1
|
Bing Y, Józsa TI, Payne SJ. Parameter quantification for oxygen transport in the human brain. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108433. [PMID: 39362064 DOI: 10.1016/j.cmpb.2024.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND AND OBJECTIVE Oxygen is carried to the brain by blood flow through generations of vessels across a wide range of length scales. This multi-scale nature of blood flow and oxygen transport poses challenges on investigating the mechanisms underlying both healthy and pathological states through imaging techniques alone. Recently, multi-scale models describing whole brain perfusion and oxygen transport have been developed. Such models rely on effective parameters that represent the microscopic properties. While parameters of the perfusion models have been characterised, those for oxygen transport are still lacking. In this study, we set to quantify the parameters associated with oxygen transport and their uncertainties. METHODS Effective parameter values of a continuum-based porous multi-scale, multi-compartment oxygen transport model are systematically estimated. In particular, geometric parameters that capture the microvascular topologies are obtained through statistically accurate capillary networks. Maximum consumption rates of oxygen are optimised to uniquely define the oxygen distribution over depth. Simulations are then carried out within a one-dimensional tissue column and a three-dimensional patient-specific brain mesh using the finite element method. RESULTS Effective values of the geometric parameters, vessel volume fraction and surface area to volume ratio, are found to be 1.42% and 627 [mm2/mm3], respectively. These values compare well with those acquired from human and monkey vascular samples. Simulation results of the one-dimensional tissue column show qualitative agreement with experimental measurements of tissue oxygen partial pressure in rats. Differences between the oxygenation level in the tissue column and the brain mesh are observed, which highlights the importance of anatomical accuracy. Finally, one-at-a-time sensitivity analysis reveals that the oxygen model is not sensitive to most of its parameters; however, perturbations in oxygen solubilities and plasma to whole blood oxygen concentration ratio have a considerable impact on the tissue oxygenation. CONCLUSIONS The findings of this study demonstrate the validity of using a porous continuum approach to model organ-scale oxygen transport and draw attention to the significance of anatomy and parameters associated with inter-compartment diffusion.
Collapse
Affiliation(s)
- Yun Bing
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Tamás I Józsa
- Centre for Computational Engineering Sciences, School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, UK.
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Lin Z, Jiang D, Hong Y, Zhang Y, Hsu YC, Lu H, Wu D. Vessel-specific quantification of cerebral venous oxygenation with velocity-encoding preparation and rapid acquisition. Magn Reson Med 2024; 92:782-791. [PMID: 38523598 DOI: 10.1002/mrm.30092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE Non-invasive measurement of cerebral venous oxygenation (Yv) is of critical importance in brain diseases. The present work proposed a fast method to quantify regional Yv map for both large and small veins. METHODS A new sequence was developed, referred to as TRU-VERA (T2 relaxation under velocity encoding and rapid acquisition, which isolates blood spins from static tissue with velocity-encoding preparation, modulates the T2 weighting of venous signal with T2-preparation and utilizes a bSSFP readout to achieve fast acquisition with high resolution. The sequence was first optimized to achieve best sensitivity for both large and small veins, and then validated with TRUST (T2 relaxation under spin tagging), TRUPC (T2 relaxation under phase contrast), and accelerated TRUPC MRI. Regional difference of Yv was evaluated, and test-retest reproducibility was examined. RESULTS Optimal Venc was determined to be 3 cm/s, while recovery time and balanced SSFP flip angle within reasonable range had minimal effect on SNR efficiency. Venous T2 measured with TRU-VERA was highly correlated with T2 from TRUST (R2 = 0.90), and a conversion equation was established for further calibration to Yv. TRU-VERA sequences showed consistent Yv estimation with TRUPC (R2 = 0.64) and accelerated TRUPC (R2 = 0.79). Coefficient of variation was 0.84% for large veins and 2.49% for small veins, suggesting an excellent test-retest reproducibility. CONCLUSION The proposed TRU-VERA sequence is a promising method for vessel-specific oxygenation assessment.
Collapse
Affiliation(s)
- Zixuan Lin
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yiwen Hong
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthineers Ltd, Shanghai, China
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Fellah S, Ying C, Wang Y, Guilliams KP, Fields ME, Chen Y, Lewis J, Mirro A, Cohen R, Igwe N, Eldeniz C, Jiang D, Lu H, Powers WJ, Lee JM, Ford AL, An H. Comparison of cerebral oxygen extraction fraction using ASE and TRUST methods in patients with sickle cell disease and healthy controls. J Cereb Blood Flow Metab 2024; 44:1404-1416. [PMID: 38436254 PMCID: PMC11342725 DOI: 10.1177/0271678x241237072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 01/13/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
Abnormal oxygen extraction fraction (OEF), a putative biomarker of cerebral metabolic stress, may indicate compromised oxygen delivery and ischemic vulnerability in patients with sickle cell disease (SCD). Elevated OEF was observed at the tissue level across the brain using an asymmetric spin echo (ASE) MR method, while variable global OEFs were found from the superior sagittal sinus (SSS) using a T2-relaxation-under-spin-tagging (TRUST) MRI method with different calibration models. In this study, we aimed to compare the average ASE-OEF in the SSS drainage territory and TRUST-OEF in the SSS from the same SCD patients and healthy controls. 74 participants (SCD: N = 49; controls: N = 25) underwent brain MRI. TRUST-OEF was quantified using the Lu-bovine, Bush-HbA and Li-Bush-HbS models. ASE-OEF and TRUST-OEF were significantly associated in healthy controls after controlling for hematocrit using the Lu-bovine or the Bush-HbA model. However, no association was found between ASE-OEF and TRUST-OEF in patients with SCD using either the Bush-HbA or the Li-Bush-HbS model. Plausible explanations include a discordance between spatially volume-averaged oxygenation brain tissue and flow-weighted volume-averaged oxygenation in SSS or sub-optimal calibration in SCD. Further work is needed to refine and validate non-invasive MR OEF measurements in SCD.
Collapse
Affiliation(s)
- Slim Fellah
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chunwei Ying
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yan Wang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristin P Guilliams
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Melanie E Fields
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yasheng Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Josiah Lewis
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy Mirro
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel Cohen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nkemdilim Igwe
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cihat Eldeniz
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dengrong Jiang
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William J Powers
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andria L Ford
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hongyu An
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Lee H, Xu J, Fernandez-Seara MA, Wehrli FW. Validation of a new 3D quantitative BOLD based cerebral oxygen extraction mapping. J Cereb Blood Flow Metab 2024; 44:1184-1198. [PMID: 38289876 PMCID: PMC11179617 DOI: 10.1177/0271678x231220332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 02/01/2024]
Abstract
Quantitative BOLD (qBOLD) MRI allows evaluation of oxidative metabolism of the brain based purely on an endogenous contrast mechanism. The method quantifies deoxygenated blood volume (DBV) and hemoglobin oxygen saturation level of venous blood (Yv), yielding oxygen extraction fraction (OEF), and along with a separate measurement of cerebral blood flow, cerebral metabolic rate of oxygen (CMRO2) maps. Here, we evaluated our recently reported 3D qBOLD method that rectifies a number of deficiencies in prior qBOLD approaches in terms of repeat reproducibility and sensitivity to hypercapnia on the metabolic parameters, and in comparison to dual-gas calibrated BOLD (cBOLD) MRI for determining resting-state oxygen metabolism. Results suggested no significant difference between test-retest qBOLD scans in either DBV and OEF. Exposure to hypercapnia yielded group averages of 38 and 28% for OEF and 151 and 146 µmol/min/100 g for CMRO2 in gray matter at baseline and hypercapnia, respectively. The decrease of OEF during hypercapnia was significant (p ≪ 0.01), whereas CMRO2 did not change significantly (p = 0.25). Finally, baseline OEF (37 vs. 39%) and CMRO2 (153 vs. 145 µmol/min/100 g) in gray matter using qBOLD and dual-gas cBOLD were found to be in good agreement with literature values, and were not significantly different from each other (p > 0.1).
Collapse
Affiliation(s)
- Hyunyeol Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, Republic of Korea
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jing Xu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria A Fernandez-Seara
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Ivanova MV, Pappas I, Inglis B, Pracar AL, Herron TJ, Baldo JV, Kayser AS, D’Esposito M, Dronkers NF. Cerebral perfusion in post-stroke aphasia and its relationship to residual language abilities. Brain Commun 2023; 6:fcad252. [PMID: 38162898 PMCID: PMC10757451 DOI: 10.1093/braincomms/fcad252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/26/2023] [Accepted: 09/28/2023] [Indexed: 01/03/2024] Open
Abstract
Stroke alters blood flow to the brain resulting in damaged tissue and cell death. Moreover, the disruption of cerebral blood flow (perfusion) can be observed in areas surrounding and distal to the lesion. These structurally preserved but suboptimally perfused regions may also affect recovery. Thus, to better understand aphasia recovery, the relationship between cerebral perfusion and language needs to be systematically examined. In the current study, we aimed to evaluate (i) how stroke affects perfusion outside of lesioned areas in chronic aphasia and (ii) how perfusion in specific cortical areas and perilesional tissue relates to language outcomes in aphasia. We analysed perfusion data from a large sample of participants with chronic aphasia due to left hemisphere stroke (n = 43) and age-matched healthy controls (n = 25). We used anatomically defined regions of interest that covered the frontal, parietal, and temporal areas of the perisylvian cortex in both hemispheres, areas typically known to support language, along with several control regions not implicated in language processing. For the aphasia group, we also looked at three regions of interest in the perilesional tissue. We compared perfusion levels between the two groups and investigated the relationship between perfusion levels and language subtest scores while controlling for demographic and lesion variables. First, we observed that perfusion levels outside the lesioned areas were significantly reduced in frontal and parietal regions in the left hemisphere in people with aphasia compared to the control group, while no differences were observed for the right hemisphere regions. Second, we found that perfusion in the left temporal lobe (and most strongly in the posterior part of both superior and middle temporal gyri) and inferior parietal areas (supramarginal gyrus) was significantly related to residual expressive and receptive language abilities. In contrast, perfusion in the frontal regions did not show such a relationship; no relationship with language was also observed for perfusion levels in control areas and all right hemisphere regions. Third, perilesional perfusion was only marginally related to language production abilities. Cumulatively, the current findings demonstrate that blood flow is reduced beyond the lesion site in chronic aphasia and that hypoperfused neural tissue in critical temporoparietal language areas has a negative impact on behavioural outcomes. These results, using perfusion imaging, underscore the critical and general role that left hemisphere posterior temporal regions play in various expressive and receptive language abilities. Overall, the study highlights the importance of exploring perfusion measures in stroke.
Collapse
Affiliation(s)
- Maria V Ivanova
- Department of Psychology, University of California, Berkeley, CA 94720, USA
- Research Service, VA Northern California Health Care System, Martinez, CA 94553, USA
| | - Ioannis Pappas
- Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Ben Inglis
- Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, CA 94720, USA
| | - Alexis L Pracar
- Department of Psychology, University of California, Berkeley, CA 94720, USA
| | - Timothy J Herron
- Research Service, VA Northern California Health Care System, Martinez, CA 94553, USA
| | - Juliana V Baldo
- Research Service, VA Northern California Health Care System, Martinez, CA 94553, USA
| | - Andrew S Kayser
- Division of Neurology, San Francisco VA Health Care System, San Francisco, CA 94121, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mark D’Esposito
- Department of Psychology, University of California, Berkeley, CA 94720, USA
- Neurology Service, VA Northern California Health Care System, Martinez, CA 94553, USA
| | - Nina F Dronkers
- Department of Psychology, University of California, Berkeley, CA 94720, USA
- Depertment of Neurology, University of California, Davis, CA 95817, USA
| |
Collapse
|
6
|
Determination of the Unilaterally Damaged Region May Depend on the Asymmetry of Carotid Blood Flow Velocity in Hemiparkinsonian Monkey: A Pilot Study. PARKINSON'S DISEASE 2022; 2022:4382145. [PMID: 36407681 PMCID: PMC9668443 DOI: 10.1155/2022/4382145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022]
Abstract
The hemiparkinsonian nonhuman primate model induced by unilateral injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into the carotid artery is used to study Parkinson's disease. However, there have been no studies that the contralateral distribution of MPTP via the cerebral collateral circulation is provided by both the circle of Willis (CoW) and connections of the carotid artery. To investigate whether MPTP-induced unilaterally damaged regions were determined by asymmetrical cerebral blood flow, the differential asymmetric damage of striatal subregions, and examined structural asymmetries in a circle of Willis, and blood flow velocity of the common carotid artery were observed in three monkeys that were infused with MPTP through the left internal carotid artery. Lower flow velocity in the ipsilateral common carotid artery and a higher ratio of ipsilateral middle cerebral artery diameter to anterior cerebral artery diameter resulted in unilateral damage. Additionally, the unilateral damaged monkey observed the apomorphine-induced contralateral rotation behavior and the temporary increase of plasma RANTES. Contrastively, higher flow velocity in the ipsilateral common carotid artery was observed in the bilateral damaged monkey. It is suggested that asymmetry of blood flow velocity and structural asymmetry of the circle of Willis should be taken into consideration when establishing more efficient hemiparkinsonian nonhuman primate models.
Collapse
|
7
|
Chiarelli AM, Germuska M, Chandler H, Stickland R, Patitucci E, Biondetti E, Mascali D, Saxena N, Khot S, Steventon J, Foster C, Rodríguez-Soto AE, Englund E, Murphy K, Tomassini V, Wehrli FW, Wise RG. A flow-diffusion model of oxygen transport for quantitative mapping of cerebral metabolic rate of oxygen (CMRO 2) with single gas calibrated fMRI. J Cereb Blood Flow Metab 2022; 42:1192-1209. [PMID: 35107026 PMCID: PMC9207485 DOI: 10.1177/0271678x221077332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One promising approach for mapping CMRO2 is dual-calibrated functional MRI (dc-fMRI). This method exploits the Fick Principle to combine estimates of CBF from ASL, and OEF derived from BOLD-ASL measurements during arterial O2 and CO2 modulations. Multiple gas modulations are required to decouple OEF and deoxyhemoglobin-sensitive blood volume. We propose an alternative single gas calibrated fMRI framework, integrating a model of oxygen transport, that links blood volume and CBF to OEF and creates a mapping between the maximum BOLD signal, CBF and OEF (and CMRO2). Simulations demonstrated the method's viability within physiological ranges of mitochondrial oxygen pressure, PmO2, and mean capillary transit time. A dc-fMRI experiment, performed on 20 healthy subjects using O2 and CO2 challenges, was used to validate the approach. The validation conveyed expected estimates of model parameters (e.g., low PmO2), with spatially uniform OEF maps (grey matter, GM, OEF spatial standard deviation ≈ 0.13). GM OEF estimates obtained with hypercapnia calibrated fMRI correlated with dc-fMRI (r = 0.65, p = 2·10-3). For 12 subjects, OEF measured with dc-fMRI and the single gas calibration method were correlated with whole-brain OEF derived from phase measures in the superior sagittal sinus (r = 0.58, p = 0.048; r = 0.64, p = 0.025 respectively). Simplified calibrated fMRI using hypercapnia holds promise for clinical application.
Collapse
Affiliation(s)
- Antonio M Chiarelli
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Michael Germuska
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Hannah Chandler
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Rachael Stickland
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eleonora Patitucci
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Emma Biondetti
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Daniele Mascali
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Neeraj Saxena
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Sharmila Khot
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Jessica Steventon
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Catherine Foster
- Wales Institute of Social and Economic Research and Data (WISERD), School of Social Sciences, Cardiff University, Cardiff, UK
| | - Ana E Rodríguez-Soto
- Department of Radiology, University of California, San Diego, La Jolla, California, USA
| | - Erin Englund
- Department of Radiology, University of Colorado, Aurora, Colorado, USA
| | - Kevin Murphy
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Valentina Tomassini
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK.,MS Centre, Dept of Clinical Neurology, SS. Annunziata University Hospital, Chieti, Italy.,Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.,Helen Durham Centre for Neuroinflammation, University Hospital of Wales, Cardiff, UK
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard G Wise
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| |
Collapse
|
8
|
Whole-brain 3D mapping of oxygen metabolism using constrained quantitative BOLD. Neuroimage 2022; 250:118952. [PMID: 35093519 PMCID: PMC9007034 DOI: 10.1016/j.neuroimage.2022.118952] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/24/2021] [Accepted: 01/25/2022] [Indexed: 12/02/2022] Open
Abstract
Quantitative BOLD (qBOLD) MRI permits noninvasive evaluation of hemodynamic and metabolic states of the brain by quantifying parametric maps of deoxygenated blood volume (DBV) and hemoglobin oxygen saturation level of venous blood (Yv), and along with a measurement of cerebral blood flow (CBF), the cerebral metabolic rate of oxygen (CMRO2). The method, thus should have potential to provide important information on many neurological disorders as well as normal cerebral physiology. One major challenge in qBOLD is to separate de-oxyhemoglobin’s contribution to R2′ from other sources modulating the voxel signal, for instance, R2, R2′ from non-heme iron (R′2,nh), and macroscopic magnetic field variations. Further, even with successful separation of the several confounders, it is still challenging to extract DBV and Yv from the heme-originated R2′ because of limited sensitivity of the qBOLD model. These issues, which have not been fully addressed in currently practiced qBOLD methods, have so far precluded 3D whole-brain implementation of qBOLD. Thus, the purpose of this work was to develop a new 3D MRI oximetry technique that enables robust qBOLD parameter mapping across the entire brain. To achieve this goal, we employed a rapid, R2′-sensitive, steady-state 3D pulse sequence (termed ‘AUSFIDE’) for data acquisition, and implemented a prior-constrained qBOLD processing pipeline that exploits a plurality of preliminary parameters obtained via AUSFIDE, along with additionally measured cerebral venous blood volume. Numerical simulations and in vivo studies at 3 T were performed to evaluate the performance of the proposed, constrained qBOLD mapping in comparison to the parent qBOLD method. Measured parameters (Yv, DBV, R′2,nh, nonblood magnetic susceptibility) in ten healthy subjects demonstrate the expected contrast across brain territories, while yielding group-averages of 64.0 ± 2.3 % and 62.2 ± 3.1 % for Yv and 2.8 ± 0.5 % and 1.8 ± 0.4 % for DBV in cortical gray and white matter, respectively. Given the Yv measurements, additionally quantified CBF in seven of the ten study subjects enabled whole-brain 3D CMRO2 mapping, yielding group averages of 134.2 ± 21.1 and 79.4 ± 12.6 µmol/100 g/min for cortical gray and white matter, in good agreement with literature values. The results suggest feasibility of the proposed method as a practical and reliable means for measuring neurometabolic parameters over an extended brain coverage.
Collapse
|
9
|
Barisano G, Sheikh-Bahaei N, Law M, Toga AW, Sepehrband F. Body mass index, time of day and genetics affect perivascular spaces in the white matter. J Cereb Blood Flow Metab 2021; 41:1563-1578. [PMID: 33183133 PMCID: PMC8221772 DOI: 10.1177/0271678x20972856] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/21/2020] [Accepted: 10/18/2020] [Indexed: 12/17/2022]
Abstract
The analysis of cerebral perivascular spaces (PVS) using magnetic resonance imaging (MRI) allows to explore in vivo their contributions to neurological disorders. To date the normal amount and distribution of PVS in healthy human brains are not known, thus hampering our ability to define with confidence pathogenic alterations. Furthermore, it is unclear which biological factors can influence the presence and size of PVS on MRI. We performed exploratory data analysis of PVS volume and distribution in a large population of healthy individuals (n = 897, age = 28.8 ± 3.7). Here we describe the global and regional amount of PVS in the white matter, which can be used as a reference for clinicians and researchers investigating PVS and may help the interpretation of the structural changes affecting PVS in pathological states. We found a relatively high inter-subject variability in the PVS amount in this population of healthy adults (range: 1.31-14.49 cm3). The PVS volume was higher in older and male individuals. Moreover, we identified body mass index, time of day, and genetics as new elements significantly affecting PVS in vivo under physiological conditions, offering a valuable foundation to future studies aimed at understanding the physiology of perivascular flow.
Collapse
Affiliation(s)
- Giuseppe Barisano
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Nasim Sheikh-Bahaei
- Department of Radiology, Keck Hospital of USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Meng Law
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurological Surgery, Keck Hospital of USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Radiology, Alfred Health, Monash University, Melbourne, Australia
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Farshid Sepehrband
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Mouches P, Langner S, Domin M, Hill MD, Forkert ND. Influence of cardiovascular risk-factors on morphological changes of cerebral arteries in healthy adults across the life span. Sci Rep 2021; 11:12236. [PMID: 34112870 PMCID: PMC8192575 DOI: 10.1038/s41598-021-91669-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/27/2021] [Indexed: 11/09/2022] Open
Abstract
Cerebral artery morphological alterations have been associated with several cerebrovascular and neurological diseases, whereas these structures are known to be highly variable among healthy individuals. To date, the knowledge about the influence of cardiovascular risk factors on the morphology of cerebral arteries is rather limited. The aim of this work was to investigate the impact of cardiovascular risk factors on the regional cerebroarterial radius and density. Time-of-Flight magnetic resonance angiography from 1722 healthy adults (21-82 years) were used to extract region-specific measurements describing the main cerebral artery morphology. Multivariate statistical analysis was conducted to quantify the impact of cardiovascular risk factors, including clinical and life behavioural factors, on each region-specific artery measurement. Increased age, blood pressure, and markers of obesity were significantly associated with decreased artery radius and density in most regions, with aging having the greatest impact. Additionally, females showed significantly higher artery density while males showed higher artery radius. Smoking and alcohol consumption did not show any significant association with the artery morphology. The results of this study improve the understanding of the impact of aging, clinical factors, and life behavioural factors on cerebrovascular morphology and can help to identify potential risk factors for cerebrovascular and neurological diseases.
Collapse
Affiliation(s)
- Pauline Mouches
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Canada. .,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| | - Sönke Langner
- Institute for Diagnostic Radiology and Neuroradiology, University Medical Center Rostock, Rostock, Germany
| | - Martin Domin
- Functional Imaging Unit, Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Michael D Hill
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, Canada
| | - Nils D Forkert
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
11
|
Gozt A, Hellewell S, Ward PGD, Bynevelt M, Fitzgerald M. Emerging Applications for Quantitative Susceptibility Mapping in the Detection of Traumatic Brain Injury Pathology. Neuroscience 2021; 467:218-236. [PMID: 34087394 DOI: 10.1016/j.neuroscience.2021.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a common but heterogeneous injury underpinned by numerous complex and interrelated pathophysiological mechanisms. An essential trace element, iron is abundant within the brain and involved in many fundamental neurobiological processes, including oxygen transportation, oxidative phosphorylation, myelin production and maintenance, as well as neurotransmitter synthesis and metabolism. Excessive levels of iron are neurotoxic and thus iron homeostasis is tightly regulated in the brain, however, many details about the mechanisms by which this is achieved are yet to be elucidated. A key mediator of oxidative stress, mitochondrial dysfunction and neuroinflammatory response, iron dysregulation is an important contributor to secondary injury in TBI. Advances in neuroimaging that leverage magnetic susceptibility properties have enabled increasingly comprehensive investigations into the distribution and behaviour of iron in the brain amongst healthy individuals as well as disease states such as TBI. Quantitative Susceptibility Mapping (QSM) is an advanced neuroimaging technique that promises quantitative estimation of local magnetic susceptibility at the voxel level. In this review, we provide an overview of brain iron and its homeostasis, describe recent advances enabling applications of QSM within the context of TBI and summarise the current state of the literature. Although limited, the emergent research suggests that QSM is a promising neuroimaging technique that can be used to investigate a host of pathophysiological changes that are associated with TBI.
Collapse
Affiliation(s)
- Aleksandra Gozt
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA Australia
| | - Sarah Hellewell
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia
| | - Phillip G D Ward
- Australian Research Council Centre of Excellence for Integrative Brain Function, VIC Australia; Turner Institute for Brain and Mental Health, Monash University, VIC Australia
| | - Michael Bynevelt
- Neurological Intervention and Imaging Service of Western Australia, Sir Charles Gairdner Hospital, Nedlands, WA Australia
| | - Melinda Fitzgerald
- Curtin University, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Bentley, WA Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA Australia.
| |
Collapse
|
12
|
Gould A, Chen Z, Geleri DB, Balu N, Zhou Z, Chen L, Chu B, Pimentel K, Canton G, Hatsukami T, Yuan C. Vessel length on SNAP MRA and TOF MRA is a potential imaging biomarker for brain blood flow. Magn Reson Imaging 2021; 79:20-27. [PMID: 33689778 DOI: 10.1016/j.mri.2021.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 01/28/2023]
Abstract
PURPOSE To explore feasibility of using the vessel length on time-of-flight (TOF) or simultaneous non-contrast angiography and intraplaque hemorrhage (SNAP) MRA as an imaging biomarker for brain blood flow, by using arterial spin labeling (ASL) perfusion imaging and 3D phase contrast (PC) quantitative flow imaging as references. METHODS In a population of thirty subjects with carotid atherosclerotic disease, the visible intracranial arteries on TOF and SNAP were semi-automatically traced and the total length of the distal segments was calculated with a dedicated software named iCafe. ASL blood flow was calculated automatically using the recommended hemodynamic model. PC blood flow was obtained by generating cross-sectional arterial images and semi-automatically drawing the lumen contours. Pearson correlation coefficients were used to assess the associations between the different whole-brain or hemispheric blood flow measurements. RESULTS Under the imaging protocol used in this study, TOF vessel length was larger than SNAP vessel length (P < 0.001). Both whole-brain TOF and SNAP vessel length showed a correlation with whole brain ASL and 3D PC blood flow measurements, and the correlation coefficients were higher for SNAP vessel length (TOF vs ASL: R = 0.554, P = 0.002; SNAP vs ASL: R = 0.711, P < 0.001; TOF vs 3D PC: R = 0.358, P = 0.052; SNAP vs 3D PC: R = 0.425, P = 0.019). Similar correlation results were observed for the hemispheric measurements. Hemispheric asymmetry index of SNAP vessel length also showed a significant correlation with hemispheric asymmetry index of ASL cerebral blood flow (R = 0.770, P < 0.001). CONCLUSION The results suggest that length of the visible intracranial arteries on TOF or SNAP MRA can serve as a potential imaging marker for brain blood flow.
Collapse
Affiliation(s)
- Anders Gould
- Vascular Imaging Lab, Department of Radiology, University of Washington, Seattle, WA, United States; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Zhensen Chen
- Vascular Imaging Lab, Department of Radiology, University of Washington, Seattle, WA, United States; BioMolecular Imaging Center, Department of Radiology, University of Washington, Seattle, WA, United States.
| | - Duygu Baylam Geleri
- Vascular Imaging Lab, Department of Radiology, University of Washington, Seattle, WA, United States
| | - Niranjan Balu
- Vascular Imaging Lab, Department of Radiology, University of Washington, Seattle, WA, United States; BioMolecular Imaging Center, Department of Radiology, University of Washington, Seattle, WA, United States
| | - Zechen Zhou
- Philips Research North America, Cambridge, MA, United States
| | - Li Chen
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States
| | - Baocheng Chu
- Vascular Imaging Lab, Department of Radiology, University of Washington, Seattle, WA, United States; BioMolecular Imaging Center, Department of Radiology, University of Washington, Seattle, WA, United States
| | - Kristi Pimentel
- Vascular Imaging Lab, Department of Radiology, University of Washington, Seattle, WA, United States
| | - Gador Canton
- Vascular Imaging Lab, Department of Radiology, University of Washington, Seattle, WA, United States
| | - Thomas Hatsukami
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - Chun Yuan
- Vascular Imaging Lab, Department of Radiology, University of Washington, Seattle, WA, United States; BioMolecular Imaging Center, Department of Radiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
13
|
Jiang D, Deng S, Franklin CG, O’Boyle M, Zhang W, Heyl BL, Pan L, Jerabek PA, Fox PT, Lu H. Validation of T 2 -based oxygen extraction fraction measurement with 15 O positron emission tomography. Magn Reson Med 2021; 85:290-297. [PMID: 32643207 PMCID: PMC9973312 DOI: 10.1002/mrm.28410] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/19/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE To evaluate the accuracy of T2 -based whole-brain oxygen extraction fraction (OEF) estimation by comparing it with gold standard 15 O-PET measurements. METHODS Sixteen healthy adult subjects underwent MRI and 15 O-PET OEF measurements on the same day. On MRI, whole-brain OEF was quantified by T2 -relaxation-under-spin-tagging (TRUST) MRI, based on subject-specific hematocrit. The TRUST OEF was compared to the whole-brain averaged OEF produced by 15 O-PET. Agreement between TRUST and 15 O-PET whole-brain OEF measurements was examined in terms of intraclass correlation coefficient (ICC) and in absolute OEF values. In a subset of 10 subjects, test-retest reproducibility of whole-brain OEF was also evaluated and compared between the two modalities. RESULTS Across the 16 subjects, the mean whole-brain OEF of TRUST and 15 O-PET were 36.44 ± 4.07% and 36.45 ± 3.65%, respectively, showing no difference between the two modalities (P = .99). TRUST whole-brain OEF strongly correlated with that of 15 O-PET (N = 16, ICC = 0.90, P = 4 × 10-7 ). The coefficient-of-variation of TRUST and 15 O-PET whole-brain OEF measurements were 1.79 ± 0.67% and 2.06 ± 1.55%, respectively, showing no difference between the two modalities (N = 10, P = .64). Further analyses on the effect of hematocrit revealed that correlation between PET OEF and TRUST OEF with assumed hematocrit remained significant (ICC = 0.8, P < 2 × 10-5 ). CONCLUSION Whole-brain OEF measured by TRUST was in excellent agreement with gold standard 15 O-PET, with highly comparable accuracy and reproducibility. These findings suggest that TRUST MRI can provide accurate quantification of whole-brain OEF noninvasively.
Collapse
Affiliation(s)
- Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shengwen Deng
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Crystal G. Franklin
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Michael O’Boyle
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Wei Zhang
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Betty L. Heyl
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Li Pan
- Siemens Healthineers, Baltimore, Maryland, USA
| | - Paul A. Jerabek
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Peter T. Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.,Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA,South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Brothers RO, Atlas N, Cowdrick KR, Buckley EM. Cerebrovascular reactivity measured in awake mice using diffuse correlation spectroscopy. NEUROPHOTONICS 2021; 8:015007. [PMID: 33665230 PMCID: PMC7920384 DOI: 10.1117/1.nph.8.1.015007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/15/2021] [Indexed: 05/31/2023]
Abstract
Significance: Cerebrovascular reactivity (CVR), defined as the ability of the cerebral vasculature to dilate or constrict in response to a vasoactive stimulus, is an important indicator of the brain's vascular health. However, mechanisms of cerebrovascular dysregulation are poorly understood, and no effective treatment strategies for impaired CVR exist. Preclinical murine models provide an excellent platform for interrogating mechanisms underlying CVR dysregulation and determining novel therapeutics that restore impaired CVR. However, quantification of CVR in mice is challenging. Aim: We present means of assessing CVR in awake mice using intraperitoneal injection of acetazolamide (ACZ) combined with continuous monitoring of cerebral blood flow. Approach: Measurements of cerebral blood flow were made with a minimally invasive diffuse correlation spectroscopy sensor that was secured to an optical window glued to the intact skull. Two source-detector separations (3 and 4.5 mm) per hemisphere were used to probe different depths. CVR was quantified as the relative increase in blood flow due to ACZ. CVR was assessed once daily for 5 days in 5 mice. Results: We found that CVR and the response half-time were remarkably similar across hemispheres and across 3- versus 4.5-mm separations, suggesting a homogenous, whole brain response to ACZ. Mean(std) intra- and intermouse coefficients of variations were 15(9)% and 19(10)%, respectively, for global CVR and 24(15)% and 27(11)%, respectively, for global response half-time. Conclusion: In sum, we report a repeatable method of measuring CVR in free-behaving mice which can be used to screen for impairments with disease and to track changes in CVR with therapeutic interventions.
Collapse
Affiliation(s)
- Rowan O. Brothers
- Emory University and Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Nir Atlas
- Emory University and Children’s Healthcare of Atlanta, Division of Critical Care Medicine, Department of Pediatrics, Atlanta, Georgia, United States
| | - Kyle R. Cowdrick
- Emory University and Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Erin M. Buckley
- Emory University and Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
- Children’s Healthcare of Atlanta, Children’s Research Scholar, Atlanta, Georgia, United States
| |
Collapse
|
15
|
Volumetric distribution of perivascular space in relation to mild cognitive impairment. Neurobiol Aging 2020; 99:28-43. [PMID: 33422892 DOI: 10.1016/j.neurobiolaging.2020.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022]
Abstract
Vascular contributions to early cognitive decline are increasingly recognized, prompting further investigation into the nature of related changes in perivascular spaces (PVS). Using magnetic resonance imaging, we show that, compared to a cognitively normal sample, individuals with early cognitive dysfunction have altered PVS presence and distribution, irrespective of Amyloid-β. Surprisingly, we noted lower PVS presence in the anterosuperior medial temporal lobe (asMTL) (1.29 times lower PVS volume fraction in cognitively impaired individuals, p < 0.0001), which was associated with entorhinal neurofibrillary tau tangle deposition (beta (standard error) = -0.98 (0.4); p = 0.014), one of the hallmarks of early Alzheimer's disease pathology. We also observed higher PVS volume fraction in centrum semi-ovale of the white matter, but only in female participants (1.47 times higher PVS volume fraction in cognitively impaired individuals, p = 0.0011). We also observed PVS changes in participants with history of hypertension (higher in the white matter and lower in the asMTL). Our results suggest that anatomically specific alteration of the PVS is an early neuroimaging feature of cognitive impairment in aging adults, which is differentially manifested in female.
Collapse
|
16
|
Jiang D, Lu H, Parkinson C, Su P, Wei Z, Pan L, Tekes A, Huisman TAGM, Golden WC, Liu P. Vessel-specific quantification of neonatal cerebral venous oxygenation. Magn Reson Med 2019; 82:1129-1139. [PMID: 31066104 DOI: 10.1002/mrm.27788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Noninvasive measurement of cerebral venous oxygenation (Yv ) in neonates is important in the assessment of brain oxygen extraction and consumption, and may be useful in characterizing brain development and neonatal brain diseases. This study aims to develop a rapid method for vessel-specific measurement of Yv in neonates. METHODS We developed a pulse sequence, named accelerated T2 -relaxation-under-phase-contrast (aTRUPC), which consists of velocity-encoding phase-contrast module to isolate pure blood signal, flow-insensitive T2 -preparation to quantify blood T2 , and turbo-field-echo (TFE) scheme for rapid image acquisition, which is critical for neonatal MRI. A series of studies were conducted. First, the pulse sequence was optimized in terms of TFE factor, velocity encoding (VENC), and slice thickness for best sensitivity. Second, to account for the influence of TFE acquisition on T2 quantification, simulation and experiments were conducted to establish the relationship between TFE-T2 and standard T2 . Finally, the complete aTRUPC sequence was applied on a group of healthy neonates and normative Yv values were determined. RESULTS Optimal parameters of aTRUPC in neonates were found to be a TFE factor of 15, VENC of 5 cm/s, and slice thickness of 10 mm. The TFE-T2 was on average 3.9% lower than standard T2 . These two measures were strongly correlated (R2 = 0.86); thus their difference can be accounted for by a correction equation, T2,standard = 1.2002 × T2,TFE - 10.6276. Neonatal Yv values in veins draining cortical brain and those draining central brain were 64.8 ± 2.9% and 70.2 ± 3.3%, respectively, with a significant difference (P =.02). CONCLUSION The aTRUPC MRI has the potential to provide vessel-specific quantification of cerebral Yv in neonates.
Collapse
Affiliation(s)
- Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland
| | - Charlamaine Parkinson
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Pan Su
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zhiliang Wei
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland
| | - Li Pan
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Siemens Healthineers, Baltimore, Maryland
| | - Aylin Tekes
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Thierry A G M Huisman
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - W Christopher Golden
- Neurosciences Intensive Care Nursery, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
17
|
Mampre D, Ehresman J, Alvarado-Estrada K, Wijesekera O, Sarabia-Estrada R, Quinones-Hinojosa A, Chaichana KL. Propensity for different vascular distributions and cerebral edema of intraparenchymal brain metastases from different primary cancers. J Neurooncol 2019; 143:115-122. [PMID: 30835021 DOI: 10.1007/s11060-019-03142-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/01/2019] [Indexed: 01/03/2023]
Abstract
PURPOSE This study seeks to ascertain whether different primary tumor types have a propensity for brain metastases (BMs) in different cerebral vascular territories and cerebral edema. METHODS Consecutive adult patients who underwent surgical resection of a BM at a tertiary care institution between 2001 and 2011 were retrospectively reviewed. Only patients with the most common primary cancers (lung, breast, skin-melanoma, colon, and kidney) were included. Preoperative MRIs were reviewed to classify all tumors by cerebral vascular territory (anterior cerebral artery-ACA, lenticulostriate, middle cerebral artery-MCA, posterior cerebral artery-PCA, posterior fossa, and watershed), and T2-weighted FLAIR widths were measured. Chi square analyses were performed to determine differences in cerebral vascular distribution by primary tumor type, and one-way ANOVA analyses were performed to determine FLAIR signal differences. RESULTS 669 tumors from 388 patients were classified from lung (n = 316 BMs), breast (n = 144), melanoma (n = 119), renal (n = 47), and colon (n = 43). BMs from breast cancer were less likely to be located in PCA territory (n = 18 [13%]; χ2 = 6.10, p = 0.01). BMs from melanoma were less likely to be located in cerebellar territory (n = 11 [9%]; χ2 = 14.1, p < 0.001), and more likely to be located in lateral (n = 5 [4%]; χ2 = 4.56, p = 0.03) and medial lenticulostriate territories (n = 2 [2%]; χ2 = 6.93, p = 0.009). BMs from breast and melanoma had shorter T2-FLAIR widths, with an average [IQR] of 47.2 [19.6-69.2] mm (p = 0.01) and 41.2 [14.4-62.7] mm (p = 0.002) respectively. Conversely, BMs from renal cancer had longer T2-FLAIR widths (64.2 [43.6-80.8] mm, p = 0.002). CONCLUSIONS These findings suggest that different primary tumor types could have propensities for different cerebral vascular territories and cerebral edema.
Collapse
Affiliation(s)
- David Mampre
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Jeff Ehresman
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Keila Alvarado-Estrada
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Olindi Wijesekera
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Rachel Sarabia-Estrada
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - Kaisorn L Chaichana
- Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
18
|
Aoe J, Watabe T, Shimosegawa E, Kato H, Kanai Y, Naka S, Matsunaga K, Isohashi K, Tatsumi M, Hatazawa J. Evaluation of the default-mode network by quantitative 15O-PET: comparative study between cerebral blood flow and oxygen consumption. Ann Nucl Med 2018; 32:485-491. [PMID: 29934675 PMCID: PMC6061207 DOI: 10.1007/s12149-018-1272-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 06/19/2018] [Indexed: 11/29/2022]
Abstract
Objective Resting-state functional MRI (rs-fMRI) has revealed the existence of a default-mode network (DMN) based on spontaneous oscillations of the blood oxygenation level-dependent (BOLD) signal. The BOLD signal reflects the deoxyhemoglobin concentration, which depends on the relationship between the regional cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO2). However, these two factors cannot be separated in BOLD rs-fMRI. In this study, we attempted to estimate the functional correlations in the DMN by means of quantitative 15O-labeled gases and water PET, and to compare the contribution of the CBF and CMRO2 to the DMN. Methods Nine healthy volunteers (5 men and 4 women; mean age, 47.0 ± 1.2 years) were studied by means of 15O-O2, 15O-CO gases and 15O-water PET. Quantitative CBF and CMRO2 images were generated by an autoradiographic method and transformed into MNI standardized brain template. Regions of interest were placed on normalized PET images according to the previous rs-fMRI study. For the functional correlation analysis, the intersubject Pearson’s correlation coefficients (r) were calculated for all pairs in the brain regions and correlation matrices were obtained for CBF and CMRO2, respectively. We defined r > 0.7 as a significant positive correlation and compared the correlation matrices of CBF and CMRO2. Results Significant positive correlations (r > 0.7) were observed in 24 pairs of brain regions for the CBF and 22 pairs of brain regions for the CMRO2. Among them, 12 overlapping networks were observed between CBF and CMRO2. Correlation analysis of CBF led to the detection of more brain networks as compared to that of CMRO2, indicating that the CBF can capture the state of the spontaneous activity with a higher sensitivity. Conclusions We estimated the functional correlations in the DMN by means of quantitative PET using 15O-labeled gases and water. The correlation matrix derived from the CBF revealed a larger number of brain networks as compared to that derived from the CMRO2, indicating that contribution to the functional correlation in the DMN is higher in the blood flow more than the oxygen consumption.
Collapse
Affiliation(s)
- Jo Aoe
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Eku Shimosegawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroki Kato
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yasukazu Kanai
- Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sadahiro Naka
- Department of Pharmacology, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keiko Matsunaga
- Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kayako Isohashi
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mitsuaki Tatsumi
- Department of Radiology, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
19
|
Yin Y, Zhang Y, Gao JH. Dynamic measurement of oxygen extraction fraction using a multiecho asymmetric spin echo (MASE) pulse sequence. Magn Reson Med 2018; 80:1118-1124. [PMID: 29315817 DOI: 10.1002/mrm.27078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Yayan Yin
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yaoyu Zhang
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institute for Brain Research, Peking University, Beijing, China.,Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|
20
|
Donahue MJ, Juttukonda MR, Watchmaker JM. Noise concerns and post-processing procedures in cerebral blood flow (CBF) and cerebral blood volume (CBV) functional magnetic resonance imaging. Neuroimage 2016; 154:43-58. [PMID: 27622397 DOI: 10.1016/j.neuroimage.2016.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/22/2016] [Accepted: 09/03/2016] [Indexed: 01/19/2023] Open
Abstract
Functional neuroimaging with blood oxygenation level-dependent (BOLD) contrast has emerged as the most popular method for evaluating qualitative changes in brain function in humans. At typical human field strengths (1.5-3.0T), BOLD contrast provides a measure of changes in transverse water relaxation rates in and around capillary and venous blood, and as such provides only a surrogate marker of brain function that depends on dynamic changes in hemodynamics (e.g., cerebral blood flow and volume) and metabolism (e.g., oxygen extraction fraction and the cerebral metabolic rate of oxygen consumption). Alternative functional neuroimaging methods that are specifically sensitive to these constituents of the BOLD signal are being developed and applied in a growing number of clinical and neuroscience applications of quantitative cerebral physiology. These methods require additional considerations for interpreting and quantifying their contrast responsibly. Here, an overview of two popular methods, arterial spin labeling and vascular space occupancy, is presented specifically in the context of functional neuroimaging. Appropriate post-processing and experimental acquisition strategies are summarized with the motivation of reducing sensitivity to noise and unintended signal sources and improving quantitative accuracy of cerebral hemodynamics.
Collapse
Affiliation(s)
- Manus J Donahue
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA; Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Meher R Juttukonda
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jennifer M Watchmaker
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
21
|
Krishnamurthy LC, Liu P, Ge Y, Lu H. Vessel-specific quantification of blood oxygenation with T2-relaxation-under-phase-contrast MRI. Magn Reson Med 2015; 71:978-89. [PMID: 23568830 DOI: 10.1002/mrm.24750] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Measurement of venous oxygenation (Yv) is a critical step toward quantitative assessment of brain oxygen metabolism, a key index in many brain disorders. The present study aims to develop a noninvasive, rapid, and reproducible method to measure Yv in a vessel-specific manner. THEORY The method, T2-Relaxation-Under-Phase-Contrast MRI, utilizes complex subtraction of phase-contrast to isolate pure blood signal, applies nonslice-selective T2-preparation to measure T2, and converts T2 to oxygenation using a calibration plot. METHODS Following feasibility demonstration, several technical aspects were examined, including validation with an established global Yv technique, test-retest reproducibility, sensitivity to detect oxygenation changes due to hypoxia and caffeine challenges, applicability of echo-planar-imaging (EPI) acquisition to shorten scan duration, and ability to study veins with a caliber of 1-2 mm. RESULTS T2-Relaxation-Under-Phase-Contrast was able to simultaneously measure Yv in all major veins in the brain, including sagittal sinus, straight sinus, great vein, and internal cerebral vein. T2-Relaxation-Under-Phase-Contrast results showed an excellent agreement with the reference technique, high sensitivity to oxygenation changes, and test-retest variability of 3.5 ± 1.0%. The use of segmented-EPI was able to reduce the scan duration to 1.5 minutes. It was also feasible to study pial veins and deep veins. CONCLUSION T2-Relaxation-Under-Phase-Contrast MRI is a promising technique for vessel-specific oxygenation measurement.
Collapse
Affiliation(s)
- Lisa C Krishnamurthy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Biomedical Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | | | | | | |
Collapse
|
22
|
Frings L, Hellwig S, Spehl TS, Bormann T, Buchert R, Vach W, Minkova L, Heimbach B, Klöppel S, Meyer PT. Asymmetries of amyloid-β burden and neuronal dysfunction are positively correlated in Alzheimer's disease. Brain 2015; 138:3089-99. [PMID: 26280595 DOI: 10.1093/brain/awv229] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/17/2015] [Indexed: 01/11/2023] Open
Abstract
Clinical Alzheimer's disease affects both cerebral hemispheres to a similar degree in clinically typical cases. However, in atypical variants like logopenic progressive aphasia, neurodegeneration often presents asymmetrically. Yet, no in vivo imaging study has investigated whether lateralized neurodegeneration corresponds to lateralized amyloid-β burden. Therefore, using combined (11)C-Pittsburgh compound B and (18)F-fluorodeoxyglucose positron emission tomography, we explored whether asymmetric amyloid-β deposition in Alzheimer's disease is associated with asymmetric hypometabolism and clinical symptoms. From our database of patients who underwent positron emission tomography with both (11)C-Pittsburgh compound B and (18)F-fluorodeoxyglucose (n = 132), we included all amyloid-positive patients with prodromal or mild-to-moderate Alzheimer's disease (n = 69). The relationship between (11)C-Pittsburgh compound B binding potential and (18)F-fluorodeoxyglucose uptake was assessed in atlas-based regions of interest covering the entire cerebral cortex. Lateralizations of amyloid-β and hypometabolism were tested for associations with each other and with type and severity of cognitive symptoms. Positive correlations between asymmetries of Pittsburgh compound B binding potential and hypometabolism were detected in 6 of 25 regions (angular gyrus, middle frontal gyrus, middle occipital gyrus, superior parietal gyrus, inferior and middle temporal gyrus), i.e. hypometabolism was more pronounced on the side of greater amyloid-β deposition (range: r = 0.41 to 0.53, all P < 0.001). Stronger leftward asymmetry of amyloid-β deposition was associated with more severe language impairment (P < 0.05), and stronger rightward asymmetry with more severe visuospatial impairment (at trend level, P = 0.073). Similarly, patients with predominance of language deficits showed more left-lateralized amyloid-β burden and hypometabolism than patients with predominant visuospatial impairment and vice versa in several cortical regions. Associations between amyloid-β deposition and hypometabolism or cognitive impairment were predominantly observed in brain regions with high amyloid-β load. The relationship between asymmetries of amyloid-β deposition and hypometabolism in cortical regions with high amyloid-β load is in line with the detrimental effect of amyloid-β burden on neuronal function. Asymmetries were also concordant with lateralized cognitive symptoms, indicating their clinical relevance.
Collapse
Affiliation(s)
- Lars Frings
- 1 Department of Nuclear Medicine, University Medical Centre, Freiburg, Germany 2 Centre of Geriatrics and Gerontology, University Medical Centre, Freiburg, Germany
| | - Sabine Hellwig
- 2 Centre of Geriatrics and Gerontology, University Medical Centre, Freiburg, Germany 3 Department of Psychiatry and Psychotherapy, University Medical Centre, Freiburg, Germany
| | - Timo S Spehl
- 1 Department of Nuclear Medicine, University Medical Centre, Freiburg, Germany
| | - Tobias Bormann
- 4 Department of Neurology, University Medical Centre, Freiburg, Germany
| | - Ralph Buchert
- 5 Department of Nuclear Medicine, Charité Universitätsmedizin Berlin, Germany
| | - Werner Vach
- 6 Centre for Medical Biometry and Medical Informatics, University Medical Centre, Freiburg, Germany
| | - Lora Minkova
- 3 Department of Psychiatry and Psychotherapy, University Medical Centre, Freiburg, Germany 7 Freiburg Brain Imaging, University Medical Centre Freiburg, Germany
| | - Bernhard Heimbach
- 2 Centre of Geriatrics and Gerontology, University Medical Centre, Freiburg, Germany
| | - Stefan Klöppel
- 2 Centre of Geriatrics and Gerontology, University Medical Centre, Freiburg, Germany 3 Department of Psychiatry and Psychotherapy, University Medical Centre, Freiburg, Germany 7 Freiburg Brain Imaging, University Medical Centre Freiburg, Germany
| | - Philipp T Meyer
- 1 Department of Nuclear Medicine, University Medical Centre, Freiburg, Germany
| |
Collapse
|
23
|
Hare HV, Blockley NP, Gardener AG, Clare S, Bulte DP. Investigating the field-dependence of the Davis model: Calibrated fMRI at 1.5, 3 and 7T. Neuroimage 2015; 112:189-196. [PMID: 25783207 PMCID: PMC4410945 DOI: 10.1016/j.neuroimage.2015.02.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/16/2015] [Accepted: 02/25/2015] [Indexed: 10/28/2022] Open
Abstract
Gas calibrated fMRI in its most common form uses hypercapnia in conjunction with the Davis model to quantify relative changes in the cerebral rate of oxygen consumption (CMRO2) in response to a functional stimulus. It is most commonly carried out at 3T but, as 7T research scanners are becoming more widespread and the majority of clinical scanners are still 1.5T systems, it is important to investigate whether the model used remains accurate across this range of field strengths. Ten subjects were scanned at 1.5, 3 and 7T whilst performing a bilateral finger-tapping task as part of a calibrated fMRI protocol, and the results were compared to a detailed signal model. Simulations predicted an increase in value and variation in the calibration parameter M with field strength. Two methods of defining experimental regions of interest (ROIs) were investigated, based on (a) BOLD signal and (b) BOLD responses within grey matter only. M values from the latter ROI were in closer agreement with theoretical predictions; however, reassuringly, ROI choice had less impact on CMRO2 than on M estimates. Relative changes in CMRO2 during motor tasks at 3 and 7T were in good agreement but were over-estimated at 1.5T as a result of the lower signal to noise ratio. This result is encouraging for future studies at 7T, but also highlights the impact of imaging and analysis choices (such as ASL sequence and ROI definition) on the calibration parameter M and on the calculation of CMRO2.
Collapse
Affiliation(s)
- Hannah V Hare
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | - Nicholas P Blockley
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alexander G Gardener
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stuart Clare
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Daniel P Bulte
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
24
|
Fontana EJ, Benzinger T, Cobbs C, Henson J, Fouke SJ. The evolving role of neurological imaging in neuro-oncology. J Neurooncol 2014; 119:491-502. [PMID: 25081974 DOI: 10.1007/s11060-014-1505-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/11/2014] [Indexed: 11/30/2022]
Abstract
Neuroimaging has played a critical role in the management of patients with neurological disease, since the first ventriculogram was performed in 1918 by Walter Dandy (Mezger et al. Langenbecks Arch Surg 398(4):501-514, 2013). Over the last century, technology has evolved significantly, and within the last decade, the role of imaging in the management of patients with neuro-oncologic disease has shifted from a tool for gross identification of intracranial pathology, to an integral part of real-time neurological surgery. Current neurological imaging provides detailed information about anatomical structure, neurological function, and metabolic and metabolism-important characteristics that help clinicians and surgeons non-invasively manage patients with brain tumors. It is valuable to review the evolution of neurological imaging over the past several decades, focusing on its role in the management of patients with intracranial tumors. Novel neuro-imaging tools and developing technology with the potential to further transform clinical practice will be discussed, as will the key role neurological imaging plays in neurosurgical planning and intraoperative navigation. With increasingly complex imaging modalities creating growing amounts of raw data, validation of techniques, data analysis, and integrating various pieces of imaging data into individual patient management plans, remain significant challenges for clinicians. We thus suggest mechanisms that might ultimately allow for evidence based integration of imaging in the management of patients with neuro-oncologic disease.
Collapse
Affiliation(s)
- E J Fontana
- Swedish Neuroscience Institute, 550 17th Ave, Seattle, WA, 98122, USA
| | | | | | | | | |
Collapse
|
25
|
Goyal MS, Hawrylycz M, Miller JA, Snyder AZ, Raichle ME. Aerobic glycolysis in the human brain is associated with development and neotenous gene expression. Cell Metab 2014; 19:49-57. [PMID: 24411938 PMCID: PMC4389678 DOI: 10.1016/j.cmet.2013.11.020] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 08/02/2013] [Accepted: 11/06/2013] [Indexed: 11/26/2022]
Abstract
Aerobic glycolysis (AG; i.e., nonoxidative metabolism of glucose despite the presence of abundant oxygen) accounts for 10%-12% of glucose used by the adult human brain. AG varies regionally in the resting state. Brain AG may support synaptic growth and remodeling; however, data supporting this hypothesis are sparse. Here, we report on investigations on the role of AG in the human brain. Meta-analysis of prior brain glucose and oxygen metabolism studies demonstrates that AG increases during childhood, precisely when synaptic growth rates are highest. In resting adult humans, AG correlates with the persistence of gene expression typical of infancy (transcriptional neoteny). In brain regions with the highest AG, we find increased gene expression related to synapse formation and growth. In contrast, regions high in oxidative glucose metabolism express genes related to mitochondria and synaptic transmission. Our results suggest that brain AG supports developmental processes, particularly those required for synapse formation and growth.
Collapse
Affiliation(s)
- Manu S Goyal
- Neuroimaging Laboratories, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA.
| | - Michael Hawrylycz
- Allen Institute for Brain Science, 551 North 34(th) Street, Seattle, WA 98103, USA
| | - Jeremy A Miller
- Allen Institute for Brain Science, 551 North 34(th) Street, Seattle, WA 98103, USA
| | - Abraham Z Snyder
- Neuroimaging Laboratories, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA
| | - Marcus E Raichle
- Neuroimaging Laboratories, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
26
|
Blockley NP, Griffeth VEM, Simon AB, Buxton RB. A review of calibrated blood oxygenation level-dependent (BOLD) methods for the measurement of task-induced changes in brain oxygen metabolism. NMR IN BIOMEDICINE 2013; 26:987-1003. [PMID: 22945365 PMCID: PMC3639302 DOI: 10.1002/nbm.2847] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/17/2012] [Accepted: 08/02/2012] [Indexed: 05/23/2023]
Abstract
The dynamics of the blood oxygenation level-dependent (BOLD) response are dependent on changes in cerebral blood flow, cerebral blood volume and the cerebral metabolic rate of oxygen consumption. Furthermore, the amplitude of the response is dependent on the baseline physiological state, defined by the haematocrit, oxygen extraction fraction and cerebral blood volume. As a result of this complex dependence, the accurate interpretation of BOLD data and robust intersubject comparisons when the baseline physiology is varied are difficult. The calibrated BOLD technique was developed to address these issues. However, the methodology is complex and its full promise has not yet been realised. In this review, the theoretical underpinnings of calibrated BOLD, and issues regarding this theory that are still to be resolved, are discussed. Important aspects of practical implementation are reviewed and reported applications of this methodology are presented.
Collapse
Affiliation(s)
- Nicholas P Blockley
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, CA, USA.
| | | | | | | |
Collapse
|
27
|
Brain perfusion asymmetry in patients with oral somatic delusions. Eur Arch Psychiatry Clin Neurosci 2013; 263:315-23. [PMID: 23354990 PMCID: PMC3668126 DOI: 10.1007/s00406-013-0390-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 01/15/2013] [Indexed: 12/15/2022]
Abstract
Oral cenesthopathy is a somatic delusion or hallucination involving the oral area and is categorized as a delusional disorder, somatic type. The pathophysiology of this intractable condition remains obscure. In this study, we clarified the pathophysiology of oral cenesthopathy by evaluating regional brain perfusion. We performed single photon emission computed tomography (SPECT) using (99m)Tc-ethylcysteinate dimer in 16 subjects (cenesthopathy:control = 8:8). The SPECT images were visually assessed qualitatively, and quantitative analyses were also performed using a three-dimensional stereotactic region-of-interest template. The visual assessment revealed a right > left perfusion asymmetry in broad areas of the brain among the patients. The quantitative analysis confirmed that the regional cerebral blood flow values on the right side were significantly larger than those on the left side for most areas of the brain in the patients. A comparison of the R/(R + L) ratios in both groups confirmed the significant brain perfusion asymmetry between the two sides in the callosomarginal, precentral, and temporal regions in the patients. Qualitative evaluation of the SPECT images revealed right > left brain perfusion asymmetry in broad regions of the brain. Moreover, the quantitative analyses confirmed the perfusion asymmetry between the two sides in the frontal and temporal areas. Those may provide the key for elucidation of the pathophysiology of oral cenesthopathy.
Collapse
|
28
|
Apostolova I, Wunder A, Dirnagl U, Michel R, Stemmer N, Lukas M, Derlin T, Gregor-Mamoudou B, Goldschmidt J, Brenner W, Buchert R. Brain perfusion SPECT in the mouse: Normal pattern according to gender and age. Neuroimage 2012; 63:1807-17. [DOI: 10.1016/j.neuroimage.2012.08.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/12/2012] [Accepted: 08/15/2012] [Indexed: 11/29/2022] Open
|
29
|
Kutlu N, Mutlu F, Vural K, Cezayirli E. Comparison of blood brain barrier permeability in normal and ovariectomized female rats that demonstrate right or left paw preference. Biotech Histochem 2012; 87:526-32. [DOI: 10.3109/10520295.2012.722228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Chinta LV, Lindvere L, Dorr A, Sahota B, Sled JG, Stefanovic B. Quantitative estimates of stimulation-induced perfusion response using two-photon fluorescence microscopy of cortical microvascular networks. Neuroimage 2012; 61:517-24. [PMID: 22521258 DOI: 10.1016/j.neuroimage.2012.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/30/2012] [Accepted: 04/03/2012] [Indexed: 01/29/2023] Open
Abstract
Functional hyperemia, or the increase in focal perfusion elicited by neuronal activation, is one of the primary functions of the neurovascular unit and a hallmark of healthy brain functioning. While much is known about the hemodynamics on the millimeter to tenths of millimeter-scale accessible by MRI, there is a paucity of quantitative data on the micrometer-scale changes in perfusion in response to functional stimulation. We present a novel methodology for quantification of perfusion and intravascular flow across the 3D microvascular network in the rat somatosensory cortex using two-photon fluorescence microscopy (2PFM). For approximately 96% of responding microvessels in the forelimb representation of the primary somatosensory cortex, brief (~2s) forepaw stimulation resulted in an increase of perfusion 20±4% (mean±sem). The perfusion levels associated with the remaining 4% of the responding microvessels decreased 10±9% upon stimulation. Vessels irrigating regions of lower vascular density were found to exhibit higher flow (p<0.02), supporting the notion that local vascular morphology and hemodynamics reflect the metabolic needs of the surrounding parenchyma. High dispersion (~77%) in perfusion levels suggests high spatial variation in tissue susceptibility to hypoxia. The current methodology enables quantification of absolute perfusion associated with individual vessels of the cortical microvascular bed and its changes in response to functional stimulation and thereby provides an important tool for studying the cellular mechanisms of functional hyperemia, the spatial specificity of perfusion response to functional stimulation, and, broadly, the micrometer-scale relationship between vascular morphology and function in health and disease.
Collapse
Affiliation(s)
- Lakshminarayan V Chinta
- Imaging Research, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5
| | | | | | | | | | | |
Collapse
|
31
|
Noninvasive Measurements of Cerebral Blood Flow, Oxygen Extraction Fraction, and Oxygen Metabolic Index in Human with Inhalation of Air and Carbogen using Magnetic Resonance Imaging. Transl Stroke Res 2011; 3:246-54. [PMID: 24323780 DOI: 10.1007/s12975-011-0142-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/16/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
Abstract
Noninvasive magnetic resonance (MR) methods have been explored to provide quantitative measurements of cerebral blood flow (CBF), oxygen extraction fraction (OEF), and oxygen metabolic index (OMI = CBF × OEF). In this study, we sought to evaluate whether MR measured OEF, CBF, and OMI can consistently detect the expected physiological changes in humans under normal and hyperoxic hypercapnic conditions. Nine healthy human subjects were scanned while breathing through a mask, alternating inhaled gas in a sequential order as room air, carbogen (3% CO2 mixed with 97% O2), room air, carbogen, and room air. OEF, CBF, and OMI were obtained from the whole brain, gray matter (GM), and white matter (WM) at each gas inhalation state. Similar to previous positron emission tomography findings, our study consistently demonstrated a 10-12% decrease in OEF with a 10% increase of CBF and a stable OMI during carbogen inhalation. Moreover, GM/WM ratio in CBF and OMI remained constant during air and carbogen breathing. In addition, OEF, CBF, and OMI were highly reproducible if the same inhaled gas was used. In summary, our results demonstrate that noninvasive MR measurements can provide reproducible measurements of OEF, CBF, and OMI in normal subjects under normal and altered physiological conditions.
Collapse
|
32
|
Blockley NP, Griffeth VEM, Buxton RB. A general analysis of calibrated BOLD methodology for measuring CMRO2 responses: comparison of a new approach with existing methods. Neuroimage 2011; 60:279-89. [PMID: 22155329 DOI: 10.1016/j.neuroimage.2011.11.081] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 10/21/2011] [Accepted: 11/25/2011] [Indexed: 11/27/2022] Open
Abstract
The amplitude of the BOLD response to a stimulus is not only determined by changes in cerebral blood flow (CBF) and oxygen metabolism (CMRO(2)), but also by baseline physiological parameters such as haematocrit, oxygen extraction fraction (OEF) and blood volume. The calibrated BOLD approach aims to account for this physiological variation by performing an additional calibration scan. This calibration typically consists of a hypercapnia or hyperoxia respiratory challenge, although we propose that a measurement of the reversible transverse relaxation rate, R(2)', might also be used. A detailed model of the BOLD effect was used to simulate each of the calibration experiments, as well as the activation experiment, whilst varying a number of physiological parameters associated with the baseline state and response to activation. The effectiveness of the different calibration methods was considered by testing whether the BOLD response to activation scaled by the calibration parameter combined with the measured CBF provides sufficient information to reliably distinguish different levels of CMRO(2) response despite underlying physiological variability. In addition the effect of inaccuracies in the underlying assumptions of each technique were tested, e.g. isometabolism during hypercapnia. The three primary findings of the study were: 1) The new calibration method based on R(2)' worked reasonably well, although not as well as the ideal hypercapnia method; 2) The hyperoxia calibration method was significantly worse because baseline haematocrit and OEF must be assumed, and these physiological parameters have a significant effect on the measurements; and 3) the venous blood volume change with activation is an important confounding variable for all of the methods, with the hypercapnia method being the most robust when this is uncertain.
Collapse
Affiliation(s)
- Nicholas P Blockley
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, CA 92093-0677, USA.
| | | | | |
Collapse
|
33
|
An H, Liu Q, Eldeniz C, Lin W. Absolute oxygenation metabolism measurements using magnetic resonance imaging. Open Neuroimag J 2011; 5:120-35. [PMID: 22276084 PMCID: PMC3256581 DOI: 10.2174/1874440001105010120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 02/02/2011] [Accepted: 03/03/2011] [Indexed: 11/29/2022] Open
Abstract
Cerebral oxygen metabolism plays a critical role in maintaining normal function of the brain. It is the primary energy source to sustain neuronal functions. Abnormalities in oxygen metabolism occur in various neuro-pathologic conditions such as ischemic stroke, cerebral trauma, cancer, Alzheimer’s disease and shock. Therefore, the ability to quantitatively measure tissue oxygenation and oxygen metabolism is essential to the understanding of pathophysiology and treatment of various diseases. The focus of this review is to provide an introduction of various blood oxygenation level dependent (BOLD) contrast methods for absolute measurements of tissue oxygenation, including both magnitude and phase image based approaches. The advantages and disadvantages of each method are discussed.
Collapse
Affiliation(s)
- Hongyu An
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, USA
| | | | | | | |
Collapse
|
34
|
|
35
|
Sakamoto K, Nakata H, Yumoto M, Kakigi R. Somatosensory processing of the tongue in humans. Front Physiol 2010; 1:136. [PMID: 21423377 PMCID: PMC3059928 DOI: 10.3389/fphys.2010.00136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/12/2010] [Indexed: 11/13/2022] Open
Abstract
We review research on somatosensory (tactile) processing of the tongue based on data obtained using non-invasive neurophysiological and neuroimaging methods. Technical difficulties in stimulating the tongue, due to the noise elicited by the stimulator, the fixation of the stimulator, and the vomiting reflex, have necessitated the development of specialized devices. In this article, we show the brain activity relating to somatosensory processing of the tongue evoked by such devices. More recently, the postero-lateral part of the tongue has been stimulated, and the brain response compared with that on stimulation of the antero-lateral part of the tongue. It is likely that a difference existed in somatosensory processing of the tongue, particularly around primary somatosensory cortex, Brodmann area 40, and the anterior cingulate cortex.
Collapse
Affiliation(s)
- Kiwako Sakamoto
- Department of Integrative Physiology, National Institute for Physiological SciencesOkazaki, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo HospitalTokyo, Japan
| | - Hiroki Nakata
- Department of Integrative Physiology, National Institute for Physiological SciencesOkazaki, Japan
- Faculty of Sport Sciences, Waseda UniversityTokorozawa, Saitama, Japan
| | - Masato Yumoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo HospitalTokyo, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological SciencesOkazaki, Japan
| |
Collapse
|
36
|
Sakamoto K, Nakata H, Inui K, Perrucci MG, Del Gratta C, Kakigi R, Romani GL. A difference exists in somatosensory processing between the anterior and posterior parts of the tongue. Neurosci Res 2010; 66:173-9. [DOI: 10.1016/j.neures.2009.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 10/27/2009] [Accepted: 10/27/2009] [Indexed: 11/17/2022]
|
37
|
Xu F, Ge Y, Lu H. Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO2) by MRI. Magn Reson Med 2009; 62:141-8. [PMID: 19353674 DOI: 10.1002/mrm.21994] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cerebral metabolic rate of oxygen (CMRO(2)) is an important marker for brain function and brain health. Existing techniques for quantification of CMRO(2) with positron emission tomography (PET) or MRI involve special equipment and/or exogenous agents, and may not be suitable for routine clinical studies. In the present study, a noninvasive method is developed to estimate whole-brain CMRO(2) in humans. This method applies phase-contrast MRI for quantitative blood flow measurement and T(2)-relaxation-under-spin-tagging (TRUST) MRI for venous oxygenation estimation, and uses the Fick principle of arteriovenous difference for the calculation of CMRO(2). Whole-brain averaged CMRO(2) values in young, healthy subjects were 132.1 +/- 20.0 micromol/100 g/min, in good agreement with literature reports using PET. Various acquisition strategies for phase-contrast and TRUST MRI were compared, and it was found that nongated phase-contrast and sagittal sinus (SS) TRUST MRI were able to provide the most efficient and accurate estimation of CMRO(2). In addition, blood flow and venous oxygenation were found to be positively correlated across subjects. Owing to the noninvasive nature of this method, it may be a convenient and useful approach for assessment of brain metabolism in brain disorders as well as under various physiologic conditions.
Collapse
Affiliation(s)
- Feng Xu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
38
|
Schobel SA, Lewandowski NM, Corcoran CM, Moore H, Brown T, Malaspina D, Small SA. Differential targeting of the CA1 subfield of the hippocampal formation by schizophrenia and related psychotic disorders. ACTA ACUST UNITED AC 2009; 66:938-46. [PMID: 19736350 DOI: 10.1001/archgenpsychiatry.2009.115] [Citation(s) in RCA: 281] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT Because schizophrenia and related disorders have a chronic time course and subtle histopathology, it is difficult to identify which brain regions are differentially targeted. OBJECTIVE To identify brain sites differentially targeted by schizophrenia, we applied a high-resolution variant of functional magnetic resonance imaging to clinically characterized patients and matched healthy controls and to a cohort of prodromal subjects who were prospectively followed up. Additionally, to explore the potential confound of medication use, the fMRI variant was applied to rodents receiving an antipsychotic agent. DESIGN Cross-sectional and prospective cohort designs. SETTING Hospital clinic and magnetic resonance imaging laboratory. PARTICIPANTS Eighteen patients with schizophrenia, 18 controls comparable in age and sex, and 18 prodromal patients followed up prospectively for 2 years. Ten C57-B mice received an antipsychotic agent or vehicle control. MAIN OUTCOME MEASURES Regional cerebral blood volume (CBV), as measured with magnetic resonance imaging, and symptom severity, as measured with clinical rating scales. RESULTS In a first between-group analysis that compared patients with schizophrenia with controls, results revealed abnormal CBV increases in the CA1 subfield and the orbitofrontal cortex and abnormal CBV decreases in the dorsolateral prefrontal cortex. In a second longitudinal analysis, baseline CBV abnormalities in the CA1 subfield differentially predicted clinical progression to psychosis from a prodromal state. In a third correlational analysis, CBV levels in the CA1 subfield differentially correlated with clinical symptoms of psychosis. Finally, additional analyses of the human data set and imaging studies in mice suggested that antipsychotic agents were not confounding the primary findings. CONCLUSIONS Taken as a whole, the results suggest that the CA1 subfield of the hippocampal subregion is differentially targeted by schizophrenia and related psychotic disorders. Interpreted in the context of previous studies, these findings inform underlying mechanisms of illness progression.
Collapse
Affiliation(s)
- Scott A Schobel
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Eve DJ, Musso J, Park DH, Oliveira C, Pollock K, Hope A, Baradez MO, Sinden JD, Sanberg PR. Methodological study investigating long term laser Doppler measured cerebral blood flow changes in a permanently occluded rat stroke model. J Neurosci Methods 2009; 180:52-6. [PMID: 19427529 DOI: 10.1016/j.jneumeth.2009.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/20/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
Cerebral blood flow is impaired during middle cerebral artery occlusion in the rat model of stroke. However, the long term effects on cerebral blood flow following occlusion have received little attention. We examined cerebral blood flow in both sides at multiple time points following middle cerebral artery occlusion of the rat. The bilateral cerebral blood flow in young male Sprague Dawley rats was measured at the time of occlusion, as well as 4, 10 and 16 weeks after occlusion. Under the present experimental conditions, the difference between the left and right side's cerebral blood flow was observed to appear to switch in direction in a visual oscillatory fashion over time in the sham-treated group, whereas the occluded animals consistently showed left side dominance. One group of rats was intraparenchymally transplanted with a human neural stem cell line (CTX0E03 cells) known to have benefit in stroke models. Cerebral blood flow in the lesioned side of the cell-treated group was observed to be improved compared to the untreated rats and to demonstrate a similar oscillatory nature as that observed in sham-treated animals. These findings suggest that multiple bilateral monitoring of cerebral blood flow over time can show effects of stem cell transplantation efficiently as well as functional tests in an animal stroke model.
Collapse
Affiliation(s)
- David J Eve
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, MDC-78, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
MicroPET study of brain neuronal metabolism under electrical and mechanical stimulation of the rat tail. Nucl Med Commun 2009; 30:188-93. [DOI: 10.1097/mnm.0b013e32830c6a87] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Bulte D, Chiarelli P, Wise R, Jezzard P. Measurement of cerebral blood volume in humans using hyperoxic MRI contrast. J Magn Reson Imaging 2008; 26:894-9. [PMID: 17896390 DOI: 10.1002/jmri.21096] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To develop a new method of measuring quantitative regional cerebral blood volume (CBV) using epochs of hyperoxia as an intravenous contrast agent with T2*-weighted MRI. MATERIALS AND METHODS Images were acquired from six subjects (four male, two female, mean age 29 +/- 3.7 years) using a sequence combining pulsed arterial spin labeling interleaved with a gradient echo echo-planar imaging (EPI) blood oxygenation level-dependent (BOLD) sequence at 3T. The hyperoxia paradigm lasted 28 minutes consisting of 4 minutes of normoxia, two 6-minute blocks of hyperoxia separated by 6 minutes of normoxia. During the hyperoxic blocks the subjects were delivered a fractional oxygen concentration of 0.5. RESULTS The mean CBV was calculated to be 3.77 +/- 1.05 mL/100 g globally, 3.93 +/- 0.90 mL/100 g in gray matter (GM), and 2.52 +/- 0.78 mL/100 g in white matter (WM). The mean GM/WM ratio was thus found to be 1.56. These values are comparable to those obtained in other studies. CONCLUSION The hyperoxia technique for measuring CBV may be particularly useful for patient groups where an injected bolus of contrast agent is contraindicated. As more functional studies are employing epochs of inspired gases for calibration purposes, this method is easily incorporated into existing paradigms to produce a noninvasive, repeatable, easily tolerated, and quantitative measurement of regional CBV.
Collapse
Affiliation(s)
- Daniel Bulte
- FMRIB Centre, Department of Clinical Neurology, University of Oxford, Oxford, UK.
| | | | | | | |
Collapse
|
42
|
Hermes M, Hagemann D, Britz P, Lieser S, Rock J, Naumann E, Walter C. Reproducibility of continuous arterial spin labeling perfusion MRI after 7 weeks. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2007; 20:103-15. [PMID: 17429703 DOI: 10.1007/s10334-007-0073-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 03/14/2007] [Accepted: 03/14/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Continuous arterial spin labeling (CASL) is a non-invasive technique for the measurement of cerebral blood flow (CBF). The aim of the present study was to examine the reproducibility of CASL measurements and its suitability to consistently detect differences between groups, regions, and resting states. MATERIALS AND METHODS Thirty-eight healthy subjects (19 female) were examined at 1.5 T on two measurement occasions that were seven weeks apart. Resting CBF was measured with eyes open and eyes closed. RESULTS In different regions of interest (ROIs) the repeatability estimates varied between 9 and 19 ml/100 g/min. There were no significant mean differences between occasions in all ROIs (P > 0.05). Greater CBF in the eyes-open than in the eyes-closed state was consistently present in the primary and secondary visual areas. Furthermore, CBF was consistently greater in the right than in the left hemisphere (P < 0.05) and differed between lobes and between arterial territories (P < 0.001). Finally, we consistently observed greater CBF in women than in men (P < 0.001). CONCLUSION This study demonstrates the suitability of CASL to consistently detect differences between groups, regions, and resting states even after seven weeks. This emphasizes its usefulness for longitudinal designs.
Collapse
Affiliation(s)
- Michael Hermes
- Department of Psychology, University of Trier, Trier, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Poblete García V, García Vicente A, Soriano Castrejón A, Beato Fernández L, García-Vilches I, Rodríguez-Cano T, Cortés Romera M, Ruiz Solís S, Rodado Marina S, Talavera Rubio M. Valoración del flujo cortical cerebral mediante SPECT de perfusión cerebral en pacientes con diagnóstico de trastornos de la conducta alimentaria. ACTA ACUST UNITED AC 2007. [DOI: 10.1157/13097377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Sfyroeras GS, Arsos G, Karkos CD, Liasidis C, Spyridis C, Boundas D, Dimitriadis AS, Gerassimidis TS. Interhemispheric Asymmetry in Brain Perfusion Before and After Carotid Stenting:A99mTc-HMPAO SPECT Study. J Endovasc Ther 2006; 13:729-37. [PMID: 17154707 DOI: 10.1583/06-1857.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To assess the effect of unilateral carotid angioplasty and stenting (CAS) on cerebral perfusion asymmetry in patients with severe extracranial carotid stenosis by means of technetium Tc 99m hexamethyl-propyleneamine oxime brain single photon emission computed tomography ((99m)Tc-HMPAO SPECT). METHODS Twenty-nine consecutive patients (22 men; median age 68 years, range 58-80; 13 symptomatic) undergoing unilateral CAS were included in the study. Brain perfusion was assessed by (99m)Tc-HMPAO brain SPECT prior to the procedure and postoperatively at 8 hours and at 2 to 4 months. The asymmetry index (AI), a measure of the interhemispheric asymmetry in perfusion, was calculated as [(counts in "healthy" hemisphere-counts in hemisphere with carotid stenosis)/counts in "healthy" hemisphere]x100. RESULTS The preoperative AI demonstrated a wide variation (mean -0.5%+/-8.4%, range -19.5% to 14.1%). There was no significant correlation between the degree of carotid stenosis and preoperative AI. The mean preoperative AI in the asymptomatic patients was lower than in the symptomatic group [-4.0%+/-8.5% (range -19.5% to 8.2%) versus 3.8%+/-6.4% (range -5.2% to 14.1%), p=0.01], suggesting reduced perfusion of the ipsilateral cerebral hemisphere compared to the contralateral side in symptomatic patients. AI variation did not improve after CAS; there was no difference in AI among the 3 SPECT studies (p=0.75). Preoperative AI correlated significantly with late AI (r=0.74, p<0.0001); however, there was no statistically significant correlation between immediate postoperative AI and either preoperative (r=0.24, p=0.217) or late (r=0.24, p=0.249) AI. CONCLUSION Asymmetry in cerebral perfusion in patients with severe extracranial carotid atherosclerosis does not correlate with the degree of carotid stenosis. Symptomatic patients demonstrate compromised perfusion of the ipsilateral hemisphere compared to asymptomatic patients. As judged by (99m)Tc-HMPAO SPECT scanning, cerebral perfusion patterns do not significantly change after CAS.
Collapse
Affiliation(s)
- Giorgos S Sfyroeras
- 5th Surgical Clinic, Medical School, Aristotle University of Thessaloniki, Hippocratio Hospital, Konstantinoupoleos 49, Thessaloniki 546 42, Greece
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Neeb H, Zilles K, Shah NJ. Fully-automated detection of cerebral water content changes: Study of age- and gender-related H2O patterns with quantitative MRI. Neuroimage 2006; 29:910-22. [PMID: 16303316 DOI: 10.1016/j.neuroimage.2005.08.062] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Revised: 07/27/2005] [Accepted: 08/04/2005] [Indexed: 11/20/2022] Open
Abstract
We present a simple and robust method for the automated image analysis of quantitative cerebral water content maps acquired with MRI. The method is based on a new approach for the absolute and quantitative mapping of water content in vivo. Water content maps were automatically segmented into grey and white matter by employing the quantitative T1 information acquired as part of the water content mapping procedure. Based on the segmented maps, twenty-two parameters sensitive to both absolute water content and its spatial organisation are automatically extracted without user interaction. The parameters include, amongst others, absolute water content in grey and white matter and spatial asymmetries of the cerebral water content distribution. Significant age- and gender-related changes in the parameters determined were observed in a study of forty-four healthy subjects. Most notably, the grey matter water content decreases at a rate of 0.034%/year for females between the 3rd and 8th decade of life, whilst a much stronger decrease is observed in males which sets in after the 5th decade of life. In addition, female grey matter water content is, on average, 1.2% higher than the respective male grey matter water content. In contrast to the heterogeneity observed in grey matter, no significant physiological variation was observed for white matter water content. In addition to absolute grey matter water content, characteristic age- and gender-specific variations were also observed in most of the other variables. To check the potential loss of information associated with the large reduction of the dimensionality of the dataset to 22 parameters only, the age and gender of each individual subject were predicted by employing robust linear discriminant analysis based on only the determined twenty-two variables. The median deviation between predicted and real age was 6.3 years resulting in a high correlation coefficient between both values (r = 0.69). Gender is correctly predicted in 68.2% of all cases which improves to 87.5% when age-dependent effects are first corrected, demonstrating the high information content present in the variables even though the dimension of the dataset was significantly reduced. These results form the baseline for future studies of cerebral pathology. The method presented is fully automated, robust and flexible, making it an ideal tool for routine application in both neuroscientific studies and clinical diagnosis based on the quantitative measurement of cerebral water content.
Collapse
Affiliation(s)
- Heiko Neeb
- Institut für Medizin, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | | | | |
Collapse
|
46
|
Soustiel JF, Glenn TC, Vespa P, Rinsky B, Hanuscin C, Martin NA. Assessment of cerebral blood flow by means of blood-flow-volume measurement in the internal carotid artery: comparative study with a 133xenon clearance technique. Stroke 2003; 34:1876-80. [PMID: 12843349 DOI: 10.1161/01.str.0000080942.32331.39] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE We sought to evaluate a new, angle-independent ultrasonic device for assessment of blood flow volume (BFV) in the internal carotid artery (ICA). METHODS Nineteen patients and 4 healthy volunteers were enrolled in a comparative study conducted in the Care Unit of the Division of Neurosurgery at UCLA Medical Center. All patients had been admitted because of severe brain injury: 15 patients with severe head trauma (Glasgow Coma Scale score< or =8) and 4 patients with subarachnoid hemorrhage due to aneurysm rupture. In all patients and subjects, cerebral blood flow (CBF) values obtained with the 133xenon-clearance technique were compared with BFV measurements in the ipsilateral ICA. RESULTS Hemispheric CBF values showed a close and linear correlation with BFV measurements (r=0.76, P<0.0001). Global CBF values showed a higher correlation with the total BFV value obtained from both ICAs (r=0.84, P<0.0001). With 37 mL x min(-1) x 100 g(-1) as a cutoff value for the ischemic range, a BFV value of 220 mL/min would yield a positive predictive value of 91.7% and a negative predictive value of 82.6% (sensitivity 73.3%, specificity 95%). Conversely, BFV sensitivity and specificity were 60% and 96%, respectively, for the hyperemic range defined by a CBF value >55 mL x min(-1) x 100 g(-1) (positive predictive value of 85.7% and negative prediction value of 85.7%). CONCLUSIONS BFV measurements with this new technology proved to accurately correlate with CBF values evaluated by the 133xenon-clearance technique. These results support the implementation of this technique for bedside assessment of cerebral hemodynamics in critically ill neurosurgical patients.
Collapse
Affiliation(s)
- J F Soustiel
- Division of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 30095, USA
| | | | | | | | | | | |
Collapse
|
47
|
Kaufman JA, Phillips-Conroy JE, Black KJ, Perlmutter JS. Asymmetric regional cerebral blood flow in sedated baboons measured by positron emission tomography (PET). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2003; 121:369-77. [PMID: 12884319 DOI: 10.1002/ajpa.10181] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The analysis of structural brain asymmetry has been a focal point in anthropological theories of human brain evolution and the development of lateralized behaviors. While physiological brain asymmetries have been documented for humans and animals presenting with pathological conditions or under certain activation tasks, published studies on baseline asymmetries in healthy individuals have produced conflicting results. We tested for the presence of cerebral blood flow asymmetries in 7 healthy, sedated baboons using positron emission tomography, a method of in vivo autoradiography. Five of the 7 baboons exhibited hemispheric asymmetries in which left-sided flow was significantly greater than right-sided flow. Furthermore, the degree of asymmetry in 8 of 24 brain regions was found to be significantly correlated with age; older individuals exhibited a higher degree of asymmetry than younger individuals. Cerebral blood flow itself was uncorrelated with age, and differences between males and females were not significant.
Collapse
Affiliation(s)
- Jason A Kaufman
- Department of Anthropology, Washington University, St. Louis, Missouri 63130, USA.
| | | | | | | |
Collapse
|
48
|
Abstract
Assessment of the oxygenation status of brain tumors has been studied increasingly with imaging techniques in light of recent advances in oncology. Tumor oxygen tension is a critical factor influencing the effectiveness of radiation and chemotherapy and malignant progression. Hypoxic tumors are resistant to treatment, and prognostic value of tumor oxygen status is shown in head and neck tumors. Strategies increasing the tumor oxygenation are being investigated to overcome the compromising [figure: see text] effect of hypoxia on tumor treatment. Administration of nicotinamide and inhalation of various high oxygen concentrations have been implemented. Existing methods for assessment of tissue oxygen level are either invasive or insufficient. Accurate and noninvasive means to measure tumor oxygenation are needed for treatment planning, identification of patients who might benefit from oxygenation strategies, and assessing the efficacy of interventions aimed to increase the radiosensitivity of tumors. Of the various imaging techniques used to assess tissue oxygenation, MR spectroscopy and MR imaging are widely available, noninvasive, and clinically applicable techniques. Tumor hypoxia is related closely to insufficient blood flow through chaotic and partially nonfunctional tumor vasculature and the distance between the capillaries and the tumor cells. Information on characteristics of tumor vasculature such as blood volume, perfusion, and increased capillary permeability can be provided with MR imaging. MR imaging techniques can provide a measure of capillary permeability based on contrast enhancement and relative cerebral blood volume estimates using dynamic susceptibility MR imaging. Blood oxygen level dependent contrast MR imaging using gradient echo sequence is intrinsically sensitive to changes in blood oxygen level. Animal models using blood oxygen level-dependent contrast imaging reveal the different responses of normal and tumor vasculature under hyperoxia. Normobaric hyperoxia is used in MR studies as a method to produce MR contrast in tissues. Increased T2* signal intensity of brain tissue has been observed using blood oxygen level-dependent contrast MR imaging. Dynamic blood oxygen level-dependent contrast MR imaging during hyperoxia is suggested to image tumor oxygenation. Quantification of cerebral oxygen saturation using blood oxygen level-dependent MR imaging also has been reported. Quantification of cerebral blood oxygen saturation using MR imaging has promising clinical applications; however, technical difficulties have to be resolved. Blood oxygen level dependent MR imaging is an emerging technique to evaluate the cerebral blood oxygen saturation, and it has the potential and versatility to assess oxygenation status of brain tumors. Upon improvement and validation of current MR techniques, better diagnostic, prognostic, and treatment monitoring capabilities can be provided for patients with brain tumors.
Collapse
Affiliation(s)
- F Zerrin Yetkin
- Division of Neuroradiology, Department of Radiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-8896, USA.
| | | |
Collapse
|
49
|
An H, Lin W. Cerebral venous and arterial blood volumes can be estimated separately in humans using magnetic resonance imaging. Magn Reson Med 2002; 48:583-8. [PMID: 12353273 DOI: 10.1002/mrm.10257] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Approaches to obtain quantitative, noninvasive estimates of total cerebral blood volume (tCBV) and cerebral venous blood volume (vCBV) separately in humans are proposed. Two sequences were utilized, including a 3D high-resolution gradient-echo (GE) sequence and a 2D multi-echo GE/spin-echo (MEGESE) sequence. Images acquired by the former sequence provided an estimate of background magnetic field variations (DeltaB), while images obtained by the latter sequence were utilized to obtain separate measures of tCBV and vCBV with and without contrast agent. Prior to the calculation of vCBV and tCBV, the acquired images were corrected for signal loss induced by the presence of DeltaB. vCBV and tCBV were estimated to be 2.46% +/- 0.28% and 3.20% +/- 0.41%, respectively, after the DeltaB correction, which in turn provided a vCBV/tCBV ratio of 0.77 +/- 0.04, in excellent agreement with results reported in the literature. Our results demonstrate that quantitative estimates of vCBV and tCBV can be obtained in vivo.
Collapse
Affiliation(s)
- Hongyu An
- Department of Radiology, University of North Carolina at Chapel Hill, 27599, USA.
| | | |
Collapse
|
50
|
Kutlu N, Vatansever HS, Bayazit TO, Ekerbicer N, Tan U. Blood brain barrier in right- and left-pawed female rats assessed by a new staining method. Int J Neurosci 2002; 112:1037-46. [PMID: 12487093 DOI: 10.1080/00207450290026030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The asymmetrical breakdown of the blood-brain barrier (BBB) was studied in female rats. Paw preference was assessed by a food reaching test. Adrenaline-induced hypertension was used to destroy the BBB, which was evaluated using triphenyltetrazolium (TTC) staining of the brain slices just after giving adrenaline for 30 s. In normal rats, the whole brain sections exhibited complete staining with TTC. After adrenaline infusion for 30 s, there were large unstained areas in the left brain in right-pawed animals, and vice versa in left-pawed animals. Similar results were obtained in seizure-induced breakdown of BBB. These results were explained by an asymmetric cerebral blood flow depending upon the paw preference in rats. It was suggested that this new method and the results are consistent with contralateral motor control that may be important in determining the dominant cerebral hemisphere in animals.
Collapse
Affiliation(s)
- Necip Kutlu
- Celal Bayar University Medical School, Department of Physiology, Manisa, Turkey
| | | | | | | | | |
Collapse
|