curr Opin Microbiol 2022; 67:102148. [DOI: 10.1016/j.mib.2022.102148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
|
32
|
Cabugao KGM, Gushgari-Doyle S, Chacon SS, Wu X, Bhattacharyya A, Bouskill N, Chakraborty R. Characterizing Natural Organic Matter Transformations by Microbial Communities in Terrestrial Subsurface Ecosystems: A Critical Review of Analytical Techniques and Challenges. Front Microbiol 2022; 13:864895. [PMID: 35602028 PMCID: PMC9114703 DOI: 10.3389/fmicb.2022.864895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Determining the mechanisms, traits, and pathways that regulate microbial transformation of natural organic matter (NOM) is critical to informing our understanding of the microbial impacts on the global carbon cycle. The capillary fringe of subsurface soils is a highly dynamic environment that remains poorly understood. Characterization of organo-mineral chemistry combined with a nuanced understanding of microbial community composition and function is necessary to understand microbial impacts on NOM speciation in the capillary fringe. We present a critical review of the popular analytical and omics techniques used for characterizing complex carbon transformation by microbial communities and focus on how complementary information obtained from the different techniques enable us to connect chemical signatures with microbial genes and pathways. This holistic approach offers a way forward for the comprehensive characterization of the formation, transformation, and mineralization of terrestrial NOM as influenced by microbial communities.
Collapse
Affiliation(s)
- Kristine Grace M Cabugao
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Sara Gushgari-Doyle
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Stephany S Chacon
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Xiaoqin Wu
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Amrita Bhattacharyya
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Nicholas Bouskill
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Romy Chakraborty
- Department of Ecology, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
33
|
Smercina D, Zambare N, Hofmockel K, Sadler N, Bredeweg EL, Nicora C, Markillie LM, Aufrecht J. Synthetic Soil Aggregates: Bioprinted Habitats for High-Throughput Microbial Metaphenomics. Microorganisms 2022; 10:microorganisms10050944. [PMID: 35630387 PMCID: PMC9146112 DOI: 10.3390/microorganisms10050944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
The dynamics of microbial processes are difficult to study in natural soil, owing to the small spatial scales on which microorganisms operate and to the opacity and chemical complexity of the soil habitat. To circumvent these challenges, we have created a 3D-bioprinted habitat that mimics aspects of natural soil aggregates while providing a chemically defined and translucent alternative culturing method for soil microorganisms. Our Synthetic Soil Aggregates (SSAs) retain the porosity, permeability, and patchy resource distribution of natural soil aggregates—parameters that are expected to influence emergent microbial community interactions. We demonstrate the printability and viability of several different microorganisms within SSAs and show how the SSAs can be integrated into a multi-omics workflow for single SSA resolution genomics, metabolomics, proteomics, lipidomics, and biogeochemical assays. We study the impact of the structured habitat on the distribution of a model co-culture microbial community and find that it is significantly different from the spatial organization of the same community in liquid culture, indicating a potential for SSAs to reproduce naturally occurring emergent community phenotypes. The SSAs have the potential as a tool to help researchers quantify microbial scale processes in situ and achieve high-resolution data from the interplay between environmental properties and microbial ecology.
Collapse
|
34
|
|
35
|
OUIDIR T, GABRIEL B, CHABANE YNAIT. Overview of multi-species biofilms in different ecosystems: wastewater treatment, soil and oral cavity. J Biotechnol 2022; 350:67-74. [DOI: 10.1016/j.jbiotec.2022.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023]
|
36
|
Nagy K, Dukic B, Hodula O, Ábrahám Á, Csákvári E, Dér L, Wetherington MT, Noorlag J, Keymer JE, Galajda P. Emergence of Resistant Escherichia coli Mutants in Microfluidic On-Chip Antibiotic Gradients. Front Microbiol 2022; 13:820738. [PMID: 35391738 PMCID: PMC8981919 DOI: 10.3389/fmicb.2022.820738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Spatiotemporal structures and heterogeneities are common in natural habitats, yet their role in the evolution of antibiotic resistance is still to be uncovered. We applied a microfluidic gradient generator device to study the emergence of resistant bacteria in spatial ciprofloxacin gradients. We observed biofilm formation in regions with sub-inhibitory concentrations of antibiotics, which quickly expanded into the high antibiotic regions. In the absence of an explicit structure of the habitat, this multicellular formation led to a spatial structure of the population with local competition and limited migration. Therefore, such structures can function as amplifiers of selection and aid the spread of beneficial mutations. We found that the physical environment itself induces stress-related mutations that later prove beneficial when cells are exposed to antibiotics. This shift in function suggests that exaptation occurs in such experimental scenarios. The above two processes pave the way for the subsequent emergence of highly resistant specific mutations.
Collapse
Affiliation(s)
- Krisztina Nagy
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- *Correspondence: Krisztina Nagy,
| | - Barbara Dukic
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Orsolya Hodula
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Ágnes Ábrahám
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Eszter Csákvári
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - László Dér
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | | | - Janneke Noorlag
- Department of Natural Sciences and Technology, University of Aysén, Coyhaique, Chile
| | - Juan E. Keymer
- Department of Natural Sciences and Technology, University of Aysén, Coyhaique, Chile
| | - Péter Galajda
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Péter Galajda,
| |
Collapse
|
37
|
Davidson SL, Niepa THR. Micro-Technologies for Assessing Microbial Dynamics in Controlled Environments. Front Microbiol 2022; 12:745835. [PMID: 35154021 PMCID: PMC8831547 DOI: 10.3389/fmicb.2021.745835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
With recent advances in microfabrication technologies, the miniaturization of traditional culturing techniques has provided ideal methods for interrogating microbial communities in a confined and finely controlled environment. Micro-technologies offer high-throughput screening and analysis, reduced experimental time and resources, and have low footprint. More importantly, they provide access to culturing microbes in situ in their natural environments and similarly, offer optical access to real-time dynamics under a microscope. Utilizing micro-technologies for the discovery, isolation and cultivation of "unculturable" species will propel many fields forward; drug discovery, point-of-care diagnostics, and fundamental studies in microbial community behaviors rely on the exploration of novel metabolic pathways. However, micro-technologies are still largely proof-of-concept, and scalability and commercialization of micro-technologies will require increased accessibility to expensive equipment and resources, as well as simpler designs for usability. Here, we discuss three different miniaturized culturing practices; including microarrays, micromachined devices, and microfluidics; advancements to the field, and perceived challenges.
Collapse
Affiliation(s)
- Shanna-Leigh Davidson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tagbo H. R. Niepa
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, United States
- The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
38
|
Jimenez-Martinez J, Nguyen J, Or D. Controlling pore-scale processes to tame subsurface biomineralization. RE/VIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2022; 21:27-52. [PMID: 35221831 PMCID: PMC8831379 DOI: 10.1007/s11157-021-09603-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Microorganisms capable of biomineralization can catalyze mineral precipitation by modifying local physical and chemical conditions. In porous media, such as soil and rock, these microorganisms live and function in highly heterogeneous physical, chemical and ecological microenvironments, with strong local gradients created by both microbial activity and the pore-scale structure of the subsurface. Here, we focus on extracellular bacterial biomineralization, which is sensitive to external heterogeneity, and review the pore-scale processes controlling microbial biomineralization in natural and engineered porous media. We discuss how individual physical, chemical and ecological factors integrate to affect the spatial and temporal control of biomineralization, and how each of these factors contributes to a quantitative understanding of biomineralization in porous media. We find that an improved understanding of microbial behavior in heterogeneous microenvironments would promote understanding of natural systems and output in diverse technological applications, including improved representation and control of fluid mixing from pore to field scales. We suggest a range of directions by which future work can build from existing tools to advance each of these areas to improve understanding and predictability of biomineralization science and technology.
Collapse
Affiliation(s)
- Joaquin Jimenez-Martinez
- Department of Water Resources and Drinking Water, Eawag, Dübendorf, Switzerland
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zürich, Switzerland
| | - Jen Nguyen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Dani Or
- Division of Hydrologic Sciences, Desert Research Institute, Reno, NV USA
| |
Collapse
|
39
|
Zhu X, Wang K, Yan H, Liu C, Zhu X, Chen B. Microfluidics as an Emerging Platform for Exploring Soil Environmental Processes: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:711-731. [PMID: 34985862 DOI: 10.1021/acs.est.1c03899] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Investigating environmental processes, especially those occurring in soils, calls for innovative and multidisciplinary technologies that can provide insights at the microscale. The heterogeneity, opacity, and dynamics make the soil a "black box" where interactions and processes are elusive. Recently, microfluidics has emerged as a powerful research platform and experimental tool which can create artificial soil micromodels, enabling exploring soil processes on a chip. Micro/nanofabricated microfluidic devices can mimic some of the key features of soil with highly controlled physical and chemical microenvironments at the scale of pores, aggregates, and microbes. The combination of various techniques makes microfluidics an integrated approach for observation, reaction, analysis, and characterization. In this review, we systematically summarize the emerging applications of microfluidic soil platforms, from investigating soil interfacial processes and soil microbial processes to soil analysis and high-throughput screening. We highlight how innovative microfluidic devices are used to provide new insights into soil processes, mechanisms, and effects at the microscale, which contribute to an integrated interrogation of the soil systems across different scales. Critical discussions of the practical limitations of microfluidic soil platforms and perspectives of future research directions are summarized. We envisage that microfluidics will represent the technological advances toward microscopic, controllable, and in situ soil research.
Collapse
Affiliation(s)
- Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Huicong Yan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Congcong Liu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
40
|
Harvey HJ, Chubynsky MV, Sprittles JE, Shor LM, Mooney SJ, Wildman RD, Avery SV. Application of microfluidic systems in modelling impacts of environmental structure on stress-sensing by individual microbial cells. Comput Struct Biotechnol J 2022; 20:128-138. [PMID: 34976317 PMCID: PMC8689086 DOI: 10.1016/j.csbj.2021.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 11/03/2022] Open
Abstract
Environmental structure describes physical structure that can determine heterogenous spatial distribution of biotic and abiotic (nutrients, stressors etc.) components of a microorganism's microenvironment. This study investigated the impact of micrometre-scale structure on microbial stress sensing, using yeast cells exposed to copper in microfluidic devices comprising either complex soil-like architectures or simplified environmental structures. In the soil micromodels, the responses of individual cells to inflowing medium supplemented with high copper (using cells expressing a copper-responsive pCUP1-reporter fusion) could be described neither by spatial metrics developed to quantify proximity to environmental structures and surrounding space, nor by computational modelling of fluid flow in the systems. In contrast, the proximities of cells to structures did correlate with their responses to elevated copper in microfluidic chambers that contained simplified environmental structure. Here, cells within more open spaces showed the stronger responses to the copper-supplemented inflow. These insights highlight not only the importance of structure for microbial responses to their chemical environment, but also how predictive modelling of these interactions can depend on complexity of the system, even when deploying controlled laboratory conditions and microfluidics.
Collapse
Affiliation(s)
- Harry J Harvey
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | | | - Leslie M Shor
- Department of Chemical and Biomolecular Engineering, University of Connecticut, USA
| | - Sacha J Mooney
- School of Biosciences, University of Nottingham, Nottingham, UK
| | - Ricky D Wildman
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
41
|
Karasz DC, Weaver AI, Buckley DH, Wilhelm RC. Conditional filamentation as an adaptive trait of bacteria and its ecological significance in soils. Environ Microbiol 2021; 24:1-17. [PMID: 34929753 DOI: 10.1111/1462-2920.15871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
Bacteria can regulate cell morphology in response to environmental conditions, altering their physiological and metabolic characteristics to improve survival. Conditional filamentation, in which cells suspend division while continuing lateral growth, is a strategy with a range of adaptive benefits. Here, we review the causes and consequences of conditional filamentation with respect to bacterial physiology, ecology and evolution. We describe four major benefits from conditional filamentation: stress tolerance, surface colonization, gradient spanning and the facilitation of biotic interactions. Adopting a filamentous growth habit involves fitness trade-offs which are also examined. We focus on the role of conditional filamentation in soil habitats, where filamentous morphotypes are highly prevalent and where environmental heterogeneity can benefit a conditional response. To illustrate the use of information presented in our review, we tested the conditions regulating filamentation by the forest soil isolate Paraburkholderia elongata 5NT . Filamentation by P. elongata was induced at elevated phosphate concentrations, and was associated with the accumulation of intracellular polyphosphate, highlighting the role of filamentation in a phosphate-solubilizing bacterium. Conditional filamentation enables bacteria to optimize their growth and metabolism in environments that are highly variable, a trait that can impact succession, symbioses, and biogeochemistry in soil environments.
Collapse
Affiliation(s)
- David C Karasz
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Anna I Weaver
- Department of Microbiology, Wing Hall, Cornell University, Ithaca, New York, 14853, USA.,Weill Institute for Cell and Molecular Biology, Weill Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Daniel H Buckley
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| | - Roland C Wilhelm
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
42
|
Bahram M, Netherway T. Fungi as mediators linking organisms and ecosystems. FEMS Microbiol Rev 2021; 46:6468741. [PMID: 34919672 PMCID: PMC8892540 DOI: 10.1093/femsre/fuab058] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
Fungi form a major and diverse component of most ecosystems on Earth. They are both micro and macroorganisms with high and varying functional diversity as well as great variation in dispersal modes. With our growing knowledge of microbial biogeography, it has become increasingly clear that fungal assembly patterns and processes differ from other microorganisms such as bacteria, but also from macroorganisms such as plants. The success of fungi as organisms and their influence on the environment lies in their ability to span multiple dimensions of time, space, and biological interactions, that is not rivalled by other organism groups. There is also growing evidence that fungi mediate links between different organisms and ecosystems, with the potential to affect the macroecology and evolution of those organisms. This suggests that fungal interactions are an ecological driving force, interconnecting different levels of biological and ecological organisation of their hosts, competitors, and antagonists with the environment and ecosystem functioning. Here we review these emerging lines of evidence by focusing on the dynamics of fungal interactions with other organism groups across various ecosystems. We conclude that the mediating role of fungi through their complex and dynamic ecological interactions underlie their importance and ubiquity across Earth's ecosystems.
Collapse
Affiliation(s)
- Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Ulls väg 16, 756 51 Sweden.,Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 40 Lai St. Estonia
| | - Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Ulls väg 16, 756 51 Sweden
| |
Collapse
|
43
|
Yanagisawa N, Kozgunova E, Grossmann G, Geitmann A, Higashiyama T. Microfluidics-Based Bioassays and Imaging of Plant Cells. PLANT & CELL PHYSIOLOGY 2021; 62:1239-1250. [PMID: 34027549 PMCID: PMC8579190 DOI: 10.1093/pcp/pcab067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 05/23/2021] [Indexed: 05/03/2023]
Abstract
Many plant processes occur in the context of and in interaction with a surrounding matrix such as soil (e.g. root growth and root-microbe interactions) or surrounding tissues (e.g. pollen tube growth through the pistil), making it difficult to study them with high-resolution optical microscopy. Over the past decade, microfabrication techniques have been developed to produce experimental systems that allow researchers to examine cell behavior in microstructured environments that mimic geometrical, physical and/or chemical aspects of the natural growth matrices and that cannot be generated using traditional agar plate assays. These microfabricated environments offer considerable design flexibility as well as the transparency required for high-resolution, light-based microscopy. In addition, microfluidic platforms have been used for various types of bioassays, including cellular force assays, chemoattraction assays and electrotropism assays. Here, we review the recent use of microfluidic devices to study plant cells and organs, including plant roots, root hairs, moss protonemata and pollen tubes. The increasing adoption of microfabrication techniques by the plant science community may transform our approaches to investigating how individual plant cells sense and respond to changes in the physical and chemical environment.
Collapse
Affiliation(s)
- Naoki Yanagisawa
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Elena Kozgunova
- Department of Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Schänzlestr. 1, Freiburg, Baden-Württemberg 79104, Germany
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, Düsseldorf 40225, Germany
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Baden-Württemberg 69120, Germany
| | - Anja Geitmann
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Québec H9X 3V9, Canada
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo City, Tokyo 113-0033, Japan
| |
Collapse
|
44
|
Arellano-Caicedo C, Ohlsson P, Bengtsson M, Beech JP, Hammer EC. Habitat geometry in artificial microstructure affects bacterial and fungal growth, interactions, and substrate degradation. Commun Biol 2021; 4:1226. [PMID: 34702996 PMCID: PMC8548513 DOI: 10.1038/s42003-021-02736-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 10/01/2021] [Indexed: 11/25/2022] Open
Abstract
Microhabitat conditions determine the magnitude and speed of microbial processes but have been challenging to investigate. In this study we used microfluidic devices to determine the effect of the spatial distortion of a pore space on fungal and bacterial growth, interactions, and substrate degradation. The devices contained channels differing in bending angles and order. Sharper angles reduced fungal and bacterial biomass, especially when angles were repeated in the same direction. Substrate degradation was only decreased by sharper angles when fungi and bacteria were grown together. Investigation at the cellular scale suggests that this was caused by fungal habitat modification, since hyphae branched in sharp and repeated turns, blocking the dispersal of bacteria and the substrate. Our results demonstrate how the geometry of microstructures can influence microbial activity. This can be transferable to soil pore spaces, where spatial occlusion and microbial feedback on microstructures is thought to explain organic matter stabilization.
Collapse
Affiliation(s)
| | - Pelle Ohlsson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Martin Bengtsson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Jason P Beech
- Division of Solid State Physics, Lund University, Lund, Sweden
| | | |
Collapse
|
45
|
Abstract
Collecting real-time data on physical and chemical parameters of the soil is a prerequisite for resource-efficient and environmentally sustainable agriculture. For continuous in situ measurement of soil nutrients such as nitrate or phosphate, a lab-on-chip approach combined with wireless remote readout is promising. For this purpose, the soil solution, i.e., the water in the soil with nutrients, needs to be extracted into a microfluidic chip. Here, we present a soil-solution extraction unit based on combining a porous ceramic filter with a microfluidic channel with a 12 µL volume. The microfluidic chip was fabricated from polydimethylsiloxane, had a size of 1.7 cm × 1.7 cm × 0.6 cm, and was bonded to a glass substrate. A hydrophilic aluminum oxide ceramic with approximately 37 Vol.-% porosity and an average pore size of 1 µm was integrated at the inlet. Soil water was extracted successfully from three types of soil—silt, garden soil, and sand—by creating suction with a pump at the other end of the microfluidic channel. For garden soil, the extraction rate at approximately 15 Vol.-% soil moisture was 1.4 µL/min. The amount of extracted water was investigated for 30 min pump intervals for the three soil types at different moisture levels. For garden soil and sand, water extraction started at around 10 Vol.-% soil moisture. Silt showed the highest water-holding capacity, with water extraction starting at approximately 13 Vol.-%.
Collapse
|
46
|
Methods for Studying Bacterial–Fungal Interactions in the Microenvironments of Soil. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Due to their small size, microorganisms directly experience only a tiny portion of the environmental heterogeneity manifested in the soil. The microscale variations in soil properties constrain the distribution of fungi and bacteria, and the extent to which they can interact with each other, thereby directly influencing their behavior and ecological roles. Thus, to obtain a realistic understanding of bacterial–fungal interactions, the spatiotemporal complexity of their microenvironments must be accounted for. The objective of this review is to further raise awareness of this important aspect and to discuss an overview of possible methodologies, some of easier applicability than others, that can be implemented in the experimental design in this field of research. The experimental design can be rationalized in three different scales, namely reconstructing the physicochemical complexity of the soil matrix, identifying and locating fungi and bacteria to depict their physical interactions, and, lastly, analyzing their molecular environment to describe their activity. In the long term, only relevant experimental data at the cell-to-cell level can provide the base for any solid theory or model that may serve for accurate functional prediction at the ecosystem level. The way to this level of application is still long, but we should all start small.
Collapse
|
47
|
Manfredini A, Malusà E, Costa C, Pallottino F, Mocali S, Pinzari F, Canfora L. Current Methods, Common Practices, and Perspectives in Tracking and Monitoring Bioinoculants in Soil. Front Microbiol 2021; 12:698491. [PMID: 34531836 PMCID: PMC8438429 DOI: 10.3389/fmicb.2021.698491] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Microorganisms promised to lead the bio-based revolution for a more sustainable agriculture. Beneficial microorganisms could be a valid alternative to the use of chemical fertilizers or pesticides. However, the increasing use of microbial inoculants is also raising several questions about their efficacy and their effects on the autochthonous soil microorganisms. There are two major issues on the application of bioinoculants to soil: (i) their detection in soil, and the analysis of their persistence and fate; (ii) the monitoring of the impact of the introduced bioinoculant on native soil microbial communities. This review explores the strategies and methods that can be applied to the detection of microbial inoculants and to soil monitoring. The discussion includes a comprehensive critical assessment of the available tools, based on morpho-phenological, molecular, and microscopic analyses. The prospects for future development of protocols for regulatory or commercial purposes are also discussed, underlining the need for a multi-method (polyphasic) approach to ensure the necessary level of discrimination required to track and monitor bioinoculants in soil.
Collapse
Affiliation(s)
- Andrea Manfredini
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Rome, Italy
| | - Eligio Malusà
- National Research Institute of Horticulture, Skierniewice, Poland
- Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, Conegliano, Italy
| | - Corrado Costa
- Council for Agricultural Research and Analysis of the Agricultural Economy, Research Centre for Engineering and Agro-Food Processing, Monterotondo, Italy
| | - Federico Pallottino
- Council for Agricultural Research and Analysis of the Agricultural Economy, Research Centre for Engineering and Agro-Food Processing, Monterotondo, Italy
| | - Stefano Mocali
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Rome, Italy
| | - Flavia Pinzari
- Institute for Biological Systems, Council of National Research of Italy (CNR), Rome, Italy
- Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Loredana Canfora
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Rome, Italy
| |
Collapse
|
48
|
Baranger C, Pezron I, Lins L, Deleu M, Le Goff A, Fayeulle A. A compartmentalized microsystem helps understanding the uptake of benzo[a]pyrene by fungi during soil bioremediation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147151. [PMID: 33895515 DOI: 10.1016/j.scitotenv.2021.147151] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Hydrophobic organic soil contaminants such as polycyclic aromatic hydrocarbons (PAH) are poorly mobile in the aqueous phase and tend to sorb to the soil matrix, resulting in low bioavailability. Some filamentous fungi are efficient in degrading this kind of pollutants. However, the mechanism of mobilization of hydrophobic compounds by non-motile microorganisms such as filamentous fungi needs investigations to improve pollutant bioavailability and bioremediation efficiency. Usual homogeneous media for microbial growth in the lab are poorly suited to model the soil, which is a compartmentalized and heterogeneous habitat. A microfluidic device was designed to implement a compartmentalization of the fungal inoculum and the source of the pollutant benzo[a]pyrene (BaP) as a deposit of solid crystals in order to gain a further insight into the mechanisms involved in the access to the contaminant and its uptake in soils. Thus in this device, two chambers are connected by an array of parallel microchannels that are wide enough to allow individual hyphae to grow through them. Macro-cultures of Talaromyces helicus in direct contact with BaP have shown its uptake and intracellular storage in lipid bodies despite the low propensity of BaP to cross aqueous phases as shown by simulation. Observations of T. helicus in the microfluidic device through laser scanning confocal microscopy indicate preferential uptake of BaP at a close range and through contact with the cell wall. However faint staining of some hyphae before contact with the deposit also suggests an extracellular transport phenomenon. Macro-culture filtrates analyses have shown that T. helicus releases extracellular non-lipidic surface-active compounds able to lower the surface tension of culture filtrates to 49.4 mN/m. Thus, these results highlight the significance of active mechanisms to reach hydrophobic contaminants before their uptake by filamentous fungi in compartmentalized micro-environments and the potential to improve them through biostimulation approaches for soil mycoremediation.
Collapse
Affiliation(s)
- Claire Baranger
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu - CS 60 319 - 60 203 Compiègne Cedex, France
| | - Isabelle Pezron
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu - CS 60 319 - 60 203 Compiègne Cedex, France
| | - Laurence Lins
- TERRA Research Center, Laboratory of Molecular Biophysics at Interfaces, SFR Condorcet, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés, 2, 5030 Gembloux, Belgium
| | - Magali Deleu
- TERRA Research Center, Laboratory of Molecular Biophysics at Interfaces, SFR Condorcet, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés, 2, 5030 Gembloux, Belgium
| | - Anne Le Goff
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu - CS 60 319 - 60 203 Compiègne Cedex, France.
| | - Antoine Fayeulle
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu - CS 60 319 - 60 203 Compiègne Cedex, France.
| |
Collapse
|
49
|
Song C, Jin K, Raaijmakers JM. Designing a home for beneficial plant microbiomes. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102025. [PMID: 33684884 DOI: 10.1016/j.pbi.2021.102025] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The plant microbiome comprises a highly diverse community of saprotrophic, mutualistic, and pathogenic microbes that can affect plant growth and plant health. There is substantial interest to exploit beneficial members of plant microbiomes for new sustainable management strategies in crop production. However, poor survival and colonization of plant tissues by introduced microbial isolates as well as lack of expression of the plant growth-promoting or disease-suppressive traits at the right time and place are still major limitations for successful implementation of microbiomes in future agricultural practices and plant breeding programs. Similar to building a home for humans, we discuss different strategies of building a home for beneficial plant microbiomes, here referred to as the 'MicrobiHome'.
Collapse
Affiliation(s)
- Chunxu Song
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
| | - Kemo Jin
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China.
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands; Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
50
|
Smercina DN, Bailey VL, Hofmockel KS. Micro on a macroscale: relating microbial-scale soil processes to global ecosystem function. FEMS Microbiol Ecol 2021; 97:6315324. [PMID: 34223869 DOI: 10.1093/femsec/fiab091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Soil microorganisms play a key role in driving major biogeochemical cycles and in global responses to climate change. However, understanding and predicting the behavior and function of these microorganisms remains a grand challenge for soil ecology due in part to the microscale complexity of soils. It is becoming increasingly clear that understanding the microbial perspective is vital to accurately predicting global processes. Here, we discuss the microbial perspective including the microbial habitat as it relates to measurement and modeling of ecosystem processes. We argue that clearly defining and quantifying the size, distribution and sphere of influence of microhabitats is crucial to managing microbial activity at the ecosystem scale. This can be achieved using controlled and hierarchical sampling designs. Model microbial systems can provide key data needed to integrate microhabitats into ecosystem models, while adapting soil sampling schemes and statistical methods can allow us to collect microbially-focused data. Quantifying soil processes, like biogeochemical cycles, from a microbial perspective will allow us to more accurately predict soil functions and address long-standing unknowns in soil ecology.
Collapse
Affiliation(s)
- Darian N Smercina
- Biological Sciences Division, Earth and Biological Sciences Directorate, 3335 Innovation Blvd, Richland, WA, 99354, USA
| | - Vanessa L Bailey
- Biological Sciences Division, Earth and Biological Sciences Directorate, 3335 Innovation Blvd, Richland, WA, 99354, USA
| | - Kirsten S Hofmockel
- Biological Sciences Division, Earth and Biological Sciences Directorate, 3335 Innovation Blvd, Richland, WA, 99354, USA.,Department of Agronomy, Iowa State University, 716 Farm House Ln, Ames, IA 50011, USA
| |
Collapse
|