1
|
Dini S, Oz F, Bekhit AEDA, Carne A, Agyei D. Production, characterization, and potential applications of lipopeptides in food systems: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13394. [PMID: 38925624 DOI: 10.1111/1541-4337.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Lipopeptides are a class of lipid-peptide-conjugated compounds with differing structural features. This structural diversity is responsible for their diverse range of biological properties, including antimicrobial, antioxidant, and anti-inflammatory activities. Lipopeptides have been attracting the attention of food scientists due to their potential as food additives and preservatives. This review provides a comprehensive overview of lipopeptides, their production, structural characteristics, and functional properties. First, the classes, chemical features, structure-activity relationships, and sources of lipopeptides are summarized. Then, the gene expression and biosynthesis of lipopeptides in microbial cell factories and strategies to optimize lipopeptide production are discussed. In addition, the main methods of purification and characterization of lipopeptides have been described. Finally, some biological activities of the lipopeptides, especially those relevant to food systems along with their mechanism of action, are critically examined.
Collapse
Affiliation(s)
- Salome Dini
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Atatürk University, Erzurum, Turkey
| | | | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Yin Y, Wang X, Zhang P, Wang P, Wen J. Strategies for improving fengycin production: a review. Microb Cell Fact 2024; 23:144. [PMID: 38773450 PMCID: PMC11110267 DOI: 10.1186/s12934-024-02425-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024] Open
Abstract
Fengycin is an important member of the lipopeptide family with a wide range of applications in the agricultural, food, medical and cosmetic industries. However, its commercial application is severely hindered by low productivity and high cost. Therefore, numerous studies have been devoted to improving the production of fengycin. We summarize these studies in this review with the aim of providing a reference and guidance for future researchers. This review begins with an overview of the synthesis mechanism of fengycin via the non-ribosomal peptide synthetases (NRPS), and then delves into the strategies for improving the fengycin production in recent years. These strategies mainly include fermentation optimization and metabolic engineering, and the metabolic engineering encompasses enhancement of precursor supply, application of regulatory factors, promoter engineering, and application of genome-engineering (genome shuffling and genome-scale metabolic network model). Finally, we conclude this review with a prospect of fengycin production.
Collapse
Affiliation(s)
- Ying Yin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Xin Wang
- Coll Biol & Pharmaceut Sci, China Three Gorges Univ, Yichang, 443002, P. R. China
| | - Pengsheng Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Pan Wang
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Collaborative Innovation Center of Molecular Imaging Precision Medical, Shanxi Medical University, Taiyuan, 030001, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China.
| |
Collapse
|
3
|
Ma Z, Yang X, Sheng J. WLIP, WLIPβ, and WLIPγ Produced from Pseudomonas canadensis Q3-1 via Precursor-Directed Biosynthesis and Their Roles on Biocontrol of Phytophthora Blight in Peppers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4063-4073. [PMID: 38364207 DOI: 10.1021/acs.jafc.3c07360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
White line-inducing principle (WLIP, 1), together with two new cyclic lipopeptides (CLPs) WLIPβ (2) and WLIPγ (3), were characterized from the supernatant of Pseudomonas canadensis Q3-1 via precursor-directed biosynthesis (PDB) in the current study. They were purified from the supernatant of P. canadensis Q3-1 by solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC), and their structures were mainly determined via bioinformatic analyses, spectrometric and spectroscopic techniques, as well as single crystal X-ray diffraction (XRD). These WLIPs share (R)-3-hydroxydecanoic acid (HDA), but they differ from each other in the composition of peptidic sequences. In addition, these CLPs showed biocontrol activities against Phytophthora blight (caused by Phytophthora capsici) in peppers. Collectively, this study has shown that PDB could be used for generating new CLPs in Pseudomonas spp. Moreover, we have confirmed that WLIP, WLIPβ, and WLIPγ could be used as lead agrochemicals to control Phytophthora blight in peppers.
Collapse
Affiliation(s)
- Zongwang Ma
- College of Life Science, Northwest Normal University, East Anning Road 967, Lanzhou 730070, China
| | - Xiao Yang
- College of Life Science, Northwest Normal University, East Anning Road 967, Lanzhou 730070, China
| | - Jun Sheng
- College of Life Science, Northwest Normal University, East Anning Road 967, Lanzhou 730070, China
| |
Collapse
|
4
|
Yin Y, Wang P, Wang X, Wen J. Construction of Bacillus subtilis for efficient production of fengycin from xylose through CRISPR-Cas9. Front Microbiol 2024; 14:1342199. [PMID: 38249479 PMCID: PMC10797001 DOI: 10.3389/fmicb.2023.1342199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Fengycin is a multifunctional peptide antibiotic produced mainly by Bacillus species and the purpose of this research was to construct a Bacillus subtilis strain that can produce fengycin with the xylose as the substrate with CRSIPR-Cas9. Hence, at the beginning of this study, functional sfp and degQ were expressed in B. subtilis 168 strain to give the strain the ability to produce the fengycin with the titer of 71.21 mg/L. Subsequently, the native promoter PppsA of the cluster responsible for the fengycin synthesis was replaced by the Pveg promoter, resulting in a further 5.22-fold increase in fengycin titer. To confer xylose utilization capacity to B. subtilis, deletion of araR and constitutive overexpression of araE were performed, and the xylose consumption rate of the engineered strain BSUY06 reached 0.29 g/L/h, which is about 6.25-fold higher than that of the parent strain BSUY04-1. In the final phase of this study, the fermentation characteristics were observed and the initial xylose concentration was optimized. In this study, 40 g/L xylose was proved to be the most suitable initial concentration for growth and fengycin fermentation, which leading to a fengycin titer of 430.86 mg/L. This study demonstrated that lignocellulose, the clean and sustainable substrate with xylose as the second largest sugar, is a potential substrate for the production of fengycin.
Collapse
Affiliation(s)
- Ying Yin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Pan Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Xin Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Ramesh S, Roy U, Roy S. The elucidation of the multimodal action of the investigational anti- Candida lipopeptide (AF 4) lead from Bacillus subtilis. Front Mol Biosci 2023; 10:1248444. [PMID: 38131013 PMCID: PMC10736182 DOI: 10.3389/fmolb.2023.1248444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/11/2023] [Indexed: 12/23/2023] Open
Abstract
Background: Candida species are the main etiological agents for candidiasis, and Candida albicans are the most common infectious species. Candida species' growing resistance to conventional therapies necessitates more research into novel antifungal agents. Antifungal peptides isolated from microorganisms have potential applications as novel therapeutics. AF4 a Bacillus-derived lipopeptide demonstrating broad-spectrum antifungal activity has been investigated for its ability to cause cell death in Candida species via membrane damage and oxidative stress. Methods: Using biophysical techniques, the secondary structure of the AF4 lipopeptide was identified. Scanning electron microscopy and confocal microscopy with fluorescent dyes were performed to visualise the effect of the lipopeptide. The membrane disruption and permeabilization were assessed using the 1,6-diphenyl hexatriene (DPH) fluorescence assay and flow cytometric (FC) assessment of propidium iodide (PI) uptake, respectively. The reactive oxygen species levels were estimated using the FC assessment. The induction of apoptosis and DNA damage were studied using Annexin V-FITC/PI and DAPI. Results: Bacillus-derived antifungal variant AF4 was found to have structural features typical of lipopeptides. Microscopy imaging revealed that AF4 damages the surface of treated cells and results in membrane permeabilization, facilitating the uptake of the fluorescent dyes. A loss of membrane integrity was observed in cells treated with AF4 due to a decrease in DPH fluorescence and a dose-dependent increase in PI uptake. Cell damage was also determined from the log reduction of viable cells treated with AF4. AF4 treatment also caused elevated ROS levels, induced phosphatidylserine externalisation, late-stage apoptosis, and alterations to nuclear morphology revealed by DAPI fluorescence. Conclusion: Collectively, the mode of action studies revealed that AF4 acts primarily on the cell membrane of C. albicans and has the potential to act as an antifungal drug candidate.
Collapse
Affiliation(s)
- Swetha Ramesh
- Department of Biological Sciences, Birla Institute of Technology and Science, K.K. Birla Goa Campus, Goa, India
| | - Utpal Roy
- Department of Chemistry, Birla Institute of Technology and Science, K.K. Birla Goa Campus, Goa, India
| | - Subhashis Roy
- Department of Chemistry, Birla Institute of Technology and Science, K.K. Birla Goa Campus, Goa, India
| |
Collapse
|
6
|
Helmy NM, Parang K. Cyclic Peptides with Antifungal Properties Derived from Bacteria, Fungi, Plants, and Synthetic Sources. Pharmaceuticals (Basel) 2023; 16:892. [PMID: 37375840 DOI: 10.3390/ph16060892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Fungal infections remain a significant concern for human health. The emergence of microbial resistance, the improper use of antimicrobial drugs, and the need for fewer toxic antifungal treatments in immunocompromised patients have sparked substantial interest in antifungal research. Cyclic peptides, classified as antifungal peptides, have been in development as potential antifungal agents since 1948. In recent years, there has been growing attention from the scientific community to explore cyclic peptides as a promising strategy for combating antifungal infections caused by pathogenic fungi. The identification of antifungal cyclic peptides from various sources has been possible due to the widespread interest in peptide research in recent decades. It is increasingly important to evaluate narrow- to broad-spectrum antifungal activity and the mode of action of synthetic and natural cyclic peptides for both synthesized and extracted peptides. This short review aims to highlight some of the antifungal cyclic peptides isolated from bacteria, fungi, and plants. This brief review is not intended to present an exhaustive catalog of all known antifungal cyclic peptides but rather seeks to showcase selected cyclic peptides with antifungal properties that have been isolated from bacteria, fungi, plants, and synthetic sources. The addition of commercially available cyclic antifungal peptides serves to corroborate the notion that cyclic peptides can serve as a valuable source for the development of antifungal drugs. Additionally, this review discusses the potential future of utilizing combinations of antifungal peptides from different sources. The review underscores the need for the further exploration of the novel antifungal therapeutic applications of these abundant and diverse cyclic peptides.
Collapse
Affiliation(s)
- Naiera M Helmy
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Giza 3751134, Egypt
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
7
|
Ma Z, Sheng J. Pseudophomins A-D Produced from Pseudomonas sp. HN8-3 Using an OSMAC Approach and Their Roles in Biocontrol of Phytophthora capsici in Cucumbers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6268-6276. [PMID: 37068136 DOI: 10.1021/acs.jafc.3c00137] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this study, two new cyclic lipopeptides (CLPs) pseudophomins C (3) and D (4) and two known CLPs pseudophomins A (1) and B (2) were produced and characterized from the bacterial supernatant of Pseudomonas sp. HN8-3 by an OSMAC (one strain-many compounds) approach. OSMAC is a strategy that involves feeding of a single microorganism with divergent substrates to stimulate the production of new secondary metabolites. These pseudophomins were purified and identified via chromatographic methods, droplet collapse assay, genome mining, spectroscopic and spectrometric analyses, and single-crystal X-ray diffraction (XRD). Moreover, bioactivity tests showed that pseudophomins could lyse the zoospores of Phytophthora capsici in vitro, and coapplication of pseudophomins with zoospores of P. capsici further reduced the incidence of P. capsici on cucumber leaves. Collectively, these results indicated that pseudophomins have the potential to be developed as biopesticides for controlling P. capsici in cucumber.
Collapse
Affiliation(s)
- Zongwang Ma
- College of Life Science, Northwest Normal University, East Anning Road 967, 730070 Lanzhou, China
| | - Jun Sheng
- College of Life Science, Northwest Normal University, East Anning Road 967, 730070 Lanzhou, China
| |
Collapse
|
8
|
Zhang Q, Lin R, Yang J, Zhao J, Li H, Liu K, Xue X, Zhao H, Han S, Zhao H. Transcriptome Analysis Reveals That C17 Mycosubtilin Antagonizes Verticillium dahliae by Interfering with Multiple Functional Pathways of Fungi. BIOLOGY 2023; 12:biology12040513. [PMID: 37106714 PMCID: PMC10136297 DOI: 10.3390/biology12040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Verticillium wilt is a kind of soil-borne plant fungal disease caused by Verticillium dahliae (Vd). Vd 991 is a strong pathogen causing cotton Verticillium wilt. Previously, we isolated a compound from the secondary metabolites of Bacillus subtilis J15 (BS J15), which showed a significant control effect on cotton Verticillium wilt and was identified as C17 mycosubtilin. However, the specific fungistatic mechanism by which C17 mycosubtilin antagonizes Vd 991 is not clear. Here, we first showed that C17 mycosubtilin inhibits the growth of Vd 991 and affects germination of spores at the minimum inhibitory concentration (MIC). Morphological observation showed that C17 mycosubtilin treatment caused shrinking, sinking, and even damage to spores; the hyphae became twisted and rough, the surface was sunken, and the contents were unevenly distributed, resulting in thinning and damage to the cell membrane and cell wall and swelling of mitochondria of fungi. Flow cytometry analysis with ANNEXINV-FITC/PI staining showed that C17 mycosubtilin induces necrosis of Vd 991 cells in a time-dependent manner. Differential transcription analysis showed that C17 mycosubtilin at a semi-inhibitory concentration (IC50) treated Vd 991 for 2 and 6 h and inhibited fungal growth mainly by destroying synthesis of the fungal cell membrane and cell wall, inhibiting its DNA replication and transcriptional translation process, blocking its cell cycle, destroying fungal energy and substance metabolism, and disrupting the redox process of fungi. These results directly showed the mechanism by which C17 mycosubtilin antagonizes Vd 991, providing clues for the mechanism of action of lipopeptides and useful information for development of more effective antimicrobials.
Collapse
|
9
|
Guillén-Navarro K, López-Gutiérrez T, García-Fajardo V, Gómez-Cornelio S, Zarza E, De la Rosa-García S, Chan-Bacab M. Broad-Spectrum Antifungal, Biosurfactants and Bioemulsifier Activity of Bacillus subtilis subsp. spizizenii-A Potential Biocontrol and Bioremediation Agent in Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:1374. [PMID: 36987062 PMCID: PMC10056679 DOI: 10.3390/plants12061374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In this study, the antifungal, biosurfactant and bioemulsifying activity of the lipopeptides produced by the marine bacterium Bacillus subtilis subsp. spizizenii MC6B-22 is presented. The kinetics showed that at 84 h, the highest yield of lipopeptides (556 mg/mL) with antifungal, biosurfactant, bioemulsifying and hemolytic activity was detected, finding a relationship with the sporulation of the bacteria. Based on the hemolytic activity, bio-guided purification methods were used to obtain the lipopeptide. By TLC, HPLC and MALDI-TOF, the mycosubtilin was identified as the main lipopeptide, and it was further confirmed by NRPS gene clusters prediction based on the strain's genome sequence, in addition to other genes related to antimicrobial activity. The lipopeptide showed a broad-spectrum activity against ten phytopathogens of tropical crops at a minimum inhibitory concentration of 400 to 25 μg/mL and with a fungicidal mode of action. In addition, it exhibited that biosurfactant and bioemulsifying activities remain stable over a wide range of salinity and pH and it can emulsify different hydrophobic substrates. These results demonstrate the potential of the MC6B-22 strain as a biocontrol agent for agriculture and its application in bioremediation and other biotechnological fields.
Collapse
Affiliation(s)
- Karina Guillén-Navarro
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Tapachula, Carretera Antiguo Aeropuerto km 2.5, Tapachula 30700, Chiapas, Mexico; (K.G.-N.); (E.Z.)
| | - Tomás López-Gutiérrez
- Facultad de Ciencias Biologicas, Universidad Autónoma de Campeche, Av. Agustín Melgar s/n, Col. Buenavista, Campeche 24030, Campeche, Mexico
| | - Verónica García-Fajardo
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Tapachula, Carretera Antiguo Aeropuerto km 2.5, Tapachula 30700, Chiapas, Mexico; (K.G.-N.); (E.Z.)
| | - Sergio Gómez-Cornelio
- Ingeniería en Biotecnología, Universidad Politécnica del Centro, Carretera Federal Villahermosa-Teapa km 22.5, Villahermosa 86290, Tabasco, Mexico;
- Laboratorio de Nanotecnología-CICTAT, División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Carr. Cunduacán-Jalpa de Méndez km 1, Cunduacán 86690, Tabasco, Mexico
| | - Eugenia Zarza
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Tapachula, Carretera Antiguo Aeropuerto km 2.5, Tapachula 30700, Chiapas, Mexico; (K.G.-N.); (E.Z.)
- Investigadora CONACyT—El Colegio de la Frontera Sur. Av. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, Mexico City 03940, Mexico City, Mexico
| | - Susana De la Rosa-García
- Laboratorio de Microbiología Aplicada, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas km 0.5, Villahermosa 86000, Tabasco, Mexico
| | - Manuel Chan-Bacab
- Departamento de Microbiología Ambiental y Biotecnología, Universidad Autónoma de Campeche, Av. Agustín Melgar s/n, Col. Buenavista, Campeche 24030, Campeche, Mexico
| |
Collapse
|
10
|
Genomic Analysis of Surfactant-Producing Bacillus vallismortis TIM68: First Glimpse at Species Pangenome and Prediction of New Plipastatin-Like Lipopeptide. Appl Biochem Biotechnol 2023; 195:753-771. [PMID: 36166154 DOI: 10.1007/s12010-022-04154-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Surfactants are applied in several industrial processes when the modification of interface activity and the stability of colloidal systems are required. Lipopeptides are a class of microbial biosurfactants produced by species of the Bacillus genus. The present study aimed at assembling and analyzing the genome of a new Bacillus vallismortis strain, TIM68, that was shown to produce surfactant lipopeptides. The draft genome was also screened for common virulence factors and antibiotics resistance genes to investigate the strain biosafety. Comparative genomics analyses, i.e., synteny, average nucleotide identity (ANI), and pangenome, were also carried out using strain TIM68 and publicly available B. vallismortis complete and partial genomes. Three peptide synthetase operons were found in TIM68 genome, and they were surfactin A, mojavensin, and a novel plipastatin-like lipopeptide named vallisin. No virulence factors that render pathogenicity to the strain have been identified, but a region of prophage, that may contain unknown pathogenic factors, has been predicted. The pangenome of the species was characterized as closed, with 57% of genes integrating the core genome. The results obtained here on the genetic potential of TIM68 strain should contribute to its exploration in biotechnological applications.
Collapse
|
11
|
Ma Z. Genome mining and chemical characterization of a new cyclic lipopeptide associated with MDN-0066 from Pseudomonas moraviensis HN2 cultured in a valine-rich medium. J Antibiot (Tokyo) 2023; 76:244-248. [PMID: 36702935 DOI: 10.1038/s41429-023-00597-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023]
Abstract
A new cyclic lipopeptide (CLP) MDN-0066-β (1) and MDN-0066 (2) were isolated and characterized from the bacterial cultures of P. moraviensis HN2 in this study. The CLPs were purified by solid-phase extraction (SPE) and reversed-phase high performance liquid chromatography (RP-HPLC). Moreover, chemical structures of two CLPs were characterized by genome mining and analysis, nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HR-MS), Marfey's method and (C-H)α NMR fingerprint matching approach. MDN-0066 (2) has an amino acid sequence of L-Leu1, D-Glu2, D-allo-Thr3, D-Leu4, D-Leu5, D-Ser6, L-Leu7, L-Ile8 linked to a saturated C10 β-hydroxyl fatty acid moiety (R-configuration for 3-OH). The new CLP MDN-0066-β (1) differs MDN-0066 (2) in the 8th position of L-valine in its peptide moiety, this variation in structure could be attributed to the supplement of L-valine in the cultural medium during liquid fermentation. Further antimicrobial tests showed that the two CLPs display moderate antagonistic activity against Staphylococcus aureus and Escherichia coli.
Collapse
Affiliation(s)
- Zongwang Ma
- College of Life Science, Northwest Normal University, 967 East Anning Road, 730070, Lanzhou, China.
| |
Collapse
|
12
|
Iqbal S, Begum F, Rabaan AA, Aljeldah M, Al Shammari BR, Alawfi A, Alshengeti A, Sulaiman T, Khan A. Classification and Multifaceted Potential of Secondary Metabolites Produced by Bacillus subtilis Group: A Comprehensive Review. Molecules 2023; 28:molecules28030927. [PMID: 36770594 PMCID: PMC9919246 DOI: 10.3390/molecules28030927] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Despite their remarkable biosynthetic potential, Bacillus subtilis have been widely overlooked. However, their capability to withstand harsh conditions (extreme temperature, Ultraviolet (UV) and γ-radiation, and dehydration) and the promiscuous metabolites they synthesize have created increased commercial interest in them as a therapeutic agent, a food preservative, and a plant-pathogen control agent. Nevertheless, the commercial-scale availability of these metabolites is constrained due to challenges in their accessibility via synthesis and low fermentation yields. In the context of this rising in interest, we comprehensively visualized the antimicrobial peptides produced by B. subtilis and highlighted their prospective applications in various industries. Moreover, we proposed and classified these metabolites produced by the B. subtilis group based on their biosynthetic pathways and chemical structures. The biosynthetic pathway, bioactivity, and chemical structure are discussed in detail for each class. We believe that this review will spark a renewed interest in the often disregarded B. subtilis and its remarkable biosynthetic capabilities.
Collapse
Affiliation(s)
- Sajid Iqbal
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
- Correspondence: or
| | - Farida Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan 23200, Pakistan
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Alam Khan
- Department of Life Sciences, Abasyn University Islamabad Campus, Islamabad 44000, Pakistan
| |
Collapse
|
13
|
Pattnaik S, Imchen M, Kumavath R, Prasad R, Busi S. Bioactive Microbial Metabolites in Cancer Therapeutics: Mining, Repurposing, and Their Molecular Targets. Curr Microbiol 2022; 79:300. [PMID: 36002695 DOI: 10.1007/s00284-022-02990-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
The persistence and resurgence of cancer, characterized by abnormal cell growth and differentiation, continues to be a serious public health concern critically affecting public health, social life, and the global economy. Hundreds of putative drug molecules of synthetic and natural origin were approved for anticancer therapy in the last few decades. Although conventional anticancer treatment strategies have promising aspects, several factors such as their limitations, drug resistance, and side effects associated with them demand more effort in repositioning or developing novel therapeutic regimens. The rich heritage of microbial bioactive components remains instrumental in providing novel avenues for cancer therapeutics. Actinobacteria, Firmicutes, and fungi have a plethora of bioactive compounds, which received attention for their efficacy in cancer treatment targeting different pathways responsible for abnormal cell growth and differentiation. Yet the full potential remains underexplored to date, and novel compounds from such microbes are reported regularly. In addition, the advent of computational tools has further augmented the mining of microbial secondary metabolites and identifying their molecular targets in cancer cells. Furthermore, the drug-repurposing strategy has facilitated the use of approved drugs of microbial origin in regulating cancer cell growth and progression. The wide diversity of microbial compounds, different mining approaches, and multiple modes of action warrant further investigations on the current status of microbial metabolites in cancer therapeutics. Hence, in this review, we have critically discussed the untapped potential of microbial products in mitigating cancer progression. The review also summarizes the impact of drug repurposing in cancer therapy and discusses the novel avenues for future therapeutic drug development against cancer.
Collapse
Affiliation(s)
- Subhaswaraj Pattnaik
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.,Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha, 768019, India
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.,Department of Genomic Science, School of Biological Sciences, Central University of Kerela, Kasaragod, Kerela, 671316, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerela, Kasaragod, Kerela, 671316, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
14
|
Fanaei M, Emtiazi G. Entrapment and Delivery of Doxorubicin: Employing a Permeable Lipopeptide-Based Hydrogel as an Efficient Cationic Binder. Appl Biochem Biotechnol 2022; 195:3733-3746. [PMID: 35895252 DOI: 10.1007/s12010-022-04068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/30/2022]
Abstract
Lipopeptides have been the subject of great interest as vehicles for drug delivery, but the potential usage of their biological composites has not been extensively studied. Here, the extracellular lipopeptide composite (ELC) of a lipopeptide-producing bacterium was extracted and examined to deliver doxorubicin (DOX) as a cationic drug. MALDI-TOF mass spectrometry analysis on the lipopeptide moiety of ELC revealed that this hydrogel consists of 13 lipopeptide isomers. Furthermore, scanning electron microscope (SEM) studies showed that the permeability of ELC in acidic pH was significantly more than basic condition. In this study, 81% of DOX was successfully entrapped in ELC and the release of the drug was measured in acidic, neutral, and basic conditions. The results indicated that the release profile of the drug in acidic pH was about 10 and 16 fold more than neutral and basic conditions, respectively. Besides, the toxicity of DOX-conjugated ELC against PBMC cells was more than free DOX, suggesting the adequate drug release from ELC. Since the surrounding environment of tumor cells is often acidic, this pH-sensitive carrier could be a candidate for cancer therapy to improve the exposure of tumor cells to the drugs.
Collapse
Affiliation(s)
- Maryam Fanaei
- Faculty of Biological Science and Technology, Department of Cellular and Molecular Biology and Microbiology, University of Isfahan, Isfahan, Iran
| | - Giti Emtiazi
- Faculty of Biological Science and Technology, Department of Cellular and Molecular Biology and Microbiology, University of Isfahan, Isfahan, Iran. .,Faculty of Biological Science and Technology, Department of Biotechnology, Shahid Ashrafi Esfahani University, Isfahan, Iran.
| |
Collapse
|
15
|
Stincone P, Fonseca Veras F, Micalizzi G, Donnarumma D, Vitale Celano G, Petras D, de Angelis M, Mondello L, Brandelli A. Listeria monocytogenes exposed to antimicrobial peptides displays differential regulation of lipids and proteins associated to stress response. Cell Mol Life Sci 2022; 79:263. [PMID: 35482131 PMCID: PMC11071860 DOI: 10.1007/s00018-022-04292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
With the onset of Listeria monocytogenes resistance to the bacteriocin nisin, the search for alternative antimicrobial treatments is of fundamental importance. In this work, we set out to investigate proteins and lipids involved in the resistance mechanisms of L. monocytogenes against the antimicrobial peptides (AMPs) nisin and fengycin. The effect of sub-lethal concentrations of nisin and lipopeptide fengycin secreted by Bacillus velezensis P34 on L. monocytogenes was investigated by mass spectrometry-based lipidomics and proteomics. Both AMPs caused a differential regulation of biofilm formation, confirming the promotion of cell attachment and biofilm assembling after treatment with nisin, whereas growth inhibition was observed after fengycin treatment. Anteiso branched-chain fatty acids were detected in higher amounts in fengycin-treated samples (46.6%) as compared to nisin-treated and control samples (39.4% and 43.4%, respectively). In addition, a higher relative abundance of 30:0, 31:0 and 32:0 phosphatidylglycerol species was detected in fengycin-treated samples. The lipidomics data suggest the inhibition of biofilm formation by the fengycin treatment, while the proteomics data revealed downregulation of important cell wall proteins involved in the building of biofilms, such as the lipoteichoic acid backbone synthesis (Lmo0927) and the flagella-related (Lmo0718) proteins among others. Together, these results provide new insights into the modification of lipid and protein profiles and biofilm formation in L. monocytogenes upon exposure to antimicrobial peptides.
Collapse
Affiliation(s)
- Paolo Stincone
- Laboratório de Bioquímica e Microbiologia Aplicada, ICTA-UFRGS, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Flávio Fonseca Veras
- Laboratório de Bioquímica e Microbiologia Aplicada, ICTA-UFRGS, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Giuseppe Micalizzi
- Chromaleont S.R.L., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, viale Annunziata, 98168, Polo AnnunziataMessina, Italy
| | - Danilo Donnarumma
- Chromaleont S.R.L., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, viale Annunziata, 98168, Polo AnnunziataMessina, Italy
| | - Gaetano Vitale Celano
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima, km 3, Valenzano, 70010, Bari, Italy
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Maria de Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126, Bari, Italy
| | - Luigi Mondello
- Chromaleont S.R.L., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, viale Annunziata, 98168, Polo AnnunziataMessina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Annunziata, viale Annunziata, 98168, Messina, Italy
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, ICTA-UFRGS, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil.
| |
Collapse
|
16
|
Ibrar M, Khan S, Hasan F, Yang X. Biosurfactants and chemotaxis interplay in microbial consortium-based hydrocarbons degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24391-24410. [PMID: 35061186 DOI: 10.1007/s11356-022-18492-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Hydrocarbons are routinely detected at low concentrations, despite the degrading metabolic potential of ubiquitous microorganisms. The potential drivers of hydrocarbons persistence are lower bioavailability and mass transfer limitation. Recently, bioremediation strategies have developed rapidly, but still, the solution is not resilient. Biosurfactants, known to increase bioavailability and augment biodegradation, are tightly linked to bacterial surface motility and chemotaxis, while chemotaxis help bacteria to locate aromatic compounds and increase the mass transfer. Harassing the biosurfactant production and chemotaxis properties of degrading microorganisms could be a possible approach for the complete degradation of hydrocarbons. This review provides an overview of interplay between biosurfactants and chemotaxis in bioremediation. Besides, we discuss the chemical surfactants and biosurfactant-mediated biodegradation by microbial consortium.
Collapse
Affiliation(s)
- Muhammad Ibrar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074, Hubei, People's Republic of China
| | - Salman Khan
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Fariha Hasan
- Department of Microbiology, Applied, Environmental and Geomicrobiology Laboratory, Quaid-I-Azam University, Islamabad, Pakistan
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
17
|
Microbial Biopesticides against Bacterial, Fungal and Oomycete Pathogens of Tomato, Cabbage and Chickpea. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biological control is an environmentally friendly approach that holds promise to complement or replace chemicals to effectively protect crop plants against pests and pathogens. Environmental samples with highly diverse and competitive microbiomes that harbor antagonistic microbes with diverse modes-of-action can provide a rich source of microbial biopesticides. In the current study, bacteria isolated from rhizosphere soil and food spoilage samples were subsequently screened against various plant fungal and oomycete pathogens in growth inhibition assays. These included the new potential biocontrol bacteria Corynebacterium flavescens, Sporosarcina aquimarina and Sporosarcina saromensis with anti-fungal and antioomycete activities. Potential candidates selected by preliminary screening in plant assays were then applied to tomato, cabbage and chickpea plants to control bacterial (Pseudomonas syringae pv. tomato), fungal (Alternaria brassicicola) and oomycete (Phytophtora medicaginis) phytopathogens. Ten potential microbial biopesticides were demonstrated to be effective against these diseases, and led to significant (p < 0.05) reductions in symptoms and/or pathogen DNA compared to mock-treated diseased plants. We conclude that new and effective microbial biopesticides to control crop pathogens can be rapidly isolated from biodiverse microbiomes, where bacteria may employ these features to effectively compete against each other.
Collapse
|
18
|
Tsalgatidou PC, Thomloudi EE, Baira E, Papadimitriou K, Skagia A, Venieraki A, Katinakis P. Integrated Genomic and Metabolomic Analysis Illuminates Key Secreted Metabolites Produced by the Novel Endophyte Bacillus halotolerans Cal.l.30 Involved in Diverse Biological Control Activities. Microorganisms 2022; 10:microorganisms10020399. [PMID: 35208854 PMCID: PMC8877463 DOI: 10.3390/microorganisms10020399] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
The endophytic strain Cal.l.30, isolated from the medicinal plant Calendula officinalis, was selected among seven Bacillus strains with plant growth promoting activity and strong biological potential against the postharvest fungal pathogen Botrytis cinerea. Treatment by inoculating Cal.l.30 bacterial cell culture or cell free supernatant on harvested grapes and cherry tomato fruits, significantly reduced gray mold disease severity index and disease incidence. Based on 16S rRNA sequence analysis and whole genome phylogeny, Cal.l.30 was identified as Bacillus halotolerans. Genome mining revealed that B. halotolerans Cal.l.30 is endowed with a diverse arsenal of secondary metabolite biosynthetic gene clusters (SM-BGCs) responsible for metabolite production with antimicrobial properties. A sub-set of the identified SM-BGCs (mojavensin A, ‘bacillunoic acid’) appears to be the result of recent horizontal gene transfer events. Its genome was also mined for CAZymes associated with antifungal activity. Further UHPLC-HRMS analysis indicated that Cal.l.30 synthesizes and secretes secondary metabolites with antimicrobial activity, including the lipopeptides, fengycin, surfactin and mojavensin A, bacillaene isoforms, L-dihydroanticapsin and bacillibactin. Other compounds with known antimicrobial activity were also detected, such as azelaic acid, 15- hydroxypentadecanoid acid and 2-hydroxyphenylacetic acid. The genomic and metabolomic features of the B. halotolerans Cal.l.30 provided new perspectives on the exploitation of novel Bacillus sp. as a biocontrol agent.
Collapse
Affiliation(s)
- Polina C. Tsalgatidou
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Eirini-Evangelia Thomloudi
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
| | - Eirini Baira
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides’ Control and Phytopharmacy, Benaki Phytopathological Institute (BPI), Kifissia, 14561 Athens, Greece;
| | | | - Aggeliki Skagia
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
| | - Anastasia Venieraki
- Laboratory of Plant Pathology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Correspondence: (A.V.); (P.K.)
| | - Panagiotis Katinakis
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
- Correspondence: (A.V.); (P.K.)
| |
Collapse
|
19
|
Antimicrobial Bacillus: Metabolites and Their Mode of Action. Antibiotics (Basel) 2022; 11:antibiotics11010088. [PMID: 35052965 PMCID: PMC8772736 DOI: 10.3390/antibiotics11010088] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/12/2022] Open
Abstract
The agricultural industry utilizes antibiotic growth promoters to promote livestock growth and health. However, the World Health Organization has raised concerns over the ongoing spread of antibiotic resistance transmission in the populace, leading to its subsequent ban in several countries, especially in the European Union. These restrictions have translated into an increase in pathogenic outbreaks in the agricultural industry, highlighting the need for an economically viable, non-toxic, and renewable alternative to antibiotics in livestock. Probiotics inhibit pathogen growth, promote a beneficial microbiota, regulate the immune response of its host, enhance feed conversion to nutrients, and form biofilms that block further infection. Commonly used lactic acid bacteria probiotics are vulnerable to the harsh conditions of the upper gastrointestinal system, leading to novel research using spore-forming bacteria from the genus Bacillus. However, the exact mechanisms behind Bacillus probiotics remain unexplored. This review tackles this issue, by reporting antimicrobial compounds produced from Bacillus strains, their proposed mechanisms of action, and any gaps in the mechanism studies of these compounds. Lastly, this paper explores omics approaches to clarify the mechanisms behind Bacillus probiotics.
Collapse
|
20
|
Ma Z. Analysis of the complete genome sequence of a rhizosphere-derived Pseudomonas sp. HN3-2 leads to the characterization of a cyclic lipopeptide-type antibiotic bananamide C. 3 Biotech 2022; 12:35. [PMID: 35070625 PMCID: PMC8727653 DOI: 10.1007/s13205-021-03100-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/26/2021] [Indexed: 01/03/2023] Open
Abstract
A fluorescence and biosurfactant-producing strain HN3-2 was isolated from a rhizosphere soil sample of wheat plants and the chromosome of the strain HN3-2 was sequenced and was analyzed by multiple bioinformatics tools in this study. The genome size of the strain HN3-2 is 6,441,476 bp, with a GC content of 60.54%. 16Sr RNA-based phylogeny analysis showed that the strain HN3-2 belongs to Pseudomonas koreensis subgroup in Pseudomonas species. Preliminary data from genome mining have showed that the strain Pseudomonas sp. HN3-2 is capable of producing a peptide-type metabolite. Solid-phase extraction, reversed-phase high performance liquid chromatography (RP-HPLC) together with liquid chromatography-mass spectrometry, high-resolution mass spectrometry and tandem mass spectrometry analysis have led to the purification and identification of a cyclic lipopeptide (CLP) bananamide C (1) from the fermentative broth of the strain Pseudomonas sp. HN3-2. Moreover, the biological activity tests showed that banananmide 3 displays moderate antagonistic activity against Staphylococcus aureus and Escherichia coli. Collectively, these results provide the possibility of developing the CLP bananamide C as a drug leads for medical applications.
Collapse
Affiliation(s)
- Zongwang Ma
- College of Life Science, Northwest Normal University, 967 East Anning Road, Lanzhou, 730070 China
| |
Collapse
|
21
|
Abd Alamer IS, Tomah AA, Ahmed T, Li B, Zhang J. Biosynthesis of Silver Chloride Nanoparticles by Rhizospheric Bacteria and Their Antibacterial Activity against Phytopathogenic Bacterium Ralstonia solanacearum. Molecules 2021; 27:224. [PMID: 35011455 PMCID: PMC8746595 DOI: 10.3390/molecules27010224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Ralstonia solanacearum is the most destructive pathogen, causing bacterial wilt disease of eggplant. The present study aimed to develop green synthesis and characterization of silver chloride nanoparticles (AgCl-NPs) by using a native bacterial strain and subsequent evaluation of their antibacterial activity against R. solanacearum. Here, a total of 10 bacterial strains were selected for the biosynthesis of AgCl-NPs. Among them, the highest yield occurred in the synthesis of AgCl-NPs using a cell-free aqueous filtrate of strain IMA13. Ultrastructural observation revealed that the AgCl-NPs were spherical and oval with smooth surfaces and 5-35 nm sizes. XRD analysis studies revealed that these particles contained face-centered cubic crystallites of metallic Ag and AgCl. Moreover, FTIR analysis showed the presence of capping proteins, carbohydrates, lipids, and lipopeptide compounds and crystalline structure of AgCl-NPs. On the basis of phylogenetic analysis using a combination of six gene sequences (16S, gyrA, rpoB, purH, polC, and groEL), we identified strain IMA13 as Bacillus mojavensis. Three kinds of lipopeptide compounds, namely, bacillomycin D, iturin, and fengycin, forming cell-free supernatant produced by strain IAM13, were identified by MALDI-TOF mass spectrometry. Biogenic AgCl-NPs showed substantial antibacterial activity against R. solanacearum at a concentration of 20 µg/mL-1. Motility assays showed that the AgCl-NPs significantly inhibited the swarming and swimming motility (61.4 and 55.8%) against R. solanacearum. Moreover, SEM and TEM analysis showed that direct interaction of AgCl-NPs with bacterial cells caused rupture of cell wall and cytoplasmic membranes, as well as leakage of nucleic acid materials, which ultimately resulted in the death of R. solanacearum. Overall, these findings will help in developing a promising nanopesticide against phytopathogen plant disease management.
Collapse
Affiliation(s)
- Iman Sabah Abd Alamer
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.T.); (T.A.); (B.L.)
- Plant Protection, Agriculture Directorate, AL-Amarah 62001, Iraq
| | - Ali Athafah Tomah
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.T.); (T.A.); (B.L.)
- Plant Protection, College of Agriculture, University of Misan, AL-Amarah 62001, Iraq
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.T.); (T.A.); (B.L.)
| | - Bin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.T.); (T.A.); (B.L.)
| | - Jingze Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.T.); (T.A.); (B.L.)
| |
Collapse
|
22
|
Genomic and Metabolomic Insights into Secondary Metabolites of the Novel Bacillus halotolerans Hil4, an Endophyte with Promising Antagonistic Activity against Gray Mold and Plant Growth Promoting Potential. Microorganisms 2021; 9:microorganisms9122508. [PMID: 34946110 PMCID: PMC8704346 DOI: 10.3390/microorganisms9122508] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
The endophytic bacterial strain Hil4 was isolated from leaves of the medicinal plant Hypericum hircinum. It exhibited antifungal activity against Botrytis cinerea and a plethora of plant growth promoting traits in vitro. Whole genome sequencing revealed that it belongs to Bacillus halotolerans and possesses numerous secondary metabolite biosynthetic gene clusters and genes involved in plant growth promotion, colonization, and plant defense elicitation. The Mojavensin cluster was present in the genome, making this strain novel among plant-associated B. halotolerans strains. Extracts of secreted agar-diffusible compounds from single culture secretome extracts and dual cultures with B. cinerea were bioactive and had the same antifungal pattern on TLC plates after bioautography. UHPLC-HRMS analysis of the single culture secretome extract putatively annotated the consecutively produced antimicrobial substances and ISR elicitors. The isolate also proved efficient in minimizing the severity of gray mold post-harvest disease on table grape berries, as well as cherry tomatoes. Finally, it positively influenced the growth of Arabidopsis thaliana Col-0 and Solanum lycopersicum var. Chondrokatsari Messinias after seed biopriming in vitro. Overall, these results indicate that the B. halotolerans strain Hil4 is a promising novel plant growth promoting and biocontrol agent, and can be used in future research for the development of biostimulants and/or biological control agents.
Collapse
|
23
|
Ferreira WT, Hong HA, Hess M, Adams JRG, Wood H, Bakun K, Tan S, Baccigalupi L, Ferrari E, Brisson A, Ricca E, Teresa Rejas M, Meijer WJJ, Soloviev M, Cutting SM. Micellar Antibiotics of Bacillus. Pharmaceutics 2021; 13:pharmaceutics13081296. [PMID: 34452257 PMCID: PMC8399155 DOI: 10.3390/pharmaceutics13081296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/24/2022] Open
Abstract
Members of the Bacillus genus, particularly the “Bacillus subtilis group”, are known to produce amphipathic lipopeptides with biosurfactant activity. This includes the surfactins, fengycins and iturins that have been associated with antibacterial, antifungal, and anti-viral properties. We have screened a large collection of Bacillus, isolated from human, animal, estuarine water and soil samples and found that the most potent lipopeptide producers are members of the species Bacillus velezensis. B. velezensis lipopeptides exhibited anti-bacterial activity which was localised on the surface of both vegetative cells and spores. Interestingly, lipopeptide micelles (6–10 nm diameter) were detectable in strains exhibiting the highest levels of activity. Micelles were stable (heat and gastric stable) and shown to entrap other antimicrobials produced by the host bacterium (exampled here was the dipeptide antibiotic chlorotetaine). Commercially acquired lipopeptides did not exhibit similar levels of inhibitory activity and we suspect that micelle formation may relate to the particular isomeric forms produced by individual bacteria. Using naturally produced micelle formulations we demonstrated that they could entrap antimicrobial compounds (e.g., clindamycin, vancomycin and resveratrol). Micellar incorporation of antibiotics increased activity. Bacillus is a prolific producer of antimicrobials, and this phenomenon could be exploited naturally to augment antimicrobial activity. From an applied perspective, the ability to readily produce Bacillus micelles and formulate with drugs enables a possible strategy for enhanced drug delivery.
Collapse
Affiliation(s)
- William T. Ferreira
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (W.T.F.); (H.A.H.); (M.H.); (J.R.G.A.); (M.S.)
| | - Huynh A. Hong
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (W.T.F.); (H.A.H.); (M.H.); (J.R.G.A.); (M.S.)
| | - Mateusz Hess
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (W.T.F.); (H.A.H.); (M.H.); (J.R.G.A.); (M.S.)
| | - James R. G. Adams
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (W.T.F.); (H.A.H.); (M.H.); (J.R.G.A.); (M.S.)
| | - Hannah Wood
- SporeGen Ltd., London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK; (H.W.); (K.B.)
| | - Karolina Bakun
- SporeGen Ltd., London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK; (H.W.); (K.B.)
| | - Sisareuth Tan
- Laboratoire d’Imagerie Moléculaire et Nano-Bio-Technologie, UMR-CBMN CNRS-Université de Bordeaux-IPB, 33607 Pessac, France; (S.T.); (A.B.)
| | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, 80126 Napoli, Italy;
| | - Enrico Ferrari
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK;
| | - Alain Brisson
- Laboratoire d’Imagerie Moléculaire et Nano-Bio-Technologie, UMR-CBMN CNRS-Université de Bordeaux-IPB, 33607 Pessac, France; (S.T.); (A.B.)
| | - Ezio Ricca
- Department of Biology, Federico II University of Naples, 80126 Napoli, Italy;
| | - María Teresa Rejas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain; (M.T.R.); (W.J.J.M.)
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain; (M.T.R.); (W.J.J.M.)
| | - Mikhail Soloviev
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (W.T.F.); (H.A.H.); (M.H.); (J.R.G.A.); (M.S.)
| | - Simon M. Cutting
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; (W.T.F.); (H.A.H.); (M.H.); (J.R.G.A.); (M.S.)
- SporeGen Ltd., London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK; (H.W.); (K.B.)
- Correspondence:
| |
Collapse
|
24
|
Ma Y, Xu M, Liu H, Yu T, Guo P, Liu W, Jin X. Antimicrobial compounds were isolated from the secondary metabolites of Gordonia, a resident of intestinal tract of Periplaneta americana. AMB Express 2021; 11:111. [PMID: 34331149 PMCID: PMC8324697 DOI: 10.1186/s13568-021-01272-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
Gordonia sp. are members of the actinomycete family, their contribution to the environment improvement and environmental protection by their biological degradation ability, but there are few studies on the antimicrobial activity of their secondary metabolites. Our team isolated and purified an actinomycete WA 4-31 from the intestinal tract of Periplaneta americana, firstly identified the strain WA 4-31 by the morphological characteristics and the phylogenetic analyses, and found it was completely homologous to the strain of Gordonia terrae from the Indian desert. Meanwhile, actinomycin D (1), actinomycin X2 (2), mojavensin A (3) and cyclic (leucine-leucne) dipeptide (4) were obtained from the EtOAc extract from the broth of WA 4-31. Compounds 1–4 showed anti-fungus activities against Candida albicans, Aspergillus niger, A. fumigatus and Trichophyton rubrum, also anti-MRSA and inhibited Escherichia coli in different degree. Interestingly, we found when 3 was mixed with 4 with ratio of 1:1, the activity of the mixture on anti-Candida albicans was better than the single. Besides, compounds 1–3 had varying degrees of antiproliferative activities on CNE-2 and HepG-2 cell lines. These indicated that Gordonia rare actinomycete from the intestinal tract of Periplaneta americana possessed a potential as a source of active secondary metabolites.
Collapse
|
25
|
Detection of simultaneous production of kurstakin, fengycin and surfactin lipopeptides in Bacillus mojavensis using a novel gel-based method and MALDI-TOF spectrometry. World J Microbiol Biotechnol 2021; 37:97. [PMID: 33969441 DOI: 10.1007/s11274-021-03064-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Bacterial lipopeptides have become a research focus of many studies owing to their industrial and pharmaceutical importance. Although such studies focused on researching purification procedures and qualitative analysis, much remains to be explored and developed to improve the current methods. To enable thorough studies of lipopeptides, this paper describes a new method for purification and characterization of in-gel anionic lipopeptides. Specifically, lipopeptides attributed to the anti-staphylococcal activity of Bacillus mojavensis HF were separated using SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) and subsequently characterized using mass spectrometry. Lipopeptide band obtained by gel electrophoresis was first visualized using three different staining methods. Next, the lipopeptide isomers were efficiently recovered from the gel band and structural characterization of the extracted lipopeptides was carried out by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). MS analysis revealed that Bacillus mojavensis HF produced three types of lipopeptides including surfactin, fengycin, and kurstakin. 14 clusters of ion peaks were identified as fengycin A with fatty acid of C15-C17, fengycin B (C16, C17), surfactin (C13-C16), and kurstakin (C9-C12). Moreover, tandem mass spectrometric analysis (MS/MS) revealed the sequences of fengycin A and surfactin. In this study, we identified a high variety and number of surfactin and fengycin isomers, which previous reports lacked. To the best of our knowledge, we are the first to report the presence of kurstakin in Bacillus mojavensis species. Finally, we demonstrated that our gel-based study of lipopeptides allowed for a precise and reproducible investigation of these molecules.
Collapse
|
26
|
Girija A, Vijayanathan M, Sreekumar S, Basheer J, Menon TG, Krishnankutty RE, Soniya EV. Harnessing the natural pool of polyketide and non-ribosomal peptide family: A route map towards novel drug development. Curr Mol Pharmacol 2021; 15:265-291. [PMID: 33745440 DOI: 10.2174/1874467214666210319145816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022]
Abstract
Emergence of communicable and non-communicable diseases possess health challenge to millions of people worldwide and is a major threat to the economic and social development in the coming century. The occurrence of recent pandemic, SARS-CoV-2 caused by lethal severe acute respiratory syndrome coronavirus 2 is one such example. Rapid research and development of drugs for the treatment and management of these diseases has been an incredibly challenging task for the pharmaceutical industry. Although, substantial focus has been made in the discovery of therapeutic compounds from natural sources having significant medicinal potential, their synthesis has shown a slow progress. Hence, the discovery of new targets by the application of the latest biotechnological and synthetic biology approaches is very much the need of the hour. Polyketides (PKs) and non-ribosomal peptides (NRPs) found in bacteria, fungi and plants are a large diverse family of natural products synthesized by two classes of enzymes: polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). These enzymes possess immense biomedical potential due to their simple architecture, catalytic capacity, as well as diversity. With the advent of latest in-silico and in-vitro strategies, these enzymes and their related metabolic pathways, if targeted, can contribute highly towards the biosynthesis of an array of potentially natural drug leads that have antagonist effects on biopolymers associated with various human diseases. In the face of the rising threat from the multidrug-resistant pathogens, this will further open new avenues for the discovery of novel and improved drugs by combining the natural and the synthetic approaches. This review discusses the relevance of polyketides and non-ribosomal peptides and the improvement strategies for the development of their derivatives and scaffolds, and how they will be beneficial to the future bioprospecting and drug discovery.
Collapse
Affiliation(s)
- Aiswarya Girija
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Institute of Biological Environmental Rural Sciences (IBERS), Aberystwyth University, United Kingdom
| | - Mallika Vijayanathan
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Biology Centre - Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Sweda Sreekumar
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Research Centre, University of Kerala, India
| | - Jasim Basheer
- School of Biosciences, Mahatma Gandhi University, PD Hills, Kottayam, Kerala, India.,Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacky University, Olomouc, Czech Republic
| | - Tara G Menon
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | | | - Eppurathu Vasudevan Soniya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| |
Collapse
|
27
|
Gavriilidou A, Mackenzie TA, Sánchez P, Tormo JR, Ingham C, Smidt H, Sipkema D. Bioactivity Screening and Gene-Trait Matching across Marine Sponge-Associated Bacteria. Mar Drugs 2021; 19:75. [PMID: 33573261 PMCID: PMC7912018 DOI: 10.3390/md19020075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/23/2022] Open
Abstract
Marine sponges harbor diverse microbial communities that represent a significant source of natural products. In the present study, extracts of 21 sponge-associated bacteria were screened for their antimicrobial and anticancer activity, and their genomes were mined for secondary metabolite biosynthetic gene clusters (BGCs). Phylogenetic analysis assigned the strains to four major phyla in the sponge microbiome, namely Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. Bioassays identified one extract with anti-methicillin-resistant Staphylococcus aureus (MRSA) activity, and more than 70% of the total extracts had a moderate to high cytotoxicity. The most active extracts were derived from the Proteobacteria and Actinobacteria, prominent for producing bioactive substances. The strong bioactivity potential of the aforementioned strains was also evident in the abundance of BGCs, which encoded mainly beta-lactones, bacteriocins, non-ribosomal peptide synthetases (NRPS), terpenes, and siderophores. Gene-trait matching was performed for the most active strains, aiming at linking their biosynthetic potential with the experimental results. Genetic associations were established for the anti-MRSA and cytotoxic phenotypes based on the similarity of the detected BGCs with BGCs encoding natural products with known bioactivity. Overall, our study highlights the significance of combining in vitro and in silico approaches in the search of novel natural products of pharmaceutical interest.
Collapse
Affiliation(s)
- Asimenia Gavriilidou
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (H.S.); (D.S.)
| | - Thomas Andrew Mackenzie
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (T.A.M.); (P.S.); (J.R.T.)
| | - Pilar Sánchez
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (T.A.M.); (P.S.); (J.R.T.)
| | - José Ruben Tormo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (T.A.M.); (P.S.); (J.R.T.)
| | | | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (H.S.); (D.S.)
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (H.S.); (D.S.)
| |
Collapse
|
28
|
Li X, Zhao H, Chen X. Screening of Marine Bioactive Antimicrobial Compounds for Plant Pathogens. Mar Drugs 2021; 19:69. [PMID: 33525648 PMCID: PMC7912171 DOI: 10.3390/md19020069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 01/09/2023] Open
Abstract
Plant diseases have been threatening food production. Controlling plant pathogens has become an important strategy to ensure food security. Although chemical control is an effective disease control strategy, its application is limited by many problems, such as environmental impact and pathogen resistance. In order to overcome these problems, it is necessary to develop more chemical reagents with new functional mechanisms. Due to their special living environment, marine organisms have produced a variety of bioactive compounds with novel structures, which have the potential to develop new fungicides. In the past two decades, screening marine bioactive compounds to inhibit plant pathogens has been a hot topic. In this review, we summarize the screening methods of marine active substances from plant pathogens, the identification of marine active substances from different sources, and the structure and antibacterial mechanism of marine active natural products. Finally, the application prospect of marine bioactive substances in plant disease control was prospected.
Collapse
Affiliation(s)
- Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (X.L.); (H.Z.)
| | - Hejing Zhao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; (X.L.); (H.Z.)
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
29
|
Théatre A, Hoste ACR, Rigolet A, Benneceur I, Bechet M, Ongena M, Deleu M, Jacques P. Bacillus sp.: A Remarkable Source of Bioactive Lipopeptides. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 181:123-179. [DOI: 10.1007/10_2021_182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Stincone P, Comerlato CB, Brandelli A. Proteomic analysis of Listeria monocytogenes exposed to free and nanostructured antimicrobial lipopeptides. Mol Omics 2021; 17:426-437. [PMID: 33735358 DOI: 10.1039/d0mo00178c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this work, the effect of antimicrobial lipopeptide P34 on Listeria monocytogenes was evaluated for the first time through a proteomics approach. Bacteria were treated with sub-lethal doses of peptide P34 (F-P34) and P34 encapsulated into nanoliposomes (N-P34), while empty nanoliposomes (NE) and fresh buffer were used as controls. The proteomic analysis allowed the detection of one group of proteins commonly differentially represented in response to free and encapsulated P34 exposure. A second group of proteins was found to be exclusively differentially represented after exposure with encapsulated P34 only. The antimicrobial peptide P34 caused a significant downregulation of proteins associated with the transport of manganese and the over-representation of proteins related with iron transport in L. monocytogenes. In addition, reduction of stress tolerance proteins related to the σB and VirR regulons, together with the modulation of phosphoenolpyruvate phosphotransferase systems (PTS) for sugar transport were observed. The sugar and oligopeptide transporters regulated by antimicrobial action may influence the key virulence factor PrfA, reducing the pathogenicity of this microorganism.
Collapse
Affiliation(s)
- Paolo Stincone
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, Brazil.
| | | | | |
Collapse
|
31
|
Giri SS, Kim HJ, Kim SG, Kim SW, Kwon J, Lee SB, Park SC. Immunomodulatory Role of Microbial Surfactants, with Special Emphasis on Fish. Int J Mol Sci 2020; 21:ijms21197004. [PMID: 32977579 PMCID: PMC7582933 DOI: 10.3390/ijms21197004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/30/2022] Open
Abstract
Microbial surfactants (biosurfactants) are a broad category of surface-active biomolecules with multifunctional properties. They self-assemble in aqueous solutions and are adsorbed on various interfaces, causing a decrease in surface tension, as well as interfacial tension, solubilization of hydrophobic compounds, and low critical micellization concentrations. Microbial biosurfactants have been investigated and applied in several fields, including bioremediation, biodegradation, food industry, and cosmetics. Biosurfactants also exhibit anti-microbial, anti-biofilm, anti-cancer, anti-inflammatory, wound healing, and immunomodulatory activities. Recently, it has been reported that biosurfactants can increase the immune responses and disease resistance of fish. Among various microbial surfactants, lipopeptides, glycolipids, and phospholipids are predominantly investigated. This review presents the various immunological activities of biosurfactants, mainly glycolipids and lipopeptides. The applications of biosurfactants in aquaculture, as well as their immunomodulatory activities, that make them novel therapeutic candidates have been also discussed in this review.
Collapse
|
32
|
Baindara P, Mandal SM. Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics. Biochimie 2020; 177:164-189. [PMID: 32827604 DOI: 10.1016/j.biochi.2020.07.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/04/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Cancer is the leading cause of deaths worldwide, though significant advances have occurred in its diagnosis and treatment. The development of resistance against chemotherapeutic agents, their side effects, and non-specific toxicity urge to screen for the novel anticancer agent. Hence, the development of novel anticancer agents with a new mechanism of action has become a major scientific challenge. Bacteria and bacterially produced bioactive compounds have recently emerged as a promising alternative for cancer therapeutics. Bacterial anticancer agents such as antibiotics, bacteriocins, non-ribosomal peptides, polyketides, toxins, etc. These are adopted different mechanisms of actions such as apoptosis, necrosis, reduced angiogenesis, inhibition of translation and splicing, and obstructing essential signaling pathways to kill cancer cells. Also, live tumor-targeting bacteria provided a unique therapeutic alternative for cancer treatment. This review summarizes the anticancer properties and mechanism of actions of the anticancer agents of bacterial origin and antitumor bacteria along with their possible future applications in cancer therapeutics.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA.
| | - Santi M Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India.
| |
Collapse
|
33
|
Ma Z, Zhang S, Zhang S, Wu G, Shao Y, Mi Q, Liang J, Sun K, Hu J. Isolation and characterization of a new cyclic lipopeptide surfactin from a marine-derived Bacillus velezensis SH-B74. J Antibiot (Tokyo) 2020; 73:863-867. [PMID: 32655142 DOI: 10.1038/s41429-020-0347-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 11/10/2022]
Abstract
A marine-sediment-derived bacterium Bacillus velezensis SH-B74 can produce cyclic lipopeptides (CLPs). This study presented the isolation, characterization, and activity evaluation of a new CLP from the bacterial cultures of the strain SH-B74. Multiple chromatographic methods (solid-phase extraction and reversed-phase high-performance liquid chromatography) were applied to the purifying procedure of CLP, and the structural characterization of the new CLP was conducted by various spectroscopy (1D and 2D nuclear magnetic resonance together with Fourier transform infrared spectroscopy) and spectrometry (liquid chromatography-mass spectrometry, high-resolution mass spectrometry and tandem mass spectrometry) techniques as well as Marfey's method. The results displayed that the new CLP (anteiso-C15 Ile2,7 surfactin, 1) consists of a peptidic backbone of L-Glu1, L-Ile2, D-Leu3, L-Val4, L-Asp5, D-Leu6, L-Ile7, and an anteiso-C15 type saturated fatty acid chain. Further activity assay showed that the new CLP displays activity on the inhibition of the appressoria formation of rice blast causal pathogen Magnaporthe oryzae. To sum up, the results presented the perspective of potential application of the new CLP as a green agrichemical to control M. oryzae.
Collapse
Affiliation(s)
- Zongwang Ma
- College of Life Science, Northwest Normal University, 967 East Anning Road, 730070, Lanzhou, China.
| | - Songya Zhang
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Road, 518055, Shenzhen, China
| | - Shihu Zhang
- College of Life Science, Northwest Normal University, 967 East Anning Road, 730070, Lanzhou, China
| | - Guoyang Wu
- College of Life Science, Northwest Normal University, 967 East Anning Road, 730070, Lanzhou, China
| | - Yue Shao
- College of Life Science, Northwest Normal University, 967 East Anning Road, 730070, Lanzhou, China
| | - Quanfeng Mi
- College of Life Science, Northwest Normal University, 967 East Anning Road, 730070, Lanzhou, China
| | - Junyu Liang
- College of Life Science, Northwest Normal University, 967 East Anning Road, 730070, Lanzhou, China
| | - Kun Sun
- College of Life Science, Northwest Normal University, 967 East Anning Road, 730070, Lanzhou, China
| | - Jiangchun Hu
- Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, 110016, Shenyang, China.
| |
Collapse
|
34
|
Yaghoubi A, Khazaei M, Jalili S, Hasanian SM, Avan A, Soleimanpour S, Cho WC. Bacteria as a double-action sword in cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188388. [PMID: 32589907 DOI: 10.1016/j.bbcan.2020.188388] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023]
Abstract
Bacteria have long been known as one of the primary causative agents of cancer, however, recent studies suggest that they can be used as a promising agent in cancer therapy. Because of the limitations that conventional treatment faces due to the specific pathophysiology and the tumor environment, there is a great need for the new anticancer therapeutic agents. Bacteriotherapy utilizes live, attenuated strains or toxins, peptides, bacteriocins of the bacteria in the treatment of cancer. Moreover, they are widely used as a vector for delivering genes, peptides, or drugs to the tumor target. Interestingly, it was found that their combination with the conventional therapeutic approaches may enhance the treatment outcome. In the genome editing era, it is feasible to develop a novel generation of therapeutic bacteria with fewer side effects and more efficacy for cancer therapy. Here we review the current knowledge on the dual role of bacteria in the development of cancer as well as cancer therapy.
Collapse
Affiliation(s)
- Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Jalili
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hasanian
- Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, SAR, China.
| |
Collapse
|
35
|
Anestopoulos I, Kiousi DE, Klavaris A, Maijo M, Serpico A, Suarez A, Sanchez G, Salek K, Chasapi SA, Zompra AA, Galanis A, Spyroulias GA, Gombau L, Euston SR, Pappa A, Panayiotidis MI. Marine-Derived Surface Active Agents: Health-Promoting Properties and Blue Biotechnology-Based Applications. Biomolecules 2020; 10:E885. [PMID: 32526944 PMCID: PMC7355491 DOI: 10.3390/biom10060885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
Surface active agents are characterized for their capacity to adsorb to fluid and solid-water interfaces. They can be classified as surfactants and emulsifiers based on their molecular weight (MW) and properties. Over the years, the chemical surfactant industry has been rapidly increasing to meet consumer demands. Consequently, such a boost has led to the search for more sustainable and biodegradable alternatives, as chemical surfactants are non-biodegradable, thus causing an adverse effect on the environment. To these ends, many microbial and/or marine-derived molecules have been shown to possess various biological properties that could allow manufacturers to make additional health-promoting claims for their products. Our aim, in this review article, is to provide up to date information of critical health-promoting properties of these molecules and their use in blue-based biotechnology (i.e., biotechnology using aquatic organisms) with a focus on food, cosmetic and pharmaceutical/biomedical applications.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.-E.K.); (A.K.); (A.G.)
| | - Despina-Evgenia Kiousi
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.-E.K.); (A.K.); (A.G.)
| | - Ariel Klavaris
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.-E.K.); (A.K.); (A.G.)
| | - Monica Maijo
- Division of Health & Biomedicine, LEITAT Technological Centre, 08005 Barcelona, Spain; (M.M.); (A.S.); (A.S.); (G.S.); (L.G.)
| | - Annabel Serpico
- Division of Health & Biomedicine, LEITAT Technological Centre, 08005 Barcelona, Spain; (M.M.); (A.S.); (A.S.); (G.S.); (L.G.)
| | - Alba Suarez
- Division of Health & Biomedicine, LEITAT Technological Centre, 08005 Barcelona, Spain; (M.M.); (A.S.); (A.S.); (G.S.); (L.G.)
| | - Guiomar Sanchez
- Division of Health & Biomedicine, LEITAT Technological Centre, 08005 Barcelona, Spain; (M.M.); (A.S.); (A.S.); (G.S.); (L.G.)
| | - Karina Salek
- Institute of Mechanical, Process & Energy Engineering, Heriot Watt University, Edinburgh EH14 4AS, UK; (K.S.); (S.R.E.)
| | - Stylliani A. Chasapi
- Department of Pharmacy, University of Patras, 26504 Patra, Greece; (S.A.C.); (A.A.Z.); (G.A.S.)
| | - Aikaterini A. Zompra
- Department of Pharmacy, University of Patras, 26504 Patra, Greece; (S.A.C.); (A.A.Z.); (G.A.S.)
| | - Alex Galanis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.-E.K.); (A.K.); (A.G.)
| | - Georgios A. Spyroulias
- Department of Pharmacy, University of Patras, 26504 Patra, Greece; (S.A.C.); (A.A.Z.); (G.A.S.)
| | - Lourdes Gombau
- Division of Health & Biomedicine, LEITAT Technological Centre, 08005 Barcelona, Spain; (M.M.); (A.S.); (A.S.); (G.S.); (L.G.)
| | - Stephen R. Euston
- Institute of Mechanical, Process & Energy Engineering, Heriot Watt University, Edinburgh EH14 4AS, UK; (K.S.); (S.R.E.)
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.A.); (D.-E.K.); (A.K.); (A.G.)
| | - Mihalis I. Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
- Department of Electron Microscopy & Molecular Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, PO Box 23462, 1683 Nicosia, Cyprus
| |
Collapse
|
36
|
Stincone P, Veras FF, Pereira JQ, Mayer FQ, Varela APM, Brandelli A. Diversity of cyclic antimicrobial lipopeptides from Bacillus P34 revealed by functional annotation and comparative genome analysis. Microbiol Res 2020; 238:126515. [PMID: 32531696 DOI: 10.1016/j.micres.2020.126515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 10/24/2022]
Abstract
Cyclic lipopeptides (CLPs) from Bacillus strains have demonstrated a wide range of bioactivities making them interesting candidates for different applications in the pharmaceutical, food and biotechnological industries. Genome sequencing, together with phylogenetic analysis of the Bacillus sp. P34, isolated from a freshwater fish gut, showed that the bacterial strain belongs to the Bacillus velezensis group. In silico investigation of metabolic gene clusters of nonribosomal peptide synthetases (NRPS) revealed the genetic elements associated with the synthesis of surfactin, fengycin and iturin family component bacillomycin. Further, an assay was conducted to investigate the production of CLPs in the presence of heat inactivated bacterial cultures or fungal spores. Maximum fengycin concentration was observed at 24 h (2300-2700 mg/mL), while maximum iturin amounts were detected at 48 h (250 mg/mL) in the presence of heat-inactivated spores of Aspergillus niger. Heat-inactivated cells of Listeria monocytogenes caused a reduction of both fengycin and iturin amounts. The production of fengycins A and B and the iturin family component bacillomycin L was confirmed by mass spectrometry analyses. This study reinforces the potential of B. velezensis P34 as a valuable strain for biotechnological production of CLPs recognized as important antimicrobial substances.
Collapse
Affiliation(s)
- Paolo Stincone
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - Flávio Fonseca Veras
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - Jamile Queiroz Pereira
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - Fabiana Quoos Mayer
- Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, 92990-000, Eldorado do Sul, Brazil
| | - Ana Paula Muterle Varela
- Instituto de Pesquisas Veterinárias Desidério Finamor, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, 92990-000, Eldorado do Sul, Brazil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil.
| |
Collapse
|
37
|
Lesson from Ecotoxicity: Revisiting the Microbial Lipopeptides for the Management of Emerging Diseases for Crop Protection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041434. [PMID: 32102264 PMCID: PMC7068399 DOI: 10.3390/ijerph17041434] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022]
Abstract
Microorganisms area treasure in terms of theproduction of various bioactive compounds which are being explored in different arenas of applied sciences. In agriculture, microbes and their bioactive compounds are being utilized in growth promotion and health promotion withnutrient fortification and its acquisition. Exhaustive explorations are unraveling the vast diversity of microbialcompounds with their potential usage in solving multiferous problems incrop production. Lipopeptides are one of such microbial compounds which havestrong antimicrobial properties against different plant pathogens. These compounds are reported to be produced by bacteria, cyanobacteria, fungi, and few other microorganisms; however, genus Bacillus alone produces a majority of diverse lipopeptides. Lipopeptides are low molecular weight compounds which havemultiple industrial roles apart from being usedas biosurfactants and antimicrobials. In plant protection, lipopeptides have wide prospects owing totheirpore-forming ability in pathogens, siderophore activity, biofilm inhibition, and dislodging activity, preventing colonization bypathogens, antiviral activity, etc. Microbes with lipopeptides that haveall these actions are good biocontrol agents. Exploring these antimicrobial compounds could widen the vistasof biological pest control for existing and emerging plant pathogens. The broader diversity and strong antimicrobial behavior of lipopeptides could be a boon for dealing withcomplex pathosystems and controlling diseases of greater economic importance. Understanding which and how these compounds modulate the synthesis and production of defense-related biomolecules in the plants is a key question—the answer of whichneeds in-depth investigation. The present reviewprovides a comprehensive picture of important lipopeptides produced by plant microbiome, their isolation, characterization, mechanisms of disease control, behavior against phytopathogens to understand different aspects of antagonism, and potential prospects for future explorations as antimicrobial agents. Understanding and exploring the antimicrobial lipopeptides from bacteria and fungi could also open upan entire new arena of biopesticides for effective control of devastating plant diseases.
Collapse
|
38
|
Penha RO, Vandenberghe LPS, Faulds C, Soccol VT, Soccol CR. Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: recent studies and innovations. PLANTA 2020; 251:70. [PMID: 32086615 DOI: 10.1007/s00425-020-03357-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/05/2020] [Indexed: 05/27/2023]
Abstract
Lipopeptides could help to overcome a large concern in agriculture: resistance against chemical pesticides. These molecules have activity against various phytopathogens and a potential to be transformed by genetic engineering. The exponential rise of pest resistances to different chemical pesticides and the global appeal of consumers for a sustainable agriculture and healthy nutrition have led to the search of new solutions for pest control. Furthermore, new laws require a different stance of producers. Based on that, bacteria of the genus Bacillus present a great agricultural potential, producing lipopeptides (LPs) that have high activity against insects, mites, nematodes, and/or phytopathogens that are harmful to plant cultures. Biopesticide activity can be found mainly in three families of Bacillus lipopeptides: surfactin, iturin, and fengycin. These molecules have an amphiphilic nature, interfering with biological membrane structures. Their antimicrobial properties include activity against bacteria, fungi, oomycetes, and viruses. Recent studies also highlight the ability of these compounds to stimulate defense mechanisms of plants and biofilm formation, which is a key factor for the successful colonization of biocontrol organisms. The use of molecular biology has also recently been researched for continuous advances and discoveries of new LPs, avoiding possible future problems of resistance against these molecules. As a consequence of the properties and possibilities of LPs, numerous studies and developments as well as the attention of large companies in the field is expected in the near future.
Collapse
Affiliation(s)
- Rafaela O Penha
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Luciana P S Vandenberghe
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Craig Faulds
- Aix-Marseille Université, POLYTECH Marseille, UMR 1163 Biotechnologie Des Champignons Filamenteux, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Vanete T Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil
| | - Carlos R Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Centro Politécnico, CP 19011, Curitiba, PR, 81531-908, Brazil.
| |
Collapse
|
39
|
Isolation and characterization of a new cyclic lipopeptide orfamide H from Pseudomonas protegens CHA0. J Antibiot (Tokyo) 2019; 73:179-183. [PMID: 31666660 DOI: 10.1038/s41429-019-0254-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/26/2019] [Accepted: 10/08/2019] [Indexed: 11/08/2022]
Abstract
A new cyclic lipopeptide (CLP) orfamide H (1) was purified and identified from the cultural broth of the bacterial strain Pseudomonas protegens CHA0. The crude extract of the strain CHA0 was obtained by an acid-aided precipitation process, then the compound 1 was purified by reversed-phase high-performance liquid chromatography (RP-HPLC). Subsequently, the chemical structure of orfamide H was determined by 1D and 2D nuclear magnetic resonance (NMR) and mass spectrometry (MS). Further biological assays indicate that the new CLP orfamide H shows the activity on inhibiting the appressoria formation of the fungus Magnaporthe oryzae, the causal agent of the blast disease in rice. Taken all together, these results indicated that the new CLP orfamide H has the capacity to be developed as an agrichemical to control blast disease in rice.
Collapse
|
40
|
Phylogenetic Analysis and Screening of Antimicrobial and Antiproliferative Activities of Culturable Bacteria Associated with the Ascidian Styela clava from the Yellow Sea, China. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7851251. [PMID: 31559313 PMCID: PMC6735190 DOI: 10.1155/2019/7851251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/04/2019] [Accepted: 07/28/2019] [Indexed: 01/01/2023]
Abstract
Over 1,000 compounds, including ecteinascidin-743 and didemnin B, have been isolated from ascidians, with most having bioactive properties such as antimicrobial, antitumor, and enzyme-inhibiting activities. In recent years, direct and indirect evidence has shown that some bioactive compounds isolated from ascidians are not produced by ascidians themselves but by their symbiotic microorganisms. Isolated culturable bacteria associated with ascidians and investigating their potential bioactivity are an important approach for discovering novel compounds. In this study, a total of 269 bacteria were isolated from the ascidian Styela clava collected from the coast of Weihai in the north of the Yellow Sea, China. Phylogenetic relationships among 183 isolates were determined using their 16S rRNA gene sequences. Isolates were tested for antimicrobial activity against seven indicator strains, and an antiproliferative activity assay was performed to test for inhibition of human hepatocellular carcinoma Bel 7402 and human cervical carcinoma HeLa cell proliferation. Our results showed that the isolates belonged to 26 genera from 18 families in four phyla (Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes). Bacillus and Streptomyces were the most dominant genera; 146 strains had potent antimicrobial activities and inhibited at least one of the indicator strains. Crude extracts from 29 strains showed antiproliferative activity against Bel 7402 cells with IC50 values below 500 μg·mL-1, and 53 strains showed antiproliferative activity against HeLa cells, with IC50 values less than 500 μg·mL-1. Our results suggest that culturable bacteria associated with the ascidian Styela clava may be a promising source of novel bioactive compounds.
Collapse
|
41
|
Dunlap CA, Bowman MJ, Rooney AP. Iturinic Lipopeptide Diversity in the Bacillus subtilis Species Group - Important Antifungals for Plant Disease Biocontrol Applications. Front Microbiol 2019; 10:1794. [PMID: 31440222 PMCID: PMC6693446 DOI: 10.3389/fmicb.2019.01794] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/22/2019] [Indexed: 11/30/2022] Open
Abstract
Iturins and closely related lipopeptides constitute a family of antifungal compounds known as iturinic lipopeptides that are produced by species in the Bacillus subtilis group. The compounds that comprise the family are: iturin, bacillomycin D, bacillomycin F, bacillomycin L, mycosubtilin, and mojavensin. These lipopeptides are prominent in many Bacillus strains that have been commercialized as biological control agents against fungal plant pathogens and as plant growth promoters. The compounds are cyclic heptapeptides with a variable length alkyl sidechain, which confers surface activity properties resulting in an affinity for fungal membranes. Above a certain concentration, enough molecules enter the fungal cell membrane to create a pore in the cell wall, which leads to loss of cell contents and cell death. This study identified 330 iturinic lipopeptide clusters in publicly available genomes from the B. subtilis species group. The clusters were subsequently assigned into distinguishable types on the basis of their unique amino acid sequences and then verified by HPLC MS/MS analysis. The results show some lipopeptides are only produced by one species, whereas certain others can produce up to three. In addition, four species previously not known to produce iturinic lipopeptides were identified. The distribution of these compounds among the B. subtilis group species suggests that they play an important role in their speciation and evolution.
Collapse
Affiliation(s)
- Christopher A Dunlap
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, United States
| | - Michael J Bowman
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, United States
| | - Alejandro P Rooney
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, United States
| |
Collapse
|
42
|
Ashu EE, Xu J, Yuan ZC. Bacteria in Cancer Therapeutics: A Framework for Effective Therapeutic Bacterial Screening and Identification. J Cancer 2019; 10:1781-1793. [PMID: 31205534 PMCID: PMC6547982 DOI: 10.7150/jca.31699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
By 2030, the global incidence of cancer is expected to increase by approximately 50%. However, most conventional therapies still lack cancer selectivity, which can have severe unintended side effects on healthy body tissue. Despite being an unconventional and contentious therapy, the last two decades have seen a significant renaissance of bacterium-mediated cancer therapy (BMCT). Although promising, most present-day therapeutic bacterial candidates have not shown satisfactory efficacy, effectiveness, or safety. Furthermore, therapeutic bacterial candidates are available to only a few of the approximately 200 existing cancer types. Excitingly, the recent surge in BMCT has piqued the interest of non-BMCT microbiologists. To help advance these interests, in this paper we reviewed important aspects of cancer, present-day cancer treatments, and historical aspects of BMCT. Here, we provided a four-step framework that can be used in screening and identifying bacteria with cancer therapeutic potential, including those that are uncultivable. Systematic methodologies such as the ones suggested here could prove valuable to new BMCT researchers, including experienced non-BMCT researchers in possession of extensive knowledge and resources of bacterial genomics. Lastly, our analyses highlight the need to establish and standardize quantitative methods that can be used to identify and compare bacteria with important cancer therapeutic traits.
Collapse
Affiliation(s)
- Eta E. Ashu
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Ze-Chun Yuan
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
43
|
Olishevska S, Nickzad A, Déziel E. Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Appl Microbiol Biotechnol 2019; 103:1189-1215. [DOI: 10.1007/s00253-018-9541-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/25/2022]
|
44
|
Fira D, Dimkić I, Berić T, Lozo J, Stanković S. Biological control of plant pathogens by Bacillus species. J Biotechnol 2018; 285:44-55. [DOI: 10.1016/j.jbiotec.2018.07.044] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/20/2018] [Accepted: 07/31/2018] [Indexed: 11/16/2022]
|
45
|
Microbial assisted (Bacillus mojavensis) production of bio-surfactant lipopeptide with potential pharmaceutical applications and its characterization by MALDI-TOF-MS analysis. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Tripathi L, Irorere VU, Marchant R, Banat IM. Marine derived biosurfactants: a vast potential future resource. Biotechnol Lett 2018; 40:1441-1457. [PMID: 30145666 PMCID: PMC6223728 DOI: 10.1007/s10529-018-2602-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/21/2018] [Indexed: 01/25/2023]
Abstract
Surfactants and emulsifiers are surface-active compounds (SACs) which play an important role in various industrial processes and products due to their interfacial properties. Many of the chemical surfactants in use today are produced from non-renewable petrochemical feedstocks, while biosurfactants (BS) produced by microorganisms from renewable feedstocks are considered viable alternatives to petroleum based surfactants, due to their biodegradability and eco-friendly nature. However, some well-characterised BS producers are pathogenic and therefore, not appropriate for scaled-up production. Marine-derived BS have been found to be produced by non-pathogenic organisms making them attractive possibilities for exploitation in commercial products. Additionally, BS produced from marine bacteria may show excellent activity at extreme conditions (temperature, pH and salinity). Despite being non-pathogenic, marine-derived BS have not been exploited commercially due to their low yields, insufficient structural elucidation and uncharacterised genes. Therefore, optimization of BS production conditions in marine bacteria, characterization of the compounds produced as well as the genes involved in the biosynthesis are necessary to improve cost-efficiency and realise the industrial demands of SACs.
Collapse
Affiliation(s)
- Lakshmi Tripathi
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Victor U Irorere
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Roger Marchant
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, BT52 1SA, UK.
| |
Collapse
|
47
|
Anticancer Activity of Bacterial Proteins and Peptides. Pharmaceutics 2018; 10:pharmaceutics10020054. [PMID: 29710857 PMCID: PMC6027124 DOI: 10.3390/pharmaceutics10020054] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
Despite much progress in the diagnosis and treatment of cancer, tumour diseases constitute one of the main reasons of deaths worldwide. The side effects of chemotherapy and drug resistance of some cancer types belong to the significant current therapeutic problems. Hence, searching for new anticancer substances and medicines are very important. Among them, bacterial proteins and peptides are a promising group of bioactive compounds and potential anticancer drugs. Some of them, including anticancer antibiotics (actinomycin D, bleomycin, doxorubicin, mitomycin C) and diphtheria toxin, are already used in the cancer treatment, while other substances are in clinical trials (e.g., p28, arginine deiminase ADI) or tested in in vitro research. This review shows the current literature data regarding the anticancer activity of proteins and peptides originated from bacteria: antibiotics, bacteriocins, enzymes, nonribosomal peptides (NRPs), toxins and others such as azurin, p28, Entap and Pep27anal2. The special attention was paid to the still poorly understood active substances obtained from the marine sediment bacteria. In total, 37 chemical compounds or groups of compounds with antitumor properties have been described in the present article.
Collapse
|
48
|
Zhao P, Xue Y, Gao W, Li J, Zu X, Fu D, Bai X, Zuo Y, Hu Z, Zhang F. Bacillaceae-derived peptide antibiotics since 2000. Peptides 2018; 101:10-16. [PMID: 29269072 DOI: 10.1016/j.peptides.2017.12.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
Members of the Bacillaceae family, including Bacillus spp., Brevibacillus spp., Paenibacillus spp., Aneurinibacillus sp., and Halobacillus sp., are an important source of structurally diverse classes of short peptides of ∼ 30 residues or fewer possessing peculiar and rapid killing activity against various pathogens. Additionally, many have unique structures that enhance resistance to hydrolysis by proteases, and these are ideal therapeutic tools and potential alternatives to current antibiotics. The need for novel antibiotic lead compounds is urgent, and this review summarises 119 Bacillaceae compounds published since 2000, including 12 surfactin-like lipopeptides, 16 iturinic lipopeptides, fengycin C, 33 other cyclic lipopeptides, 26 linear lipopeptides, two thiopeptides, four 2,5-diketopiperazines, 20 typical cyclic peptides, and five standard linear peptides. The current and potential therapeutic applications of these peptides, including structure, antibacterial, antifungal, and antiviral activities, are discussed.
Collapse
Affiliation(s)
- Pengchao Zhao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Weina Gao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Dongliao Fu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xuefei Bai
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yanjun Zuo
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhigang Hu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Fengshou Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
49
|
Plipastatin A1 produced by a marine sediment-derived Bacillus amyloliquefaciens SH-B74 contributes to the control of gray mold disease in tomato. 3 Biotech 2018; 8:125. [PMID: 29450115 DOI: 10.1007/s13205-018-1144-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/30/2018] [Indexed: 01/28/2023] Open
Abstract
Certain Bacillus species have the capacity to produce cyclic lipopeptides and these lipopeptides are promising determinants contributing to the biocontrol of plant diseases. In the current study, a cyclic lipopeptide plipastatin A1 was isolated from the fermentation broth of a marine sediment-derived Bacillus amyloliquefaciens SH-B74 by the combination of solid-phase extraction and reversed-phase high-performance liquid chromatography, and its structure was identified by tandem mass spectrometry, high-resolution electro-spray ionization mass spectrometry, and gas chromatography-mass spectrometry together with nuclear magnetic resonance analysis. Moreover, data from activity evaluation revealed that plipastatin A1 has excellent in vitro activity on the suppression of the conidia germination of B. cinerea, the causal agent of gray mold disease in tomato. Furthermore, plipastatin A1 can successfully decrease the incidence of gray mold disease on tomato leaves at 50 µM concentration. This study indicates that B. amyloliquefaciens SH-B74 appears to be a potentially sustainable pesticide to control gray mold disease in tomato plants, and its cyclic lipopeptide plipastatin A1 plays an important role in the in vitro and in planta biocontrol of B. cinerea.
Collapse
|
50
|
Agrawal S, Acharya D, Adholeya A, Barrow CJ, Deshmukh SK. Nonribosomal Peptides from Marine Microbes and Their Antimicrobial and Anticancer Potential. Front Pharmacol 2017; 8:828. [PMID: 29209209 PMCID: PMC5702503 DOI: 10.3389/fphar.2017.00828] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/31/2017] [Indexed: 11/13/2022] Open
Abstract
Marine environments are largely unexplored and can be a source of new molecules for the treatment of many diseases such as malaria, cancer, tuberculosis, HIV etc. The Marine environment is one of the untapped bioresource of getting pharmacologically active nonribosomal peptides (NRPs). Bioprospecting of marine microbes have achieved many remarkable milestones in pharmaceutics. Till date, more than 50% of drugs which are in clinical use belong to the nonribosomal peptide or mixed polyketide-nonribosomal peptide families of natural products isolated from marine bacteria, cyanobacteria and fungi. In recent years large numbers of nonribosomal have been discovered from marine microbes using multi-disciplinary approaches. The present review covers the NRPs discovered from marine microbes and their pharmacological potential along with role of genomics, proteomics and bioinformatics in discovery and development of nonribosomal peptides drugs.
Collapse
Affiliation(s)
- Shivankar Agrawal
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India.,Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Debabrata Acharya
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| | - Alok Adholeya
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Sunil K Deshmukh
- Biotechnology and Management of Bioresources Division, TERI-Deakin Nano Biotechnology Centre, Energy and Resources Institute, New Delhi, India
| |
Collapse
|