1
|
Polimeni JR, Lewis LD. Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response. Prog Neurobiol 2021; 207:102174. [PMID: 34525404 PMCID: PMC8688322 DOI: 10.1016/j.pneurobio.2021.102174] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 07/30/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Fast fMRI enables the detection of neural dynamics over timescales of hundreds of milliseconds, suggesting it may provide a new avenue for studying subsecond neural processes in the human brain. The magnitudes of these fast fMRI dynamics are far greater than predicted by canonical models of the hemodynamic response. Several studies have established nonlinear properties of the hemodynamic response that have significant implications for fast fMRI. We first review nonlinear properties of the hemodynamic response function that may underlie fast fMRI signals. We then illustrate the breakdown of canonical hemodynamic response models in the context of fast neural dynamics. We will then argue that the canonical hemodynamic response function is not likely to reflect the BOLD response to neuronal activity driven by sparse or naturalistic stimuli or perhaps to spontaneous neuronal fluctuations in the resting state. These properties suggest that fast fMRI is capable of tracking surprisingly fast neuronal dynamics, and we discuss the neuroscientific questions that could be addressed using this approach.
Collapse
Affiliation(s)
- Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA; Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Laura D Lewis
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
2
|
Marcar VL, Wolf M. An investigation into the relationship between stimulus property, neural response and its manifestation in the visual evoked potential involving retinal resolution. Eur J Neurosci 2021; 53:2612-2628. [PMID: 33448503 DOI: 10.1111/ejn.15112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/28/2022]
Abstract
The visual evoked potential (VEP) has been shown to reflect the size of the neural population activated by a processing mechanism selective to the temporal - and spatial luminance contrast property of a stimulus. We set out to better understand how the factors determining the neural response associated with these mechanisms. To do so we recorded the VEP from 14 healthy volunteers viewing two series of pattern reversing stimuli with identical temporal-and spatial luminance contrast properties. In one series the size of the elements increased towards the edge of the image, in the other it decreased. In the former element size was congruent with receptive field size across eccentricity, in the later it was incongruent. P100 amplitude to the incongruent series exceeded that obtained to the congruent series. Using electric dipoles due the excitatory neural response we accounted for this using dipole cancellation of electric dipoles of opposite polarity originating in supra- and infragranular layers of V1. The phasic neural response in granular lamina of V1 exhibited magnocellular characteristics, the neural response outside of the granular lamina exhibited parvocellular characteristics and was modulated by re-entrant projections. Using electric current density, we identified areas of the dorsal followed by areas of the ventral stream as the source of the re-entrant signal modulating infragranular activity. Our work demonstrates that the VEP does not signal reflect the overall level of a neural response but is the result of an interaction between electric dipoles originating from neural responses in different lamina of V1.
Collapse
Affiliation(s)
- Valentine L Marcar
- Biomedical Optics Research Laboratory, University Hospital Zürich, Zürich, Switzerland
| | - Martin Wolf
- Biomedical Optics Research Laboratory, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Gil R, Fernandes FF, Shemesh N. Neuroplasticity-driven timing modulations revealed by ultrafast functional magnetic resonance imaging. Neuroimage 2020; 225:117446. [PMID: 33069861 DOI: 10.1016/j.neuroimage.2020.117446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Detecting neuroplasticity in global brain circuits in vivo is key for understanding myriad processes such as memory, learning, and recovery from injury. Functional Magnetic Resonance Imaging (fMRI) is instrumental for such in vivo mappings, yet it typically relies on mapping changes in spatial extent of activation or via signal amplitude modulations, whose interpretation can be highly ambiguous. Importantly, a central aspect of neuroplasticity involves modulation of neural activity timing properties. We thus hypothesized that this temporal dimension could serve as a new marker for neuroplasticity. To detect fMRI signals more associated with the underlying neural dynamics, we developed an ultrafast fMRI (ufMRI) approach facilitating high spatiotemporal sensitivity and resolution in distributed neural pathways. When neuroplasticity was induced in the mouse visual pathway via dark rearing, ufMRI indeed mapped temporal modulations in the entire visual pathway. Our findings therefore suggest a new dimension for exploring neuroplasticity in vivo.
Collapse
Affiliation(s)
- Rita Gil
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
4
|
Hunt BAE, Wong SM, Vandewouw MM, Brookes MJ, Dunkley BT, Taylor MJ. Spatial and spectral trajectories in typical neurodevelopment from childhood to middle age. Netw Neurosci 2019; 3:497-520. [PMID: 30984904 PMCID: PMC6444935 DOI: 10.1162/netn_a_00077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/24/2018] [Indexed: 11/21/2022] Open
Abstract
Detailed characterization of typical human neurodevelopment is key if we are to understand the nature of mental and neurological pathology. While research on the cellular processes of neurodevelopment has made great advances, in vivo human imaging is crucial to understand our uniquely human capabilities, as well as the pathologies that affect them. Using magnetoencephalography data in the largest normative sample currently available (324 participants aged 6-45 years), we assess the developmental trajectory of resting-state oscillatory power and functional connectivity from childhood to middle age. The maturational course of power, indicative of local processing, was found to both increase and decrease in a spectrally dependent fashion. Using the strength of phase-synchrony between parcellated regions, we found significant linear and nonlinear (quadratic and logarithmic) trajectories to be characterized in a spatially heterogeneous frequency-specific manner, such as a superior frontal region with linear and nonlinear trajectories in theta and gamma band respectively. Assessment of global efficiency revealed similar significant nonlinear trajectories across all frequency bands. Our results link with the development of human cognitive abilities; they also highlight the complexity of neurodevelopment and provide quantitative parameters for replication and a robust footing from which clinical research may map pathological deviations from these typical trajectories.
Collapse
Affiliation(s)
- Benjamin A. E. Hunt
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
- Neurosciences and Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Simeon M. Wong
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
- Neurosciences and Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Marlee M. Vandewouw
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
- Neurosciences and Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Matthew J. Brookes
- The Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Benjamin T. Dunkley
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
- Neurosciences and Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Margot J. Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
- Neurosciences and Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Si J, Zhang X, Zhang Y, Jiang T. Hemispheric differences in electrical and hemodynamic responses during hemifield visual stimulation with graded contrasts. BIOMEDICAL OPTICS EXPRESS 2017; 8:2018-2035. [PMID: 28736653 PMCID: PMC5516812 DOI: 10.1364/boe.8.002018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 06/07/2023]
Abstract
A multimodal neuroimaging technique based on electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) was used with horizontal hemifield visual stimuli with graded contrasts to investigate the retinotopic mapping more fully as well as to explore hemispheric differences in neuronal activity, the hemodynamic response, and the neurovascular coupling relationship in the visual cortex. The fNIRS results showed the expected activation over the contralateral hemisphere for both the left and right hemifield visual stimulations. However, the EEG results presented a paradoxical lateralization, with the maximal response located over the ipsilateral hemisphere but with the polarity inversed components located over the contralateral hemisphere. Our results suggest that the polarity inversion as well as the latency advantage over the contralateral hemisphere cause the amplitude of the VEP over the contralateral hemisphere to be smaller than that over the ipsilateral hemisphere. Both the neuronal and hemodynamic responses changed logarithmically with the level of contrast in the hemifield visual stimulations. Moreover, the amplitudes and latencies of the visual evoked potentials (VEPs) were linearly correlated with the hemodynamic responses despite differences in the slopes.
Collapse
Affiliation(s)
- Juanning Si
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yujin Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 625014, China
- CAS Center for Excellence in Brain Science, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
6
|
Si J, Zhang X, Li Y, Zhang Y, Zuo N, Jiang T. Correlation between electrical and hemodynamic responses during visual stimulation with graded contrasts. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:091315. [PMID: 27494269 DOI: 10.1117/1.jbo.21.9.091315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Brain functional activity involves complex cellular, metabolic, and vascular chain reactions, making it difficult to comprehend. Electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) have been combined into a multimodal neuroimaging method that captures both electrophysiological and hemodynamic information to explore the spatiotemporal characteristics of brain activity. Because of the significance of visually evoked functional activity in clinical applications, numerous studies have explored the amplitude of the visual evoked potential (VEP) to clarify its relationship with the hemodynamic response. However, relatively few studies have investigated the influence of latency, which has been frequently used to diagnose visual diseases, on the hemodynamic response. Moreover, because the latency and the amplitude of VEPs have different roles in coding visual information, investigating the relationship between latency and the hemodynamic response should be helpful. In this study, checkerboard reversal tasks with graded contrasts were used to evoke visual functional activity. Both EEG and fNIRS were employed to investigate the relationship between neuronal electrophysiological activities and the hemodynamic responses. The VEP amplitudes were linearly correlated with the hemodynamic response, but the VEP latency showed a negative linear correlation with the hemodynamic response.
Collapse
Affiliation(s)
- Juanning Si
- Chinese Academy of Sciences, Brainnetome Center, Institute of Automation, Beijing 100190, ChinabChinese Academy of Sciences, National Laboratory of Pattern Recognition, Institute of Automation, Beijing 100190, China
| | - Xin Zhang
- Chinese Academy of Sciences, Brainnetome Center, Institute of Automation, Beijing 100190, ChinabChinese Academy of Sciences, National Laboratory of Pattern Recognition, Institute of Automation, Beijing 100190, China
| | - Yuejun Li
- University of Electronic Science and Technology of China, Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology, Chengdu 625014, China
| | - Yujin Zhang
- Chinese Academy of Sciences, Brainnetome Center, Institute of Automation, Beijing 100190, ChinabChinese Academy of Sciences, National Laboratory of Pattern Recognition, Institute of Automation, Beijing 100190, China
| | - Nianming Zuo
- Chinese Academy of Sciences, Brainnetome Center, Institute of Automation, Beijing 100190, ChinabChinese Academy of Sciences, National Laboratory of Pattern Recognition, Institute of Automation, Beijing 100190, China
| | - Tianzi Jiang
- Chinese Academy of Sciences, Brainnetome Center, Institute of Automation, Beijing 100190, ChinabChinese Academy of Sciences, National Laboratory of Pattern Recognition, Institute of Automation, Beijing 100190, ChinacUniversity of Electronic Science and Te
| |
Collapse
|
7
|
Cross-Modal Functional Reorganization of Visual and Auditory Cortex in Adult Cochlear Implant Users Identified with fNIRS. Neural Plast 2015; 2016:4382656. [PMID: 26819766 PMCID: PMC4706950 DOI: 10.1155/2016/4382656] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/20/2015] [Indexed: 11/18/2022] Open
Abstract
Cochlear implant (CI) users show higher auditory-evoked activations in visual cortex and higher visual-evoked activation in auditory cortex compared to normal hearing (NH) controls, reflecting functional reorganization of both visual and auditory modalities. Visual-evoked activation in auditory cortex is a maladaptive functional reorganization whereas auditory-evoked activation in visual cortex is beneficial for speech recognition in CI users. We investigated their joint influence on CI users' speech recognition, by testing 20 postlingually deafened CI users and 20 NH controls with functional near-infrared spectroscopy (fNIRS). Optodes were placed over occipital and temporal areas to measure visual and auditory responses when presenting visual checkerboard and auditory word stimuli. Higher cross-modal activations were confirmed in both auditory and visual cortex for CI users compared to NH controls, demonstrating that functional reorganization of both auditory and visual cortex can be identified with fNIRS. Additionally, the combined reorganization of auditory and visual cortex was found to be associated with speech recognition performance. Speech performance was good as long as the beneficial auditory-evoked activation in visual cortex was higher than the visual-evoked activation in the auditory cortex. These results indicate the importance of considering cross-modal activations in both visual and auditory cortex for potential clinical outcome estimation.
Collapse
|
8
|
Havlicek M, Roebroeck A, Friston K, Gardumi A, Ivanov D, Uludag K. Physiologically informed dynamic causal modeling of fMRI data. Neuroimage 2015; 122:355-72. [DOI: 10.1016/j.neuroimage.2015.07.078] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 12/15/2022] Open
|
9
|
Association of Concurrent fNIRS and EEG Signatures in Response to Auditory and Visual Stimuli. Brain Topogr 2015; 28:710-725. [DOI: 10.1007/s10548-015-0424-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/05/2015] [Indexed: 11/25/2022]
|
10
|
Sperdin HF, Spierer L, Becker R, Michel CM, Landis T. Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses. Hum Brain Mapp 2014; 36:1470-83. [PMID: 25487054 DOI: 10.1002/hbm.22716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 11/11/2022] Open
Abstract
Subliminal perception is strongly associated to the processing of meaningful or emotional information and has mostly been studied using visual masking. In this study, we used high density 256-channel EEG coupled with an liquid crystal display (LCD) tachistoscope to characterize the spatio-temporal dynamics of the brain response to visual checkerboard stimuli (Experiment 1) or blank stimuli (Experiment 2) presented without a mask for 1 ms (visible), 500 µs (partially visible), and 250 µs (subliminal) by applying time-wise, assumption-free nonparametric randomization statistics on the strength and on the topography of high-density scalp-recorded electric field. Stimulus visibility was assessed in a third separate behavioral experiment. Results revealed that unmasked checkerboards presented subliminally for 250 µs evoked weak but detectable visual evoked potential (VEP) responses. When the checkerboards were replaced by blank stimuli, there was no evidence for the presence of an evoked response anymore. Furthermore, the checkerboard VEPs were modulated topographically between 243 and 296 ms post-stimulus onset as a function of stimulus duration, indicative of the engagement of distinct configuration of active brain networks. A distributed electrical source analysis localized this modulation within the right superior parietal lobule near the precuneus. These results show the presence of a brain response to submillisecond unmasked subliminal visual stimuli independently of their emotional saliency or meaningfulness and opens an avenue for new investigations of subliminal stimulation without using visual masking.
Collapse
Affiliation(s)
- Holger F Sperdin
- Department of Fundamental Neurosciences, University of Geneva, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Buxton RB. The physics of functional magnetic resonance imaging (fMRI). REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:096601. [PMID: 24006360 PMCID: PMC4376284 DOI: 10.1088/0034-4885/76/9/096601] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm(3) spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.
Collapse
Affiliation(s)
- Richard B Buxton
- Department of Radiology, University of California, San Diego, USA
| |
Collapse
|
12
|
Neuner I, Arrubla J, Felder J, Shah NJ. Simultaneous EEG-fMRI acquisition at low, high and ultra-high magnetic fields up to 9.4 T: perspectives and challenges. Neuroimage 2013; 102 Pt 1:71-9. [PMID: 23796544 DOI: 10.1016/j.neuroimage.2013.06.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 01/25/2023] Open
Abstract
In this perspectives article we highlight the advantages of simultaneous acquisition of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). As MRI moves towards using ultra-high magnetic fields in the quest for increased signal-to-noise, the question arises whether combined EEG-fMRI measurements are feasible at magnetic fields of 7 T and higher. We describe the challenges of MRI-EEG at 1.5, 3, 7 and 9.4 T and review the proposed solutions. In an outlook, we discuss further developments such as simultaneous trimodal imaging using MR, positron emission tomography (PET) and EEG under the same physiological conditions in the same subject.
Collapse
Affiliation(s)
- Irene Neuner
- Institute of Neuroscience and Medicine 4, INM 4, Forschungszentrum Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Germany; JARA - BRAIN - Translational Medicine, Germany.
| | - Jorge Arrubla
- Institute of Neuroscience and Medicine 4, INM 4, Forschungszentrum Jülich, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine 4, INM 4, Forschungszentrum Jülich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine 4, INM 4, Forschungszentrum Jülich, Germany; Department of Neurology, RWTH Aachen University, Germany; JARA - BRAIN - Translational Medicine, Germany
| |
Collapse
|
13
|
Calderone DJ, Martinez A, Zemon V, Hoptman MJ, Hu G, Watkins JE, Javitt DC, Butler PD. Comparison of psychophysical, electrophysiological, and fMRI assessment of visual contrast responses in patients with schizophrenia. Neuroimage 2013; 67:153-62. [PMID: 23194815 PMCID: PMC3544989 DOI: 10.1016/j.neuroimage.2012.11.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/12/2012] [Accepted: 11/18/2012] [Indexed: 11/24/2022] Open
Abstract
Perception has been identified by the NIMH-sponsored Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) group as a useful domain for assessing cognitive deficits in patients with schizophrenia. Specific measures of contrast gain derived from recordings of steady-state visual evoked potentials (ssVEP) have demonstrated neural deficits within the visual pathways of patients with schizophrenia. Psychophysical measures of contrast sensitivity have also shown functional loss in these patients. In the current study, functional magnetic resonance imaging (fMRI) was used in conjunction with ssVEP and contrast sensitivity testing to elucidate the neural underpinnings of these deficits. During fMRI scanning, participants viewed 1) the same low and higher spatial frequency stimuli used in the psychophysical contrast sensitivity task, at both individual detection threshold contrast and at a high contrast; and 2) the same stimuli used in the ssVEP paradigm, which were designed to be biased toward either the magnocellular or parvocellular visual pathway. Patients showed significant impairment in contrast sensitivity at both spatial frequencies in the psychophysical task, but showed reduced occipital activation volume for low, but not higher, spatial frequency at the low and high contrasts tested in the magnet. As expected, patients exhibited selective deficits under the magnocellular-biased ssVEP condition. However, occipital lobe fMRI responses demonstrated the same general pattern for magnocellular- and parvocellular-biased stimuli across groups. These results indicate dissociation between the fMRI measures and the psychophysical/ssVEP measures. These latter measures appear to have greater value for the functional assessment of the contrast deficits explored here.
Collapse
Affiliation(s)
- Daniel J Calderone
- Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Musall S, von Pföstl V, Rauch A, Logothetis NK, Whittingstall K. Effects of neural synchrony on surface EEG. ACTA ACUST UNITED AC 2012; 24:1045-53. [PMID: 23236202 DOI: 10.1093/cercor/bhs389] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It has long been assumed that the surface electroencephalography (EEG) signal depends on both the amplitude and spatial synchronization of underlying neural activity, though isolating their respective contribution remains elusive. To address this, we made simultaneous surface EEG measurements along with intracortical recordings of local field potentials (LFPs) in the primary visual cortex of behaving nonhuman primates. We found that trial-by-trial fluctuations in EEG power could be explained by a linear combination of LFP power and interelectrode temporal synchrony. This effect was observed in both stimulus and stimulus-free conditions and was particularly strong in the gamma range (30-100 Hz). Subsequently, we used pharmacological manipulations to show that neural synchrony can produce a positively modulated EEG signal even when the LFP signal is negatively modulated. Taken together, our results demonstrate that neural synchrony can modulate EEG signals independently of amplitude changes in neural activity. This finding has strong implications for the interpretation of EEG in basic and clinical research, and helps reconcile EEG response discrepancies observed in different modalities (e.g., EEG vs. functional magnetic resonance imaging) and different spatial scales (e.g., EEG vs. intracranial EEG).
Collapse
Affiliation(s)
- Simon Musall
- Max Planck Institute for Biological Cybernetics, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
15
|
Tartaglione A, Spadavecchia L, Maculotti M, Bandini F. Resting state in Alzheimer's disease: a concurrent analysis of Flash-Visual Evoked Potentials and quantitative EEG. BMC Neurol 2012. [PMID: 23190493 PMCID: PMC3527189 DOI: 10.1186/1471-2377-12-145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate to what extent Alzheimer's Disease (AD) affects Resting State activity, the possible impairment of independent electrophysiological parameters was determined in Eye-open and Eye-closed Conditions. Specifically, Flash-Visual Evoked Potential (F-VEP) and quantitative EEG (q-EEG) were examined to establish whether abnormalities of the former were systematically associated with changes of the latter. METHODS Concurrently recorded F-VEP and q-EEG were comparatively analysed under Eye-open and Eye-closed Conditions in 11 Controls and 19 AD patients presenting a normal Pattern-Visual Evoked Potential (P-VEP). Between Condition differences in latencies of P2 component were matched to variations in spectral components of q-EEG. RESULTS P2 latency increased in 10 AD patients with Abnormal Latency (AD-AL) under Eye-closed Condition. In these patients reduction of alpha activity joined an increased delta power so that their spectral profile equated that recorded under Eye-open Condition. On the opposite, in Controls as well as in AD patients with Normal P2 Latency (AD-NL) spectral profiles recorded under Eye-open and Eye-closed Conditions significantly differed from each other. At the baseline, under Eye-open Condition, the spectra overlapped each other in the three Groups. CONCLUSION Under Eye-closed Condition AD patients may present a significant change in both F-VEP latency and EEG rhythm modulation. The presence of concurrent changes of independent parameters suggests that the neurodegenerative process can impair a control system active in Eye-closed Condition which the electrophysiological parameters depend upon. F-VEP can be viewed as a reliable marker of such impairment.
Collapse
|
16
|
|
17
|
Arichi T, Fagiolo G, Varela M, Melendez-Calderon A, Allievi A, Merchant N, Tusor N, Counsell SJ, Burdet E, Beckmann CF, Edwards AD. Development of BOLD signal hemodynamic responses in the human brain. Neuroimage 2012; 63:663-73. [PMID: 22776460 PMCID: PMC3459097 DOI: 10.1016/j.neuroimage.2012.06.054] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/08/2012] [Accepted: 06/21/2012] [Indexed: 12/19/2022] Open
Abstract
In the rodent brain the hemodynamic response to a brief external stimulus changes significantly during development. Analogous changes in human infants would complicate the determination and use of the hemodynamic response function (HRF) for functional magnetic resonance imaging (fMRI) in developing populations. We aimed to characterize HRF in human infants before and after the normal time of birth using rapid sampling of the Blood Oxygen Level Dependent (BOLD) signal. A somatosensory stimulus and an event related experimental design were used to collect data from 10 healthy adults, 15 sedated infants at term corrected post menstrual age (PMA) (median 41 + 1 weeks), and 10 preterm infants (median PMA 34 + 4 weeks). A positive amplitude HRF waveform was identified across all subject groups, with a systematic maturational trend in terms of decreasing time-to-peak and increasing positive peak amplitude associated with increasing age. Application of the age-appropriate HRF models to fMRI data significantly improved the precision of the fMRI analysis. These findings support the notion of a structured development in the brain's response to stimuli across the last trimester of gestation and beyond.
Collapse
Affiliation(s)
- Tomoki Arichi
- Centre for the Developing Brain, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Goense J, Whittingstall K, Logothetis NK. Neural and BOLD responses across the brain. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2011; 3:75-86. [PMID: 26302473 DOI: 10.1002/wcs.153] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Functional Magnetic Resonance Imaging (fMRI) has quickly grown into one of the most important tools for studying brain function, especially in humans. Despite its prevalence, we still do not have a clear picture of what exactly the blood oxygenation level dependent (BOLD) signal represents or how it compares to the signals obtained with other methods (e.g., electrophysiology). We particularly refer to single neuron recordings and electroencephalography when we mention 'electrophysiological methods', given that these methods have been used for more than 50 years, and have formed the basis of much of our current understanding of brain function. Brain function involves the coordinated activity of many different areas and many different cell types that can participate in an enormous variety of processes (neural firing, inhibitory and excitatory synaptic activity, neuromodulation, oscillatory activity, etc.). Of these cells and processes, only a subset is sampled with electrophysiological techniques, and their contribution to the recorded signals is not exactly known. Functional imaging signals are driven by the metabolic needs of the active cells, and are most likely also biased toward certain cell types and certain neural processes, although we know even less about which processes actually drive the hemodynamic response. This article discusses the current status on the interpretation of the BOLD signal and how it relates to neural activity measured with electrophysiological techniques. WIREs Cogn Sci 2012, 3:75-86. doi: 10.1002/wcs.153 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jozien Goense
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Kevin Whittingstall
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Imaging Science and Biomedical Engineering, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
19
|
|