1
|
Pierre HC, Amrine CSM, Doyle MG, Salvi A, Raja HA, Chekan JR, Huntsman AC, Fuchs JR, Liu K, Burdette JE, Pearce CJ, Oberlies NH. Verticillins: fungal epipolythiodioxopiperazine alkaloids with chemotherapeutic potential. Nat Prod Rep 2024; 41:1327-1345. [PMID: 38629495 PMCID: PMC11409914 DOI: 10.1039/d3np00068k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Covering: 1970 through June of 2023Verticillins are epipolythiodioxopiperazine (ETP) alkaloids, many of which possess potent, nanomolar-level cytotoxicity against a variety of cancer cell lines. Over the last decade, their in vivo activity and mode of action have been explored in detail. Notably, recent studies have indicated that these compounds may be selective inhibitors of histone methyltransferases (HMTases) that alter the epigenome and modify targets that play a crucial role in apoptosis, altering immune cell recognition, and generating reactive oxygen species. Verticillin A (1) was the first of 27 analogues reported from fungal cultures since 1970. Subsequent genome sequencing identified the biosynthetic gene cluster responsible for producing verticillins, allowing a putative pathway to be proposed. Further, molecular sequencing played a pivotal role in clarifying the taxonomic characterization of verticillin-producing fungi, suggesting that most producing strains belong to the genus Clonostachys (i.e., Bionectria), Bionectriaceae. Recent studies have explored the total synthesis of these molecules and the generation of analogues via both semisynthetic and precursor-directed biosynthetic approaches. In addition, nanoparticles have been used to deliver these molecules, which, like many natural products, possess challenging solubility profiles. This review summarizes over 50 years of chemical and biological research on this class of fungal metabolites and offers insights and suggestions on future opportunities to push these compounds into pre-clinical and clinical development.
Collapse
Affiliation(s)
- Herma C Pierre
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Chiraz Soumia M Amrine
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
- Department of Physical and Earth Sciences. Arkansas Tech University, 1701 N. Boulder Ave., Russellville, Arkansas 72801, USA
| | - Michael G Doyle
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Amrita Salvi
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave (M/C 870), Chicago, Illinois 60607, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Andrew C Huntsman
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, 500 W. 12th Ave., Columbus, Ohio 43210, USA
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, 500 W. 12th Ave., Columbus, Ohio 43210, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology and the Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave (M/C 870), Chicago, Illinois 60607, USA
| | | | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| |
Collapse
|
2
|
Zheng Y, Qin S, Xu L, Sang Z, Chen C, Tan J, Huang Y, Li M, Zou Z. Ochrolines A-C, three new indole diketopiperazines from cultures of endophytic fungi Bionectria ochroleuca SLJB-2. Fitoterapia 2024; 173:105809. [PMID: 38168565 DOI: 10.1016/j.fitote.2023.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Three new indole diketopiperazines, ochrolines A-C (1-3), along with three known compounds (4-6), were isolated and identified from the EtOAc extract of the solid fermentation of Bionectria ochroleuca SLJB-2. Notably, compound 1 featured a natural rarely-occurring caged skeleton with a 6/5/6/7 heterotetracyclic bridged ring system. The structures including absolute configurations of 1-3 were fully accomplished by extensive spectroscopic analyses, DFT GIAO 13C NMR and electronic circular dichroism (ECD) calculations. The plausible biogenetic pathways of these new indole diketopiperazines were also proposed. Moreover, the cytotoxic activity screening revealed that compound 2 exhibited moderate inhibitory effect against A549 with inhibition rate of 57.44% at the concentration of 50 μM and compound 1 exhibited mild inhibitory activities against A549, Hela and MCF-7.
Collapse
Affiliation(s)
- Yuting Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Siyu Qin
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Li Xu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Zihuan Sang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Chen Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Jianbing Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China
| | - Yuantao Huang
- Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570100, China
| | - Meifang Li
- Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570100, China
| | - Zhenxing Zou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha 410013, China.
| |
Collapse
|
3
|
Kaweesa EN, Bazioli JM, Pierre HC, Lantvit DD, Kulp SK, Hill KL, Phelps MA, Coss CC, Fuchs JR, Pearce CJ, Oberlies NH, Burdette JE. Exploration of Verticillins in High-Grade Serous Ovarian Cancer and Evaluation of Multiple Formulations in Preclinical In Vitro and In Vivo Models. Mol Pharm 2023; 20:3049-3059. [PMID: 37155928 PMCID: PMC10405366 DOI: 10.1021/acs.molpharmaceut.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Verticillins are epipolythiodioxopiperazine alkaloids isolated from a fungus with nanomolar anti-tumor activity in high-grade serous ovarian cancer (HGSOC). HGSOC is the fifth leading cause of death in women, and natural products continue to be an inspiration for new drug entities to help tackle chemoresistance. Verticillin D was recently found in a new fungal strain and compared to verticillin A. Both compounds exhibited nanomolar cytotoxic activity against OVCAR4 and OVCAR8 HGSOC cell lines, significantly reduced 2D foci and 3D spheroids, and induced apoptosis. In addition, verticillin A and verticillin D reduced tumor burden in vivo using OVCAR8 xenografts in the peritoneal space as a model. Unfortunately, mice treated with verticillin D displayed signs of liver toxicity. Tolerability studies to optimize verticillin A formulation for in vivo delivery were performed and compared to a semi-synthetic succinate version of verticillin A to monitor bioavailability in athymic nude females. Formulation of verticillins achieved tolerable drug delivery. Thus, formulation studies are effective at improving tolerability and demonstrating efficacy for verticillins.
Collapse
Affiliation(s)
- Elizabeth N Kaweesa
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jaqueline M Bazioli
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Herma C Pierre
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Daniel D Lantvit
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Samuel K Kulp
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kasey L Hill
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Mitch A Phelps
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Christopher C Coss
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Cedric J Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina 27278, United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
4
|
Yeye EO, Adeniyi-Akee MA, Ahmed SA, Aboaba SA. In Silico studies and Antimicrobial Investigation of Synthesised Novel N-acylhydrazone Derivatives of Indole. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
5
|
Martínez C, García-Domínguez P, Álvarez R, de Lera AR. Bispyrrolidinoindoline Epi(poly)thiodioxopiperazines (BPI-ETPs) and Simplified Mimetics: Structural Characterization, Bioactivities, and Total Synthesis. Molecules 2022; 27:7585. [PMID: 36364412 PMCID: PMC9659040 DOI: 10.3390/molecules27217585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/08/2024] Open
Abstract
Within the 2,5-dioxopiperazine-containing natural products generated by "head-to-tail" cyclization of peptides, those derived from tryptophan allow further structural diversification due to the rich chemical reactivity of the indole heterocycle, which can generate tetracyclic fragments of hexahydropyrrolo[2,3-b]indole or pyrrolidinoindoline skeleton fused to the 2,5-dioxopiperazine. Even more complex are the dimeric bispyrrolidinoindoline epi(poly)thiodioxopiperazines (BPI-ETPs), since they feature transannular (poly)sulfide bridges connecting C3 and C6 of their 2,5-dioxopiperazine rings. Homo- and heterodimers composed of diastereomeric epi(poly)thiodioxopiperazines increase the complexity of the family. Furthermore, putative biogenetically generated downstream metabolites with C11 and C11'-hydroxylated cores, as well as deoxygenated and/or oxidized side chain counterparts, have also been described. The isolation of these complex polycyclic tryptophan-derived alkaloids from the classical sources, their structural characterization, the description of the relevant biological activities and putative biogenetic routes, and the synthetic efforts to generate and confirm their structures and also to prepare and further evaluate structurally simple analogs will be reported.
Collapse
Affiliation(s)
| | | | | | - Angel R. de Lera
- CINBIO, ORCHID Group, Departmento de Química Orgánica, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
6
|
Sun C, Tian W, Lin Z, Qu X. Biosynthesis of pyrroloindoline-containing natural products. Nat Prod Rep 2022; 39:1721-1765. [PMID: 35762180 DOI: 10.1039/d2np00030j] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2022Pyrroloindoline is a privileged tricyclic indoline motif widely present in many biologically active and medicinally valuable natural products. Thus, understanding the biosynthesis of this molecule is critical for developing convenient synthetic routes, which is highly challenging for its chemical synthesis due to the presence of rich chiral centers in this molecule, especially the fully substituted chiral carbon center at the C3-position of its rigid tricyclic structure. In recent years, progress has been made in elucidating the biosynthetic pathways and enzymatic mechanisms of pyrroloindoline-containing natural products (PiNPs). This article reviews the main advances in the past few decades based on the different substitutions on the C3 position of PiNPs, especially the various key enzymatic mechanisms involved in the biosynthesis of different types of PiNPs.
Collapse
Affiliation(s)
- Chenghai Sun
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wenya Tian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
7
|
Li X, Xu J, Wang P, Ding W. Novel indole diketopiperazine stereoisomers from a marine-derived fungus Aspergillus sp. Mycology 2022; 14:1-10. [PMID: 36816774 PMCID: PMC9930829 DOI: 10.1080/21501203.2022.2069173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/18/2022] [Indexed: 01/17/2023] Open
Abstract
Four dimeric diketopiperazine stereoisomers (1-4) including two new ones (1-2) had been isolated from the culture broth of one marine-derived fungus Aspergillus sp. Z3, which was found in the gut of a marine isopod Ligia exotica. The planner structures and absolute configurations of the new compounds were determined by combination of NMR, HRESIMS, electronic circular dichroism calculation, Marfey's method as well as single-crystal X-ray diffraction. Their cytotoxicity against the prostate cancer PC3 cell line was assayed by the MTT method.
Collapse
Affiliation(s)
- Xinyang Li
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, China
| | - Jinzhong Xu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, China
| | - Pinmei Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, China
| | - Wanjing Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, China
| |
Collapse
|
8
|
Ma Z, Zhou A, Xia C. Strategies for total synthesis of bispyrrolidinoindoline alkaloids. Nat Prod Rep 2022; 39:1015-1044. [PMID: 35297915 DOI: 10.1039/d1np00060h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering up to 2021Complex cyclotryptamine alkaloids with a bispyrrolidino[2,3-b]indoline (BPI) skeleton are an intriguing family of natural products, exhibiting wide systematic occurrences, large structural diversity, and multiple biological activities. Based on their structural characteristics, BPI alkaloids can be classified into chimonanthine-type BPI alkaloids, BPI diketopiperazines, and BPI epipolythiodiketopiperazines. These intricate molecules have captivated great attention soon after their isolation and identification in the 1960s. Due to the structural complexity, the total synthesis of these cyclotryptamine alkaloids is challenging. Nevertheless, remarkable progress has been achieved in the last six decades; in particular, several methods have been successfully established for the construction of vicinal all-carbon quaternary stereocenters. In this review, the structural diversity and chemical synthesis of these BPI alkaloids were summarized. BPI alkaloids are mainly synthesized by the methods of oxidative dimerization, reductive dimerization, and alkylation of bisoxindole. The purpose of this review is to present overall strategies for assembling the BPI skeleton and efforts towards controlling the stereocenters.
Collapse
Affiliation(s)
- Zhixian Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, and Yunnan University Library, Yunnan University, Kunming 650091, China.
| | - Ankun Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, and Yunnan University Library, Yunnan University, Kunming 650091, China.
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, and Yunnan University Library, Yunnan University, Kunming 650091, China.
| |
Collapse
|
9
|
Cao J, Li X, Li X, Li H, Konuklugil B, Wang B. Uncommon
N
‐Methoxyindolediketopiperazines
from
Acrostalagmus luteoalbus
, a Marine Algal Isolate of Endophytic Fungus. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jin Cao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology Institute of Oceanology Chinese Academy of Sciences, Nanhai Road 7 Qingdao Shandong 266071 China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1 Qingdao Shandong 266237 China
| | - Xiao‐Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology Institute of Oceanology Chinese Academy of Sciences, Nanhai Road 7 Qingdao Shandong 266071 China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1 Qingdao Shandong 266237 China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology Institute of Oceanology Chinese Academy of Sciences, Nanhai Road 7 Qingdao Shandong 266071 China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1 Qingdao Shandong 266237 China
| | - Hong‐Lei Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology Institute of Oceanology Chinese Academy of Sciences, Nanhai Road 7 Qingdao Shandong 266071 China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1 Qingdao Shandong 266237 China
| | - Belma Konuklugil
- Faculty of Pharmacy University of Ankara Emniyet Mah. Degol Cd. No. 4, Posta Kod 06560 Yenimahalle Ankara Turkey
| | - Bin‐Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology Institute of Oceanology Chinese Academy of Sciences, Nanhai Road 7 Qingdao Shandong 266071 China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1 Qingdao Shandong 266237 China
- Center for Ocean Mega‐Science, Chinese Academy of Sciences, Nanhai Road 7 Qingdao Shandong 266071 China
| |
Collapse
|
10
|
Jia B, Ma YM, Liu B, Chen P, Hu Y, Zhang R. Synthesis, Antimicrobial Activity, Structure-Activity Relationship, and Molecular Docking Studies of Indole Diketopiperazine Alkaloids. Front Chem 2019; 7:837. [PMID: 31850323 PMCID: PMC6897290 DOI: 10.3389/fchem.2019.00837] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
Strategies for the synthesis of indole diketopiperazine alkaloids (indole DKPs) have been described and involve three analogs of indole DKPs. The antimicrobial activity and structure-activity relationship (SAR) of 24 indole DKPs were explored. Compounds 3b and 3c were found to be the most active, with minimum inhibitory concentrations (MIC) values in the range of 0.94–3.87 μM (0.39–1.56 μg/mL) against the four tested bacteria (Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli). Furthermore, compounds 4a and 4b displayed broad-spectrum antimicrobial activity with MIC values of 1.10–36.9 μM (0.39–12.5 μg/mL) against all tested bacteria and plant pathogenic fungi (Colletotrichum gloeosporioides, Valsa mali, Alternaria alternata and Alternaria brassicae). According to the in silico study, compounds 3c showed significant binding affinity to the FabH protein from Escherichia coli, which has been identified as the key target enzyme of fatty acid synthesis (FAS) in bacteria. Therefore, these compounds are not only promising new antibacterial agents but also potential FabH inhibitors.
Collapse
Affiliation(s)
- Bin Jia
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yang-Min Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Bin Liu
- School of Pharmacy, Shaanxi Institute of International Trade and Commerce, Xi'an, China.,Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province, Xi'an, China
| | - Pu Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yan Hu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Rui Zhang
- School of Arts and Sciences, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
11
|
Gomes NGM, Pereira RB, Andrade PB, Valentão P. Double the Chemistry, Double the Fun: Structural Diversity and Biological Activity of Marine-Derived Diketopiperazine Dimers. Mar Drugs 2019; 17:md17100551. [PMID: 31569621 PMCID: PMC6835637 DOI: 10.3390/md17100551] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/22/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
While several marine natural products bearing the 2,5-diketopiperazine ring have been reported to date, the unique chemistry of dimeric frameworks appears to remain neglected. Frequently reported from marine-derived strains of fungi, many naturally occurring diketopiperazine dimers have been shown to display a wide spectrum of pharmacological properties, particularly within the field of cancer and antimicrobial therapy. While their structures illustrate the unmatched power of marine biosynthetic machinery, often exhibiting unsymmetrical connections with rare linkage frameworks, enhanced binding ability to a variety of pharmacologically relevant receptors has been also witnessed. The existence of a bifunctional linker to anchor two substrates, resulting in a higher concentration of pharmacophores in proximity to recognition sites of several receptors involved in human diseases, portrays this group of metabolites as privileged lead structures for advanced pre-clinical and clinical studies. Despite the structural novelty of various marine diketopiperazine dimers and their relevant bioactive properties in several models of disease, to our knowledge, this attractive subclass of compounds is reviewed here for the first time.
Collapse
Affiliation(s)
- Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| | - Renato B Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, Porto 4050-313, Portugal.
| |
Collapse
|
12
|
Zhao P, Xue Y, Li J, Li X, Zu X, Zhao Z, Quan C, Gao W, Feng S. Non-lipopeptide fungi-derived peptide antibiotics developed since 2000. Biotechnol Lett 2019; 41:651-673. [PMID: 31020454 DOI: 10.1007/s10529-019-02677-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
Abstract
The 2,5-diketopiperazines (DKPs) are the smallest cyclopeptides and their basic structure includes a six-membered piperazine nucleus. Typical peptides lack a special functional group in the oligopeptide nucleus. Both are produced by at least 35 representative genera of fungi, and possess huge potential as pharmaceutical drugs and biocontrol agents. To date, only cyclosporin A has been developed into a commercial product. This review summarises 186 fungi-derived compounds reported since 2000. Antibiotic (antibacterial, antifungal, synergistic antifungal, antiviral, antimycobacterial, antimalarial, antileishmanial, insecticidal, antitrypanosomal, nematicidal and antimicroalgal) activities are discussed for 107 of them, including 66 DKPs (14 epipolythiodioxopiperazines, 20 polysulphide bridge-free thiodiketopiperazines, and 32 sulphur-free prenylated indole DKPs), 15 highly N-methylated, and 26 non-highly N-methylated typical peptides. Structure-activity relationships, mechanisms of action, and research methods are covered in detail. Additionally, biosynthases of tardioxopiperazines and neoechinulins are highlighted. These compounds have attracted considerable interest within the pharmaceutical and agrochemical industries.
Collapse
Affiliation(s)
- Pengchao Zhao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xin Li
- Life Science College, Yuncheng University, Yuncheng, 044000, China
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhanqin Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Chunshan Quan
- Department of Life Science, Dalian Nationalities University, Dalian, 116600, China
| | - Weina Gao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shuxiao Feng
- College of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
13
|
Media studies to enhance the production of verticillins facilitated by in situ chemical analysis. J Ind Microbiol Biotechnol 2018; 45:1053-1065. [PMID: 30259213 PMCID: PMC6251749 DOI: 10.1007/s10295-018-2083-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/20/2018] [Indexed: 01/21/2023]
Abstract
Abstract Verticillins are a group of epipolythiodioxopiperazine alkaloids that have displayed potent cytotoxicity. To evaluate their potential further, a larger supply of these compounds was needed for both in vivo studies and analogue development via semisynthesis. To optimize the biosynthesis of these secondary metabolites, their production was analyzed in two different fungal strains (MSX59553 and MSX79542) under a suite of fermentation conditions. These studies were facilitated by the use of the droplet-liquid microjunction-surface sampling probe (droplet probe), which enables chemical analysis in situ directly from the surface of the cultures. These experiments showed that the production of verticillins was greatly affected by growth conditions; a significantly higher quantity of these alkaloids was noted when the fungal strains were grown on an oatmeal-based medium. Using these technologies to select the best among the tested growth conditions, the production of the verticillin analogues was increased while concomitantly decreasing the time required for fermentations from 5 weeks to about 11 days. Importantly, where we could previously supply 5–10 mg every 6 weeks, we are now able to supply 50–150 mg quantities of key analogues per month via laboratory scale fermentation. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s10295-018-2083-8) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Wen H, Liu X, Zhang Q, Deng Y, Zang Y, Wang J, Liu J, Zhou Q, Hu L, Zhu H, Chen C, Zhang Y. Three New Indole Diketopiperazine Alkaloids from Aspergillus ochraceus. Chem Biodivers 2018; 15:e1700550. [DOI: 10.1002/cbdv.201700550] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/05/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Huiling Wen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
- School of Pharmaceutical Sciences; Gannan Medical University; Ganzhou Jiangxi 341000 P. R. China
| | - Xiaorui Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
| | - Qing Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
| | - Yanfang Deng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
| | - Yi Zang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
| | - Jianping Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
| | - Linzhen Hu
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine; College of Life Sciences; Hubei University; Wuhan 430062 P. R. China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation; School of Pharmacy; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 P. R. China
| |
Collapse
|
15
|
Duan Y, Liu Y, Huang T, Zou Y, Huang T, Hu K, Deng Z, Lin S. Divergent biosynthesis of indole alkaloids FR900452 and spiro-maremycins. Org Biomol Chem 2018; 16:5446-5451. [DOI: 10.1039/c8ob01181h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FR900452 was demonstrated to be biosynthesized by the gene cluster of maremycin G and diversified by SnoaL-like protein MarP.
Collapse
Affiliation(s)
- Yingyi Duan
- State Key Laboratory of Microbial Metabolism
- Joint International Laboratory of Metabolic & Developmental Sciences
- School of Life Sciences & Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| | - Yanyan Liu
- State Key Laboratory of Microbial Metabolism
- Joint International Laboratory of Metabolic & Developmental Sciences
- School of Life Sciences & Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| | - Tao Huang
- Kunming Institute of Botany
- Chinese Academy of Science
- Kunming
- P. R. China
| | - Yi Zou
- College of Pharmaceutical Science and Chinese Medicine
- Southwest University
- Chongqing
- P. R. China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism
- Joint International Laboratory of Metabolic & Developmental Sciences
- School of Life Sciences & Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| | - Kaifeng Hu
- Kunming Institute of Botany
- Chinese Academy of Science
- Kunming
- P. R. China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism
- Joint International Laboratory of Metabolic & Developmental Sciences
- School of Life Sciences & Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism
- Joint International Laboratory of Metabolic & Developmental Sciences
- School of Life Sciences & Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| |
Collapse
|
16
|
Wang X, Li Y, Zhang X, Lai D, Zhou L. Structural Diversity and Biological Activities of the Cyclodipeptides from Fungi. Molecules 2017; 22:E2026. [PMID: 29168781 PMCID: PMC6149763 DOI: 10.3390/molecules22122026] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/15/2017] [Indexed: 11/17/2022] Open
Abstract
Cyclodipeptides, called 2,5-diketopiperazines (2,5-DKPs), are obtained by the condensation of two amino acids. Fungi have been considered to be a rich source of novel and bioactive cyclodipeptides. This review highlights the occurrence, structures and biological activities of the fungal cyclodipeptides with the literature covered up to July 2017. A total of 635 fungal cyclodipeptides belonging to the groups of tryptophan-proline, tryptophan-tryptophan, tryptophan-Xaa, proline-Xaa, non-tryptophan-non-proline, and thio-analogs have been discussed and reviewed. They were mainly isolated from the genera of Aspergillus and Penicillium. More and more cyclodipeptides have been isolated from marine-derived and plant endophytic fungi. Some of them were screened to have cytotoxic, phytotoxic, antimicrobial, insecticidal, vasodilator, radical scavenging, antioxidant, brine shrimp lethal, antiviral, nematicidal, antituberculosis, and enzyme-inhibitory activities to show their potential applications in agriculture, medicinal, and food industry.
Collapse
Affiliation(s)
- Xiaohan Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Yuying Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Xuping Zhang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
Guo Z, Hao T, Wang Y, Pan Y, Ren F, Liu X, Che Y, Liu G. VerZ, a Zn(II) 2Cys 6 DNA-binding protein, regulates the biosynthesis of verticillin in Clonostachys rogersoniana. MICROBIOLOGY-SGM 2017; 163:1654-1663. [PMID: 29058652 DOI: 10.1099/mic.0.000557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Verticillins are the dimeric epipolythiodioxopiperazines (ETPs) produced by the fungus Clonostachys rogersoniana. Despite their profound biological effects, they are commonly produced in rice medium as complex mixtures that are difficult to separate, limiting further study and evaluation for this class of metabolites. Therefore, there is an urgent need to understand the regulation of verticillin biosynthesis. Recently, we cloned the biosynthetic gene cluster of verticillin (ver), and identified the only regulatory gene verZ in this cluster. The deduced product of verZ contains a basic Zn(II)2Cys6 DNA-binding domain. Disruption of verZ significantly reduced the production of 11'-deoxyverticillin A (C42) and decreased the transcriptional level of the verticillin biosynthetic genes. To further reveal its function, a recombinant gene encoding the DNA-binding domain of VerZ was expressed in E. coli and the His6-tagged VerZbd was purified to homogeneity by Ni-NTA chromatography. Electrophoretic mobility shift assays (EMSAs) showed that VerZbd bound specifically to the promoter regions of the verticillin biosynthetic genes. Bioinformatic analysis of the VerZbd-binding regions revealed a conserved palindromic sequence of (T/C)(C/A)(G/T)GN3CC(G/T)(A/G)(G/C). Base substitution of the conserved sequence completely abolished the binding activity of VerZbd to its targets. These results suggested that VerZ controls verticillin production through directly activating transcription of the biosynthetic genes in C. rogersoniana.
Collapse
Affiliation(s)
- Zhe Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tianchao Hao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ying Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Fengxia Ren
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yongsheng Che
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, PR China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
18
|
Kamdem RST, Wang H, Wafo P, Ebrahim W, Özkaya FC, Makhloufi G, Janiak C, Sureechatchaiyan P, Kassack MU, Lin W, Liu Z, Proksch P. Induction of new metabolites from the endophytic fungus Bionectria sp. through bacterial co-culture. Fitoterapia 2017; 124:132-136. [PMID: 29106994 DOI: 10.1016/j.fitote.2017.10.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 01/16/2023]
Abstract
A new alkaloid, 1,2-dihydrophenopyrrozin (1), along with five known compounds (2-6) was isolated from an axenic culture of the endophytic fungus, Bionectria sp., obtained from seeds of the tropical plant Raphia taedigera. Co-cultivation of this fungus either with Bacillus subtilis or with Streptomyces lividans resulted in the production of two new o-aminobenzoic acid derivatives, bionectriamines A and B (7 and 8) as well as of two additional known compounds (9 and 10). None of the latter compounds (7-10) were detected in axenic cultures of the fungus or of the bacteria indicating activation of silent biogenetic gene clusters through co-cultivation with bacteria. The structures of the new compounds were unambiguously determined based on detailed NMR and MS spectroscopic analysis and by comparison with the literature. The crystal structure of agathic acid (6) is reported here for the first time. Penicolinate A (4) exhibited potent cytotoxic activity against the human ovarian cancer cell line A2780 with an IC50 value of 4.1μM.
Collapse
Affiliation(s)
- Ramsay S T Kamdem
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany; Department of Organic Chemistry, Higher Teachers' Training College, University of Yaounde I, P. O. Box 47, Yaounde, Cameroon.
| | - Hao Wang
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Pascal Wafo
- Department of Organic Chemistry, Higher Teachers' Training College, University of Yaounde I, P. O. Box 47, Yaounde, Cameroon
| | - Weaam Ebrahim
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany; Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ferhat Can Özkaya
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Gamall Makhloufi
- Institute of Inorganic and Structural Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Christoph Janiak
- Institute of Inorganic and Structural Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Parichat Sureechatchaiyan
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Zhen Liu
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
19
|
Ma YM, Liang XA, Kong Y, Jia B. Structural Diversity and Biological Activities of Indole Diketopiperazine Alkaloids from Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6659-6671. [PMID: 27538469 DOI: 10.1021/acs.jafc.6b01772] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Indole diketopiperazine alkaloids are secondary metabolites of microorganisms that are widely distributed in filamentous fungi, especially in the genera Aspergillus and Penicillium of the phylum Ascomycota or sac fungi. These alkaloids represent a group of natural products characterized by diversity in both chemical structures and biological activities. This review aims to summarize 166 indole diketopiperazine alkaloids from fungi published from 1944 to mid-2015. The emphasis is on diverse chemical structures within these alkaloids and their relevant biological activities. The aim is to assess which of these compounds merit further study for purposes of drug development.
Collapse
Affiliation(s)
- Yang-Min Ma
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology , Xi'an 710021, Shaanxi, China
| | - Xi-Ai Liang
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology , Xi'an 710021, Shaanxi, China
| | - Yang Kong
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology , Xi'an 710021, Shaanxi, China
| | - Bin Jia
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology , Xi'an 710021, Shaanxi, China
| |
Collapse
|
20
|
El-Elimat T, Figueroa M, Ehrmann BM, Cech NB, Pearce CJ, Oberlies NH. High-resolution MS, MS/MS, and UV database of fungal secondary metabolites as a dereplication protocol for bioactive natural products. JOURNAL OF NATURAL PRODUCTS 2013; 76:1709-16. [PMID: 23947912 PMCID: PMC3856222 DOI: 10.1021/np4004307] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A major problem in the discovery of new biologically active compounds from natural products is the reisolation of known compounds. Such reisolations waste time and resources, distracting chemists from more promising leads. To address this problem, dereplication strategies are needed that enable crude extracts to be screened for the presence of known compounds before isolation efforts are initiated. In a project to identify anticancer drug leads from filamentous fungi, a significant dereplication challenge arises, as the taxonomy of the source materials is rarely known, and, thus, the literature cannot be probed to identify likely known compounds. An ultraperformance liquid chromatography-photodiode array-high-resolution tandem mass spectrometric (UPLC-PDA-HRMS-MS/MS) method was developed for dereplication of fungal secondary metabolites in crude culture extracts. A database was constructed by recording HRMS and MS/MS spectra of fungal metabolites, utilizing both positive- and negative-ionization modes. Additional details, such as UV-absorption maxima and retention times, were also recorded. Small-scale cultures that showed cytotoxic activities were dereplicated before engaging in the scale-up or purification processes. Using these methods, approximately 50% of the cytotoxic extracts could be eliminated from further study after the confident identification of known compounds. The specific attributes of this dereplication methodology include a focus on bioactive secondary metabolites from fungi, the use of a 10 min chromatographic method, and the inclusion of both HRMS and MS/MS data.
Collapse
Affiliation(s)
- Tamam El-Elimat
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, United States
| | - Mario Figueroa
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, United States
| | - Brandie M. Ehrmann
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, United States
| | - Nadja B. Cech
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, United States
| | - Cedric J. Pearce
- Mycosynthetix, Inc., 505 Meadowlands Drive, Suite 103, Hillsborough, North Carolina 27278, United States
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, United States
- Corresponding Author. Tel: 336-334-5474.
| |
Collapse
|
21
|
Cytotoxic epipolythiodioxopiperazine alkaloids from filamentous fungi of the Bionectriaceae. J Antibiot (Tokyo) 2012; 65:559-64. [PMID: 22968289 DOI: 10.1038/ja.2012.69] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bioactivity-directed fractionation of the organic extracts of two filamentous fungi of the Bionectriaceae, strains MSX 64546 and MSX 59553 from the Mycosynthetix library, led to the isolation of a new dimeric epipolythiodioxopiperazine alkaloid, verticillin H (1), along with six related analogs, Sch 52900 (2), verticillin A (3), gliocladicillin C (4), Sch 52901 (5), 11'-deoxyverticillin A (6) and gliocladicillin A (7). The structures of compounds 1-7 were determined by extensive NMR and HRMS analyses, as well as by comparisons to the literature. All compounds (1-7) were evaluated for cytotoxicity against a panel of human cancer cell lines, displaying IC(50) values ranging from 1.2 μM to 10 nM. Compounds 1-5 were examined for activity in the NF-κB assay, where compounds 2 and 3 revealed activity in the sub-micromolar range. Additionally, compounds 1, 3 and 4 were tested for EGFR inhibition using an enzymatic assay, while compound 3 was examined against an overexpressing EGFR(+ve) cancer cell line.
Collapse
|
22
|
Ebrahim W, Kjer J, El Amrani M, Wray V, Lin W, Ebel R, Lai D, Proksch P. Pullularins E and F, two new peptides from the endophytic fungus Bionectria ochroleuca isolated from the mangrove plant Sonneratia caseolaris. Mar Drugs 2012; 10:1081-1091. [PMID: 22822358 PMCID: PMC3397455 DOI: 10.3390/md10051081] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/11/2012] [Accepted: 05/11/2012] [Indexed: 11/16/2022] Open
Abstract
Chemical investigation of the EtOAc extract of the endophytic fungus Bionectria ochroleuca, isolated from the inner leaf tissues of the plant Sonneratia caseolaris (Sonneratiaceae) from Hainan island (China), yielded two new peptides, pullularins E and F (1 and 2) together with three known compounds (3–5). The structures of the new compounds were unambiguously determined on the basis of one- and two-dimensional NMR spectroscopy as well as by high-resolution mass spectrometry. The absolute configurations of amino acids were determined by HPLC analysis of acid hydrolysates using Marfey’s method. The isolated compounds exhibited pronounced to moderate cytotoxic activity against the mouse lymphoma cells (L5178Y) with EC50 values ranging between 0.1 and 6.7 µg/mL.
Collapse
Affiliation(s)
- Weaam Ebrahim
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, Universitaetsstrasse 1, D-40225 Duesseldorf, Germany; or (W.E.); (J.K.); (M.E.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Julia Kjer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, Universitaetsstrasse 1, D-40225 Duesseldorf, Germany; or (W.E.); (J.K.); (M.E.A.)
| | - Mustapha El Amrani
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, Universitaetsstrasse 1, D-40225 Duesseldorf, Germany; or (W.E.); (J.K.); (M.E.A.)
| | - Victor Wray
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, Braunschweig D-38124, Germany;
| | - Wenhan Lin
- National Research Laboratories of Natural and Biomimetic Drugs, Health Science Center, Peking University, Beijing 100083, China;
| | - Rainer Ebel
- Marine Biodiscovery Centre, University of Aberdeen, Meston Walk, Aberdeen, Scotland AB24 3UE, UK;
| | - Daowan Lai
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, Universitaetsstrasse 1, D-40225 Duesseldorf, Germany; or (W.E.); (J.K.); (M.E.A.)
- Authors to whom correspondence should be addressed; (D.L.); (P.P.); Tel.: +49-211-81-14187 (D.L.); +49-211-81-14163 (P.P.); Fax: +49-211-81-11923 (D.L.); +49-211-81-11923 (P.P.)
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, Universitaetsstrasse 1, D-40225 Duesseldorf, Germany; or (W.E.); (J.K.); (M.E.A.)
- Authors to whom correspondence should be addressed; (D.L.); (P.P.); Tel.: +49-211-81-14187 (D.L.); +49-211-81-14163 (P.P.); Fax: +49-211-81-11923 (D.L.); +49-211-81-11923 (P.P.)
| |
Collapse
|
23
|
Saleem M, Nazir M, Ali MS, Hussain H, Lee YS, Riaz N, Jabbar A. Antimicrobial natural products: an update on future antibiotic drug candidates. Nat Prod Rep 2009; 27:238-54. [PMID: 20111803 DOI: 10.1039/b916096e] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the last decade, it has become clear that antimicrobial drugs are losing their effectiveness due to the evolution of pathogen resistance. There is therefore a continuing need to search for new antibiotics, especially as new drugs only rarely reach the market. Natural products are both fundamental sources of new chemical diversity and integral components of today's pharmaceutical compendium, and the aim of this review is to explore and highlight the diverse natural products that have potential to lead to more effective and less toxic antimicrobial drugs. Although more than 300 natural metabolites with antimicrobial activity have been reported in the period 2000-2008, this review will describe only those with potentially useful antimicrobial activity, viz. with MICs in the range 0.02-10 microg mL(-1). A total of 145 compounds from 13 structural classes are discussed, and over 100 references are cited.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, 63000 Bahawalpur, Pakistan
| | | | | | | | | | | | | |
Collapse
|
24
|
Antibacterial activity of 2-(2',4'-dibromophenoxy)-4,6-dibromophenol from Dysidea granulosa. Mar Drugs 2009; 7:464-71. [PMID: 19841726 PMCID: PMC2763112 DOI: 10.3390/md7030464] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/01/2009] [Accepted: 09/21/2009] [Indexed: 11/16/2022] Open
Abstract
2-(2′,4′-Dibromophenoxy)-4,6-dibromophenol isolated from the marine sponge Dysidea granulosa (Bergquist) collected off the coast of Lakshadweep islands, Indian Ocean, exhibited potent and broad spectrum in-vitro antibacterial activity, especially against methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), vancomycin resistant Enterococci (VRE), vancomycin sensitive Enterococci (VSE) and Bacillus spp. Minimal inhibitory concentration (MIC) was evaluated against 57 clinical and standard strains of Gram positive and Gram negative bacteria. The observed MIC range was 0.117–2.5 μg/mL against all the Gram positive bacteria and 0.5–2 μg/mL against Gram negative bacteria. The in-vitro antibacterial activity observed was better than that of the standard antibiotic linezolid, a marketed anti-MRSA drug. The results establish 2-(2′,4′-dibromophenoxy)-4,6-dibromophenol, as a potential lead molecule for anti-MRSA and anti-VRE drug development.
Collapse
|
25
|
Zheng CJ, Kim YH, Kim WG. Glioperazine B, as a new antimicrobial agent against Staphylococcus aureus, and glioperazine C: two new dioxopiperazines from Bionectra byssicola. Biosci Biotechnol Biochem 2007; 71:1979-83. [PMID: 17690474 DOI: 10.1271/bbb.70167] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the course of our screening for new antibacterials from microbial metabolites, two new dioxopiperazine metabolites, glioperazines B (1) and C (2), together with the known compound, glioperazine (3), were isolated from the mycelia of a liquid fermentation culture of the fungus, Bionectra byssicola F120. The structures of compounds 1 and 2 were assigned on the basis of MS and NMR data. Compound 1 is an unusual dioxopiperazine metabolite containing an OMe group at the alpha-carbon of the amino acid residue. Compound 1 showed weak antibacterial activity against various strains of S. aureus, including methicillin-resistant S. aureus (MRSA) and quinolone-resistant S. aureus (QRSA), while 2 and 3 did not show such activity.
Collapse
Affiliation(s)
- Chang-Ji Zheng
- Functional Metabolite Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | | | | |
Collapse
|