1
|
Dopaminergic Activity in Antipsychotic-Naïve Patients Assessed With Positron Emission Tomography Before and After Partial Dopamine D 2 Receptor Agonist Treatment: Association With Psychotic Symptoms and Treatment Response. Biol Psychiatry 2022; 91:236-245. [PMID: 34743917 DOI: 10.1016/j.biopsych.2021.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Dopamine activity has been associated with the response to antipsychotic treatment. Our study used a four-parameter model to test the association between the striatal decarboxylation rate of 18F-DOPA to 18F-dopamine (k3) and the effect of treatment on psychotic symptoms in antipsychotic-naïve patients with first-episode psychosis. We further explored the effect of treatment with a partial dopamine D2 receptor agonist (aripiprazole) on k3 and dopamine synthesis capacity (DSC) determined by the four-parameter model and by the conventional tissue reference method. METHODS Sixty-two individuals (31 patients and 31 control subjects) underwent 18F-DOPA positron emission tomography at baseline, and 15 patients were re-examined after 6 weeks. Clinical re-examinations were completed after 6 weeks (n = 28) and 6 months (n = 15). Symptoms were evaluated with the Positive and Negative Syndrome Scale. RESULTS High baseline decarboxylation rates (k3) were associated with more positive symptoms at baseline (p < .001) and with symptom improvement after 6 weeks (p = .006). Subregion analyses showed that baseline k3 for the putamen (p = .003) and nucleus accumbens (p = .013) and DSC values for the nucleus accumbens (p = .003) were associated with psychotic symptoms. The tissue reference method yielded no associations between DSC and symptoms or symptom improvement. Neither method revealed any effects of group or treatment on average magnitudes of k3 or DSC, whereas changes in dopamine synthesis were correlated with higher baseline values, implying a potential effect of treatment. CONCLUSIONS Striatal decarboxylation rate at baseline was associated with psychotic symptoms and treatment response. The strong association between k3 and treatment effect potentially implicate on new treatment strategies.
Collapse
|
2
|
Hwu WL, Muramatsu SI, Gidoni-Ben-Zeev B. Reduced Immunogenicity of Intraparenchymal Delivery of Adeno-Associated Virus Serotype 2 Vectors: Brief Overview. Curr Gene Ther 2021; 22:185-190. [PMID: 34551695 PMCID: PMC9178513 DOI: 10.2174/1566523221666210922155413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022]
Abstract
Pre existing immunity to adeno-associated virus (AAV) poses a concern in AAV vector–mediated gene therapy. Localized administration of low doses of carefully chosen AAV serotypes can mitigate the risk of an immune response. This article will illustrate the low risk of immune response to AAV serotype 2 vector–mediated gene therapy to the brain with support from clinical trial data in aromatic L-amino acid decarboxylase deficiency and Parkinson disease.
Collapse
Affiliation(s)
- Wuh-Liang Hwu
- Department of Medical Genetics and Pediatrics, 7 Chung-Shan S. Road, National Taiwan University Hospital, Taipei. Taiwan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Center for Open Innovation, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498. Japan.,Center for Gene & Cell Therapy, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato, Tokyo 108-0071, Japan
| | - Bruria Gidoni-Ben-Zeev
- Department of Pediatric Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, 6997801, Israel
| |
Collapse
|
3
|
Cheslow L, Snook AE, Waldman SA. Emerging targets for the diagnosis of Parkinson's disease: examination of systemic biomarkers. Biomark Med 2021; 15:597-608. [PMID: 33988462 DOI: 10.2217/bmm-2020-0654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Parkinson's disease (PD) is a highly prevalent and irreversible neurodegenerative disorder that is typically diagnosed in an advanced stage. Currently, there are no approved biomarkers that reliably identify PD patients before they have undergone extensive neuronal damage, eliminating the opportunity for future disease-modifying therapies to intervene in disease progression. This unmet need for diagnostic and therapeutic biomarkers has fueled PD research for decades, but these efforts have not yet yielded actionable results. Recently, studies exploring mechanisms underlying PD progression have offered insights into multisystemic contributions to pathology, challenging the classic perspective of PD as a disease isolated to the brain. This shift in understanding has opened the door to potential new biomarkers from multiple sites in the body. This review focuses on emerging candidates for PD biomarkers in the context of current diagnostic approaches and multiple organ systems that contribute to disease.
Collapse
Affiliation(s)
- Lara Cheslow
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E Snook
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A Waldman
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Intrahepatic fluorine-18-fluorodeoxyglucose kinetics measured by least squares nonlinear computer modelling and Gjedde–Patlak–Rutland graphical analysis. Nucl Med Commun 2019; 40:675-683. [DOI: 10.1097/mnm.0000000000001023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Richard MA, Blondin DP, Noll C, Lebel R, Lepage M, Carpentier AC. Determination of a pharmacokinetic model for [ 11C]-acetate in brown adipose tissue. EJNMMI Res 2019; 9:31. [PMID: 30919091 PMCID: PMC6437247 DOI: 10.1186/s13550-019-0497-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/11/2019] [Indexed: 12/28/2022] Open
Abstract
Background [11C]-acetate positron emission tomography is used to assess oxidative metabolism in various tissues including the heart, tumor, and brown adipose tissue. For brown adipose tissue, a monoexponential decay model is commonly employed. However, no systematic assessment of kinetic models has been performed to validate this model or others. The monoexponential decay model and various compartmental models were applied to data obtained before and during brown adipose tissue activation by cold exposure in healthy men. Quality of fit was assessed visually and by analysis of residuals, including the Akaike information criterion. Stability and accuracy of compartmental models were further assessed through simulations, along with sensitivity and identifiability of kinetic parameters. Results Differences were noted in the arterial input function between the warm and cold conditions. These differences are not taken into account by the monoexponential decay model. They are accounted for by compartmental models, but most models proved too complex to be stable. Two and three-tissue models with no more than four distinct kinetic parameters, including blood volume fraction, provided the best compromise between fit quality and stability/accuracy. Conclusion For healthy men, a three-tissue model with four kinetic parameters, similar to a heart [11C]-palmitate model seems the most appropriate based on model stability and its ability to describe the main [11C]-acetate pathways in BAT cells. Further studies are required to validate this model in women and people with metabolic disorders. Electronic supplementary material The online version of this article (10.1186/s13550-019-0497-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie Anne Richard
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Denis P Blondin
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Christophe Noll
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Réjean Lebel
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Martin Lepage
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| | - André C Carpentier
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| |
Collapse
|
6
|
Physiological Whole-Brain Distribution of [18F]FDOPA Uptake Index in Relation to Age and Gender: Results from a Voxel-Based Semi-quantitative Analysis. Mol Imaging Biol 2018; 21:549-557. [PMID: 30073569 DOI: 10.1007/s11307-018-1256-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Abstract
Purpose of Review The purpose of this review was to review the imaging, particularly positron emission tomography (PET), findings in neurorestoration studies in movement disorders, with specific focus on neural transplantation in Parkinson’s disease (PD) and Huntington’s disease (HD). Recent Findings PET findings in PD transplantation studies have shown that graft survival as reflected by increases in dopaminergic PET markers does not necessarily correlate with clinical improvement. PD patients with more denervated ventral striatum and more imbalanced serotonin-to-dopamine ratio in the grafted neurons tended to have worse outcome. In HD transplantation studies, variable graft survival and clinical responses may be related to host inflammatory/immune responses to the grafts. Summary Information gleaned from imaging findings in previous neural transplantation studies has been used to refine study protocol and patient selection in future trials. This includes identifying suitable candidates for transplantation using imaging markers, employing multiple and/or novel PET tracers to better assess graft functions and inflammatory responses to grafts.
Collapse
|
8
|
Li W, Lao-Kaim NP, Roussakis AA, Martín-Bastida A, Valle-Guzman N, Paul G, Loane C, Widner H, Politis M, Foltynie T, Barker RA, Piccini P. 11 C-PE2I and 18 F-Dopa PET for assessing progression rate in Parkinson's: A longitudinal study. Mov Disord 2017; 33:117-127. [PMID: 29082547 DOI: 10.1002/mds.27183] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND 18 F-dopa PET measuring aromatic l-amino acid decarboxylase activity is regarded as the gold standard for evaluating dopaminergic function in Parkinson's disease. Radioligands for dopamine transporters are also used in clinical trials and for confirming PD diagnosis. Currently, it is not clear which imaging marker is more reliable for assessing clinical severity and rate of progression. The objective of this study was to directly compare 18 F-dopa with the highly selective dopamine transporter radioligand 11 C-PE2I for the assessment of motor severity and rate of progression in PD. METHODS Thirty-three mild-moderate PD patients underwent 18 F-dopa and 11 C-PE2I PET at baseline. Twenty-three were followed up for 18.8 ± 3.4 months. RESULTS Standard multiple regression at baseline indicated that 11 C-PE2I BPND predicted UPDRS-III and bradykinesia-rigidity scores (P < 0.05), whereas 18 F-dopa Ki did not make significant unique explanatory contributions. Voxel-wise analysis showed negative correlations between 11 C-PE2I BPND and motor severity across the whole striatum bilaterally. 18 F-Dopa Ki clusters were restricted to the most affected putamen and caudate. Longitudinally, negative correlations were found between striatal Δ11 C-PE2I BPND , ΔUPDRS-III, and Δbradykinesia-rigidity, whereas no significant associations were found for Δ18 F-dopa Ki . One cluster in the most affected putamen was identified in the longitudinal voxel-wise analysis showing a negative relationship between Δ11 C-PE2I BPND and Δbradykinesia-rigidity. CONCLUSIONS Striatal 11 C-PE2I appears to show greater sensitivity for detecting differences in motor severity than 18 F-dopa. Furthermore, dopamine transporter decline is closely associated with motor progression over time, whereas no such relationship was found with aromatic l-amino acid decarboxylase. 11 C-PE2I may be more effective for evaluating the efficacy of neuroprotective treatments in PD. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Weihua Li
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London, UK
| | - Nick P Lao-Kaim
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London, UK
| | - Andreas A Roussakis
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London, UK
| | - Antonio Martín-Bastida
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London, UK
| | | | - Gesine Paul
- Translational Neurology Group, Department of Clinical Sciences, Wallenberg Neuroscience Centre, Lund University, Lund, Sweden.,Division of Neurology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Clare Loane
- Memory Research Group, Nuffield Department of Clinical Neurosciences, Medical Science Division. University of Oxford, Oxford, UK
| | - Håkan Widner
- Division of Neurology, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Marios Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tom Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Roger A Barker
- John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Paola Piccini
- Centre for Neurodegeneration and Neuroinflammation, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
9
|
Dall AM, Danielsen EH, Sørensen JC, Andersen F, Møller A, Zimmer J, Gjedde AH, Cumming P, Zimmer J, Brevig T, Dall AM, Meyer M, Pedersen EB, Gjedde A, Danielsen EH, Cumming P, Andersen F, Bender D, Falborg L, Gee A, Gillings NM, Hansen SB, Hermansen F, Jørgensen HA, Munk O, Poulsen PH, Rodell AB, Sakoh M, Simonsen CZ, Smith DF, Sørensen JC, Østergård L, Moller A, Johansen TE. Quantitative [18F]Fluorodopa/PET and Histology of Fetal Mesencephalic Dopaminergic Grafts to the Striatum of MPTP-Poisoned Minipigs. Cell Transplant 2017. [DOI: 10.3727/000000002783985314] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The functional restoration of the dopamine innervation of striatum in MPTP-poisoned Göttingen minipigs was assessed for 6 months following grafting of fetal pig mesencephalic neurons. Pigs were assigned to a normal control group and a MPTP-poisoned group, members of which received no further treatment, or which received bilateral grafts to the striatum of tissue blocks harvested from E28 fetal pig mesencephalon with and without immunosuppressive treatment after grafting, or with additional co-grafting with immortalized rat neural cells transfected to produce GDNF. In the baseline condition, and again at 3 and 6 months postsurgery, all animals were subjected to quantitative [18F]fluorodopa PET scans and testing for motor impairment. At the end of 6 months, tyrosine hydroxylase (TH)-containing neurons were counted in the grafts by stereological methods. The MPTP poisoning persistently reduced the magnitude of k3D, the relative activity of DOPA decarboxylase in striatum, by 60%. Grafting restored the rate of [18F]fluorodopa decarboxylation to the normal range, and normalized the scores in motor function. The biochemical and functional recovery was associated with survival of approximately 100,000 TH-positive graft neurons in each hemisphere. Immunosuppression did not impart a greater recovery of [18F]fluorodopa uptake, nor were the number of TH-positive graft neurons or the volumes of the grafts increased in the immunosuppressed group. Contrary to expectation, co-grafting of transfected GDNF-expressing HiB5 cells, a rat-derived neural cell line, tended to impair the survival of the grafts with the lowest values for graft volumes, TH-positive cell numbers, behavioral scores, and relative DOPA decarboxylase activity. From the results we conclude that pig ventral mesencephalic allografts can restore functional dopamine innervation in adult MPTP-lesioned minipigs.
Collapse
Affiliation(s)
- Annette Møller Dall
- Department of Anatomy and Neurobiology, University of Southern Denmark, 5000 Odense C, Denmark
| | | | | | | | | | - Jens Zimmer
- Department of Anatomy and Neurobiology, University of Southern Denmark, 5000 Odense C, Denmark
| | - Albert H. Gjedde
- Department of Anatomy and Neurobiology, University of Southern Denmark, 5000 Odense C, Denmark
- McGill University, Montreal, Quebec, Canada
| | - Paul Cumming
- PET Centre, Aarhus General Hospital, 8000 Aarhus C, Denmark
| | - J. Zimmer
- Department of Anatomy and Neurobiology, SDU Odense University
| | - T. Brevig
- Department of Anatomy and Neurobiology, SDU Odense University
| | - A. M. Dall
- Department of Anatomy and Neurobiology, SDU Odense University
| | - M. Meyer
- Department of Anatomy and Neurobiology, SDU Odense University
| | - E. B. Pedersen
- Department of Anatomy and Neurobiology, SDU Odense University
| | - A. Gjedde
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - E. H. Danielsen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - P. Cumming
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - F. Andersen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - D. Bender
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - L. Falborg
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - A. Gee
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - N. M. Gillings
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - S. B. Hansen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - F. Hermansen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - H. A. Jørgensen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - O. Munk
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - P. H. Poulsen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - A. B. Rodell
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - M. Sakoh
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - C. Z. Simonsen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - D. F. Smith
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - J. C. Sørensen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - L. Østergård
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | | | | | | |
Collapse
|
10
|
Tonietto M, Rizzo G, Veronese M, Fujita M, Zoghbi SS, Zanotti-Fregonara P, Bertoldo A. Plasma radiometabolite correction in dynamic PET studies: Insights on the available modeling approaches. J Cereb Blood Flow Metab 2016; 36:326-39. [PMID: 26661202 PMCID: PMC4759680 DOI: 10.1177/0271678x15610585] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/09/2015] [Indexed: 11/17/2022]
Abstract
Full kinetic modeling of dynamic PET images requires the measurement of radioligand concentrations in the arterial plasma. The unchanged parent radioligand must, however, be separated from its radiometabolites by chromatographic methods. Thus, only few samples can usually be analyzed and the resulting measurements are often noisy. Therefore, the measurements must be fitted with a mathematical model. This work presents a comprehensive analysis of the different models proposed in the literature to describe the plasma parent fraction (PPf) and of the alternative approaches for radiometabolite correction. Finally, we used a dataset of [(11)C]PBR28 brain PET data as a case study to guide the reader through the PPf model selection process.
Collapse
Affiliation(s)
- Matteo Tonietto
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Gaia Rizzo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Mattia Veronese
- Department of Neuroimaging, IoPPN, King's College London, London, UK
| | - Masahiro Fujita
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA INCIA UMR-CNRS 5287, Université de Bordeaux, Bordeaux, France
| | | |
Collapse
|
11
|
Koivunoro H, Hippeläinen E, Auterinen I, Kankaanranta L, Kulvik M, Laakso J, Seppälä T, Savolainen S, Joensuu H. Biokinetic analysis of tissue boron (¹⁰B) concentrations of glioma patients treated with BNCT in Finland. Appl Radiat Isot 2015; 106:189-94. [PMID: 26363564 DOI: 10.1016/j.apradiso.2015.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 11/17/2022]
Abstract
A total of 98 patients with glioma were treated with BPA-F-mediated boron neutron capture therapy (BNCT) in Finland from 1999 to 2011. Thirty-nine (40%) had undergone surgery for newly diagnosed glioblastoma and 59 (60%) had malignant glioma recurrence after surgery. In this study we applied a closed 3-compartment model based on dynamic (18)F-BPA-PET studies to estimate the BPA-F concentrations in the tumor and the normal brain with time. Altogether 22 patients with recurrent glioma, treated within the context of a clinical trial, were evaluated using their individual measured whole blood (10)B concentrations as an input to the model. The delivered radiation doses to tumor and the normal brain were recalculated based on the modeled (10)B concentrations in the tissues during neutron irradiation. The model predicts from -7% to +29% (average, +11%) change in the average tumor doses as compared with the previously estimated doses, and from 17% to 61% (average, 36%) higher average normal brain doses than previously estimated due to the non-constant tumor-to-blood concentration ratios and considerably higher estimated (10)B concentrations in the brain at the time of neutron irradiation.
Collapse
Affiliation(s)
- H Koivunoro
- HUS Helsinki Medical Imaging Center, Helsinki University Hospital, Finland; Department of Physics, University of Helsinki, POB 64, FI-00014, Finland.
| | - E Hippeläinen
- HUS Helsinki Medical Imaging Center, Helsinki University Hospital, Finland
| | - I Auterinen
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - L Kankaanranta
- Department of Oncology, Comprehensive Cancer Center, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - M Kulvik
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - J Laakso
- Finnish Safety and Chemicals Agency (Tukes), Finland
| | - T Seppälä
- Department of Oncology, Comprehensive Cancer Center, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| | - S Savolainen
- HUS Helsinki Medical Imaging Center, Helsinki University Hospital, Finland; Department of Physics, University of Helsinki, POB 64, FI-00014, Finland
| | - H Joensuu
- Department of Oncology, Comprehensive Cancer Center, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Kumakura Y, Gjedde A, Caprioli D, Kienast T, Beck A, Plotkin M, Schlagenhauf F, Vernaleken I, Gründer G, Bartenstein P, Heinz A, Cumming P. Increased turnover of dopamine in caudate nucleus of detoxified alcoholic patients. PLoS One 2013; 8:e73903. [PMID: 24040111 PMCID: PMC3770672 DOI: 10.1371/journal.pone.0073903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/25/2013] [Indexed: 12/02/2022] Open
Abstract
A previous study of the DOPA decarboxylase substrate 6-[18F]fluoro-L-DOPA (FDOPA) with positron emission tomography (PET) detected no difference of the net blood-brain transfer rate (Kinapp) between detoxified alcoholic patients and healthy controls. Instead, the study revealed an inverse correlation between Kinapp in left ventral striatum and alcohol craving scores. To resolve the influx and efflux phases of radiolabeled molecules, we independently estimated the unidirectional blood-brain FDOPA clearance rate (K) and the washout rate of [18F]fluorodopamine and its deaminated metabolites (kloss), and we also calculated the total distribution volume of decarboxylated metabolites and unmetabolized FDOPA as a steady-state index of the dopamine storage capacity (Vd) in brain. The craving scores in the 12 alcoholics correlated positively with the rate of loss (kloss) in the left ventral striatum. We conclude that craving is most pronounced in the individuals with relatively rapid dopamine turnover in the left ventral striatum. The blood-brain clearance rate (K), corrected for subsequent loss of radiolabeled molecules from brain, was completely normal throughout the brain of the alcoholics, in whom the volume of distribution (Vd) was found to be significantly lower in the left caudate nucleus. The magnitude of Vd in the left caudate head was reduced by 43% relative to the 16 controls, consistent with a 58% increase of kloss. We interpret the findings as indicating that a trait for rapid dopamine turnover in the ventral striatum subserves craving and reward-dependence, leading to an acquired state of increased dopamine turnover in the dorsal striatum of detoxified alcoholic patients.
Collapse
Affiliation(s)
- Yoshitaka Kumakura
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Center for Functionally Integrative Neuroscience, Aarhus University, Aarhus C, Denmark
- Department of Nuclear Medicine, Tokyo University, Tokyo, Japan
- * E-mail:
| | - Albert Gjedde
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Center for Functionally Integrative Neuroscience, Aarhus University, Aarhus C, Denmark
| | - Daniele Caprioli
- Department of Experimental Psychology, Cambridge University, Cambridge, United Kingdom
| | - Thorsten Kienast
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anne Beck
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michail Plotkin
- Department of Nuclear Medicine, Charite - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Ingo Vernaleken
- Department of Psychiatry, University of Aachen, Aachen, Germany
| | - Gerhard Gründer
- Department of Psychiatry, University of Aachen, Aachen, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Andreas Heinz
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
13
|
The Assay of Enzyme Activity by Positron Emission Tomography. MOLECULAR IMAGING IN THE CLINICAL NEUROSCIENCES 2012. [DOI: 10.1007/7657_2012_53] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
|
15
|
Matsubara K, Watabe H, Kumakura Y, Hayashi T, Endres CJ, Minato K, Iida H. Sensitivity of kinetic macro parameters to changes in dopamine synthesis, storage, and metabolism: a simulation study for [¹⁸F]FDOPA PET by a model with detailed dopamine pathway. Synapse 2011; 65:751-62. [PMID: 21190220 DOI: 10.1002/syn.20899] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 12/02/2010] [Indexed: 11/08/2022]
Abstract
Quantitative interpretation of brain [¹⁸F]FDOPA PET data has been made possible by several kinetic modeling approaches, which are based on different assumptions about complex [¹⁸F]FDOPA metabolic pathways in brain tissue. Simple kinetic macro parameters are often utilized to quantitatively evaluate metabolic and physiological processes of interest, which may include DDC activity, vesicular storage, and catabolism from (18) F-labeled dopamine to DOPAC and HVA. A macro parameter most sensitive to the changes of these processes would be potentially beneficial to identify impaired processes in a neurodegenerative disorder such as Parkinson's disease. The purpose of this study is a systematic comparison of several [¹⁸F]FDOPA macro parameters in terms of sensitivities to process-specific changes in simulated time-activity curve (TAC) data of [¹⁸F]FDOPA PET. We introduced a multiple-compartment kinetic model to simulate PET TACs with physiological changes in the dopamine pathway. TACs in the alteration of dopamine synthesis, storage, and metabolism were simulated with a plasma input function obtained by a non-human primate [¹⁸F]FDOPA PET study. Kinetic macro parameters were calculated using three conventional linear approaches (Gjedde-Patlak, Logan, and Kumakura methods). For simulated changes in dopamine storage and metabolism, the slow clearance rate (k(loss) ) as calculated by the Kumakura method showed the highest sensitivity to these changes. Although k(loss) performed well at typical ROI noise levels, there was large bias at high noise level. In contrast, for simulated changes in DDC activity it was found that K(i) and V(T), estimated by Gjedde-Patlak and Logan method respectively, have better performance than k(loss).
Collapse
Affiliation(s)
- Keisuke Matsubara
- Department of Bioinformatics and Genomics, Graduate School of Information Science, Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Pavese N, Kiferle L, Piccini P. Neuroprotection and imaging studies in Parkinson's disease. Parkinsonism Relat Disord 2010; 15 Suppl 4:S33-7. [PMID: 20123554 DOI: 10.1016/s1353-8020(09)70832-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The most challenging issue when testing putative neuroprotective agents for Parkinson's disease (PD) in clinical trials is the assessment of the effect of the treatment on the neurodegenerative process. By measuring changes in symptoms severity, clinical rating scales represent an important tool to rate the progression of the disease. However, the rating of clinical symptoms is dependent on the examiner and the neuroprotective effect can be masked by the symptomatic effect of the therapy. 18F-dopa PET and 123I-beta-CIT SPECT have been shown to be able to monitor the progressive loss of presynaptic nigrostriatal projections in PD and have been used as surrogate biomarkers of disease in several recent clinical trials. In this article the value of imaging as a biomarker for testing neuroprotective agents in PD is reviewed.
Collapse
Affiliation(s)
- Nicola Pavese
- Division of Neurosciences and Mental Health and MRC Clinical Sciences Centre, Faculty of Medicine, Hammersmith Hospital, Imperial College, London, UK.
| | | | | |
Collapse
|
17
|
Elevated [(18)F]FDOPA utilization in the periaqueductal gray and medial nucleus accumbens of patients with early Parkinson's disease. Neuroimage 2009; 49:2933-9. [PMID: 19941962 DOI: 10.1016/j.neuroimage.2009.11.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 11/12/2009] [Accepted: 11/13/2009] [Indexed: 11/20/2022] Open
Abstract
PET studies with the DOPA decarboxylase substrate 6-[(18)F]fluoro-l-DOPA (FDOPA) reveal the storage of [(18)F]-fluorodopamine within synaptic vesicles, mainly of dopamine fibres. As such, FDOPA PET is a sensitive indicator of the integrity of the nigrostriatal dopamine innervation. Nonetheless, there have been several reports of focal elevations of FDOPA utilization in brain of patients with Parkinson's disease (PD), all based on reference tissue methods. To investigate this phenomenon further, we used voxel-wise steady-state kinetic analysis to search for regions of elevated FDOPA utilization (K; ml g(-1) min(-1)) and steady-state trapping (V(d); ml g(-1)) in a group of well-characterized patients with early, asymmetric PD, who were contrasted with an age-matched control group. Subtraction of the population mean parametric maps revealed foci of increased FDOPA utilization K (+25%) in the bilateral medial nucleus accumbens, whereas the expected declines in the trapping of FDOPA were seen in the caudate and putamen. This observation suggests hyperfunction of catecholamine fibres innervating specifically the limbic striatum, which could guide the design of future prospective FDOPA-PET studies of the impulse control disorders occurring in some PD patients under treatment with dopamine agonists. A focus of increased FDOPA influx and also V(d) was detected in the periaqueductal grey, consistent with some earlier reports based on reference tissue analysis. Increased FDOPA trapping in the periaqueductal grey of PD patients seems consistent with recent reports of increased activity of serotonin neurons in a rat model of parkinsonism.
Collapse
|
18
|
Behnke S, Schroeder U, Dillmann U, Buchholz HG, Schreckenberger M, Fuss G, Reith W, Berg D, Krick CM. Hyperechogenicity of the substantia nigra in healthy controls is related to MRI changes and to neuronal loss as determined by F-Dopa PET. Neuroimage 2009; 47:1237-43. [PMID: 19497378 DOI: 10.1016/j.neuroimage.2009.05.072] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 04/23/2009] [Accepted: 05/27/2009] [Indexed: 11/30/2022] Open
Abstract
Transcranial ultrasound (TCS) has been shown to reveal hyperechogenicity of the substantia nigra (SN) in Parkinsonian patients and in about 10% of healthy controls. It is hypothesized that SN hyperechogenicity in healthy subjects is a vulnerability marker for idiopathic Parkinson's disease (IPD). Although there is strong evidence that the echomarker results from increased local iron content, the exact pathophysiological mechanisms remain incompletely understood. Thus, prognostic impact can only be estimated. We examined 14 subjects with SN hyperechogenicity (SN+) (7 IPD patients and 7 controls) and 7 healthy controls without the echomarker (SN-) by a magnetic resonance imaging method (MRI; T2 relaxation times) known to reveal tissue inhomogeneity following abnormal iron content and by F-Dopa PET to assess nigrostriatal function.
Collapse
Affiliation(s)
- S Behnke
- Department of Neurology, University Hospital of the Saarland, Homburg Saar, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gao Y, Ravert HT, Kuwabara H, Xiao Y, Endres CJ, Hilton J, Holt DP, Kumar A, Alexander M, Wong DF, Dannals RF, Horti AG. Synthesis and biological evaluation of novel carbon-11 labeled pyridyl ethers: candidate ligands for in vivo imaging of alpha4beta2 nicotinic acetylcholine receptors (alpha4beta2-nAChRs) in the brain with positron emission tomography. Bioorg Med Chem 2009; 17:4367-77. [PMID: 19481945 DOI: 10.1016/j.bmc.2009.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/05/2009] [Accepted: 05/09/2009] [Indexed: 10/20/2022]
Abstract
The most abundant subtype of cerebral nicotinic acetylcholine receptors (nAChR), alpha4beta2, plays a critical role in various brain functions and pathological states. Imaging agents suitable for visualization and quantification of alpha4beta2 nAChRs by positron emission tomography (PET) would present unique opportunities to define the function and pharmacology of the nAChRs in the living human brain. In this study, we report the synthesis, nAChR binding affinity, and pharmacological properties of several novel 3-pyridyl ether compounds. Most of these derivatives displayed a high affinity to the nAChR and a high subtype selectivity for alpha4beta2-nAChR. Three of these novel nAChR ligands were radiolabeled with the positron-emitting isotope (11)C and evaluated in animal studies as potential PET radiotracers for imaging of cerebral nAChRs with improved brain kinetics.
Collapse
Affiliation(s)
- Yongjun Gao
- Department of Radiology, Division of Nuclear Medicine, PET Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287-0816, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kumakura Y, Vernaleken I, Buchholz HG, Borghammer P, Danielsen E, Gründer G, Heinz A, Bartenstein P, Cumming P. Age-dependent decline of steady state dopamine storage capacity of human brain: an FDOPA PET study. Neurobiol Aging 2008; 31:447-63. [PMID: 18541344 DOI: 10.1016/j.neurobiolaging.2008.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 04/23/2008] [Accepted: 05/01/2008] [Indexed: 01/17/2023]
Abstract
Conventional indices of the utilization of FDOPA in living human brain have not consistently revealed important declines in dopamine function with normal aging. However, most methods of kinetic analysis have assumed irreversible trapping of decarboxylated FDOPA metabolites in brain, an assumption that is violated even in PET recordings of short duration. Therefore, we have developed methods for the calculation of steady-state storage of FDOPA together with its decarboxylated metabolites (V(d), mlg(-1)), based upon improved kinetic analysis of 120-min emission recordings. In a group of 28 normal male subjects, of age ranging from 23 to 73 years, the magnitude of V(d) in the striatum and in extrastriatal regions declined by approximately 10% with each decade. The utilization of FDOPA was also calculated by several conventional methods assuming irreversible trapping, i.e. the net blood brain clearance (K(in)(app), mlg(-1)min(-1)), the DOPA decarboxylase activity relative to a reference tissue input (k(3)(S), min(-1)), and relative to the arterial input (k(3)(D), min(-1)). None of these methods revealed an age-related decline in FDOPA utilization in the extended striatum, although the magnitude of K(in)(app) did decline in cerebral cortex. Thus, the capacity to synthesize [(18)F]fluorodopamine remained largely intact in striatum of the elderly subjects, but in the presence of a substantially increased rate of washout (k(loss)), which was evident in all brain regions examined. Consequently, the magnitude of V(d) declined with healthy aging, possibly reflecting impaired vesicular storage capacity, resulting in enhanced exposure of cytosolic [(18)F]fluorodopamine to monoamine oxidase.
Collapse
Affiliation(s)
- Yoshitaka Kumakura
- Centre for Functionally Integrative Neuroscience, Aarhus University, Aarhus C. 8000, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kumakura Y, Cumming P, Vernaleken I, Buchholz HG, Siessmeier T, Heinz A, Kienast T, Bartenstein P, Gründer G. Elevated [18F]fluorodopamine turnover in brain of patients with schizophrenia: an [18F]fluorodopa/positron emission tomography study. J Neurosci 2007; 27:8080-7. [PMID: 17652599 PMCID: PMC6672729 DOI: 10.1523/jneurosci.0805-07.2007] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous positron emission tomography (PET) studies with levodopa analogs have revealed a modestly increased capacity for dopamine synthesis in the striatum of patients with schizophrenia compared with healthy age-matched control subjects. We hypothesized that not just the synthesis but also the turnover of radiolabeled dopamine is elevated in patients. To test the hypothesis, we reanalyzed 2-h-long [18F]fluorodopa (FDOPA)/PET recordings from eight unmedicated patients with schizophrenia and 15 healthy age-matched control subjects, using new methods for the quantification of [18F]fluorodopamine steady-state kinetics. The fractional rate constant for the catabolism and elimination of [18F]fluorodopamine was elevated nearly twofold in striatum, the largest biochemical difference in brain of schizophrenics yet reported. The magnitude of the intrinsic blood-brain FDOPA clearance with correction for this loss of [18F]fluorodopamine metabolites was increased by 20% in caudate and putamen and by 50% in amygdala and midbrain of the patients. However, the magnitude of the steady-state storage of FDOPA and its decarboxylated metabolites (V(d)) was reduced by one-third in the caudate nucleus and amygdala of the schizophrenic group. Thus, reduced steady-state storage of [18F]fluorodopamine occurs in the midst of accelerated synthesis in brain of untreated patients. Positive scores of the positive and negative syndrome scale correlated inversely with the magnitude of V(d) in amygdala, suggesting an association between positive symptoms and impaired steady-state storage of FDOPA metabolites in that structure.
Collapse
Affiliation(s)
- Yoshitaka Kumakura
- Centre for Functionally Integrative Neuroscience, Aarhus University, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Turkheimer FE, Aston JAD, Asselin MC, Hinz R. Multi-resolution Bayesian regression in PET dynamic studies using wavelets. Neuroimage 2006; 32:111-21. [PMID: 16644238 DOI: 10.1016/j.neuroimage.2006.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 12/13/2005] [Accepted: 03/07/2006] [Indexed: 11/16/2022] Open
Abstract
In the kinetic analysis of dynamic PET data, one usually posits that the variation of the data through one dimension, time, can be described by a mathematical model encapsulating the relevant physiological features of the radioactive tracer. In this work, we posit that the remaining dimension, space, can also be modeled as a physiological feature, and we introduce this concept into a new computational procedure for the production of parametric maps. An organ and, in the instance considered here, the brain presents similarities in the physiological properties of its elements across scales: computationally, this similarity can be implemented in two stages. Firstly, a multi-scale decomposition of the dynamic frames is created through the wavelet transform. Secondly, kinetic analysis is performed in wavelet space and the kinetic parameters estimated at low resolution are used as priors to inform estimates at higher resolutions. Kinetic analysis in the above scheme is achieved by extension of the Patlak analysis through Bayesian linear regression that retains the simplicity and speed of the original procedure. Application to artificial and real data (FDG and FDOPA) demonstrates the ability of the procedure to reduce remarkably the variance of parametric maps (up to 4-fold reduction) without introducing sizeable bias. Significance of the methodology and extension of the procedure to other data (fMRI) and models are discussed.
Collapse
Affiliation(s)
- F E Turkheimer
- Hammersmith Imanet, Department of Clinical Neuroscience, Division of Neuroscience and Mental Health, Hammersmith Hospital, DuCane Road, London W12 0NN, UK.
| | | | | | | |
Collapse
|
23
|
Ota M, Yasuno F, Ito H, Seki C, Nozaki S, Asada T, Suhara T. Age-related decline of dopamine synthesis in the living human brain measured by positron emission tomography with L-[beta-11C]DOPA. Life Sci 2006; 79:730-6. [PMID: 16580023 DOI: 10.1016/j.lfs.2006.02.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 02/08/2006] [Accepted: 02/15/2006] [Indexed: 01/25/2023]
Abstract
Loss of dopamine synthesis in the striatum with normal human aging has been observed in the postmortem brain. To investigate whether there is age-associated change in dopamine synthesis in the extrastriatal brain regions similar to that in the striatum, positron emission tomography studies with (11)C-labelled l-DOPA were performed on 21 normal healthy male subjects (age range 20-67 years). Decline in the tissue fraction of gray matter per region of interest was also investigated. The overall uptake rate constant for each region of interest was quantified by the Patlak plot method using the occipital cortex as reference region. Regions of interest were set on the dorsolateral prefrontal cortex, lateral temporal cortex, medial temporal cortex, occipital cortex, parietal cortex, anterior cingulate, thalamus, midbrain, caudate nucleus, and putamen. Test-retest analysis indicated good reproducibility of the overall uptake rate constant. Significant age-related declines of dopamine synthesis were observed in the striatum and extrastriatal regions except midbrain. The decline in the overall uptake rate constant was more prominent than in the tissue fraction of gray matter. These results indicate that the previously demonstrated age-related decline in striatal dopamine synthesis extends to several extrastriatal regions in normal human brain.
Collapse
Affiliation(s)
- Miho Ota
- Clinical Neuroimaging Section, Department of Molecular Neuroimaging, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Kumakura Y, Gjedde A, Danielsen EH, Christensen S, Cumming P. Dopamine storage capacity in caudate and putamen of patients with early Parkinson's disease: correlation with asymmetry of motor symptoms. J Cereb Blood Flow Metab 2006; 26:358-70. [PMID: 16079784 DOI: 10.1038/sj.jcbfm.9600202] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Conventional graphical analysis of positron emission tomography (PET) recordings of the cerebral uptake of the DOPA decarboxylase substrate [(18)F]fluorodopa (FDOPA) assumes irreversible trapping of [(18)F]fluorodopamine formed in the brain. However, 4-h long PET recordings allow the estimation of a rate constant for elimination of [(18)F]fluorodopamine from the brain (k(loss)), from which can be calculated an effective distribution volume (EDV(1)), which is an index of [(18)F]fluorodopamine storage capacity. We earlier developed a method employing 2-h long FDOPA recordings for the estimation of k(loss) and EDV, here defined as EDV(2). This method is based on subtraction of the calculated brain concentrations of the FDOPA metabolite O-methyl-FDOPA, rather than the subtraction of the entire radioactivity in a reference region. We now extend this method for the parametric mapping of these parameters in the brain of healthy aged volunteers and patients with Parkinson's disease (PD), with asymmetry of motor symptoms. For parametric mapping, we use a novel application of a multilinear solution for the two-tissue compartment FDOPA model. We also test a new application of the Logan graphical analysis for mapping of the FDOPA distribution volume at equilibrium. The estimates of k(loss) and EDV(2) were more sensitive for the discrimination of biochemical abnormality in the putamen of patients with early PD relative to healthy aged subjects, than was the conventional net influx estimate. Of the several methods, multilinear estimates of EDV(2) were most sensitive for discrimination of PD and normal putamen. However, k(loss) was most sensitive for detecting biochemical asymmetry in the putamen of PD patients, and only k(loss) also detected in the caudate of PD patients a decline in the retention of [(18)F]fluorodopamine relative to healthy aged control subjects.
Collapse
|
25
|
Im JH, Chung SJ, Kim JS, Lee MC. Differential patterns of dopamine transporter loss in the basal ganglia of progressive supranuclear palsy and Parkinson's disease: analysis with [(123)I]IPT single photon emission computed tomography. J Neurol Sci 2006; 244:103-9. [PMID: 16473371 DOI: 10.1016/j.jns.2006.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 01/03/2006] [Accepted: 01/05/2006] [Indexed: 10/25/2022]
Abstract
We evaluated the patterns of dopamine transporter loss in the striatum of ten controls, twenty patients with Parkinson's disease (PD), and nine with progressive supranuclear palsy (PSP) using (123)I-IPT single photon emission tomography (SPECT). Four ROIs in the striatum correspond to the head of caudate nucleus (ROI 1), a transitional region between head of caudate and putamen (ROI 2), anterior putamen (ROI 3), and posterior putamen (ROI 4). A striatal ratio of specific to nondisplaceable uptake (V3'') was calculated normalizing the activity of the ROIs to that of occipital cortex. V3'' values were significantly reduced in all ROIs of PD and PSP patients, compared with controls (p=0.001). V3'' value in ROI 2 was significantly lower in PSP group, compared with PD group (p=0.02). The percent reductions of striatal uptake in ROI 1, ROI 2, ROI 3 and ROI 4 were 56%, 53%, 64% and 78% in PD patients, whereas 75%, 72%, 75% and 77% in PSP patients, respectively. The reduction patterns of uptake were significantly different between PD and PSP groups (p=0.001). In PD patients, the percent reductions of (123)I-IPT uptake were significantly greater in ROI 3 and 4 compared with ROI 1 or 2, whereas those were similar in all ROIs of PSP patients. In addition, PD patients showed a significantly higher posterior putamen/caudate ratio of reduced (123)I-IPT uptake than the anterior putamen/caudate ratio (p=0.005). Our results implicate that (123)I-IPT SPECT is a relatively simple and reliable technique that may be useful in differentiating PD from PSP.
Collapse
Affiliation(s)
- Joo-Hyuk Im
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Seoul 138-736, Korea
| | | | | | | |
Collapse
|
26
|
Ceravolo R, Sgadò P, Frosini D, Corsini GU. Assessing neuroprotection in Parkinson's disease: from the animal models to molecular neuroimaging in vivo. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:133-41. [PMID: 17447424 DOI: 10.1007/978-3-211-33328-0_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
An important goal in Parkinson's Disease research is to identify neuroprotective therapy, and the interaction between basic science and clinical research is needed to discover drugs that can slow or halt the disorder progression. At present there is not a perfect animal model of PD to test neuroprotective strategies, however the models that portray the basic characteristics needed are toxin-induced and gene-based models. The first group comprehends 6-OHDA e MPTP and recently rotenone, paraquat and epoxomicin treated animals that shows some of human disease characteristics. Gene-based models are various and, even if with limits, they seem suitable models to test neuroprotection in PD since they present replicable lesions, a predictable pattern of neurodegeneration and a well-characterized behavior, biochemistry and morphology to assist in the understanding of induced changes. In clinical trials researchers have first used as marker of disease progression clinical scores and motor tasks which are limited by the potential symptomatic effect of tested drugs and are not useful in the pre-clinical phases of PD. Recently has emerged the important role of neuroimaging (Dopamine Transporter SPECT, 18FDopa-PET) as surrogate biomarker of PD progression. Even if there are still concerns about the influence of regulatory effects of tested drugs, neuroimaging features could represent a good outcome measure to evaluate PD progression and putative neuroprotective effect of pharmacological and non-pharmacological manipulations.
Collapse
Affiliation(s)
- R Ceravolo
- Department of Neuroscience, University of Pisa, Pisa, Italy.
| | | | | | | |
Collapse
|
27
|
Kumakura Y, Vernaleken I, Gründer G, Bartenstein P, Gjedde A, Cumming P. PET studies of net blood-brain clearance of FDOPA to human brain: age-dependent decline of [18F]fluorodopamine storage capacity. J Cereb Blood Flow Metab 2005; 25:807-19. [PMID: 15729292 DOI: 10.1038/sj.jcbfm.9600079] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Conventional methods for the graphical analysis of 6-[(18)F]fluorodopa (FDOPA)/positron emission tomography (PET) recordings (K(in)(app)) may be prone to negative bias because of oversubtraction of the precursor pool in the region of interest, and because of diffusion of decarboxylated FDOPA metabolites from the brain. These effects may reduce the sensitivity of FDOPA/PET for the detection of age-related changes in dopamine innervations. To test for these biasing effects, we have used a constrained compartmental analysis to calculate the brain concentrations of the plasma metabolite 3-O-methyl-FDOPA (OMFD) during 120 mins of FDOPA circulation in healthy young, healthy elderly, and Parkinson's disease subjects. Calculated brain OMFD concentrations were subtracted frame-by-frame from the dynamic PET recordings, and maps of the FDOPA net influx to brain were calculated assuming irreversible trapping (K(app)). Comparison of K(in)(app) and K(app) maps revealed a global negative bias in the conventional estimates of FDOPA clearance. The present OMFD subtraction method revealed curvature in plots of K(app) at early times, making possible the calculation of the corrected net influx (K) and also the rate constant for diffusion of decarboxylated metabolites from the brain (k(loss)). The effective distribution volume (EDV(2); K/k(loss)) for FDOPA, an index of dopamine storage capacity in brain, was reduced by 85% in putamen of patients with Parkinson's disease, and by 58% in the healthy elderly relative to the healthy young control subjects. Results of the present study support claims that storage capacity for dopamine in both caudate and putamen is more profoundly impaired in patients with Parkinson's disease than is the capacity for DOPA utilization, calculated by conventional FDOPA net influx plots. The present results furthermore constitute the first demonstration of an abnormality in the cerebral utilization of FDOPA in caudate and putamen as a function of normal aging, which we attribute to loss of vesicular storage capacity.
Collapse
|
28
|
Abstract
FD-PET has proved to be an extremely useful technique for the noninvasive evaluation of nigrostriatal pathophysiology in patients with PD and other movement disorders. The development of ratio methods for image analysis has greatly reduced the complexity of these PET studies and has facilitated data analysis. With the recent advances in cyclotron targetry and automated synthesis modules FD-PET will soon become an important component of the clinical armamentarium.
Collapse
Affiliation(s)
- Alan J Fischman
- Division of Nuclear Medicine, Department of Radiology, Massachusetts General Hospital, 32 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
29
|
Kemp PM. Imaging the dopaminergic system in suspected parkinsonism, drug induced movement disorders, and Lewy body dementia. Nucl Med Commun 2005; 26:87-96. [PMID: 15657499 DOI: 10.1097/00006231-200502000-00002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This review discusses the role of pre- and post-synaptic dopaminergic imaging in suspected Parkinson's disease, vascular parkinsonism, the parkinsonian syndromes, drug induced movement disorder, and Lewy body dementia. It is envisaged that this information may be useful to neurologists, psychiatrists, physicians/geriatricians, radiologists and nuclear medicine physicians.
Collapse
Affiliation(s)
- Paul M Kemp
- Department of Nuclear Medicine, Southampton University Hospitals NHS Trust, UK.
| |
Collapse
|
30
|
Abstract
The accurate diagnosis of idiopathic Parkinson's disease (IPD) is not only important for deciding on treatment strategies and providing a prognosis, but also crucial for studies designed to investigate the aetiology and pathogenesis of parkinsonian disorders. Over recent decades, improvements in the characterisation of the parkinsonian syndromes have led to improvements in clinical diagnostic accuracy; however, clinical criteria alone are not always sufficient to distinguish between IPD and other parkinsonian syndromes, particularly in the early stages of disease and in atypical presentations. Therefore, in addition to the development and implementation of diagnostic clinical assessments, there is a need for available objective markers to aid the physician in the differential diagnosis of IPD. Functional neuroimaging holds the promise of improved diagnosis and allows assessment in early disease. In this review, the use of PET and single photon emission CT in the differential diagnosis of IPD are discussed.
Collapse
Affiliation(s)
- Paola Piccini
- MRC Clinical Sciences Centre and Division of Neuroscience, Faculty of Medicine, Imperial College, Hammersmith Hospital, London, UK.
| | | |
Collapse
|
31
|
Heiss WD, Hilker R. The sensitivity of 18-fluorodopa positron emission tomography and magnetic resonance imaging in Parkinson's disease. Eur J Neurol 2004; 11:5-12. [PMID: 14692881 DOI: 10.1046/j.1351-5101.2003.00709.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parkinson's disease (PD) as the most important movement disorder is characterized by a progressive loss of nigral dopamine neurons and a subsequent degeneration within several other transmitter systems. Functional brain imaging with positron emission tomography (PET) and the radiotracer 18-fluorodopa (FDOPA) is capable to quantify the deficiency of dopamine synthesis and storage within pre-synaptic striatal nerve terminals. Therefore, FDOPA-PET allows the diagnosis of PD in early disease stages and the differentiation of clinically unclear cases from other movement disorders, e.g. essential tremor. Additionally, FDOPA-PET imaging permits the follow-up of disease progression, the assessment of medical and surgical PD therapy strategies with possible neuroprotective properties and the detection of pre-clinical disease in subjects at risk for the disorder. The classical domain of morphological magnetic resonance imaging (MRI) is the differentiation of symptomatic Parkinsonism from PD. However, recent advances in MRI data acquisition and analysis techniques demonstrated MRI to be also a valuable tool for detection of nigral pathology in PD and for differentiation of neurodegenerative disorders with atypical Parkinsonism.
Collapse
Affiliation(s)
- W-D Heiss
- Neurology Department, University Hospital, Cologne, Germany.
| | | |
Collapse
|
32
|
Poewe W, Scherfler C. Role of dopamine transporter imaging in investigation of parkinsonian syndromes in routine clinical practice. Mov Disord 2003; 18 Suppl 7:S16-21. [PMID: 14531041 DOI: 10.1002/mds.10573] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We discuss the potential role of dopamine transporter (DAT) imaging by single photon emission computed tomography (SPECT) as a biological marker for differentiating among parkinsonian disorders in routine clinical practice, and the implication for disease progression assessment is considered. Although clinical criteria enable accurate and reliable diagnosis of fully developed Parkinson's disease, there are several areas of diagnostic uncertainty relating to atypical parkinsonian disorders, isolated tremor symptoms not fulfilling essential tremor criteria, as well as drug-induced and psychogenetic parkinsonism. DAT-SPECT facilitates differential diagnosis of the different parkinsonian syndromes that cannot be reliably separated on clinical grounds and it can thus provide valuable diagnostic information in early disease.
Collapse
Affiliation(s)
- Werner Poewe
- Department of Neurology, University Hospital, Innsbruck, Austria.
| | | |
Collapse
|
33
|
Moore RY, Whone AL, McGowan S, Brooks DJ. Monoamine neuron innervation of the normal human brain: an 18F-DOPA PET study. Brain Res 2003; 982:137-45. [PMID: 12915249 DOI: 10.1016/s0006-8993(03)02721-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
18F-DOPA positron emission tomography (PET) has been used for two decades to study the organization and pathology of the striatal dopamine system in the human brain, particularly in Parkinson's disease. High resolution 3D PET allows a more detailed analysis than previously available and was employed in this study to determine the regional uptake of 18F-DOPA in control brain. Eleven healthy volunteers underwent 18F-DOPA PET with a region of interest (ROI) study performed using individual volumetric MRI's coregistered to the PET ADD image. A Patlak linear graphical analysis was undertaken to obtain influx constant (Ki) values. The highest Ki values were from neostriatal areas, with a rostrocaudal gradient of increasing Ki values from head of caudate nucleus to rostral putamen to caudal putamen. However, Ki values for transaxial slices from dorsal to ventral through the caudate and putamen were uniform. Ventral striatum Ki was 81% with red nucleus and globus pallidus Ki values of approximately 40% of neostriatum. In limbic areas, highest values were obtained from amygdala (35% neostriatal Ki). Neocortical Ki values varied from 22% in temporal pole to 6% in occipital cortex of neostriatal values. Hypothalamic Ki was high (45%) in comparison to thalamus (17%) and retina (17%). 18F-DOPA is taken up by serotonin (raphe, 51%), and noradrenaline (locus coeruleus, 37%) as well as dopamine neurons. These data indicate that 18F-DOPA PET can be used with detailed, anatomically based ROIs as a tool for in vivo analysis of regional changes in monoamine neuron systems throughout the brain in Parkinson's disease and other disorders.
Collapse
Affiliation(s)
- Robert Y Moore
- Division of Neuroscience and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Hospital, DuCane Road, London W12 ONN, UK.
| | | | | | | |
Collapse
|
34
|
Brooks DJ. Imaging end points for monitoring neuroprotection in Parkinson's disease. Ann Neurol 2003; 53 Suppl 3:S110-8; discussion S118-9. [PMID: 12666103 DOI: 10.1002/ana.10480] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this review, the potential role of positron emission tomography and single-photon emission computed tomography as biological markers for following the progression of Parkinson's disease (PD) is discussed, and their value for assessing the efficacy of putative neuroprotective agents in PD is considered. It is concluded that functional imaging provides a valuable adjunct to clinical assessment when judging the efficacy of neuroprotective approaches to PD.
Collapse
Affiliation(s)
- David J Brooks
- MRC Clinical Sciences Centre and Division of Neuroscience, Faculty of Medicine, Imperial College, Hammersmith Hospital, London, United Kingdom.
| |
Collapse
|
35
|
Sossi V, Holden JE, de la Fuente-Fernandez R, Ruth TJ, Stoessl AJ. Effect of dopamine loss and the metabolite 3-O-methyl-[18F]fluoro-dopa on the relation between the 18F-fluorodopa tissue input uptake rate constant Kocc and the [18F]fluorodopa plasma input uptake rate constant Ki. J Cereb Blood Flow Metab 2003; 23:301-9. [PMID: 12621305 DOI: 10.1097/01.wcb.0000050041.22945.3e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Parkinson disease is characterized by the loss of dopaminergic neurons, thus decreasing the system's ability to produce and store dopamine (DA). Such ability is often investigated using 18F-fluorodopa (FD) positron emission tomography. A commonly used model to investigate the DA synthesis and storage rate is the modified Patlak graphical approach. This approach allows for both plasma and tissue input functions, yielding the respective uptake rate constants K(i) and K(occ). This method requires the presence of an irreversible compartment and the absence of any nontrapped tracer metabolite. In the case of K(occ), this last assumption is violated by the presence of the FD metabolite 3-O-methyl-[18F]fluoro-dopa (3OMFD), which makes the K(occ) evaluation susceptible to a downward bias. It was found that both K(i) and K(occ) are influenced by DA loss and thus are not pure measures of DA synthesis and storage. In the case of K(occ), the presence of 3OMFD exacerbates the effect of DA egress, thus introducing a disease-dependent bias in the K(occ) determination. These findings imply that K(i) and K(occ) provide different assessments of disease severity and that, as disease progresses, K(i) and especially K(occ) become more related to DA storage capacity and less to the DA synthesis rate.
Collapse
Affiliation(s)
- V Sossi
- Pacific Parkinson's Research Centre, Room M37, Purdy Pavilion, University of British Columbia, 2221 Wesbrook Mall, Vancouver, BC, Canada V6T 2B5.
| | | | | | | | | |
Collapse
|
36
|
Abstract
The concept of replacing lost dopamine neurons in Parkinson's disease using mesencephalic brain cells from fetal cadavers has been supported by over 20 years of research in animals and over a decade of clinical studies. The ambitious goal of these studies was no less than a molecular and cellular "cure" for Parkinson's disease, other neurodegenerative diseases, and spinal cord injury. Much research has been done in rodents, and a few studies have been done in nonhuman primate models. Early uncontrolled clinical reports were enthusiastic, but the outcome of the first randomized, double blind, controlled study challenged the idea that dopamine replacement cells can cure Parkinson's disease, although there were some significant positive findings. Were the earlier animal studies and clinical reports wrong? Should we give up on the goal? Some aspects of the trial design and implantation methods may have led to lack of effects and to some side effects such as dyskinesias. But a detailed review of clinical neural transplants published to date still suggests that neural transplantation variably reverses some aspects of Parkinson's disease, although differing methods make exact comparisons difficult. While the randomized clinical studies have been in progress, new methods have shown promise for increasing transplant survival and distribution, reconstructing the circuits to provide dopamine to the appropriate targets and with normal regulation. Selected promising new strategies are reviewed that block apoptosis induced by tissue dissection, promote vascularization of grafts, reduce oxidant stress, provide key growth factors, and counteract adverse effects of increased age. New sources of replacement cells and stem cells may provide additional advantages for the future. Full recovery from parkinsonism appears not only to be possible, but a reliable cell replacement treatment may finally be near.
Collapse
Affiliation(s)
- D Eugene Redmond
- Department of Psychiatry, Yale University School of Medicine, USA.
| |
Collapse
|
37
|
Sossi V, de La Fuente-Fernández R, Holden JE, Doudet DJ, McKenzie J, Stoessl AJ, Ruth TJ. Increase in dopamine turnover occurs early in Parkinson's disease: evidence from a new modeling approach to PET 18 F-fluorodopa data. J Cereb Blood Flow Metab 2002; 22:232-9. [PMID: 11823721 DOI: 10.1097/00004647-200202000-00011] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An increase in dopamine turnover has been hypothesized to occur early in Parkinson's disease (PD) as a compensatory mechanism for dopaminergic neuronal loss. A new approach to the determination of dopamine turnover was developed using 4-hour-long 18 F-fluorodopa (FD) positron emission tomography (PET) data. An effective dopamine turnover, an estimate of dopamine turnover, has been measured using its inverse, the effective dopamine distribution volume (EDV). This new method is based on a reversible tracer approach and determines the EDV using a graphical method. Six healthy subjects and 10 subjects with very early PD underwent a 4-hour-long FD scan. The EDV and the plasma uptake rate constant K(i), a marker of dopamine synthesis and storage, were compared according to their ability to separate the PD group from the healthy group. The EDV was the better discriminator (93.8% correct classification versus 81.3% for K(i)). Effective dopamine distribution volume decreased by 65% in the PD group relative to the healthy group, whereas the decrease in K(i) was 39%. These results show that changes in EDV are measurable with PET earlier than changes in the dopamine synthesis and storage rate, indicating that EDV is a sensitive marker for early PD and that a dopamine turnover increase likely serves as an early compensatory mechanism.
Collapse
Affiliation(s)
- Vesna Sossi
- University of British Columbia/TRIUMF, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Danielsen EH, Smith DF, Andersen F, Gee AD, Bender D, Hansen SB, Hermansen F, Østergaard L, Cumming P, Gjedde A. FDOPA metabolism in the adult porcine brain: influence of tracer circulation time and VOI selection on estimates of striatal DOPA decarboxylation. J Neurosci Methods 2001; 111:157-68. [PMID: 11595282 DOI: 10.1016/s0165-0270(01)00453-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Different methodologies for PET data analysis influence the magnitude of estimates of blood-brain transfer coefficients and rate constants for the metabolism of FDOPA in living striatum. We now test the effects on several kinetic parameters of automatic procedures for volume of interest (VOI) selection. We also tested the sensitivity of the estimates to dynamic frame sequence duration, and produced a standard method for minimizing the variations in physiological estimates for FDOPA kinetics in minipig brain. We used minipigs because our previous work has shown them to provide an appropriate animal model for study normal and pathological cerebral DOPA metabolism using PET. Time-activity curves in striatum of adult minipigs were acquired in VOIs defined manually on MR-images, or alternatively on the basis of the radioactivity concentration based on the most radioactive voxel in the last scan frame. For all frame sequences, the relative decarboxylase activity (k(3)(D)) declined significantly (P < 0.006) as the VOI threshold declined from 95 to 70% of the most radioactive voxel. Irrespective of VOI size, the magnitude of k(3)(D) declined significantly (P < 0.001) from 0.074+/-0.008 to 0.045+/-0.005 per min (mean+/-S.E.M.) as total sequence length increased from 60 to 120 min circulation. The method of VOI selection had no significant effect on the striatum decarboxylation index of FDOPA calculated relative to the radioactivity in cerebellum (k(3)(S)).
Collapse
Affiliation(s)
- E H Danielsen
- PET-Center, Aarhus University Hospital, Nörrebrogade 44, DK-8000, C, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The decarboxylation of 6-[(18)F]fluorodopa (FDOPA) and retention of the product [(18)F]fluorodopamine within vesicles of catecholamine fibers results in the labeling of dopamine-rich brain regions during FDOPA/PET studies. However, this metabolic trapping is not irreversible due to the eventual diffusion of [(18)F]fluorodopamine metabolites from brain. Consequently, time-radioactivity recordings of striatum are progressively influenced by metabolite loss. In linear analyses, the net blood-brain clearance of FDOPA (K(D)(i), ml g(-1) min(-1)) can be corrected for this loss by the elimination rate constant k(Lin)(cl) (min(-1)). Similarly, the DOPA decarboxylation rate constant (k(D)(3), min(-1)) calculated by compartmental analysis can also be corrected for metabolite loss by the elimination rate constant k(DA)(9) (min(-1)). To compare the two methods, we calculated the two elimination rate constants using data recorded during 240 min of FDOPA circulation in normal monkeys and in monkeys with unilateral 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesions. Use of the extended models increased the magnitudes of K(D)(i) and k(D)(3) in striatum; in the case of k(D)(3), variance of the estimate was substantially improved upon correction for metabolite loss. The rate constants for metabolite loss were higher in MPTP-lesioned monkey striatum than in normal striatum. The high correlation between individual estimates of k(Lin)(cl) and k(DA)(9) suggests that both rate constants reveal loss of decarboxylated metabolites from brain.
Collapse
Affiliation(s)
- P Cumming
- PET Center, Arhus Kommunehospital, Arhus, Denmark.
| | | | | |
Collapse
|
40
|
Nakamura T, Dhawan V, Chaly T, Fukuda M, Ma Y, Breeze R, Greene P, Fahn S, Freed C, Eidelberg D. Blinded positron emission tomography study of dopamine cell implantation for Parkinson's disease. Ann Neurol 2001; 50:181-7. [PMID: 11506400 DOI: 10.1002/ana.1075] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We assessed nigrostriatal dopaminergic function in Parkinson's disease (PD) patients undergoing a double-blind, placebo-controlled surgical trial of embryonic dopamine cell implantation. Forty PD patients underwent positron emission tomography (PET) imaging with [18F]fluorodopa (FDOPA) prior to randomization to transplantation or placebo surgery. The 39 surviving patients were rescanned one year following surgery. Images were quantified by investigators blinded to treatment status and clinical outcome. Following unblinding, we determined the effects of treatment status and age on the interval changes in FDOPA/PET signal. Blinded observers detected a significant increase in FDOPA uptake in the putamen of the group receiving implants compared to the placebo surgery patients (40.3%). Increases in putamen FDOPA uptake were similar in both younger (age < or = 60 years) and older (age > 60 years) transplant recipients. Significant decrements in putamen uptake were evident in younger placebo-operated patients (-6.5%) but not in their older counterparts. Correlations between the PET changes and clinical outcome were significant only in the younger patient subgroup (r = 0.58). The findings suggest that patient age does not influence graft viability or development in the first postoperative year. However, host age may influence the time course of the downstream functional changes that are needed for clinical benefit to occur.
Collapse
Affiliation(s)
- T Nakamura
- Functional Brain Imaging Laboratory, North Shore-Long Island Jewish Research Institute, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Brooks DJ. Monitoring neuroprotection and restorative therapies in Parkinson's disease with PET. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2001:125-37. [PMID: 11205135 DOI: 10.1007/978-3-7091-6301-6_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this article the role of functional imaging (PET and SPECT) as a surrogate marker for following the progression of Parkinson's disease (PD) is discussed. The potential value of PET and SPECT for assessing the efficacy of putative neuroprotective agents in PD is considered and a review of 18F-dopa PET findings in transplantation trials involving implantation of human and procine fetal mesencephalic tissue is presented. It is concluded that functional imaging provides a valuable adjunct to clinical assessment when judging the efficacy of neuroprotective and restorative approaches to PD.
Collapse
Affiliation(s)
- D J Brooks
- MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK.
| |
Collapse
|
42
|
Sossi V, Doudet DJ, Holden JE. A reversible tracer analysis approach to the study of effective dopamine turnover. J Cereb Blood Flow Metab 2001; 21:469-76. [PMID: 11323532 DOI: 10.1097/00004647-200104000-00015] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Changes in dopamine turnover resulting from disease states such as Parkinson's disease may be reflected in corresponding changes in the kinetics of the positron emission tomographic tracer [(18)F]fluorodopa. The authors had previously refined the conventional irreversible-tracer graphical approach to determine both the uptake rate constant K(i) and the rate constant kloss that describes the slow loss of the trapped kinetic component. Because these parameters change in the opposite sense with disease, their ratios may be more powerfully discriminating than either one alone. The ratio k(loss)/K(i) is indicative of effective dopamine turnover. Its inverse, K(i)/k(loss), can be interpreted as the effective distribution volume (EDV) of the specific uptake compartment referred to the fluorodopa concentration in plasma. Here the authors present a new approach to the estimation of EDV based on reversible-tracer graphical methods. When implemented with a plasma input function, the method evaluates EDV directly. When implemented with a tissue input function, the outcome is proportional to the ratio of the distribution volumes of the specific uptake and precursor compartments. Comparison of the new and previous approaches strongly validates this alternative approach to the study of effective dopamine turnover.
Collapse
Affiliation(s)
- V Sossi
- University of British Columbia/TRIUMF, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
43
|
Abstract
Parkinson's disease (PD) patients with motor complications show a greater reduction in putamen [18F]dopa uptake on positron emission tomography (PET) compared with sustained responders to L-dopa, although individual ranges overlap considerably. This implies that, although loss of putamen dopamine storage predisposes motor complications in PD, it cannot be the only factor determining timing of onset. Additional PET studies suggest that loss of striatal dopamine storage capacity along with pulsatile exposure to exogenous L-dopa results in pathologically raised synaptic dopamine levels and deranged basal ganglia opioid transmission.This, rather than altered dopamine receptor binding, then causes inappropriate overactivity of basal ganglia-frontal projections, resulting in breakthrough involuntary movements.
Collapse
Affiliation(s)
- D J Brooks
- MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| |
Collapse
|
44
|
Rousset OG, Deep P, Kuwabara H, Evans AC, Gjedde AH, Cumming P. Effect of partial volume correction on estimates of the influx and cerebral metabolism of 6-[(18)F]fluoro-L-dopa studied with PET in normal control and Parkinson's disease subjects. Synapse 2000; 37:81-9. [PMID: 10881028 DOI: 10.1002/1098-2396(200008)37:2<81::aid-syn1>3.0.co;2-#] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The poor spatial resolution of positron emission tomography (PET) is a limiting factor in the accurate assay of physiological processes investigated by compartmental modeling of tracer uptake and metabolism in living human brain. The radioactivity concentration in a region-of-interest is consequently altered by loss of signal from that structure and contamination from adjacent brain regions, phenomena known as partial volume effects. We now apply an MRI-based algorithm to compensate for partial volume effects in the special case of compartmental modeling of the cerebral uptake of 6-[(18)F]fluoro-L-dopa (FDOPA), an exogenous substrate of dopa decarboxylase. High-resolution MRI scans were obtained from normal volunteers (n = 4) and patients with Parkinson's disease (n = 4) in order to segment specific brain regions and calculate the partial volume correction factors. Dynamic 2D PET scans were acquired during 90 min following intravenous infusion of FDOPA. After partial volume correction, the apparent net blood-brain clearance of FDOPA (K(i)) was greatly increased in caudate and putamen of normal subjects and in caudate of Parkinson's disease patients. The equilibrium distribution volume of FDOPA (V(D)(e)) in cerebral cortex increased by 35% in all subjects. Using a two-compartment model, the relative activity of dopa decarboxylase with respect to FDOPA (k(D)(3)) in the basal ganglia was increased 2-3 times in normal subjects, to the range obtained previously in brain of living rat. The partial volume correction also increased the magnitude of k(D)(3) in caudate of Parkinson's disease patients, but did not alter k(D)(3) in putamen. A three-compartment model correcting for elimination of decarboxylated metabolites also yielded higher estimates of k(D)(3), but with a penalty in precision of the estimates. Together, these observations suggest that the limited spatial resolution of PET results in substantial underestimation of the true rate of FDOPA uptake and metabolism in vivo, and may also tend to obscure regional heterogeneity in the neurochemical pathology of Parkinson's disease.
Collapse
Affiliation(s)
- O G Rousset
- McConnell Brain Imaging Center, Montréal Neurological Institute, Montréal, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Shoghi-Jadid K, Huang SC, Stout DB, Yee RE, Yeh EL, Farahani KF, Satyamurthy N, Phelps ME, Barrio JR. Striatal kinetic modeling of FDOPA with a cerebellar-derived constraint on the distribution of volume of 30MFD: a PET investigation using non-human primates. J Cereb Blood Flow Metab 2000; 20:1134-48. [PMID: 10908046 DOI: 10.1097/00004647-200007000-00012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The peripherally born metabolite of FDOPA, 3-O-Methyl-FDOPA (3OMFD), crosses the blood-brain barrier, thus complicating positron emission tomography-FDOPA (PET-FDOPA) data analysis. In previous reports the distribution volume (DV) of 3OMFD was constrained to unity. We have recently shown that the forward transport rate-constant of FDOPA (K(S1)) and the cerebellum-to-plasma ratio (C(b)/C(p)), a measure for the DV of 3OMFD, are functions of plasma large neutral amino acid (LNAA) concentration. Given large interstudy and intersubject differences in plasma LNAA levels, variations in the DV of 3OMFD are significant. In this report, the authors propose a constraint on the DV of 3OMFD that accounts for these variations. Dynamic PET-FDOPA scans were performed on 12 squirrel monkeys and 12 vervet monkeys. Two sets of constraints were employed on the compartmental model--M1 or M2. In M1, the striatal DV of 3OMFD was constrained to unity; in M2, the striatal DV of 3OMFD was constrained to an estimate derived from the cerebellum. Striatal and cerebellar time-activity curves were fitted using FDOPA and 3OMFD plasma input functions. The estimate of K(S1) and that of the compartmental FDOPA uptake-constant (K(i)), both obtained using M2, were adjusted to values corresponding to average LNAA levels. Finally, K(i) was compared with the graphical uptake-constant (PK(j)). With the use of constraint M2, intersubject variability of squirrel monkey k(S3) and K(i) was reduced by 45% and 53%, respectively; and for vervet monkeys, by 54% and 44%, respectively. Intersubject variability of K(1) and K(i) was further reduced after correction for variations in intersubject plasma LNAA levels (for squirrel monkeys, by 67% and 41%; for vervet monkeys, by 40% and 36%, respectively). K(i) correlation to PK(i) was enhanced to identity. Finally, average cerebellar k(C2) estimates were more than 2.5-fold higher than striatal k(S2) estimates (P < 0.0001). In modeling of PET-FDOPA data, it cannot be assumed that the DV of 3OMFD is unity. The cerebellar-derived constraint furnishes a reliable estimate for the DV of 3OMFD. Invoking the constraint and correcting for variations in plasma LNAA significantly reduced interstudy and intersubject variations in parameter estimates.
Collapse
Affiliation(s)
- K Shoghi-Jadid
- Department of Biomathematics, UCLA School of Medicine, Center for the Health Sciences, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Danielsen EH, Cumming P, Andersen F, Bender D, Brevig T, Falborg L, Gee A, Gillings NM, Hansen SB, Hermansen F, Johansen J, Johansen TE, Dahl-Jørgensen A, Jørgensen HA, Meyer M, Munk O, Pedersen EB, Poulsen PH, Rodell AB, Sakoh M, Simonsen CZ, Smith DF, Sørensen JC, Ostergård L, Zimmer J, Gjedde A, Møller A. The DaNeX study of embryonic mesencephalic, dopaminergic tissue grafted to a minipig model of Parkinson's disease: preliminary findings of effect of MPTP poisoning on striatal dopaminergic markers. Cell Transplant 2000; 9:247-59. [PMID: 10811397 DOI: 10.1177/096368970000900210] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A multicenter study is under way to investigate the efficacy of allografting of embryonic mesencephalic neurons in a pig model of Parkinson's disease. We have first established that a stable parkinsonian syndrome can be established by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication of adult male Göttingen minipigs. We are now using positron emission tomography (PET) methods for testing the physiological responses to MPTP intoxication and the time course of the response to several treatment strategies. We now report preliminary results obtained in 11 pigs employed in the initial phase of the study; the completed study shall ultimately include 30 pigs. Animals were randomly assigned to one of five groups: 1) Control, 2) MPTP intoxication, 3) MPTP intoxication followed by allograft, 4) MPTP intoxication followed by allograft with immunosuppression, and 5) MPTP intoxication followed by allograft with immunosuppression and co-grafting of immortalized HiB5 cells, which had been manipulated to secrete glia cell line-derived neurotrophic factor (GDNF) (approximately 2 ng GDNF/h/10(5) cells). MPTP was administered (1 mg/kg/day, SC) for 7-10 days until the pigs had developed mild parkinsonian symptoms of muscle rigidity, hypokinesia, and impaired coordination, especially of the hind limbs. Approximately 2 weeks after the last MPTP dose, animals received a T1-weighted magnetic resonance imaging (MRI) scan, and a series of dynamic PET recordings. After the first series of PET scans, four grafts of porcine embryonic mesencephalic tissue (E28 days) were placed in each striatum of some MPTP-intoxicated pigs, using MRI-based stereotactic techniques. Immunosuppression of some animals with cyclosporin and prednisolone began just prior to surgery. Two more series of PET scans were performed at 4-month intervals after surgery. After the last scans, pigs were killed and the brains were perfused for unbiased stereological examination of cytological and histochemical markers in striatum and substantial nigra. The behavioral impairment of the animals (the "Parkinson's score") had been evaluated throughout the 8-month period. Kinetic analysis of the first set of PET scans has indicated that the rate constant for the decarboxylation of FDOPA in catecholamine fibers was reduced by 33% in striatum of the mildly parkinsonian pigs. The rate of association of [11C]NS-2214 to catecholamine uptake sites was reduced by 62% in the same groups of pigs. No significant difference was found in the binding potential of [11C]raclopride to the dopamine D2-like receptors in striatum of the MPTP-intoxicated versus control pigs. These preliminary results are suggestive that the activity of DOPA decarboxylase may be upregulated in the partially denervated pig striatum.
Collapse
|
47
|
Fujita M, Seibyl JP, Verhoeff NP, Ichise M, Baldwin RM, Zoghbi SS, Burger C, Staley JK, Rajeevan N, Charney DS, Innis RB. Kinetic and equilibrium analyses of [(123)I]epidepride binding to striatal and extrastriatal dopamine D(2) receptors. Synapse 1999; 34:290-304. [PMID: 10529723 DOI: 10.1002/(sici)1098-2396(19991215)34:4<290::aid-syn5>3.0.co;2-b] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Quantitative SPECT measures of dopamine D(2) like receptors with [(123)I]epidepride is complicated by its high affinity and lipophilic metabolites. The purpose of this study was to use both parent (P) and lipophilic metabolites (M) as input functions in a kinetic paradigm and in comparison to the results of equilibrium studies. Kinetic studies on eleven healthy human subjects, ages 32+/- 10 were performed following i.v. injection of approximately 370 MBq of [(123)I]epidepride. Images were acquired for 13.5+/-1.0 hours. Equilibrium studies were done on seven of eleven subjects with a bolus injection of approximately 140 MBq, bolus/infusion ratio of 10 hours, and infusion for 30-32 hours. High (striatum) and low (temporal cortex) density regions were studied. Two (P and M) and one (P) input function models were applied in the kinetic studies. In receptor-rich regions, the distribution volumes in nondisplaceable compartments were fixed to those in cerebellum. In addition, in the two input function model, K(1)(P)/K(1)(M) was fixed to the values in the cerebellum. The one input function model provided V'(3) values (=f(1)*B'(max)/K(D)) which were consistent with those obtained in equilibrium studies in both receptor-rich regions, while the two input function model provided consistent values only in striatum. Poor identifiability of the rate constants of metabolites seemed to be the source of errors in the two input function model. These results suggest that correct V'(3) values can be obtained with the one input function model both in high- and low-density regions.
Collapse
Affiliation(s)
- M Fujita
- Department of Psychiatry, Diagnostic Radiology, and Pharmacology, Yale University and VA Connecticut, West Haven, Connecticut 06516, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Torstenson R, Tedroff J, Hartvig P, Fasth KJ, Långström B. A comparison of 11C-labeled L-DOPA and L-fluorodopa as positron emission tomography tracers for the presynaptic dopaminergic system. J Cereb Blood Flow Metab 1999; 19:1142-9. [PMID: 10532639 DOI: 10.1097/00004647-199910000-00011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
11C-labeled 3,4-Dihydroxy-phenyl-L-alanine (L-DOPA) and L-fluorodopa were used as tracers for the functional state of the presynaptic dopamine system in anesthetized monkeys with positron emission tomography. The radiotracer disposition in brain tissue and plasma were studied and effects induced by pharmacologic challenges were evaluated. 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (6R-BH4) increased the striatal influx rate constant, e.g., striatal K(i) for L-[beta-11C]DOPA, but it induced no effect on the K(i)-value using L-[beta-11C]-6-fluorodopa. Studies of radiolabeled tracer and metabolites in plasma showed substantial differences between the two tracers. At baseline conditions, 60% unchanged L-[beta-11C]DOPA was detected in plasma 50 minutes after tracer injection and the 3-O-methylated fraction accounted for 25% of total radioactivity. For L-[beta-11C]-6-fluorodopa, the relation was inverse; about 25% unchanged tracer and 60% 3-O-methyl metabolite were present in plasma after 50 minutes. A site-specific 11C-labeling in the carboxylic position in the molecules revealed a significant specific retention of radioactivity in striatum with L-[car-boxy-11C]-6-fluorodopa but not with L-[carboxy-11C]DOPA. The 3-O-methyl metabolite of L-DOPA is known to pass the blood-brain barrier and may interfere with the calculation of the K(i)value using a brain reference region. Thus, extensive 3-O-methylation in circulation of the fluorinated analog could obscure the detectability of potential functional change in striatal K(i) of the tracer when using a reference tissue model for calculation.
Collapse
Affiliation(s)
- R Torstenson
- The Subfemtomole Biorecognition Project, Uppsala University and Japanese Research and Development Council, Sweden
| | | | | | | | | |
Collapse
|
49
|
Danielsen EH, Smith DF, Gee AD, Venkatachalam TK, Hansen SB, Hermansen F, Gjedde A, Cumming P. Cerebral 6-[(18)F]fluoro-L-DOPA (FDOPA) metabolism in pig studied by positron emission tomography. Synapse 1999; 33:247-58. [PMID: 10421705 DOI: 10.1002/(sici)1098-2396(19990915)33:4<247::aid-syn1>3.0.co;2-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We measured 6-[(18)F]fluoro-L-DOPA (FDOPA) uptake and metabolism in the brain of 4-month-old female pigs (n = 8) using a high-resolution positron emission tomograph (PET) in 3D mode. The mean net blood-brain clearance of FDOPA (K(i)(D)) to striatum was 0.011 ml g(-1) min(-1). Correcting for the elimination of decarboxylated metabolites from striatum (k(loss) = 0.004 min(-1)) increased the apparent magnitude of the estimate of K(i)(D) by 50%, at the expense of doubling the variance of the mean estimate. The mean decarboxylation rate of FDOPA in striatum relative to the cerebellum input (k(3)(s)) was 0.008 min(-1). For multicompartmental analyses, the FDOPA partition volume (V(e)(D)) was constrained to the individual value observed in cerebellum (mean = 0.53 ml g(-1)), with correction for the presence in brain of the plasma metabolite 3-O-methyl-FDOPA (OMFD). Using the first 60 min of the dynamic PET scans, the rate constant of FDOPA decarboxylation (k(3)(D)) was estimated to be 0.037 min(-1 )in striatum, but was not significantly different than zero in frontal cortex. Fitting of a compartmental model correcting for elimination of decarboxylated metabolites to the complete PET frame-sequence (120 min) increased the variance of the estimate of k(3)(D) in striatum. The magnitude of k(3)(D) in striatum of young pig was less than values estimated previously in neonatal piglet, adult monkey, and human. MRI-based simulations predicted that recovery of radioactivity from pig striatum was highly sensitive to the volume of interest. We conclude that the spatial resolution of our tomograph reduces the apparent magnitude of k(3)(D) in striatum. However, anaesthetised pigs are an appropriate experimental model for PET studies of DOPA decarboxylation in striatum.
Collapse
Affiliation(s)
- E H Danielsen
- PET-Center, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Brust P, Bauer R, Vorwieger G, Walter B, Bergmann R, Füchtner F, Steinbach J, Zwiener U, Johannsen B. Upregulation of the aromatic amino acid decarboxylase under neonatal asphyxia. Neurobiol Dis 1999; 6:131-9. [PMID: 10343328 DOI: 10.1006/nbdi.1998.0232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Perinatal hypoxic-ischemic cerebral injury is a major determinant of neurologic morbidity and mortality in the neonatal period and later in childhood. There is evidence that the dopaminergic system is sensitive to asphyxia. However, the respective enzyme activities have not yet been measured in the living neonatal brain. In this study, we have used 18F-labeled 6-fluoro-L-3,4-dihydroxyphenylalanine (FDOPA) together with positron-emission tomography (PET) to estimate the activity of the aromatic amino acid decarboxylase (AADC), the ultimate enzyme in the synthesis of dopamine (DA), in the brain of newborn piglets. Simultaneously, the cerebral blood flow (CBF) was measured with colored microspheres. Asphyxia elicited an up to threefold increase of the CBF. Despite this, the blood-brain transfer of FDOPA as well as the clearance rate constants from brain were unchanged. However, the synthesis rate of FDA from FDOPA was significantly increased in frontal cortex, striatum, and midbrain. This increase of the AADC activity and the decrease of monoamine oxidase activity may contribute to the increase of extracellular DA during asphyxia which is expected to be involved in severe disturbances of neuronal metabolism, e.g., by generating free radicals.
Collapse
Affiliation(s)
- P Brust
- Forschungszentrum Rossendorf, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|