1
|
Wu J, Jia J, Ji D, Jiao W, Huang Z, Zhang Y. Advances in nitric oxide regulators for the treatment of ischemic stroke. Eur J Med Chem 2023; 262:115912. [PMID: 37931330 DOI: 10.1016/j.ejmech.2023.115912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
Ischemic stroke (IS) is a life-threatening disease worldwide. Nitric oxide (NO) derived from l-arginine catalyzed by NO synthase (NOS) is closely associated with IS. Three isomers of NOS (nNOS, eNOS and iNOS) produce different concentrations of NO, resulting in quite unlike effects during IS. Of them, n/iNOSs generate high levels of NO, detrimental to brain by causing nerve cell apoptosis and/or necrosis, whereas eNOS releases small amounts of NO, beneficial to the brain via increasing cerebral blood flow and improving nerve function. As a result, a large variety of NO regulators (NO donors or n/iNOS inhibitors) have been developed for fighting IS. Regrettably, up to now, no review systematically introduces the progresses in this area. This article first outlines dynamic variation rule of NOS/NO in IS, subsequently highlights advances in NO regulators against IS, and finally presents perspectives based on concentration-, site- and timing-effects of NO production to promote this field forward.
Collapse
Affiliation(s)
- Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian Jia
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China; Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Duorui Ji
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Weijie Jiao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Huerta de la Cruz S, Santiago-Castañeda CL, Rodríguez-Palma EJ, Medina-Terol GJ, López-Preza FI, Rocha L, Sánchez-López A, Freeman K, Centurión D. Targeting hydrogen sulfide and nitric oxide to repair cardiovascular injury after trauma. Nitric Oxide 2022; 129:82-101. [PMID: 36280191 PMCID: PMC10644383 DOI: 10.1016/j.niox.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
The systemic cardiovascular effects of major trauma, especially neurotrauma, contribute to death and permanent disability in trauma patients and treatments are needed to improve outcomes. In some trauma patients, dysfunction of the autonomic nervous system produces a state of adrenergic overstimulation, causing either a sustained elevation in catecholamines (sympathetic storm) or oscillating bursts of paroxysmal sympathetic hyperactivity. Trauma can also activate innate immune responses that release cytokines and damage-associated molecular patterns into the circulation. This combination of altered autonomic nervous system function and widespread systemic inflammation produces secondary cardiovascular injury, including hypertension, damage to cardiac tissue, vascular endothelial dysfunction, coagulopathy and multiorgan failure. The gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S) are small gaseous molecules with potent effects on vascular tone regulation. Exogenous NO (inhaled) has potential therapeutic benefit in cardio-cerebrovascular diseases, but limited data suggests potential efficacy in traumatic brain injury (TBI). H2S is a modulator of NO signaling and autonomic nervous system function that has also been used as a drug for cardio-cerebrovascular diseases. The inhaled gases NO and H2S are potential treatments to restore cardio-cerebrovascular function in the post-trauma period.
Collapse
Affiliation(s)
- Saúl Huerta de la Cruz
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico; Department of Pharmacology, University of Vermont, Burlington, VT, USA.
| | | | - Erick J Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico.
| | | | | | - Luisa Rocha
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico.
| | | | - Kalev Freeman
- Department of Emergency Medicine, University of Vermont, Burlington, VT, USA.
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico.
| |
Collapse
|
3
|
Fan JL, Brassard P, Rickards CA, Nogueira RC, Nasr N, McBryde FD, Fisher JP, Tzeng YC. Integrative cerebral blood flow regulation in ischemic stroke. J Cereb Blood Flow Metab 2022; 42:387-403. [PMID: 34259070 PMCID: PMC8985438 DOI: 10.1177/0271678x211032029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Optimizing cerebral perfusion is key to rescuing salvageable ischemic brain tissue. Despite being an important determinant of cerebral perfusion, there are no effective guidelines for blood pressure (BP) management in acute stroke. The control of cerebral blood flow (CBF) involves a myriad of complex pathways which are largely unaccounted for in stroke management. Due to its unique anatomy and physiology, the cerebrovascular circulation is often treated as a stand-alone system rather than an integral component of the cardiovascular system. In order to optimize the strategies for BP management in acute ischemic stroke, a critical reappraisal of the mechanisms involved in CBF control is needed. In this review, we highlight the important role of collateral circulation and re-examine the pathophysiology of CBF control, namely the determinants of cerebral perfusion pressure gradient and resistance, in the context of stroke. Finally, we summarize the state of our knowledge regarding cardiovascular and cerebrovascular interaction and explore some potential avenues for future research in ischemic stroke.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, Canada.,Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec City, Canada
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Neurology Department, Hospital Nove de Julho, São Paulo, Brazil
| | - Nathalie Nasr
- Department of Neurology, Toulouse University Hospital, NSERM UMR 1297, Toulouse, France
| | - Fiona D McBryde
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - James P Fisher
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Department of Surgery & Anaesthesia, Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| |
Collapse
|
4
|
Chukanova E, Chukanova A, Rodionova D. Hypoxia and oxidative stress in cerebral circulation insufficiency — effective ways of correction. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:35-40. [DOI: 10.17116/jnevro202212208135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Zakharov V, Tkacheva O, Mkhitaryan E, Fedin A. Efficacy of Mexidol in patients with chronic brain ischemia and cognitive impairment of different age groups (results of sub-analysis of the international multicenter, randomized, double-blind, placebo-controlled study of sequential therapy in patients with chronic brain ischemia MEMO). Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:73-80. [DOI: 10.17116/jnevro202212211273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Wierońska JM, Cieślik P, Kalinowski L. Nitric Oxide-Dependent Pathways as Critical Factors in the Consequences and Recovery after Brain Ischemic Hypoxia. Biomolecules 2021; 11:biom11081097. [PMID: 34439764 PMCID: PMC8392725 DOI: 10.3390/biom11081097] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Brain ischemia is one of the leading causes of disability and mortality worldwide. Nitric oxide (NO•), a molecule that is involved in the regulation of proper blood flow, vasodilation, neuronal and glial activity constitutes the crucial factor that contributes to the development of pathological changes after stroke. One of the early consequences of a sudden interruption in the cerebral blood flow is the massive production of reactive oxygen and nitrogen species (ROS/RNS) in neurons due to NO• synthase uncoupling, which leads to neurotoxicity. Progression of apoptotic or necrotic neuronal damage activates reactive astrocytes and attracts microglia or lymphocytes to migrate to place of inflammation. Those inflammatory cells start to produce large amounts of inflammatory proteins, including pathological, inducible form of NOS (iNOS), which generates nitrosative stress that further contributes to brain tissue damage, forming vicious circle of detrimental processes in the late stage of ischemia. S-nitrosylation, hypoxia-inducible factor 1α (HIF-1α) and HIF-1α-dependent genes activated in reactive astrocytes play essential roles in this process. The review summarizes the roles of NO•-dependent pathways in the early and late aftermath of stroke and treatments based on the stimulation or inhibition of particular NO• synthases and the stabilization of HIF-1α activity.
Collapse
Affiliation(s)
- Joanna M Wierońska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland; (J.M.W.); (P.C.)
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Biobank Fahrenheit BBMRI.pl, Medical University of Gdansk, Debinki Street 7, 80-211 Gdansk, Poland
- Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Debinki Street 7, 80-211 Gdansk, Poland
- BioTechMed Center/Department of Mechanics of Materials and Structures, Gdansk University of Technology, Narutowicza 11/12, 80-223 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-1182
| |
Collapse
|
7
|
Asano N, Hishiyama S, Ishiyama T, Kotoda M, Matsukawa T. Effects of β 1-adrenergic receptor blockade on the cerebral microcirculation in the normal state and during global brain ischemia/reperfusion injury in rabbits. BMC Pharmacol Toxicol 2020; 21:13. [PMID: 32085806 PMCID: PMC7035637 DOI: 10.1186/s40360-020-0394-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 02/16/2020] [Indexed: 11/27/2022] Open
Abstract
Background Although recent studies using experimental models of ischemic brain injury indicate that systemically-administered β1-blockers have potential protective effects on the cerebrovascular system, the precise mechanisms remain unclear. In addition to their cardiovascular effects, water-soluble β1-blockers can pass the blood–brain barrier and may exert their vascular action on cerebral microvessels. The aim of this study was to investigate the direct effects of β1-blockade on the cerebral microvasculature both in the normal state and ischemia/reperfusion state using the cranial window method. Methods The closed cranial window method was used to visualize the cerebral microcirculation and changes in the pial arteriole diameter in adult male rabbits. In the first experiment, various concentrations of the selective β1-blocker landiolol were administered into the cranial window to evaluate the dose-response. In the second experiment, the effect of β1-blockade on the brain during ischemic/reperfusion injury was investigated. Global brain ischemia/reperfusion was induced by clamping the brachiocephalic, left common carotid, and left subclavian arteries for 15 min. Either landiolol or artificial cerebrospinal fluid was infused 5 min after initiation of ischemia through 120 min after reperfusion. Pial arteriole diameter and hemodynamic and physiological parameters were recorded before ischemia, during ischemia, and 5, 10, 20, 40, 60, 80, 100, and 120 min after reperfusion. Results In the first experiment, topical administration of landiolol at higher concentrations produced slight pial arteriole dilation (10− 8 mol/L: 4.3 ± 3.4%, 10− 6 mol/L: 8.0 ± 5.8%, 10− 4 mol/L: 7.3 ± 4.0%). In the second experiment, the topical administration of landiolol significantly dilated the pial arteriole diameters during ischemia/reperfusion injury (ischemia: 30.6 ± 38.6%, 5 min: 47.3 ± 42.2%, 10 min: 47.8 ± 34.2%, 20 min: 38.0 ± 39.0%). There were no statistical differences in hemodynamic and physiological parameters between the landiolol and control groups. Conclusions The blockade of β1-adrenergic receptors induced significant vasodilation of pial arterioles during ischemia/reperfusion injury. By contrast, only a slight dilation of the arterioles was observed in the normal state, indicating that ischemic cerebral microvessels are more susceptible to the vasodilatory effect induced by selective blockade of β1-adrenergic receptors than normal microvessels.
Collapse
Affiliation(s)
- Nobumasa Asano
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Sohei Hishiyama
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Tadahiko Ishiyama
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Masakazu Kotoda
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02115, USA.
| | - Takashi Matsukawa
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| |
Collapse
|
8
|
Mir JM, Malik BA, Maurya RC. Nitric oxide-releasing molecules at the interface of inorganic chemistry and biology: a concise overview. REV INORG CHEM 2019. [DOI: 10.1515/revic-2018-0017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractThe useful aspects of nitric oxide (NO) are nowadays widely known. Due to the need for this molecule in the maintenance of homeostasis, NO-releasing compounds are tested every year to optimize its levels in a patient suffering from low NO production. This manuscript is an update of some important historical concerns about nitrosyl complexes having the ability to act as NO-releasing compounds under the influence of different chemically modified environments. At present, the search for efficient and less harmful NO-releasing molecules at desirable targets and concentrations has gained considerable momentum in nitrosyl chemistry. Iron, ruthenium, and manganese nitrosyls have been investigated elitely to disentangle their electronic transition (excitation) under visible light to act as NO donors without harming the healthy cells of a target. There is much evidence supporting the increase of NO lability if amino acids are used as complexing ligands, the design of a reduction center close to an NO grouping, and the development of porphyrin system-based nitrosyl complexes. From the overall survey, it may be concluded that the desirable properties of such scaffolds need to be evaluated further to complement the biological milieu.
Collapse
Affiliation(s)
- Jan Mohammad Mir
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of Post Graduate Studies and Research in Chemistry and Pharmacy, Rani Durgavati University, Jabalpur 482001, Madhya Pradesh, India
- Department of Chemistry, Islamic University of Science and Technology, Awantipora 192322, Jammu and Kashmir
| | - Bashir Ahmad Malik
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of Post Graduate Studies and Research in Chemistry and Pharmacy, Rani Durgavati University, Jabalpur 482001, Madhya Pradesh, India
- Department of Chemistry, Islamic University of Science and Technology, Awantipora 192322, Jammu and Kashmir
| | - Ram Charitra Maurya
- Coordination, Bioinorganic and Computational Chemistry Laboratory, Department of Post Graduate Studies and Research in Chemistry and Pharmacy, Rani Durgavati University, Jabalpur 482001, Madhya Pradesh, India
| |
Collapse
|
9
|
Allan PD, Tzeng YC, Gowing EK, Clarkson AN, Fan JL. Dietary nitrate supplementation reduces low frequency blood pressure fluctuations in rats following distal middle cerebral artery occlusion. J Appl Physiol (1985) 2018; 125:862-869. [DOI: 10.1152/japplphysiol.01081.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It is known that high blood pressure variability (BPV) in acute ischemic stroke is associated with adverse outcomes, yet there are no therapeutic treatments to reduce BPV. Studies have found increasing nitric oxide (NO) bioavailability improves neurological function following stroke, but whether dietary nitrate supplementation could reduce BPV remains unknown. We investigated the effects of dietary nitrate supplementation on heart rate (HR), blood pressure (BP), and beat-to-beat BPV using wireless telemetry in a rat model of distal middle cerebral artery occlusion. Blood pressure variability was characterized by spectral power analysis in the low frequency (LF; 0.2–0.6 Hz) range prestroke and during the 7 days poststroke in a control group ( n = 8) and a treatment group ( n = 8, 183 mg/l sodium nitrate in drinking water). Dietary nitrate supplementation moderately reduced systolic BPV in the LF range by ~11% compared with the control group ( P = 0.03), while resting BP and HR were not different between the two groups ( P = 0.28 and 0.33, respectively). Despite systolic BPV being reduced with dietary nitrate, we found no difference in infarct volumes between the treatment and the control groups (1.59 vs. 1.62 mm3, P = 0.86). These findings indicate that dietary nitrate supplementation is effective in reducing systolic BPV following stroke without affecting absolute BP. In light of mounting evidence linking increased BPV with poor stroke patient outcome, our data support the role of dietary nitrate as an adjunct treatment following ischemic stroke. NEW & NOTEWORTHY Using a rat model of stroke, we found that dietary nitrate supplementation reduced low frequency blood pressure fluctuations following stroke without affecting absolute blood pressure values. Since blood pressure fluctuations are associated with poor clinical outcome in stroke patients, our findings indicate that dietary nitrate could be an effective strategy for reducing blood pressure fluctuations, which could help reduce stroke severity and improve patient recovery.
Collapse
Affiliation(s)
- Philip D. Allan
- Department of Surgery and Anaesthesia, Centre for Translational Physiology, University of Otago, Wellington, New Zealand
- Wellington Medical Technology Group, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| | - Yu-Chieh Tzeng
- Department of Surgery and Anaesthesia, Centre for Translational Physiology, University of Otago, Wellington, New Zealand
- Wellington Medical Technology Group, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| | - Emma K. Gowing
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
- Faculty of Pharmacy, The University of Sydney, New South Wales, Australia
| | - Jui-Lin Fan
- Department of Surgery and Anaesthesia, Centre for Translational Physiology, University of Otago, Wellington, New Zealand
- Wellington Medical Technology Group, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| |
Collapse
|
10
|
Kotoda M, Ishiyama T, Mitsui K, Hishiyama S, Matsukawa T. Nicorandil increased the cerebral blood flow via nitric oxide pathway and ATP-sensitive potassium channel opening in mice. J Anesth 2018; 32:244-249. [DOI: 10.1007/s00540-018-2471-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/17/2018] [Indexed: 11/29/2022]
|
11
|
Panthi S, Manandhar S, Gautam K. Hydrogen sulfide, nitric oxide, and neurodegenerative disorders. Transl Neurodegener 2018; 7:3. [PMID: 29456842 PMCID: PMC5810063 DOI: 10.1186/s40035-018-0108-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Hydrogen Sulfide (H2S) and Nitric Oxide (NO) have become recognized as important gaseous signaling molecules with enormous pharmacological effects, therapeutic value, and central physiological roles. NO is one of the most important regulators of the pathophysiological condition in central nervous system (CNS). It is critical in the various functioning of the brain; however, beyond certain concentration/level, it is toxic. H2S was regarded as toxic gas with the smell like rotten egg. But, it is now regarded as emerging neuroprotectant and neuromodulator. Recently, the use of donors and inhibitors of these signaling molecules have helped us to identify their accurate and precise biological effects. The most abundant neurotransmitter of CNS (glutamate) is the initiator of the reaction that forms NO, and H2S is highly expressed in brain. These molecules are shedding light on the pathogenesis of various neurological disorders. This review is mainly focused on the importance of H2S and NO for normal functioning of CNS.
Collapse
Affiliation(s)
- Sandesh Panthi
- Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | | | - Kripa Gautam
- China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
12
|
Abstract
Stroke is considered to be an acute cerebrovascular disease, including ischemic stroke and hemorrhagic stroke. The high incidence and poor prognosis of stroke suggest that it is a highly disabling and highly lethal disease which can pose a serious threat to human health. Nitric oxide (NO), a common gas in nature, which is often thought as a toxic gas, because of its intimate relationship with the pathological processes of many diseases, especially in the regulation of blood flow and cell inflammation. However, recent years have witnessed an increased interest that NO plays a significant and positive role in stroke as an essential gas signal molecule. In view of the fact that the neuroprotective effect of NO is closely related to its concentration, cell type and time, only in the appropriate circumstances can NO play a protective effect. The purpose of this review is to summarize the roles of NO in ischemic stroke and hemorrhagic stroke.
Collapse
Affiliation(s)
- Zhou-Qing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ru-Tao Mou
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dong-Xia Feng
- Department of Scott & White Clinic-Temple, Temple, TX, USA
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
13
|
Tewari VK, Bhosale V, Shukla R, Gupta HKD, Sheeba. Intracarotid Sodium Nitroprusside on Fifth Post Ischemic Stroke Day in Middle Cerebral Artery Occlusion Rat Model. J Clin Diagn Res 2017; 11:AF01-AF04. [PMID: 28969107 DOI: 10.7860/jcdr/2017/28085.10504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/26/2017] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Ischemic stroke at later stages (>4.5 hour) have very few treatment options left. In those cases Nitric Oxide (NO) may provide promising results. NO is active in signaling pathways. Sodium Nitroprusside (SNP), a NO donor was tested earlier in rat Middle Cerebral Artery Occlusion (MCAO) model in early stages (5-60 minutes) and found useful but in delayed stroke cases (60-120 minutes) found useless. This was due to local inducible Nitric Oxide Synthase Enzyme (iNOS) and superoxide (causes destructive effect) formation which was skipped. AIM To evaluate the effect of Intracarotid Sodium Nitroprusside (ICSNP) in MCAO rat model of ischemic stroke (I/R model) fifth post ischemic stroke day. MATERIALS AND METHODS A total of 24 Sprague Dawley rats, weighing 250 gm to 280 gm, at CDRI-Lucknow, India were used. Rats were divided in three groups. Group A (n=4) were taken as sham with standard procedure but without any injection on fifth day, Group B (n=8) as control with injection of saline on fifth day and Group C (n=12) received SNP at dose of 3 mcg/kg/minute given directly in internal carotid artery via External Carotid Artery (ECA) with a modified intraluminal stump technique as Ischemia/Reperfusion (I/R) in ipsilateral MCAO at intracarotid artery region as a single dose therapy on fifth day and then wound was closed. Waited for full recovery for two hours, then neurobehavioural assessment scores were noted. Thereafter, the brains were quickly removed and sliced at 2 mm intervals. Animals showing no sign of neurological deficit, were excluded from the study. Tested animals were compared with control animals for neurological deficit, percentage of infarction by 2,3,5-Triphenyl Tetrazolium Chloride (TTC) staining, nNOS expression and scores were summed up. The statistical analysis was done by Newman-Keuls test, Graph Pad prism (version.5.0) and p<0.05 was considered statistically significant. RESULTS ICSNP group (Group C) showed a good reduction in the cerebral infarction of 53.42% as compared to control (Group B). Group A mean change in Newman-Keuls test and Graph Pad prism (version.5.0) was showing increase of 1.44 points/6.55%, compared to Group B decrease of 0.7 points. A 60% decrease in ischemic zone noted in Group A. CONCLUSION The use of single dose ICSNP is beneficial (53.42%) in fifth post stroke day.
Collapse
Affiliation(s)
- Vinod Kumar Tewari
- Neurosurgeon, Department of Neurosurgery, Advance Neuro and General Hospital, Lucknow, Uttar Pradesh, India
| | - Vivek Bhosale
- Scientist, Department of Clinical and Experimental Medicine, Sir-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Rakesh Shukla
- Chief Scientist and Head, Department of Pharmacology, CSIR-CDRI, Lucknow, Uttar Pradesh, India
| | - Hari Kishan Das Gupta
- Mch Urologist Head, Department of Surgery, Jhalawar Medical College, Jhalawar, Rajasthan, India
| | - Sheeba
- Senior Technical Officer, Department of Pharmacology, CSIR-CDRI, Lucknow, Uttar Pradesh, India
| |
Collapse
|
14
|
Effect of Treatment Delay, Stroke Type, and Thrombolysis on the Effect of Glyceryl Trinitrate, a Nitric Oxide Donor, on Outcome after Acute Stroke: A Systematic Review and Meta-Analysis of Individual Patient from Randomised Trials. Stroke Res Treat 2016; 2016:9706720. [PMID: 27190674 PMCID: PMC4852111 DOI: 10.1155/2016/9706720] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/14/2016] [Indexed: 11/25/2022] Open
Abstract
Background. Nitric oxide (NO) donors are a candidate treatment for acute stroke and two trials have suggested that they might improve outcome if administered within 4–6 hours of stroke onset. We assessed the safety and efficacy of NO donors using individual patient data (IPD) from completed trials. Methods. Randomised controlled trials of NO donors in patients with acute or subacute stroke were identified and IPD sought from the trialists. The effect of NO donor versus control on functional outcome was assessed using the modified Rankin scale (mRS) and death, by time to randomisation. Secondary outcomes included measures of disability, mood, and quality of life. Results. Five trials (4,197 participants) were identified, all involving glyceryl trinitrate (GTN). Compared with control, GTN lowered blood pressure by 7.4/3.3 mmHg. At day 90, GTN did not alter any clinical measures. However, in 312 patients randomised within 6 hours of stroke onset, GTN was associated with beneficial shifts in the mRS (odds ratio (OR) 0.52, 95% confidence interval (CI) 0.34–0.78) and reduced death (OR 0.32, 95% CI 0.14–0.78). Conclusions. NO donors do not alter outcome in patients with recent stroke. However, when administered within 6 hours, NO donors might improve outcomes in both ischaemic and haemorrhagic stroke.
Collapse
|
15
|
Chukanova EI, Chukanova AS, Mamayeva KI. The results of the study of the efficacy and safety of mexidol in patients with chronic cerebral ischemia. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:71-74. [DOI: 10.17116/jnevro20151152171-74] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KTS. The role of the nitric oxide pathway in brain injury and its treatment--from bench to bedside. Exp Neurol 2014; 263:235-43. [PMID: 25447937 DOI: 10.1016/j.expneurol.2014.10.017] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/09/2014] [Accepted: 10/22/2014] [Indexed: 10/24/2022]
Abstract
Nitric oxide (NO) is a key signalling molecule in the regulation of cerebral blood flow. This review summarises current evidence regarding the role of NO in the regulation of cerebral blood flow at rest, under physiological conditions, and after brain injury, focusing on subarachnoid haemorrhage, traumatic brain injury, and ischaemic stroke and following cardiac arrest. We also review the role of NO in the response to hypoxic insult in the developing brain. NO depletion in ischaemic brain tissue plays a pivotal role in the development of subsequent morbidity and mortality through microcirculatory disturbance and disordered blood flow regulation. NO derived from endothelial nitric oxide synthase (eNOS) appears to have neuroprotective properties. However NO derived from inducible nitric oxide synthase (iNOS) may have neurotoxic effects. Cerebral NO donor agents, for example sodium nitrite, appear to replicate the effects of eNOS derived NO, and therefore have neuroprotective properties. This is true in both the adult and immature brain. We conclude that these agents should be further investigated as targeted pharmacotherapy to protect against secondary brain injury.
Collapse
Affiliation(s)
- P S Garry
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - M Ezra
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - M J Rowland
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - J Westbrook
- Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - K T S Pattinson
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
17
|
Taniguchi H, Anacker C, Wang Q, Andreasson K. Protection by vascular prostaglandin E2 signaling in hypoxic-ischemic encephalopathy. Exp Neurol 2014; 255:30-7. [PMID: 24560715 DOI: 10.1016/j.expneurol.2014.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 01/13/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) in neonates is a leading cause of neurological impairment. Significant progress has been achieved investigating the pathologic contributions of excitotoxicity, oxidative stress, and neuroinflammation to cerebral injury in HIE. Less extensively investigated has been the contribution of vascular dysfunction, and whether modulation of cerebral perfusion may improve HIE outcome. Here, we investigated the function of the prostaglandin E2 (PGE2) EP4 receptor, a vasoactive Gαs-protein coupled receptor (GPCR), in rodent models of neonatal HIE. The function of PGE2 signaling through the EP4 receptor was investigated using pharmacological and conditional knockout genetic strategies in vivo in rodent models of HIE. Pharmacologic activation of the EP4 receptor with a selective agonist was significantly cerebroprotective both acutely and after 7days. Measurement of cerebral perfusion during and after hypoxia-ischemia demonstrated that EP4 receptor activation improved cerebral perfusion in both the contralateral and ipsilateral hypoxic-ischemic hemispheres. To test whether vascular EP4 signaling exerted a critical function in HIE injury, cell specific conditional knockout mouse pups were generated in which endothelial EP4 receptor was selectively deleted postnatally. VE-Cadherin Cre-ER(T2);EP4(lox/lox) pups demonstrated significant increases in cerebral injury as compared to VE-Cadherin Cre-ER(T2);EP4(+/+) control littermates, indicating that endothelial EP4 signaling is protective in HIE. Our findings identify vascular PGE2 signaling through its EP4 receptor as protective in HIE. Given the pharmacologic accessibility of endothelial EP4 GPCRs, these data support further investigation into novel approaches to target cerebral perfusion in neonatal HIE.
Collapse
Affiliation(s)
- Hidetoshi Taniguchi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christoph Anacker
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Qian Wang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
18
|
Abstract
Since it was first identified to play an important role in relaxation of blood vessels, nitric oxide has been demonstrated to regulate many biological processes, especially in the central nervous system. Of the three types of enzymes that produce nitric oxide in humans and rodents, neuronal type is found almost exclusively in the nervous system. This gaseous molecule is a nonclassical neurotransmitter, which maintains the activities of neural cells and regulates the normal functions of brain. It appears to play a role in promoting the transfer of nerve signals from one neuron to another, maintaining the synaptic strength. Meanwhile, nitric oxide is a unique regulator on neurogenesis and synaptogenesis, producing the positive or negative effects upon different signal pathways or cellular origins and locations. Based on its significant roles in neural plasticity, nitric oxide is involved in a number of central nervous diseases, such as ischemia, depression, anxiety, and Alzheimer's disease. Clarifying the profiles of nitric oxide in the brain tissues and its participation in pathophysiological processes opens a new avenue for development of new therapeutic strategies. Thus, this chapter specifies the effects of nitric oxide in the hippocampus, a key structure implicated in the modulation of mood and memories, exhibiting the trend of future research on nitric oxide.
Collapse
Affiliation(s)
- Yao Hu
- Institute for Stem Cells and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Dong-Ya Zhu
- Institute for Stem Cells and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China; Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
19
|
Yu K, Wu Y, Hu Y, Zhang Q, Xie H, Liu G, Chen Y, Guo Z, Jia J. Prior exposure to enriched environment reduces nitric oxide synthase after transient MCAO in rats. Neurotoxicology 2013; 39:146-52. [DOI: 10.1016/j.neuro.2013.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 09/08/2013] [Accepted: 09/08/2013] [Indexed: 01/27/2023]
|
20
|
Jullienne A, Badaut J. Molecular contributions to neurovascular unit dysfunctions after brain injuries: lessons for target-specific drug development. FUTURE NEUROLOGY 2013; 8:677-689. [PMID: 24489483 PMCID: PMC3904383 DOI: 10.2217/fnl.13.55] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The revised 'expanded' neurovascular unit (eNVU) is a physiological and functional unit encompassing endothelial cells, pericytes, smooth muscle cells, astrocytes and neurons. Ischemic stroke and traumatic brain injury are acute brain injuries directly affecting the eNVU with secondary damage, such as blood-brain barrier (BBB) disruption, edema formation and hypoperfusion. BBB dysfunctions are observed at an early postinjury time point, and are associated with eNVU activation of proteases, such as tissue plasminogen activator and matrix metalloproteinases. BBB opening is accompanied by edema formation using astrocytic AQP4 as a key protein regulating water movement. Finally, nitric oxide dysfunction plays a dual role in association with BBB injury and dysregulation of cerebral blood flow. These mechanisms are discussed including all targets of eNVU encompassing endothelium, glial cells and neurons, as well as larger blood vessels with smooth muscle. In fact, the feeding blood vessels should also be considered to treat stroke and traumatic brain injury. This review underlines the importance of the eNVU in drug development aimed at improving clinical outcome after stroke and traumatic brain injury.
Collapse
Affiliation(s)
- Amandine Jullienne
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Jérôme Badaut
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| |
Collapse
|
21
|
Lapi D, Vagnani S, Sapio D, Mastantuono T, Sabatino L, Paterni M, Colantuoni A. Long-term remodeling of rat pial microcirculation after transient middle cerebral artery occlusion and reperfusion. J Vasc Res 2013; 50:332-45. [PMID: 23860357 DOI: 10.1159/000353295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/30/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The aim of this study was to assess the in vivo structural and functional remodeling of pial arteriolar networks in the ischemic area of rats submitted to transient middle cerebral artery occlusion (MCAO) and different time intervals of reperfusion. METHODS AND RESULTS Two closed cranial windows were implanted above the left and right parietal cortex to observe pial microcirculation by fluorescence microscopy. The geometric characteristics of pial arteriolar networks, permeability increase, leukocyte adhesion and capillary density were analyzed after 1 h or 1, 7, 14 or 28 days of reperfusion. MCAO and 1-hour reperfusion caused marked microvascular changes in pial networks. The necrotic core was devoid of vessels, while the penumbra area presented a few arterioles, capillaries and venules with severe neuronal damage. Penumbra microvascular permeability and leukocyte adhesion were pronounced. At 7 days of reperfusion, new pial arterioles were organized in anastomotic vessels, overlapping the ischemic core and in penetrating pial arterioles. Vascular remodeling caused different arteriolar rearrangement up to 28 days of reperfusion and animals gradually regained their motor and sensory functions. CONCLUSIONS Transient MCAO-induced pial-network remodeling is characterized by arteriolar anastomotic arcades. Remodeling mechanisms appear to be accompanied by an increased expression of nitric oxide synthases.
Collapse
Affiliation(s)
- D Lapi
- Department of Neuroscience, 'Federico II' University Medical School, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Nitric oxide donors as neuroprotective agents after an ischemic stroke-related inflammatory reaction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:297357. [PMID: 23691263 PMCID: PMC3649699 DOI: 10.1155/2013/297357] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 12/17/2022]
Abstract
Cerebral ischemia initiates a cascade of detrimental events including glutamate-associated excitotoxicity, intracellular calcium accumulation, formation of Reactive oxygen species (ROS), membrane lipid degradation, and DNA damage, which lead to the disruption of cellular homeostasis and structural damage of ischemic brain tissue. Cerebral ischemia also triggers acute inflammation, which exacerbates primary brain damage. Therefore, reducing oxidative stress (OS) and downregulating the inflammatory response are options that merit consideration as potential therapeutic targets for ischemic stroke. Consequently, agents capable of modulating both elements will constitute promising therapeutic solutions because clinically effective neuroprotectants have not yet been discovered and no specific therapy for stroke is available to date. Because of their ability to modulate both oxidative stress and the inflammatory response, much attention has been focused on the role of nitric oxide donors (NOD) as neuroprotective agents in the pathophysiology of cerebral ischemia-reperfusion injury. Given their short therapeutic window, NOD appears to be appropriate for use during neurosurgical procedures involving transient arterial occlusions, or in very early treatment of acute ischemic stroke, and also possibly as complementary treatment for neurodegenerative diseases such as Parkinson or Alzheimer, where oxidative stress is an important promoter of damage. In the present paper, we focus on the role of NOD as possible neuroprotective therapeutic agents for ischemia/reperfusion treatment.
Collapse
|
23
|
Neuroprotection by inhaled nitric oxide in a murine stroke model is concentration and duration dependent. Brain Res 2013; 1507:134-45. [DOI: 10.1016/j.brainres.2013.02.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 02/15/2013] [Accepted: 02/20/2013] [Indexed: 11/24/2022]
|
24
|
Sonn J, Mayevsky A. Responses to Cortical Spreading Depression under Oxygen Deficiency. Open Neurol J 2012; 6:6-17. [PMID: 22670162 PMCID: PMC3367297 DOI: 10.2174/1874205x01206010006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/14/2012] [Accepted: 01/18/2012] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES OBJECTIVES The effect of cortical spreading depression (CSD) on extracellular K(+) concentrations ([K(+)](e)), cerebral blood flow (CBF), mitochondrial NADH redox state and direct current (DC) potential was studied during normoxia and three pathological conditions: hypoxia, after NOS inhibition by L-NAME and partial ischemia. METHODS A SPECIAL DEVICE (MPA) WAS USED FOR MONITORING CSD WAVE PROPAGATION, CONTAINING: mitochondrial NADH redox state and reflected light, by a fluorometry technique; DC potential by Ag/AgCl electrodes; CBF by laser Doppler flowmetry; and [K(+)](e) by a mini-electrode. RESULTS AND DISCUSSION CSD under the 3 pathological conditions caused an initial increase in NADH and a further decrease in CBF during the first phase of CSD, indicating an imbalance between oxygen supply and demand as a result of the increase in oxygen requirements. The hyperperfusion phase in CBF was significantly reduced during hypoxia and ischemia showing a further decline in oxygen supply during CSD. CSD wave duration increased during the pathological conditions, showing a disturbance in energy production.Extracellular K(+) levels during CSD, increased to identical levels during normoxia and during the three pathological groups, indicating correspondingly increase in oxygen demand. 5. The special design of the MPA enabled identifying differences in the simultaneous responses of the measured parameters, which may indicate changes in the interrelation between oxygen demand, oxygen supply and oxygen balance during CSD propagation, under the conditions tested. 6. In conclusion, brain oxygenation was found to be a critical factor in the responses of the brain to CSD.
Collapse
Affiliation(s)
- J Sonn
- The Mina & Everard Goodman, Faculty of Life Sciences and Leslie and Susan Gonda Multidisciplinary Brain Research
Center, Bar-Ilan University RAMAT-GAN 52900, Israel
| | | |
Collapse
|
25
|
Srivastava K, Bath PMW, Bayraktutan U. Current therapeutic strategies to mitigate the eNOS dysfunction in ischaemic stroke. Cell Mol Neurobiol 2012; 32:319-36. [PMID: 22198555 DOI: 10.1007/s10571-011-9777-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/29/2011] [Indexed: 12/22/2022]
Abstract
Impairment of endothelial nitric oxide synthase (eNOS) activity is implicated in the pathogenesis of endothelial dysfunction in many diseases including ischaemic stroke. The modulation of eNOS during and/or following ischaemic injury often represents a futile compensatory mechanism due to a significant decrease in nitric oxide (NO) bioavailability coupled with dramatic increases in the levels of reactive oxygen species that further neutralise NO. However, applications of a number of therapeutic agents alone or in combination have been shown to augment eNOS activity under a variety of pathological conditions by potentiating the expression and/or activity of Akt/eNOS/NO pathway components. The list of these therapeutic agents include NO donors, statins, angiotensin-converting enzyme inhibitors, calcium channel blockers, phosphodiesterase-3 inhibitors, aspirin, dipyridamole and ellagic acid. While most of these compounds exhibit anti-platelet properties and are able to up-regulate eNOS expression in endothelial cells and platelets, others suppress eNOS uncoupling and tetrahydrobiopterin (an eNOS stabiliser) oxidation. As the number of therapeutic molecules that modulate the expression and activity of eNOS increases, further detailed research is required to reveal their mode of action in preventing and/or reversing the endothelial dysfunction.
Collapse
Affiliation(s)
- Kirtiman Srivastava
- Division of Stroke, Clinical Sciences Building, Nottingham City Hospital Campus, The University of Nottingham, Nottingham, UK.
| | | | | |
Collapse
|
26
|
Liang X, Lin L, Woodling NS, Wang Q, Anacker C, Pan T, Merchant M, Andreasson K. Signaling via the prostaglandin E₂ receptor EP4 exerts neuronal and vascular protection in a mouse model of cerebral ischemia. J Clin Invest 2011; 121:4362-71. [PMID: 21965326 DOI: 10.1172/jci46279] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Accepted: 08/10/2011] [Indexed: 11/17/2022] Open
Abstract
Stroke is the third leading cause of death in the United States. Fewer than 5% of patients benefit from the only intervention approved to treat stroke. Thus, there is an enormous need to identify new therapeutic targets. The role of inducible cyclooxygenase (COX-2) activity in stroke and other neurologic diseases is complex, as both activation and sustained inhibition can engender cerebral injury. Whether COX-2 induces cerebroprotective or injurious effects is probably dependent on which downstream prostaglandin receptors are activated. Here, we investigated the function of the PGE2 receptor EP4 in a mouse model of cerebral ischemia. Systemic administration of a selective EP4 agonist after ischemia reduced infarct volume and ameliorated long-term behavioral deficits. Expression of EP4 was robust in neurons and markedly induced in endothelial cells after ischemia-reperfusion, suggesting that neuronal and/or endothelial EP4 signaling imparts cerebroprotection. Conditional genetic inactivation of neuronal EP4 worsened stroke outcome, consistent with an endogenous protective role of neuronal EP4 signaling in vivo. However, endothelial deletion of EP4 also worsened stroke injury and decreased cerebral reperfusion. Systemic administration of an EP4 agonist increased levels of activated eNOS in cerebral microvessels, an effect that was abolished with conditional deletion of endothelial EP4. Thus, our data support the concept of targeting protective prostaglandin receptors therapeutically after stroke.
Collapse
Affiliation(s)
- Xibin Liang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Mecca AP, Regenhardt RW, O'Connor TE, Joseph JP, Raizada MK, Katovich MJ, Sumners C. Cerebroprotection by angiotensin-(1-7) in endothelin-1-induced ischaemic stroke. Exp Physiol 2011; 96:1084-96. [PMID: 21685445 DOI: 10.1113/expphysiol.2011.058578] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activation of angiotensin-converting enzyme 2 (ACE2), production of angiotensin-(1-7) [Ang-(1-7)] and stimulation of the Ang-(1-7) receptor Mas exert beneficial actions in various peripheral cardiovascular diseases, largely through opposition of the deleterious effects of angiotensin II via its type 1 receptor. Here we considered the possibility that Ang-(1-7) may exert beneficial effects against CNS damage and neurological deficits produced by cerebral ischaemic stroke. We determined the effects of central administration of Ang-(1-7) or pharmacological activation of ACE2 on the cerebral damage and behavioural deficits elicited by endothelin-1 (ET-1)-induced middle cerebral artery occlusion (MCAO), a model of cerebral ischaemia. The results of the present study demonstrated that intracerebroventricular infusion of either Ang-(1-7) or an ACE2 activator, diminazine aceturate (DIZE), prior to and following ET-1-induced MCAO significantly attenuated the cerebral infarct size and neurological deficits measured 72 h after the insult. These beneficial actions of Ang-(1-7) and DIZE were reversed by co-intracerebroventricular administration of the Mas receptor inhibitor, A-779. Neither the Ang-(1-7) nor the DIZE treatments altered the reduction in cerebral blood flow elicited by ET-1. Lastly, intracerebroventricular administration of Ang-(1-7) significantly reduced the increase in inducible nitric oxide synthase mRNA expression within the cerebral infarct that occurs following ET-1-induced MCAO. This is the first demonstration of cerebroprotective properties of the ACE2-Ang-(1-7)-Mas axis during ischaemic stroke, and suggests that the mechanism of the Ang-(1-7) protective action includes blunting of inducible nitric oxide synthase expression.
Collapse
Affiliation(s)
- Adam P Mecca
- Department of Physiology & Functional Genomics, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610-0274, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
The Traditional Herbal Medicine, Dangkwisoo-San, Prevents Cerebral Ischemic Injury through Nitric Oxide-Dependent Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:718302. [PMID: 21423636 PMCID: PMC3057556 DOI: 10.1155/2011/718302] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 12/24/2010] [Accepted: 01/14/2011] [Indexed: 11/18/2022]
Abstract
Dangkwisoo-San (DS) is an herbal extract that is widely used in traditional Korean medicine to treat traumatic ecchymosis and pain by promoting blood circulation and relieving blood stasis. However, the effect of DS in cerebrovascular disease has not been examined experimentally. The protective effects of DS on focal ischemic brain were investigated in a mouse model. DS stimulated nitric oxide (NO) production in human brain microvascular endothelial cells (HBMECs). DS (10-300 μg/mL) produced a concentration-dependent relaxation in mouse aorta, which was significantly attenuated by the nitric oxide synthase (NOS) inhibitor L-NAME, suggesting that DS causes vasodilation via a NO-dependent mechanism. DS increased resting cerebral blood flow (CBF), although it caused mild hypotension. To investigate the effect of DS on the acute cerebral injury, C57/BL6J mice received 90 min of middle cerebral artery occlusion followed by 22.5 h of reperfusion. DS administered 3 days before arterial occlusion significantly reduced cerebral infarct size by 53.7% compared with vehicle treatment. However, DS did not reduce brain infarction in mice treated with the relatively specific endothelial NOS (eNOS) inhibitor, N(5)-(1-iminoethyl)-L-ornithine, suggesting that the neuroprotective effect of DS is primarily endothelium-dependent. This correlated with increased phosphorylation of eNOS in the brains of DS-treated mice. DS acutely improves CBF in eNOS-dependent vasodilation and reduces infarct size in focal cerebral ischemia. These data provide causal evidence that DS is cerebroprotective via the eNOS-dependent production of NO, which ameliorates blood circulation.
Collapse
|
29
|
Pu F, Kaneko T, Enoki M, Irie K, Okamoto T, Sei Y, Egashira N, Oishi R, Mishima K, Kamimura H, Iwasaki K, Fujiwara M. Ameliorating effects of Kangen-karyu on neuronal damage in rats subjected to repeated cerebral ischemia. J Nat Med 2010; 64:167-74. [DOI: 10.1007/s11418-010-0392-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 01/07/2010] [Indexed: 01/10/2023]
|
30
|
Cilostazol, a phosphodiesterase inhibitor, attenuates photothrombotic focal ischemic brain injury in hypertensive rats. J Cereb Blood Flow Metab 2010; 30:343-51. [PMID: 19809463 PMCID: PMC2949114 DOI: 10.1038/jcbfm.2009.220] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aim of this study was to evaluate and compare the effects of anti-platelet agents with different modes of action (cilostazol, aspirin, and clopidogrel) on brain infarction produced by photothrombotic middle-cerebral-artery (MCA) occlusion in male, spontaneously hypertensive rats. Cerebral blood flow (CBF) was measured with laser-Doppler flowmetry in the penumbral cortex. Infarct size was evaluated 24 h after MCA occlusion. The effects of these drugs on infarct size were examined by pretreatment of rats undergoing MCA occlusion. Pretreatment with cilostazol (100 mg/kg) significantly reduced infarct size. In contrast, aspirin (10 mg/kg) and clopidogrel (3 mg/kg) failed to mitigate infarct size, regardless of their apparent inhibitory effects on platelet aggregation. Post-treatment with cilostazol also significantly attenuated the infarct size, associated with improved CBF in the penumbral region. In support of this effect, cilostazol increased nitric oxide (NO) production and prostaglandin-I(2) (PGI(2)) release in cultured human brain microvascular endothelial cells. Cilostazol-induced NO production and PGI(2) release were completely abolished by an NO synthase inhibitor and aspirin, respectively. These findings show that cilostazol reduced brain infarct size due to an improvement in penumbral CBF possibly in association with increased endothelial NO and PGI(2) production.
Collapse
|
31
|
Hazekawa M, Kataoka A, Hayakawa K, Uchimasu T, Furuta R, Irie K, Akitake Y, Yoshida M, Fujioka T, Egashira N, Oishi R, Mishima K, Mishima K, Uchida T, Iwasaki K, Fujiwara M. Neuroprotective Effect of Repeated Treatment with Hericium erinaceum in Mice Subjected to Middle Cerebral Artery Occlusion. ACTA ACUST UNITED AC 2010. [DOI: 10.1248/jhs.56.296] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mai Hazekawa
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women's University
| | - Aiko Kataoka
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Kazuhide Hayakawa
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Takeshi Uchimasu
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Riyo Furuta
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Keiichi Irie
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
- Advanced Materials Institute, Fukuoka University
| | - Yoshiharu Akitake
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Miyako Yoshida
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women's University
- Department of Instrumental Analysis, Faculty of Pharmaceutical Sciences, Fukuoka University
| | - Toshihiro Fujioka
- Department of Instrumental Analysis, Faculty of Pharmaceutical Sciences, Fukuoka University
| | | | - Ryozo Oishi
- Department of Pharmacy, Kyushu University Hospital
| | - Kenji Mishima
- Department of Chemical Engineering, Fukuoka University
| | - Kenichi Mishima
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
- Advanced Materials Institute, Fukuoka University
| | - Takahiro Uchida
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Mukogawa Women's University
| | - Katunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
- Advanced Materials Institute, Fukuoka University
| | - Michihiro Fujiwara
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University
| |
Collapse
|
32
|
Beck H, Plate KH. Angiogenesis after cerebral ischemia. Acta Neuropathol 2009; 117:481-96. [PMID: 19142647 DOI: 10.1007/s00401-009-0483-6] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/08/2009] [Accepted: 01/08/2009] [Indexed: 01/19/2023]
Abstract
Though the vascular system of the adult brain is extremely stable under normal baseline conditions, endothelial cells start to proliferate in response to brain ischemia. The induction of angiogenesis, primarily in the ischemic boundary zone, enhances oxygen and nutrient supply to the affected tissue. Additionally, the generation of new blood vessels facilitates highly coupled neurorestorative processes including neurogenesis and synaptogenesis which in turn lead to improved functional recovery. To take advantage of angiogenesis as a therapeutic concept for stroke treatment, the knowledge of the precise molecular mechanisms is mandatory. Especially, since a couple of growth factors involved in post-ischemic angiogenesis may have detrimental adverse effects in the brain by increasing vascular permeability. This article summarizes the knowledge of molecular mechanisms of angiogenesis following cerebral ischemia. Finally, experimental pharmacological and cellular approaches to stimulate and enhance post-ischemic angiogenesis are discussed.
Collapse
Affiliation(s)
- Heike Beck
- Institute of Cardiovascular Physiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians University Munich, Marchioninistr. 27, 81377, Munich, Germany.
| | | |
Collapse
|
33
|
Pu F, Motohashi K, Kaneko T, Tanaka Y, Manome N, Irie K, Takata J, Egashira N, Oishi R, Okamoto T, Sei Y, Yokozawa T, Mishima K, Iwasaki K, Fujiwara M. Neuroprotective Effects of Kangen-karyu on Spatial Memory Impairment in an 8-Arm Radial Maze and Neuronal Death in the Hippocampal CA1 Region Induced by Repeated Cerebral Ischemia in Rats. J Pharmacol Sci 2009; 109:424-30. [DOI: 10.1254/jphs.08245fp] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
34
|
Hare GMT, Tsui AKY, McLaren AT, Ragoonanan TE, Yu J, Mazer CD. Anemia and cerebral outcomes: many questions, fewer answers. Anesth Analg 2008; 107:1356-70. [PMID: 18806052 DOI: 10.1213/ane.0b013e318184cfe9] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A number of clinical studies have associated acute anemia with cerebral injury in perioperative patients. Evidence of such injury has been observed near the currently accepted transfusion threshold (hemoglobin [Hb] concentration, 7-8 g/dL), and well above the threshold for cerebral tissue hypoxia (Hb 3-4 g/dL). However, hypoxic and nonhypoxic mechanisms of anemia-induced cerebral injury have not been clearly elucidated. In addition, protective mechanisms which may minimize cerebral injury during acute anemia have not been well defined. Vasodilatory mechanisms, including nitric oxide (NO), may help to maintain cerebral oxygen delivery during anemia as all three NO synthase (NOS) isoforms (neuronal, endothelial, and inducible NOS) have been shown to be up-regulated in different experimental models of acute hemodilutional anemia. Recent experimental evidence has also demonstrated an increase in an important transcription factor, hypoxia inducible factor (HIF)-1alpha, in the cerebral cortex of anemic rodents at clinically relevant Hb concentrations (Hb 6-7 g/dL). This suggests that cerebral oxygen homeostasis may be in jeopardy during acute anemia. Under hypoxic conditions, cytoplasmic HIF-1alpha degradation is inhibited, thereby allowing it to accumulate, dimerize, and translocate into the nucleus to promote transcription of a number of hypoxic molecules. Many of these molecules, including erythropoietin, vascular endothelial growth factor, and inducible NOS have also been shown to be up-regulated in the anemic brain. In addition, HIF-1alpha transcription can be increased by nonhypoxic mediators including cytokines and vascular hormones. Furthermore, NOS-derived NO may also stabilize HIF-1alpha in the absence of tissue hypoxia. Thus, during anemia, HIF-1alpha has the potential to regulate cerebral cellular responses under both hypoxic and normoxic conditions. Experimental studies have demonstrated that HIF-1alpha may have either neuroprotective or neurotoxic capacity depending on the cell type in which it is up-regulated. In the current review, we characterize these cellular processes to promote a clearer understanding of anemia-induced cerebral injury and protection. Potential mechanisms of anemia-induced injury include cerebral emboli, tissue hypoxia, inflammation, reactive oxygen species generation, and excitotoxicity. Potential mechanisms of cerebral protection include NOS/NO-dependent optimization of cerebral oxygen delivery and cytoprotective mechanisms including HIF-1alpha, erythropoietin, and vascular endothelial growth factor. The overall balance of these activated cellular mechanisms may dictate whether or not their up-regulation leads to cytoprotection or cellular injury during anemia. A clearer understanding of these mechanisms may help us target therapies that will minimize anemia-induced cerebral injury in perioperative patients.
Collapse
Affiliation(s)
- Gregory M T Hare
- Department of Anesthesia, University of Toronto, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada.
| | | | | | | | | | | |
Collapse
|
35
|
Yu HM, Xu J, Li C, Zhou C, Zhang F, Han D, Zhang GY. Coupling between neuronal nitric oxide synthase and glutamate receptor 6-mediated c-Jun N-terminal kinase signaling pathway via S-nitrosylation contributes to ischemia neuronal death. Neuroscience 2008; 155:1120-32. [PMID: 18676085 DOI: 10.1016/j.neuroscience.2008.03.061] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Revised: 03/22/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
Abstract
S-nitrosylation, as a post-translational protein modification, recently has been paid more and more attention in stroke research. S-nitrosylation regulates protein function by the mechanisms of covalent attachment that control the addition or the removal of nitric oxide (NO) from a cysteine thiol. The derivation of NO is established by the demonstration that, in cerebral neurons, NO mainly generates from neuronal nitric oxide synthase (nNOS) during the early stages of reperfusion. In the past researches, we demonstrate that global ischemia-reperfusion facilitates the activation of glutamate receptor 6 (GluR6) -mediated c-Jun N-terminal kinase (JNK) signaling pathway. The objective of this study is primarily to determine, during the early stages of reperfusion in rat four-vessel occlusion (4-VO) ischemic model, whether nNOS-derived NO affects the GluR6-mediated JNK signaling route via S-nitrosylation which is performed mainly by the biotin switch assay. Here, we show that administration of 7-nitroindazole, an inhibitor of nNOS, or ketamine, an antagonist of N-methyl-d-aspartate receptor (NMDAR), diminishes the increased S-nitrosylation of GluR6 induced by cerebral ischemia-reperfusion. In contrast, 2-amion-5,6-dihydro-6-methyl-4H-1,3-thiazine, an inhibitor of inducible NO synthase does not affect S-nitrosylation of GluR6. Moreover, treatment with sodium nitroprusside (SNP), an exogenous NO donor, increases the S-nitrosylation and phosphorylation of nNOS, leading to the attenuation of the increased S-nitrosylation of GluR6 and the assembling of GluR6* postsynaptic density protein 95 (PSD95)* mixed lineage kinase 3 (MLK3) signaling module induced by cerebral ischemia-reperfusion. The results also show that GluR6 downstream MLK3* mitogen activated protein kinase kinase 4/7* JNK signaling module and nuclear or non-nuclear apoptosis pathways are involved in the above signaling route. However, dithiothreitol (DTT) antagonizes the neuroprotection of SNP. Treatment with DTT alone, as a negative control, prevents S-nitrosylation of proteins, which indicates the existence of endogenously produced S-nitrosylation. These data suggest that GluR6 is S-nitrosylated by endogenous NO in cerebral ischemia-reperfusion, which is possibly correlated with NMDAR* PSD95* nNOS signaling module, and further activates GluR6* PSD95* MLK3 signaling module and JNK signaling pathway. In contrast, exogenous NO donor antagonizes the above action of endogenous NO generated from nNOS. Thus, our results provide the coupling of nNOS with GluR6 by S-nitrosylation during the early stages of ischemia-reperfusion, which can be a new approach for stroke therapy.
Collapse
Affiliation(s)
- H-M Yu
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical College, Xuzhou 221002, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
It is common knowledge that ischemic stroke has major social and economic consequences. However, until now, translation of experimental studies into clinical reality has been sorely lacking. So far, most studies have focused on acute stroke outcome and early treatment paradigms affording neuroprotection. It is increasingly recognized that it will be necessary to harness the capacity of the brain for neuroregeneration to improve longer-term outcome. Endothelial nitric oxide synthase (eNOS) is emerging as a key target in molecular stroke research. eNOS ameliorates acute ischemic injury and promotes recovery following cerebral ischemia. This review summarizes the effects of eNOS on the regulation of cerebral blood flow, hemostasis, inflammation, angiogenesis as well as neurogenesis. The possible impact on stroke prevention as well as on strategies aimed at improving long-term stroke outcome are discussed.
Collapse
Affiliation(s)
- Karen Gertz
- Charité Universitätsmedizin Berlin, Klinik und Poliklinik für Neurologie, Abteilung für Experimentelle Neurologie, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthias Endres
- Charité Universitätsmedizin Berlin, Klinik und Hochschulambulanz für Neurologie und Klinische Neurophysiologie, Campus Benjamin Franklin and Center for Stroke Research Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
37
|
epsilonPKC confers acute tolerance to cerebral ischemic reperfusion injury. Neurosci Lett 2008; 441:120-4. [PMID: 18586397 DOI: 10.1016/j.neulet.2008.05.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 05/13/2008] [Accepted: 05/21/2008] [Indexed: 12/25/2022]
Abstract
In response to mild ischemic stress, the brain elicits endogenous survival mechanisms to protect cells against a subsequent lethal ischemic stress, referred to as ischemic tolerance. The molecular signals that mediate this protection are thought to involve the expression and activation of multiple kinases, including protein kinase C (PKC). Here we demonstrate that epsilonPKC mediates cerebral ischemic tolerance in vivo. Systemic delivery of psiepsilonRACK, an epsilonPKC-selective peptide activator, confers neuroprotection against a subsequent cerebral ischemic event when delivered immediately prior to stroke. In addition, activation of epsilonPKC by psiepsilonRACK treatment decreases vascular tone in vivo, as demonstrated by a reduction in microvascular cerebral blood flow. Here we demonstrate the role of acute and transient epsilonPKC in early cerebral tolerance in vivo and suggest that extra-parenchymal mechanisms, such as vasoconstriction, may contribute to the conferred protection.
Collapse
|
38
|
Osipov AN, Borisenko GG, Vladimirov YA. Biological activity of hemoprotein nitrosyl complexes. BIOCHEMISTRY (MOSCOW) 2008; 72:1491-504. [PMID: 18282138 DOI: 10.1134/s0006297907130068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chemical and biological functions of hemoprotein nitrosyl complexes as well as their photolysis products are discussed in this review. Chemical properties of nitric oxide are discussed, and major chemical reactions such as interaction with thiols, free radicals, and transition metals are considered. Specific attention is paid to the generation of hemoprotein nitrosyl complexes. The mechanisms of nitric oxide reactions with hemoglobin and cytochrome c and physicochemical properties of their nitrosyl complexes are discussed. A review of photochemical reactions of nitrosyl complexes with various ligands is given. Finally, we observe physiological effects of visible radiation on hemoprotein nitrosyl complexes: smooth muscle relaxation and reactivation of mitochondrial respiration.
Collapse
Affiliation(s)
- A N Osipov
- Russian State Medical University, ul Ostrovityanova 1, 117997 Moscow, Russia.
| | | | | |
Collapse
|
39
|
Pluta RM. Dysfunction of nitric oxide synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. ACTA NEUROCHIRURGICA. SUPPLEMENT 2008; 104:139-47. [PMID: 18456999 PMCID: PMC4762030 DOI: 10.1007/978-3-211-75718-5_28] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nitric oxide (NO), also known as endothelium-derived relaxing factor, is produced by endothelial nitric oxide synthase (eNOS) in the intima and by neuronal nitric oxide synthase (nNOS) in the adventitia of cerebral vessels. It dilates the arteries in response to shear stress, metabolic demands, pterygopalatine ganglion stimulation, and chemoregulation. Subarachnoid haemorrhage (SAH) interrupts this regulation of cerebral blood flow. Hemoglobin, gradually released from erythrocytes in the subarachnoid space destroys nNOS-containing neurons in the conductive arteries. This deprives the arteries of NO, leading to the initiation of delayed vasospasm. But such vessel narrowing increases shear stress, which stimulates eNOS. This mechanism normally would lead to increased production of NO and dilation of arteries. However, a transient eNOS dysfunction evoked by an increase of the endogenous competitive nitric oxide synthase (NOS) inhibitor, asymmetric dimethyl-arginine (ADMA), prevents this vasodilation. eNOS dysfunction has been recently shown to be evoked by increased levels of ADMA in CSF in response to the presence of bilirubin-oxidized fragments (BOXes). A direct cause of the increased ADMA CSF level is most likely decreased ADMA elimination due to the disappearance of ADMA-hydrolyzing enzyme (DDAH II) immunoreactivity in the arteries in spasm. This eNOS dysfunction sustains vasospasm. CSF ADMA levels are closely associated with the degree and time-course of vasospasm; when CSF ADMA levels decrease, vasospasm resolves. Thus, the exogenous delivery of NO, inhibiting the L-arginine-methylating enzyme (IPRMT3) or stimulating DDAH II, may provide new therapeutic modalities to prevent and treat vasospasm. This paper will present results of preclinical studies supporting the NO-based hypothesis of delayed cerebral vasospasm development and its prevention by increased NO availability.
Collapse
Affiliation(s)
- R M Pluta
- Surgical Neurology Branch, National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Nishimura M, Izumiya Y, Higuchi A, Shibata R, Qiu J, Kudo C, Shin HK, Moskowitz MA, Ouchi N. Adiponectin prevents cerebral ischemic injury through endothelial nitric oxide synthase dependent mechanisms. Circulation 2007; 117:216-23. [PMID: 18158361 DOI: 10.1161/circulationaha.107.725044] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Adiponectin is a fat-derived plasma protein that has beneficial actions on cardiovascular disorders. A low level of plasma adiponectin is associated with increased mortality after ischemic stroke; however, the causal role of adiponectin in ischemic stroke is unknown. METHODS AND RESULTS To explore the role of adiponectin in the development of acute cerebral injury, we subjected adiponectin-deficient (APN-KO) and wild-type (WT) mice to 1 hour of middle cerebral artery occlusion followed by 23 hours of reperfusion. APN-KO mice exhibited enlarged brain infarction and increased neurological deficits after ischemia-reperfusion compared with WT mice. Conversely, adenovirus-mediated supplementation of adiponectin significantly reduced cerebral infarct size in WT and APN-KO mice. APN-KO mice showed decreased cerebral blood flow during ischemia by laser speckle flowmetry methods. Adiponectin colocalized within the cerebral vascular endothelium under transient ischemic conditions by immunohistochemical analysis. Phosphorylation of endothelial nitric oxide synthase in ischemic brain tissues and the production of nitric oxide metabolites in plasma were attenuated in APN-KO mice compared with WT mice. Adenovirus-mediated administration of adiponectin stimulated endothelial nitric oxide synthase phosphorylation and nitric oxide metabolites during cerebral ischemia in both WT and APN-KO mice. Neuronal nitric oxide synthase expression during ischemia did not differ between WT and APN-KO mice. Adenovirus-mediated delivery of adiponectin did not affect brain infarction in mice deficient in endothelial nitric oxide synthase. CONCLUSIONS These data provide causal evidence that adiponectin exerts a cerebroprotective action through an endothelial nitric oxide synthase-dependent mechanism. Adiponectin could represent a molecular target for the prevention of ischemic stroke.
Collapse
Affiliation(s)
- Masaki Nishimura
- Stroke and Neurovascular Regulation Laboratory, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kunz A, Park L, Abe T, Gallo EF, Anrather J, Zhou P, Iadecola C. Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species. J Neurosci 2007; 27:7083-93. [PMID: 17611261 PMCID: PMC6794575 DOI: 10.1523/jneurosci.1645-07.2007] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cerebral ischemic preconditioning or tolerance is a powerful neuroprotective phenomenon by which a sublethal injurious stimulus renders the brain resistant to a subsequent damaging ischemic insult. We used lipopolysaccharide (LPS) as a preconditioning stimulus in a mouse model of middle cerebral artery occlusion (MCAO) to examine whether improvements in cerebrovascular function contribute to the protective effect. Administration of LPS 24 h before MCAO reduced the infarct by 68% and improved ischemic cerebral blood flow (CBF) by 114% in brain areas spared from infarction. In addition, LPS prevented the dysfunction in cerebrovascular regulation induced by MCAO, as demonstrated by normalization of the increase in CBF produced by neural activity, hypercapnia, or by the endothelium-dependent vasodilator acetylcholine. These beneficial effects of LPS were not observed in mice lacking inducible nitric oxide synthase (iNOS) or the nox2 subunit of the superoxide-producing enzyme NADPH oxidase. LPS increased reactive oxygen species and the peroxynitrite marker 3-nitrotyrosine in wild-type mice but not in nox2 nulls. The peroxynitrite decomposition catalyst 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato iron (III) attenuated LPS-induced nitration and counteracted the beneficial effects of LPS on infarct volume, ischemic CBF, and vascular reactivity. Thus, LPS preserves neurovascular function and ameliorates CBF in regions of the ischemic territory at risk for infarction. This effect is mediated by peroxynitrite formed from iNOS-derived NO and nox2-derived superoxide. The data indicate that preservation of cerebrovascular function is an essential component of ischemic tolerance and suggest that combining neuroprotection and vasoprotection may be a valuable strategy for treating ischemic brain injury.
Collapse
Affiliation(s)
- Alexander Kunz
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| | - Laibaik Park
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| | - Takato Abe
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| | - Eduardo F. Gallo
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| | - Josef Anrather
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| | - Ping Zhou
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| | - Costantino Iadecola
- Division of Neurobiology, Weill-Cornell Medical College, KB-410, New York, New York 10021
| |
Collapse
|
42
|
Shin HK, Salomone S, Potts EM, Lee SW, Millican E, Noma K, Huang PL, Boas DA, Liao JK, Moskowitz MA, Ayata C. Rho-kinase inhibition acutely augments blood flow in focal cerebral ischemia via endothelial mechanisms. J Cereb Blood Flow Metab 2007; 27:998-1009. [PMID: 17033691 PMCID: PMC2614438 DOI: 10.1038/sj.jcbfm.9600406] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rho-kinase is a serine threonine kinase that increases vasomotor tone via its effects on both endothelium and smooth muscle. Rho-kinase inhibition reduces cerebral infarct size in wild type, but not endothelial nitric oxide synthase deficient (eNOS-/-) mice. The mechanism may be related to Rho-kinase activation under hypoxic/ischemic conditions and impaired vasodilation because of downregulation of eNOS activity. To further implicate Rho-kinase in impaired vascular relaxation during hypoxia/ischemia, we exposed isolated vessels from rat and mouse to 60 mins of hypoxia, and showed that hypoxia reversibly abolished acetylcholine-induced eNOS-dependent relaxation, and that Rho-kinase inhibitor hydroxyfasudil partially preserved this relaxation during hypoxia. We, therefore, hypothesized that if hypoxia-induced Rho-kinase activation acutely impairs vasodilation in ischemic cortex, in vivo, then Rho-kinase inhibitors would acutely augment cerebral blood flow (CBF) as a mechanism by which they reduce infarct size. To test this, we studied the acute cerebral hemodynamic effects of Rho-kinase inhibitors in ischemic core and penumbra during distal middle cerebral artery occlusion (dMCAO) in wild-type and eNOS-/- mice using laser speckle flowmetry. When administered 60 mins before or immediately after dMCAO, Rho-kinase inhibitors hydroxyfasudil and Y-27632 reduced the area of severely ischemic cortex. However, hydroxyfasudil did not reduce the area of CBF deficit in eNOS-/- mice, suggesting that its effect on CBF within the ischemic cortex is primarily endothelium-dependent, and not mediated by its direct vasodilator effect on vascular smooth muscle. Our results suggest that Rho-kinase negatively regulates eNOS activity in acutely ischemic brain, thereby worsening the CBF deficit. Therefore, rapid nontranscriptional upregulation of eNOS activity by small molecule inhibitors of Rho-kinase may be a viable therapeutic approach in acute stroke.
Collapse
Affiliation(s)
- Hwa Kyoung Shin
- Department of Radiology, Stroke and Neurovascular Regulation Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Salvatore Salomone
- Department of Radiology, Stroke and Neurovascular Regulation Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - E Michelle Potts
- Department of Radiology, Stroke and Neurovascular Regulation Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Sae-Won Lee
- Department of Radiology, Stroke and Neurovascular Regulation Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Eric Millican
- Vascular Medicine Research, Brigham & Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Kensuke Noma
- Vascular Medicine Research, Brigham & Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Paul L Huang
- Cardiology Division and Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - David A Boas
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - James K Liao
- Vascular Medicine Research, Brigham & Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Michael A Moskowitz
- Department of Radiology, Stroke and Neurovascular Regulation Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Cenk Ayata
- Department of Radiology, Stroke and Neurovascular Regulation Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Neurology, Stroke Service and Neuroscience Intensive Care Unit, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
43
|
Vannucchi MG, Bizzoco E, Corsani L, Gianfriddo M, Pedata F, Faussone-Pellegrini MS. Relationships between neurons expressing neuronal nitric oxide synthase, degree of microglia activation and animal survival. A study in the rat cortex after transient ischemia. Brain Res 2007; 1132:218-27. [PMID: 17182010 DOI: 10.1016/j.brainres.2006.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 11/09/2006] [Accepted: 11/10/2006] [Indexed: 11/28/2022]
Abstract
The focal ischemia obtained in an animal model of middle cerebral artery occlusion (MCAo) causes the "core" of damage in the striatum and the "penumbra" of damage in the fronto-parietal cortex. The latter is mainly functionally affected and shows changes in nNOS and iNOS expression during the acute phase of ischemia. With the aim to study possible relationships between these changes and the affection entity during the animal recovery, we investigated from 24 up to 144 h after reperfusion the expression and content of these two NOS isoforms in the neurons and microglia and the degree of microglia reactivity in the fronto-parietal cortices of rats undertaken to transient MCAo. Evaluation of motor-sensory performances and survival allowed dividing the animals into two groups. Immunohistochemistry, western blot and quantitative analysis demonstrated, both in the ischemic and contralateral cortex of the rats with longer survival, wellness and significantly increased number of the nNOS-IR neurons at 24 h and moderately activated microglia up to 144 h. In the rats not recovering, injured and significantly decreased nNOS-IR neurons, intensely activated microglia and appearance of iNOS-IR were seen at all time points. In conclusion, since the recovery occurs when nNOS-IR neurons are greatly increased, we presume nNOS protect the tissue likely controlling the passage from the state of reactive to that of activated microglia. Moreover, the morphological signs of wellness and the two-fold increase in number of the nNOS-IR neurons appear to be characteristic of the "penumbra" area and could explain why this region is mainly functionally affected.
Collapse
Affiliation(s)
- Maria Giuliana Vannucchi
- Department of Anatomy, Histology and Forensic Medicine, Section of Histology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Koga Y, Akita Y, Nishioka J, Yatsuga S, Povalko N, Katayama K, Matsuishi T. MELAS and l-arginine therapy. Mitochondrion 2007; 7:133-9. [PMID: 17276739 DOI: 10.1016/j.mito.2006.11.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 10/24/2006] [Indexed: 10/23/2022]
Abstract
We investigated the endothelial function in MELAS patients and also evaluated the therapeutic effects of L-arginine. Concentrations of L-arginine during the acute phase of MELAS were significantly lower than in control subjects. L-arginine infusions significantly improved all symptoms suggesting stroke within 30 min, and oral administration significantly decreased frequency and severity of stroke-like episodes. Flow-mediated dilation (FMD) in patients showed a significant decrease than those in the controls. Two years of oral supplementation of L-arginine significantly improved endothelial function to the control levels and was harmonized with the normalized plasma levels of L-arginine in patients. L-arginine therapy showed promise in treating stroke-like episodes in MELAS.
Collapse
Affiliation(s)
- Yasutoshi Koga
- Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi Machi, Kurume, Fukuoka 830-0011, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Pluta RM. Dysfunction of nitric oxide synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. Neurol Res 2007; 28:730-7. [PMID: 17164036 DOI: 10.1179/016164106x152052] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nitric oxide (NO), also known as endothelium-derived relaxing factor, is produced by endothelial nitric oxide synthase (eNOS) in the intima and by neuronal nitric oxide synthase (nNOS) in the adventitia of cerebral vessels. It dilates the arteries in response to shear stress, metabolic demands, pterygopalatine ganglion stimulation and chemoregulation. Subarachnoid hemorrhage (SAH) interrupts this regulation of cerebral blood flow. Hemoglobin, gradually released from erythrocytes in the subarachnoid space, destroys nNOS-containing neurons in the conductive arteries. This deprives the arteries of NO, leading to initiation of delayed vasospasm. But such vessel narrowing increases shear stress, which stimulates eNOS. This mechanism normally would lead to increased production of NO and dilation of arteries. However, a transient eNOS dysfunction evoked by an increase in the endogenous competitive NOS inhibitor, asymmetric dimethylarginine (ADMA), prevents this vasodilation. eNOS dysfunction has been recently shown to be evoked by increased levels of ADMA in cerebrospinal fluid (CSF) in response to the presence of bilirubin-oxidized fragments (BOXes). A direct cause of the increased ADMA CSF level is most likely decreased ADMA elimination owing to disappearance of ADMA-hydrolyzing enzyme [dimethylarginine dimethylaminohydrolase II (DDAH II)] immunoreactivity in the arteries in spasm. This eNOS dysfunction sustains vasospasm. CSF ADMA levels are closely associated with the degree and time course of vasospasm; when CSF ADMA levels decrease, vasospasm resolves. Thus, exogenous delivery of NO, inhibiting the L-arginine-methylating enzyme or stimulating DDAH II, may provide new therapeutic modalities to prevent and treat vasospasm. This paper will present results of pre-clinical studies supporting the NO-based hypothesis of delayed cerebral vasospasm development and its prevention by increased NO availability.
Collapse
Affiliation(s)
- Ryszard M Pluta
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Abstract
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
47
|
Greco R, Amantea D, Blandini F, Nappi G, Bagetta G, Corasaniti MT, Tassorelli C. Neuroprotective effect of nitroglycerin in a rodent model of ischemic stroke: evaluation of Bcl-2 expression. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 82:423-35. [PMID: 17678976 DOI: 10.1016/s0074-7742(07)82024-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transient focal ischemia caused by middle cerebral artery occlusion (MCAo) produces apoptotic cell death in the penumbra area. Bcl-2 is a protooncogene that plays a major antiapoptotic role, at the cellular level, by counteracting the activation of apoptosis effectors, that is, caspases. It has been suggested that nitroglycerin (NTG), a nitric oxide donor, reduces ischemia/reperfusion-induced brain damage via the inhibition of caspase activity and NMDA receptor. In this chapter, we evaluated the protective effects of NTG against cerebral damage caused by transient (2h) MCAo (tMCAo) focusing our interest on the potential effects on Bcl-2 expression. Male Wistar rats were administered intraperitoneally (i.p.) with NTG (10mg/kg) or vehicle (PEG, 1ml/kg) 20min before the induction of MCAo by intraluminal silicon-coated filament (0.37-mm diameter). Cerebral infarct volume was measured 22h after reperfusion, while cortical Bcl-2 expression was evaluated at the end of 2-h MCAo (without reperfusion) and at 5h of reperfusion. The results show significant reduction of the infarct volume in rats preinjected with NTG, as compared to the vehicle group. After 2h of occlusion, no significant difference was seen in Bcl-2 expression in the ipsilateral and contralateral cortex of either experimental groups (NTG and vehicle). However, 5h after reperfusion, a significant increase of Bcl-2 expression was detected in the damaged cortex of control rats, probably reflecting a compensatory response aiming at counteracting the cell death process; this increase was absent in the NTG-treated rats. These data, while confirming the neuroprotective effect of NTG in an in vivo ischemia/reperfusion model, seem to suggest that the drug may act by downsizing the complex chain of events underlying apoptosis activation and consequent activation of antiapoptotic responses.
Collapse
Affiliation(s)
- Rosaria Greco
- IRCCS C. Mondino Institute of Neurology Foundation, 27100 Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Jung KH, Chu K, Ko SY, Lee ST, Sinn DI, Park DK, Kim JM, Song EC, Kim M, Roh JK. Early intravenous infusion of sodium nitrite protects brain against in vivo ischemia-reperfusion injury. Stroke 2006; 37:2744-50. [PMID: 17008610 DOI: 10.1161/01.str.0000245116.40163.1c] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The rate of nitric oxide (NO) generation from nitrite is linearly dependent on reductions in oxygen and pH levels. Recently, nitrite-derived NO has been reported to exert a profound protection against liver and heart ischemia-reperfusion injury. In this study, we hypothesized that nitrite would be reduced to NO in the ischemic brain and exert NO-dependent neuroprotective effects. METHODS Cerebral ischemia-reperfusion injury was induced by intraluminal thread occlusion of middle cerebral artery in the adult male rats. Solutions of sodium nitrite were infused intravenously at the time of reperfusion. Sodium nitrate and carboxy-PTIO (30 minutes before ischemic surgery), a direct NO scavenger, were infused for comparisons. RESULTS Nitrite reduced infarction volume and enhanced local cerebral blood flow and functional recovery. The effects were observed at concentrations of 48 nmol and 480 nmol, but not at 4800 nmol nitrite and 480 nmol nitrate. The neuroprotective effects of nitrite were inhibited completely by the carboxy-PTIO. The 480 nmol nitrite attenuated dihydroethidium activity, 3-nitrotyrosine formation, and lipid peroxidation in the ischemic brain. CONCLUSIONS Nitrite exerted profound neuroprotective effects with antioxidant properties in the ischemic brains. These results suggest that nitrite, as a biological storage reserve of NO, may be a novel therapeutic agent in the setting of acute stroke.
Collapse
Affiliation(s)
- Keun-Hwa Jung
- Stroke & Neural Stem Cell Laboratory in the Clinical Research Inst, Stem Cell Research Center, Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Guo G, Bhat NR. Hypoxia/reoxygenation differentially modulates NF-kappaB activation and iNOS expression in astrocytes and microglia. Antioxid Redox Signal 2006; 8:911-8. [PMID: 16771681 DOI: 10.1089/ars.2006.8.911] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hypoxia/ischemic brain injury accompanies an inflammatory response involving an activation of glial cells. This study, using an in vitro model, investigated the signaling mechanisms mediating hypoxic responses of the two glial cell types (astrocytes and microglia) in relation to the expression of inducible nitric oxide synthase (iNOS). In cultures of rat brain microglia and astrocytes, hypoxia (8 h) followed by reoxygenation (24 h) (H/O) had little (microglia) or no (astrocytes) effect on the expression of iNOS. However, H/O elicited opposite effects on lipopolysaccharide (LPS) induction of iNOS in the two cell types: it potentiated LPS induction of iNOS in microglia but inhibited this response in astrocytes. Similar differential effects of hypoxia were observed on the production of tumor necrosis factor-alpha (TNFalpha). In contrast, there was an upregulation of hemoxygenase- 1 (HO-1), a counter-regulatory pathway, with astrocytes showing a bigger induction than microglia. While hypoxic activation of mitogen-activated protein kinases (MAPKs) was similar in the two glial types, the activation pattern of NFkappaB was clearly different: hypoxia stimulated the activation of NFkappaB pathway and NFkappaB-dependent transcription in microglia but not in astrocytes. Lastly, the two cell types displayed differential vulnerabilities to hypoxia-induced cell death, the astrocytes being relatively more resistant than microglia.
Collapse
Affiliation(s)
- Guiwen Guo
- Department of Neurology, Medical University of South Carolina, Charleston, 29425, USA
| | | |
Collapse
|
50
|
Khan M, Jatana M, Elango C, Paintlia AS, Singh AK, Singh I. Cerebrovascular protection by various nitric oxide donors in rats after experimental stroke. Nitric Oxide 2006; 15:114-24. [PMID: 16524750 DOI: 10.1016/j.niox.2006.01.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 12/14/2005] [Accepted: 01/25/2006] [Indexed: 10/24/2022]
Abstract
The efficacy of nitric oxide (NO) treatment in ischemic stroke, though well recognized, is yet to be tested in clinic. NO donors used to treat ischemic injury are structurally diverse compounds. We have shown that treatment of S-nitrosoglutathione (GSNO) protects the brain against injury and inflammation in rats after experimental stroke [M. Khan, B. Sekhon, S. Giri, M. Jatana, A. G. Gilg, K. Ayasolla, C. Elango, A. K. Singh, I. Singh, S-Nitrosoglutathione reduces inflammation and protects brain against focal cerebral ischemia in a rat model of experimental stroke, J. Cereb. Blood Flow Metab. 25 (2005) 177-192.]. In this study, we tested structurally different NO donors including GSNO, S-nitroso-N-acetyl-penicillamine (SNAP), sodium nitroprusside (SNP), methylamine hexamethylene methylamine NONOate (MAHMA), propylamine propylamine NONOate (PAPA), 3-morpholinosydnonimine (SIN-1) and compared their neuroprotective efficacy and antioxidant property in rats after ischemia/reperfusion (I/R). GSNO, in addition to neuroprotection, decreased nitrotyrosine formation and lipid peroxidation in blood and increased the ratio of reduced versus oxidized glutathione (GSH/GSSG) in brain as compared to untreated animals. GSNO also prevented the I/R-induced increase in mRNA expression of ICAM-1 and E-Selectin. SNAP and SNP extended limited neuroprotection, reduced nitrotyrosine formation in blood and blocked increase in mRNA expression of ICAM-1 and E-Selectin in brain tissue. PAPA, MAHMA, and SIN-1 neither protected the brain nor reduced oxidative stress. We conclude that neuroprotective action of NO donors in experimental stroke depends on their ability to reduce oxidative stress both in brain and blood.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | |
Collapse
|