1
|
Suo JL, Li JY, Zhou CM, Jin RL, Song JH, Wang YL, Huo DS, Tan BH, Li YC. Long-term changes in phospholipids and free fatty acids and the possible subcellular origins for phospholipid degradation in kainic acid-damaged mouse hippocampus. Brain Res 2024; 1845:149243. [PMID: 39293679 DOI: 10.1016/j.brainres.2024.149243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/06/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Kainic acid (KA)-induced excitotoxicity induces acute degradation of phospholipids and release of free fatty acids (FFAs) in rodent hippocampus, but the long-term changes in phospholipids or the subcellular origins of liberated FFAs remain unclarified. Phospholipids and FFAs were determined in KA-damaged mouse hippocampus by enzyme-coupled biochemical assays. The evolution of membrane injuries in the hippocampus was examined by a series of morphological techniques. The levels of phospholipids in the hippocampus decreased shortly after KA injection but recovered close to the control levels at 24 h. The decline in phospholipids was accelerated again from 72 to 120 after KA treatment. The levels of FFAs were negatively related to those of phospholipids, exhibiting a similar but opposite trend of changes. KA treatment caused progressively severe damage to vulnerable neurons, which was accompanied by increased permeability in the cell membrane and increased staining of membrane-bound dyes in the cytoplasm. Double fluorescence staining showed that the latter was partially overlapped with abnormally increased endocytic and autophagic components in damaged neurons. Our results revealed intricate and biphasic changes in phospholipid and FFA levels in KA-damaged hippocampus. Disrupted endomembrane system may be one of the major origins for KA-induced FFA release.
Collapse
Affiliation(s)
- Jia-Le Suo
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China; Department of Human Anatomy, Baotou Medical College, Baotou, Inner Mongolia 014040, PR China
| | - Jing-Yi Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Cheng-Mei Zhou
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Rui-Lin Jin
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Jia-Hui Song
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Yan-Ling Wang
- Laboratory Teaching Center of Basic Medicine, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - De-Sheng Huo
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Bai-Hong Tan
- Laboratory Teaching Center of Basic Medicine, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China
| | - Yan-Chao Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province 130021, PR China.
| |
Collapse
|
2
|
Li YF, Chen T, Chen LH, Zhao RN, Wang XC, Wu D, Hu JN. Construction of diallyltrisulfide nanoparticles for alleviation of ethanol-induced acute gastric injury. Int J Pharm 2024; 657:124143. [PMID: 38663641 DOI: 10.1016/j.ijpharm.2024.124143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Gastric ulcer, a significant health issue characterized by the degradation of the gastric mucosa, often arises from excessive gastric acid secretion and poses a challenge in current medical treatments due to the limited efficacy and side effects of first-line drugs. Addressing this, our study develops a novel therapeutic strategy leveraging gas therapy, specifically targeting the release of hydrogen sulfide (H2S) in the treatment of gastric ulcers. We successfully developed a composite nanoparticle, named BSA·SH-DATS, through a two-step process. Initially, bovine serum albumin (BSA) was sulfhydrated to generate BSA·SH nanoparticles via a mercaptosylation method. Subsequently, these nanoparticles were further functionalized by incorporating diallyltrisulfide (DATS) through a precise Michael addition reaction. This sequential modification resulted in the creation of BSA·SH-DATS nanoparticles. Our comprehensive in vitro and in vivo investigations demonstrate that these nanoparticles possess an exceptional ability for site-specific action on gastric mucosal cells under the controlled release of H2S in response to endogenous glutathione (GSH), markedly diminishing the production of pro-inflammatory cytokines, thereby alleviating inflammation and apoptosis. Moreover, the BSA·SH-DATS nanoparticles effectively regulate critical inflammatory proteins, including NF-κB and Caspase-3. Our study underscores their potential as a transformative approach for gastric ulcer treatment.
Collapse
Affiliation(s)
- Yan-Fei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Li-Hang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ru-Nan Zhao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xin-Chuang Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Minibayeva F, Mazina A, Gazizova N, Dmitrieva S, Ponomareva A, Rakhmatullina D. Nitric Oxide Induces Autophagy in Triticum aestivum Roots. Antioxidants (Basel) 2023; 12:1655. [PMID: 37759958 PMCID: PMC10525912 DOI: 10.3390/antiox12091655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy is a highly conserved process that degrades damaged macromolecules and organelles. Unlike animals, only scant information is available regarding nitric oxide (NO)-induced autophagy in plants. Such lack of information prompted us to study the roles of the NO donors' nitrate, nitrite, and sodium nitroprusside in this catabolic process in wheat roots. Furthermore, spermine, a polyamine that is found in all eukaryotic cells, was also tested as a physiological NO donor. Here, we show that in wheat roots, NO donors and spermine can trigger autophagy, with NO and reactive oxygen species (ROS) playing signaling roles based on the visualization of autophagosomes, analyses of the levels of NO, ROS, mitochondrial activity, and the expression of autophagic (ATG) genes. Treatment with nitrite and nitroprusside causes an energy deficit, a typical prerequisite of autophagy, which is indicated by a fall in mitochondrial potential, and the activity of mitochondrial complexes. On the contrary, spermine sustains energy metabolism by upregulating the activity of appropriate genes, including those that encode glyceraldehyde 3-phosphate dehydrogenase GAPDH and SNF1-related protein kinase 1 SnRK1. Taken together, our data suggest that one of the key roles for NO in plants may be to trigger autophagy via diverse mechanisms, thus facilitating the removal of oxidized and damaged cellular constituencies.
Collapse
Affiliation(s)
- Farida Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (A.M.); (S.D.); (A.P.); (D.R.)
| | | | | | | | | | | |
Collapse
|
4
|
A novel BRET based genetic coded biosensor for apoptosis detection at deep tissue level in live animal. Apoptosis 2021; 26:628-638. [PMID: 34748127 DOI: 10.1007/s10495-021-01693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
ANNEXIN V belongs to a family of phospholipid binding proteins which is able to bind to negatively charged phospholipids such as phosphatidylserine (PS) in the presence of a high affinity Ca2+ ion. When apoptosis occurs, even at early stage, PS will be exposed to the outside of the cell surface from the cytoplasm side of membrane leaflets., Therefore ANNEXIN V has been suggested as a bio-marker for imaging early apoptotic events of various cell death including those in disease conditions. However, most ANNEXIN V-based apoptotic detecting techniques were in vitro approaches. Here, we presented a new BRET (Bioluminescence Resonance Energy Transfer) based genetic coded biosensor by fusing ANNEXIN V and a BRET version of NanoLuc (teLuc) for both in vitro and in vivo apoptosis detection. The BRET feature of this new sensor makes it convenient to be applied to both conventional fluorescent-based in vitro apoptosis detection and bioluminescence-based animal live imaging for in vivo study. Because of its robust bioluminescence signal, it is possible to perform the evaluation of the disease-induced apoptotic damage and recovery process directly at deep tissue level in live animal.
Collapse
|
5
|
Gupta VB, Chitranshi N, den Haan J, Mirzaei M, You Y, Lim JK, Basavarajappa D, Godinez A, Di Angelantonio S, Sachdev P, Salekdeh GH, Bouwman F, Graham S, Gupta V. Retinal changes in Alzheimer's disease- integrated prospects of imaging, functional and molecular advances. Prog Retin Eye Res 2020; 82:100899. [PMID: 32890742 DOI: 10.1016/j.preteyeres.2020.100899] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disorder of the brain, clinically characterised by cognitive deficits that gradually worsen over time. There is, at present, no established cure, or disease-modifying treatments for AD. As life expectancy increases globally, the number of individuals suffering from the disease is projected to increase substantially. Cumulative evidence indicates that AD neuropathological process is initiated several years, if not decades, before clinical signs are evident in patients, and diagnosis made. While several imaging, cognitive, CSF and blood-based biomarkers have been proposed for the early detection of AD; their sensitivity and specificity in the symptomatic stages is highly variable and it is difficult to justify their use in even earlier, pre-clinical stages of the disease. Research has identified potentially measurable functional, structural, metabolic and vascular changes in the retina during early stages of AD. Retina offers a distinctively accessible insight into brain pathology and current and developing ophthalmic technologies have provided us with the possibility of detecting and characterising subtle, disease-related changes. Recent human and animal model studies have further provided mechanistic insights into the biochemical pathways that are altered in the retina in disease, including amyloid and tau deposition. This information coupled with advances in molecular imaging has allowed attempts to monitor biochemical changes and protein aggregation pathology in the retina in AD. This review summarises the existing knowledge that informs our understanding of the impact of AD on the retina and highlights some of the gaps that need to be addressed. Future research will integrate molecular imaging innovation with functional and structural changes to enhance our knowledge of the AD pathophysiological mechanisms and establish the utility of monitoring retinal changes as a potential biomarker for AD.
Collapse
Affiliation(s)
- Veer B Gupta
- School of Medicine, Deakin University, VIC, Australia
| | - Nitin Chitranshi
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jurre den Haan
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Mehdi Mirzaei
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Yuyi You
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jeremiah Kh Lim
- Optometry and Vision Science, College of Nursing and Health Sciences, Bedford Park, South Australia, 5042, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Angela Godinez
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Silvia Di Angelantonio
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Perminder Sachdev
- Centre for Healthy Brain and Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Ghasem H Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan, Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Femke Bouwman
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, the Netherlands
| | - Stuart Graham
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia; Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia.
| | - Vivek Gupta
- Faculty of Medicine Health and Human Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
6
|
Kozina N, Mihaljević Z, Lončar MB, Mihalj M, Mišir M, Radmilović MD, Justić H, Gajović S, Šešelja K, Bazina I, Horvatić A, Matić A, Bijelić N, Rođak E, Jukić I, Drenjančević I. Impact of High Salt Diet on Cerebral Vascular Function and Stroke in Tff3-/-/C57BL/6N Knockout and WT (C57BL/6N) Control Mice. Int J Mol Sci 2019; 20:ijms20205188. [PMID: 31635131 PMCID: PMC6829871 DOI: 10.3390/ijms20205188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/20/2019] [Accepted: 10/05/2019] [Indexed: 11/29/2022] Open
Abstract
High salt (HS) dietary intake leads to impaired vascular endothelium-dependent responses to various physiological stimuli, some of which are mediated by arachidonic acid (AA) metabolites. Transgenic Tff3−/− gene knockout mice (Tff3−/−/C57BL/6N) have changes in lipid metabolism which may affect vascular function and outcomes of stroke. We aimed to study the effects of one week of HS diet (4% NaCl) on vascular function and stroke induced by transient occlusion of middle cerebral artery in Tff3−/− and wild type (WT/C57BL/6N) mice. Flow-induced dilation (FID) of carotid artery was reduced in WT-HS mice, but not affected in Tff3−/−-HS mice. Nitric oxide (NO) mediated FID. NO production was decreased with HS diet. On the contrary, acetylcholine-induced dilation was significantly decreased in Tff3−/− mice on both diets and WT-HS mice. HS intake and Tff3 gene depletion affected the structural components of the vessels. Proteomic analysis revealed a significant effect of Tff3 gene deficiency on HS diet-induced changes in neuronal structural proteins and acute innate immune response proteins’ expression and Tff3 depletion, but HS diet did not increase the stroke volume, which is related to proteome modification and upregulation of genes involved mainly in cellular antioxidative defense. In conclusion, Tff3 depletion seems to partially impair vascular function and worsen the outcomes of stroke, which is moderately affected by HS diet.
Collapse
Affiliation(s)
- Nataša Kozina
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Zrinka Mihaljević
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Mirela Baus Lončar
- Ruđer Bošković Institute, Department of Molecular Medicine; Bijenička 54, HR-10000 Zagreb, Croatia.
| | - Martina Mihalj
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
- Clinical Hospital Center Osijek, Dept of Dermatology and Venerology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Mihael Mišir
- Clinical Hospital Center Osijek, Neurology Clinic, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Marina Dobrivojević Radmilović
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia, Šalata 12, HR-10000 Zagreb, Croatia.
| | - Helena Justić
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia, Šalata 12, HR-10000 Zagreb, Croatia.
| | - Srećko Gajović
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia, Šalata 12, HR-10000 Zagreb, Croatia.
| | - Kate Šešelja
- Ruđer Bošković Institute, Department of Molecular Medicine; Bijenička 54, HR-10000 Zagreb, Croatia.
| | - Iva Bazina
- Ruđer Bošković Institute, Department of Molecular Medicine; Bijenička 54, HR-10000 Zagreb, Croatia.
| | - Anita Horvatić
- Proteomics laboratory, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55 HR-10000 Zagreb, Croatia.
| | - Anita Matić
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Nikola Bijelić
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Histology and Embriology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Edi Rođak
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Histology and Embriology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Ivana Jukić
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | - Ines Drenjančević
- Faculty of Medicine Osijek, University Josip Juraj Strossmayer Osijek, Institute and Dept of Physiology and Immunology, J. Huttlera 4, HR-31000 Osijek, Croatia.
| |
Collapse
|
7
|
Zille M, Ikhsan M, Jiang Y, Lampe J, Wenzel J, Schwaninger M. The impact of endothelial cell death in the brain and its role after stroke: A systematic review. Cell Stress 2019; 3:330-347. [PMID: 31799500 PMCID: PMC6859425 DOI: 10.15698/cst2019.11.203] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The supply of oxygen and nutrients to the brain is vital for its function and requires a complex vascular network that, when disturbed, results in profound neurological dysfunction. As part of the pathology in stroke, endothelial cells die. As endothelial cell death affects the surrounding cellular environment and is a potential target for the treatment and prevention of neurological disorders, we have systematically reviewed important aspects of endothelial cell death with a particular focus on stroke. After screening 2876 publications published between January 1, 2010 and August 7, 2019, we identified 154 records to be included. We found that endothelial cell death occurs rapidly as well as later after the onset of stroke conditions. Among the different cell death mechanisms, apoptosis was the most widely investigated (92 records), followed by autophagy (20 records), while other, more recently defined mechanisms received less attention, such as lysosome-dependent cell death (2 records) and necroptosis (2 records). We also discuss the differential vulnerability of brain cells to injury after stroke and the role of endothelial cell death in the no-reflow phenomenon with a special focus on the microvasculature. Further investigation of the different cell death mechanisms using novel tools and biomarkers will greatly enhance our understanding of endothelial cell death. For this task, at least two markers/criteria are desirable to determine cell death subroutines according to the recommendations of the Nomenclature Committee on Cell Death.
Collapse
Affiliation(s)
- Marietta Zille
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Maulana Ikhsan
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Yun Jiang
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Josephine Lampe
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Jan Wenzel
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| |
Collapse
|
8
|
Kopec BM, Ulapane KR, Moral MEG, Siahaan TJ. Methods of Delivering Molecules Through the Blood-Brain Barrier for Brain Diagnostics and Therapeutics. BLOOD-BRAIN BARRIER 2019. [DOI: 10.1007/978-1-4939-8946-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Schniering J, Guo L, Brunner M, Schibli R, Ye S, Distler O, Béhé M, Maurer B. Evaluation of 99mTc-rhAnnexin V-128 SPECT/CT as a diagnostic tool for early stages of interstitial lung disease associated with systemic sclerosis. Arthritis Res Ther 2018; 20:183. [PMID: 30115119 PMCID: PMC6097327 DOI: 10.1186/s13075-018-1681-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022] Open
Abstract
Background Given the need for early detection of organ involvement in systemic sclerosis, we evaluated 99mTc-rhAnnexin V-128 for the detection of early stages of interstitial lung disease (ILD) in respective animal models using single photon emission computed tomography (SPECT/CT). Methods In bleomycin (BLM)-challenged mice, fos-related antigen 2 (Fra-2) transgenic (tg) mice and respective controls, lung injury was evaluated by analysis of hematoxylin and eosin (HE) and Sirius red staining, with semi-quantification of fibrosis by the Ashcroft score. Apoptotic cells were identified by TUNEL assay, cleaved caspase 3 staining and double staining with specific cell markers. To detect early stages of lung remodeling by visualization of apoptosis, mice were injected intravenously with 99mTc-rhAnnexin V-128 and imaged by small animal SPECT/CT. For confirmation, biodistribution and ex vivo autoradiography studies were performed. Results In BLM-induced lung fibrosis, inflammatory infiltrates occurred as early as day 3 with peak at day 7, whereas pulmonary fibrosis developed from day 7 and was most pronounced at day 21. In accordance, the number of apoptotic cells was highest at day 3 compared with saline controls and then decreased over time. Epithelial cells (E-cadherin+) and inflammatory cells (CD45+) were the primary cells undergoing apoptosis in the earliest remodeling stages of experimental ILD. This was also true in the pathophysiologically different Fra-2 tg mice, where apoptosis of CD45+ cells occurred in the inflammatory stage. In accordance with the findings on tissue level, at day 3 in the BLM and at week 16 in the Fra-2 tg model, biodistribution and/or ex vivo autoradiography showed increased pulmonary uptake of 99mTc-rhAnnexin V-128 compared with controls. However, accumulation of the radiotracer and thus the signal intensity in lungs was too low to allow the differentiation of healthy and injured lungs in vivo. Conclusion At the tissue level, 99mTc-rhAnnexin V-128 successfully demonstrated early stages of ILD in two animal models by detection of apoptotic epithelial and/or inflammatory cells. In vivo, however, we did not detect early lung injury. It remains to be investigated whether the same applies to human ILD. Electronic supplementary material The online version of this article (10.1186/s13075-018-1681-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janine Schniering
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland
| | - Li Guo
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland.,Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Matthias Brunner
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Villigen-PSI, Switzerland.,Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | - Shuang Ye
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences, Villigen-PSI, Switzerland
| | - Britta Maurer
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland.
| |
Collapse
|
10
|
Schultheis K, Smith TRF, Kiosses WB, Kraynyak KA, Wong A, Oh J, Broderick KE. Delineating the Cellular Mechanisms Associated with Skin Electroporation. Hum Gene Ther Methods 2018; 29:177-188. [PMID: 29953259 DOI: 10.1089/hgtb.2017.105] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The immune responses elicited following delivery of DNA vaccines to the skin has previously been shown to be significantly enhanced by the addition of electroporation (EP) to the treatment protocol. Principally, EP increases the transfection of plasmid DNA (pDNA) into the resident skin cells. In addition to increasing the levels of in vivo transfection, the physical insult induced by EP is associated with activation of innate pathways which are believed to mediate an adjuvant effect, further enhancing DNA vaccine responses. We investigated the possible mechanisms associated with this adjuvant effect, primarily focusing on the cell death pathways associated with the skin EP procedure independent of pDNA delivery. Using the minimally invasive CELLECTRA®-3P intradermal electroporation device that penetrates the epidermal and dermal layers of the skin, we have investigated apoptotic and necrotic cell death in relation to the vicinity of the electrode needles and electric field generated. Employing the well-established terminal deoxynucleotidyl transferase nick-end labeling assay, we detected apoptosis beginning as early as one hour after EP and peaking at the 4 h time point. The majority of the apoptotic events were detected in the epidermal region directly adjacent to the electrode needle. Using a novel propidium iodide in vivo necrotic cell death assay, we detected necrotic events concentrated in the epidermal region adjacent to the electrode. Furthermore, we detected upregulation of calreticulin expression on skin cells after EP, thus labeling these cells for uptake by dendritic cells and macrophages. These results allow us to delineate the cell death mechanisms occurring in the skin following intradermal EP independently of pDNA delivery. We believe these events contribute to the adjuvant effect observed following electroporation at the skin treatment site.
Collapse
Affiliation(s)
| | | | - William B Kiosses
- 2 The Scripps Research Institute , Core Microscopy Facility, La Jolla, California
| | | | - Amelia Wong
- 1 Inovio Pharmaceuticals, Inc. , Plymouth Meeting, Pennsylvania
| | - Janet Oh
- 1 Inovio Pharmaceuticals, Inc. , Plymouth Meeting, Pennsylvania
| | | |
Collapse
|
11
|
Hamzei Taj S, Le Blon D, Hoornaert C, Daans J, Quarta A, Praet J, Van der Linden A, Ponsaerts P, Hoehn M. Targeted intracerebral delivery of the anti-inflammatory cytokine IL13 promotes alternative activation of both microglia and macrophages after stroke. J Neuroinflammation 2018; 15:174. [PMID: 29866203 PMCID: PMC5987479 DOI: 10.1186/s12974-018-1212-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/21/2018] [Indexed: 12/27/2022] Open
Abstract
Background Subtle adjustment of the activation status of CNS resident microglia and peripheral macrophages, to promote their neuroprotective and neuroregenerative functions, may facilitate research towards curing neurodegenerative disorders. In the present study, we investigated whether targeted intracerebral delivery of the anti-inflammatory cytokine interleukin (IL)13, by means of transplanting IL13-expressing mesenchymal stem cells (IL13-MSCs), can promote a phenotypic switch in both microglia and macrophages during the pro-inflammatory phase in a mouse model of ischemic stroke. Methods We used the CX3CR1eGFP/+ CCR2RFP/+ transgenic mouse model to separately recognize brain-resident microglia from infiltrated macrophages. Quantitative immunohistochemical analyses were applied to characterize polarization phenotypes of both cell types. Results Distinct behaviors of both cell populations were noted dependent on the anatomical site of the lesion. Immunohistochemistry revealed that mice grafted with IL13-MSCs, in contrast to non-grafted and MSC-grafted control mice, were able to drive recruited microglia and macrophages into an alternative activation state, as visualized by a significant increase of Arg-1 and a noticeable decrease of MHC-II expression at day 14 after ischemic stroke. Interestingly, both Arg-1 and MHC-II were expressed more abundantly in macrophages than in microglia, further confirming the distinct behavior of both cell populations. Conclusions The current data highlight the importance of controlled and localized delivery of the anti-inflammatory cytokine IL13 for modulation of both microglia and macrophage responses after ischemic stroke, thereby providing pre-clinical rationale for the application of L13-MSCs in future investigations of neurodegenerative disorders. Electronic supplementary material The online version of this article (10.1186/s12974-018-1212-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Somayyeh Hamzei Taj
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, D-50931, Köln, Germany
| | - Debbie Le Blon
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Chloé Hoornaert
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Jasmijn Daans
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Alessandra Quarta
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Jelle Praet
- Bio-Imaging Laboratory, University of Antwerp, Antwerp, Belgium
| | | | - Peter Ponsaerts
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Mathias Hoehn
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, D-50931, Köln, Germany. .,Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
12
|
Akhoundzadeh K, Vakili A, Sameni HR, Vafaei AA, Rashidy-Pour A, Safari M, Mohammadkhani R. Effects of the combined treatment of bone marrow stromal cells with mild exercise and thyroid hormone on brain damage and apoptosis in a mouse focal cerebral ischemia model. Metab Brain Dis 2017; 32:1267-1277. [PMID: 28547077 DOI: 10.1007/s11011-017-0034-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 05/16/2017] [Indexed: 01/20/2023]
Abstract
This study examined whether post-stroke bone marrow stromal cells (BMSCs) therapy combined with exercise (EX) and/or thyroid hormone (TH) could reduce brain damage in an experimental ischemic stroke in mice. Focal cerebral ischemia was induced under Laser Doppler Flowmetry (LDF) guide by 45 min of middle cerebral artery occlusion (MCAO), followed by 7 days of reperfusion in albino mice. BMSCs were injected into the right cerebral ventricle 24 h after MCAO, followed by daily injection of T3 (20 μg/100 g weight S.C) and 6 days of running on a treadmill. Infarct size, neurobehavioral test, TUNEL and BrdU positive cells were evaluated at 7 days after MCAO. Treatment with BMSCs and mild EX alone significantly reduced the infarct volume by 23% and 44%, respectively (both, p < 0.001). The BMSCs + TH, BMSCs + EX, and BMSCs + EX + TH combination therapies significantly reduced the infarct volume by 26%, 51%, and 70%, respectively (all, p < 0.001). A significant improvement in the neurobehavioral functioning was observed in the EX, BMSCs + EX, and BMSCs + EX+ TH groups (p < 0.001). The number of TUNEL-positive cells (a marker of apoptosis) was significantly reduced in the EX, BMSCs, BMSCs + EX, BMSCs + TH, and BMSCs + EX + TH groups (all, p < 0.001). Moreover, the combination therapy considerably increased BrdU-labeled cells in the subventricular zone (SVZ) (p < 0.01). Our findings indicated that the combined treatment of BMSCs with mild EX and TH more efficiently reduces the cerebral infarct size after stroke. More likely, these effects mediate via enchaining generation of new neuronal cells and the attenuation of apoptosis in ischemia stroke in young mice.
Collapse
Affiliation(s)
- Kobar Akhoundzadeh
- Research Center and Department of Physiology, Faculty of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Abedin Vakili
- Research Center and Department of Physiology, Faculty of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Hamid Reza Sameni
- Research Center of Nervous System Stem Cells, Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Abbas Ali Vafaei
- Research Center and Department of Physiology, Faculty of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center and Department of Physiology, Faculty of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Manouchehr Safari
- Research Center of Nervous System Stem Cells, Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Razieh Mohammadkhani
- Research Center and Department of Physiology, Faculty of Medicine, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
13
|
Vaas M, Enzmann G, Perinat T, Siler U, Reichenbach J, Licha K, Kipar A, Rudin M, Engelhardt B, Klohs J. Non-invasive near-infrared fluorescence imaging of the neutrophil response in a mouse model of transient cerebral ischaemia. J Cereb Blood Flow Metab 2017; 37:2833-2847. [PMID: 27789786 PMCID: PMC5536255 DOI: 10.1177/0271678x16676825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Near-infrared fluorescence (NIRF) imaging enables non-invasive monitoring of molecular and cellular processes in live animals. Here we demonstrate the suitability of NIRF imaging to investigate the neutrophil response in the brain after transient middle cerebral artery occlusion (tMCAO). We established procedures for ex vivo fluorescent labelling of neutrophils without affecting their activation status. Adoptive transfer of labelled neutrophils in C57BL/6 mice before surgery resulted in higher fluorescence intensities over the ischaemic hemisphere in tMCAO mice with NIRF imaging when compared with controls, corroborated by ex vivo detection of labelled neutrophils using fluorescence microscopy. NIRF imaging showed that neutrophils started to accumulate immediately after tMCAO, peaking at 18 h, and were still visible until 48 h after reperfusion. Our data revealed accumulation of neutrophils also in extracranial tissue, indicating damage in the external carotid artery territory in the tMCAO model. Antibody-mediated inhibition of α4-integrins did reduce fluorescence signals at 18 and 24, but not at 48 h after reperfusion, compared with control treatment animals. Antibody treatment reduced cerebral lesion volumes by 19%. In conclusion, the non-invasive nature of NIRF imaging allows studying the dynamics of neutrophil recruitment and its modulation by targeted interventions in the mouse brain after transient experimental cerebral ischaemia.
Collapse
Affiliation(s)
- Markus Vaas
- 1 Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland.,2 Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| | - Gaby Enzmann
- 3 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Therese Perinat
- 3 Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Ulrich Siler
- 4 Division of Immunology, University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| | - Janine Reichenbach
- 4 Division of Immunology, University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| | - Kai Licha
- 5 Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Anja Kipar
- 6 Institute of Veterinary Pathology, University of Zurich, Zürich, Switzerland
| | - Markus Rudin
- 1 Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland.,2 Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland.,7 Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | - Jan Klohs
- 1 Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland.,2 Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| |
Collapse
|
14
|
Amyloid Precursor Protein Protects Neuronal Network Function after Hypoxia via Control of Voltage-Gated Calcium Channels. J Neurosci 2017; 36:8356-71. [PMID: 27511009 DOI: 10.1523/jneurosci.4130-15.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/19/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Acute cerebral ischemia and chronic neurovascular diseases share various common mechanisms with neurodegenerative diseases, such as disturbed cellular calcium and energy homeostasis and accumulation of toxic metabolites. A link between these conditions may be constituted by amyloid precursor protein (APP), which plays a pivotal role in the pathogenesis of Alzheimer's disease, but has also been associated with the response to acute hypoxia and regulation of calcium homeostasis. We therefore studied hypoxia-induced loss of function and recovery upon reoxygenation in hippocampal slices of mice lacking APP (APP(-/-)) or selectively expressing its soluble extracellular domain (APPsα-KI). Transient hypoxia disrupted electrical activity at the network and cellular level. In mice lacking APP, these impairments were significantly more severe, showing increased rise of intracellular calcium, faster loss of function, and higher incidence of spreading depression. Likewise, functional recovery upon reoxygenation was much slower and less complete than in controls. Most of these deficits were rescued by selective expression of the soluble extracellular fragment APPsα, or by pharmacological block of L-type calcium channels. We conclude that APP supports neuronal resistance toward acute hypoxia. This effect is mediated by the secreted APPsα-domain and involves L-type calcium channels. SIGNIFICANCE STATEMENT Amyloid precursor protein (APP) is involved in the pathophysiology of Alzheimer's disease, but its normal function in the brain remains elusive. Here, we describe a neuroprotective role of the protein in acute hypoxia. Functional recovery of mouse hippocampal networks after transient reduction of oxygen supply was strongly impaired in animals lacking APP. Most protective effects are mediated by the soluble extracellular fragment APPsα and involve L-type calcium channels. Thus, APP contributes to calcium homeostasis in situations of metabolic stress. This finding may shed light on the physiological function of APP and may be important for understanding mechanisms of neurodegenerative diseases.
Collapse
|
15
|
Hu GQ, Du X, Li YJ, Gao XQ, Chen BQ, Yu L. Inhibition of cerebral ischemia/reperfusion injury-induced apoptosis: nicotiflorin and JAK2/STAT3 pathway. Neural Regen Res 2017; 12:96-102. [PMID: 28250754 PMCID: PMC5319249 DOI: 10.4103/1673-5374.198992] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nicotiflorin is a flavonoid extracted from Carthamus tinctorius. Previous studies have shown its cerebral protective effect, but the mechanism is undefined. In this study, we aimed to determine whether nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis through the JAK2/STAT3 pathway. The cerebral ischemia/reperfusion injury model was established by middle cerebral artery occlusion/reperfusion. Nicotiflorin (10 mg/kg) was administered by tail vein injection. Cell apoptosis in the ischemic cerebral cortex was examined by hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Bcl-2 and Bax expression levels in ischemic cerebral cortex were examined by immunohistochemial staining. Additionally, p-JAK2, p-STAT3, Bcl-2, Bax, and caspase-3 levels in ischemic cerebral cortex were examined by western blot assay. Nicotiflorin altered the shape and structure of injured neurons, decreased the number of apoptotic cells, down-regulates expression of p-JAK2, p-STAT3, caspase-3, and Bax, decreased Bax immunoredactivity, and increased Bcl-2 protein expression and immunoreactivity. These results suggest that nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis via the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Guang-Qiang Hu
- Department of Anatomy, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xi Du
- Department of Chemistry, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yong-Jie Li
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xiao-Qing Gao
- Department of Anatomy and Neurobiology, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Bi-Qiong Chen
- Department of Chemistry, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Lu Yu
- Department of Chemistry, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
16
|
Adamczak J, Aswendt M, Kreutzer C, Rotheneichner P, Riou A, Selt M, Beyrau A, Uhlenküken U, Diedenhofen M, Nelles M, Aigner L, Couillard-Despres S, Hoehn M. Neurogenesis upregulation on the healthy hemisphere after stroke enhances compensation for age-dependent decrease of basal neurogenesis. Neurobiol Dis 2016; 99:47-57. [PMID: 28007584 DOI: 10.1016/j.nbd.2016.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/12/2016] [Accepted: 12/18/2016] [Indexed: 01/27/2023] Open
Abstract
Stroke is a leading cause of death and disability worldwide with no treatment for the chronic phase available. Interestingly, an endogenous repair program comprising inflammation and neurogenesis is known to modulate stroke outcome. Several studies have shown that neurogenesis decreases with age but the therapeutic importance of endogenous neurogenesis for recovery from cerebral diseases has been indicated as its ablation leads to stroke aggravation and worsened outcome. A detailed characterization of the neurogenic response after stroke related to ageing would help to develop novel and targeted therapies. In an innovative approach, we used the DCX-Luc mouse, a transgenic model expressing luciferase in doublecortin-positive neuroblasts, to monitor the neurogenic response following middle cerebral artery occlusion over three weeks in three age groups (2, 6, 12months) by optical imaging while the stroke lesion was monitored by quantitative MRI. The individual longitudinal and noninvasive time profiles provided exclusive insight into age-dependent decrease in basal neurogenesis and neurogenic upregulation in response to stroke which are not accessible by conventional BrdU-based measures of cell proliferation. For cortico-striatal strokes the maximal upregulation occurred at 4days post stroke followed by a continuous decrease to basal levels by three weeks post stroke. Older animals effectively compensated for reduced basal neurogenesis by an enhanced sensitivity to the cerebral lesion, resulting in upregulated neurogenesis levels approaching those measured in young mice. In middle aged and older mice, but not in the youngest ones, additional upregulation of neurogenesis was observed in the contralateral healthy hemisphere. This further substantiates the increased propensity of older brains to respond to lesion situation. Our results clearly support the therapeutic relevance of endogenous neurogenesis for stroke recovery and particularly in older brains.
Collapse
Affiliation(s)
- Joanna Adamczak
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, 50931 Cologne, Germany; Percuros B.V., Drienerlolaan 5-Zuidhorst, 7522 NB Enschede, The Netherlands
| | - Markus Aswendt
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, 50931 Cologne, Germany
| | - Christina Kreutzer
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Austria
| | - Peter Rotheneichner
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Austria
| | - Adrien Riou
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, 50931 Cologne, Germany
| | - Marion Selt
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, 50931 Cologne, Germany
| | - Andreas Beyrau
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, 50931 Cologne, Germany
| | - Ulla Uhlenküken
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, 50931 Cologne, Germany
| | - Michael Diedenhofen
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, 50931 Cologne, Germany
| | - Melanie Nelles
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, 50931 Cologne, Germany
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Austria
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Austria
| | - Mathias Hoehn
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Gleuelerstrasse 50, 50931 Cologne, Germany; Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Percuros B.V., Drienerlolaan 5-Zuidhorst, 7522 NB Enschede, The Netherlands.
| |
Collapse
|
17
|
Hamzei Taj S, Kho W, Riou A, Wiedermann D, Hoehn M. MiRNA-124 induces neuroprotection and functional improvement after focal cerebral ischemia. Biomaterials 2016; 91:151-165. [PMID: 27031810 DOI: 10.1016/j.biomaterials.2016.03.025] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/12/2016] [Accepted: 03/16/2016] [Indexed: 11/28/2022]
Abstract
microRNA-124 (miR-124), the most abundant miRNA of the CNS, was recently shown to modulate the polarization of activated microglia and infiltrating macrophages towards the anti-inflammatory M2 phenotype and protect neurons in various ways after brain disease. In ischemic stroke, microglia and macrophages of a detrimental and persistent pro-inflammatory M1 phenotype have been shown to aggravate the secondary injury. Thus, shifting the polarization of microglia/macrophages into the beneficial, anti-inflammatory M2-like phenotype is considered neuroprotective after stroke onset. Here, we have induced 30 min transient occlusion of the right middle cerebral artery (MCAO) in 34 male, C57BL/6 mice. Lesion development was monitored with T2-weighted MRI. Liposomated miR-124 was injected in 11 animals at 48 h and in 5 animals at 10 days after MCAO. Arg-1, a marker for M2 phenotype, was co-stained with Iba-1, NeuN or GFAP. The distribution of astrocytes, neurons and microglia/macrophages and their expression of Arg-1 were quantified. Early miR-124 injection resulted in a significantly increased neuronal survival and a significantly increased number of M2-like polarized microglia/macrophages. Moreover, the lesion core, delineated by reactive astrocytes, was significantly reduced over time upon early miR-124 injection. These neuroprotective and anti-inflammatory effects of the early miR-124 treatment were pronounced during the first week with Arg-1. Number of Arg-1+ microglia/macrophages correlated with neuronal protection and with functional improvement during the first week. Thus, our present results demonstrate that miR-124 may serve as a novel therapeutic strategy for neuroprotection and functional recovery upon stroke onset.
Collapse
Affiliation(s)
- Somayyeh Hamzei Taj
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Widuri Kho
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Adrien Riou
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany; Percuros B.V., Enschede, The Netherlands
| | - Dirk Wiedermann
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Mathias Hoehn
- In-vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany; Dept. of Radiology, Leiden University Medical Center, Leiden, The Netherlands; Percuros B.V., Enschede, The Netherlands.
| |
Collapse
|
18
|
Zuo XL, Deng HL, Wu P, Xu E. Do different reperfusion methods affect the outcomes of stroke induced by MCAO in adult rats? Int J Neurosci 2015; 126:850-5. [PMID: 26268737 DOI: 10.3109/00207454.2015.1074903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There are two patterns of ischemia/reperfusion (I/R) models used in rat middle cerebral artery occlusion (MCAO) I/R models, which differ in the use of unilateral or bilateral carotid artery reperfusion. The primary difference between the two patterns of I/R models is the complexity of the surgery procedure. However, researchers in this field have no idea whether there are any differences in outcomes of these two methods. In this study, we investigated the effects of the two methods on neurological deficits, infarct volume, blood-brain barrier (BBB) integrity and brain derived neurotrophic factor (BDNF) expression. Through evaluating the current way of bilateral common carotid artery reperfusion, we tried to find whether it could be replaced by an easier way. We found that there were no statistical significant differences between the different methods in infarct volume, neurological deficits, BBB integrity, and the level of BDNF (P > 0.05). These data demonstrated that different methods did not affect the neurological deficits, infarct volume, BBB integrity, and the BDNF protein level, which provides reference when we use an experimental stroke. These results suggest that the two methods have similar capability for inducing cerebral I/R injury and can be interchanged.
Collapse
Affiliation(s)
- Xia-Lin Zuo
- a 1 Institute of Neurosciences and the Second Affiliated Hospital , Guangzhou Medical University , Guangzhou , P.R. China
| | - Hou-Liang Deng
- b 2 Center for Drug Research and Development, zhujiang Hospital , Southern Medical University , Guangzhou , P.R. China
| | - Ping Wu
- b 2 Center for Drug Research and Development, zhujiang Hospital , Southern Medical University , Guangzhou , P.R. China
| | - En Xu
- a 1 Institute of Neurosciences and the Second Affiliated Hospital , Guangzhou Medical University , Guangzhou , P.R. China
| |
Collapse
|
19
|
Riew TR, Kim HL, Shin YJ, Park JH, Pak HJ, Lee MY. Ultrastructural investigation of microcalcification and the role of oxygen-glucose deprivation in cultured rat hippocampal slices. Brain Res 2015; 1622:430-42. [PMID: 26188662 DOI: 10.1016/j.brainres.2015.06.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 01/09/2023]
Abstract
Intracellular calcium accumulation is associated with cell death in several neuropathological disorders including brain ischemia, but the exact mechanisms of calcification need to be clarified. We used organotypic hippocampal slice culture - cultures subjected to oxygen-glucose deprivation (OGD) mimicking the in vivo situation to investigate the events underlying ectopic calcification. Alizarin red staining indicating calcium deposition was observed in the cornu ammonis (CA)1 and dentate gyrus regions in control hippocampal slices despite no specific labeling for cell death markers. Electron microscopy using the osmium/potassium dichromate method revealed scattered degenerated cells throughout the normally appearing CA1 region. They contained electron-dense precipitates within mitochondria, and electron probe microanalysis confirmed that they were calcifying mitochondria. Selective calcium deposition was noted within, but not beyond, mitochondria in these mineralized cells. They showed ultrastructural features of non-necrotic, non-apoptotic cell death and retained their compact ultrastructure, even after the majority of mitochondria were calcified. Unexpectedly, no intracellular calcification was noted in necrotic CA1 pyramidal cells after OGD, and there was no progression of calcification in OGD-lesioned slices. In addition, mineralized cells in both control and OGD-lesioned slices were closely associated with or completely engulfed by astrocytes but not microglia. These astrocytes were laden with heterogeneous cytoplasmic inclusions that appeared to be related with their phagocytic activity. These data demonstrate that microcalcification specifically associated with mitochondria might lead to a novel type of cell death and suggest that astrocytes may be involved in the phagocytosis of these mineralized cells and possibly in the regulation of ectopic calcification.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 137-701 Seoul, Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoo-Jin Shin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 137-701 Seoul, Korea
| | - Joo-Hee Park
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 137-701 Seoul, Korea
| | - Ha-Jin Pak
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 137-701 Seoul, Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 137-701 Seoul, Korea.
| |
Collapse
|
20
|
Chen Y, Zhang W, Huang Y, Gao F, Sha X, Lou K, Fang X. The therapeutic effect of methotrexate-conjugated Pluronic-based polymeric micelles on the folate receptor-rich tumors treatment. Int J Nanomedicine 2015; 10:4043-57. [PMID: 26150715 PMCID: PMC4480589 DOI: 10.2147/ijn.s79045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The therapeutic effect of methotrexate (MTX)-conjugated Pluronic-based polymeric mixed micelles (F127/P105-MTX) on the folate receptor-overexpressing tumors treatment was investigated in this study. Due to its high structural similarity to folic acid and the high expression of folate receptor in most solid tumors, MTX serves as not only a cytotoxic agent but also a homing ligand. Cellular uptake and the endocytic mechanism studies of MTX-conjugated mixed micelles were performed in folate receptor-rich KBv and folate receptor-deficient A-549 cancer cells. Additionally, the efficacy and safety studies of F127/P105-MTX in KBv tumor-bearing mice were evaluated. Results indicate that F127/P105-MTX significantly enhanced the cellular uptake in KBv cells as compared to that of conventional non-MTX-conjugated mixed micelles. Moreover, the results showed that F127/P105-MTX can be internalized by both caveolae- and clathrin-mediated endocytosis in energy-dependent and folate receptor-dependent manners. The in vitro and in vivo antitumor efficacies of F127/P105-MTX were significantly enhanced in comparison with MTX-entrapped mixed micelles. Furthermore, no acute toxicities to hematological system and major organs have been observed after intravenous administration during the regimen. Therefore, our results suggest that F127/P105-MTX could be an effective and safe nano-drug delivery system for cancer therapy, especially for the folate receptor-rich cancer treatment.
Collapse
Affiliation(s)
- Yanzuo Chen
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China ; Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China ; State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China ; CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Arlington, VA, USA
| | - YuKun Huang
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Feng Gao
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Kaiyan Lou
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xiaoling Fang
- Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Schoknecht K, Prager O, Vazana U, Kamintsky L, Harhausen D, Zille M, Figge L, Chassidim Y, Schellenberger E, Kovács R, Heinemann U, Friedman A. Monitoring stroke progression: in vivo imaging of cortical perfusion, blood-brain barrier permeability and cellular damage in the rat photothrombosis model. J Cereb Blood Flow Metab 2014; 34:1791-801. [PMID: 25160672 PMCID: PMC4269756 DOI: 10.1038/jcbfm.2014.147] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/15/2014] [Accepted: 07/21/2014] [Indexed: 11/09/2022]
Abstract
Focal cerebral ischemia is among the main causes of death and disability worldwide. The ischemic core often progresses, invading the peri-ischemic brain; however, assessing the propensity of the peri-ischemic brain to undergo secondary damage, understanding the underlying mechanisms, and adjusting treatment accordingly remain clinically unmet challenges. A significant hallmark of the peri-ischemic brain is dysfunction of the blood-brain barrier (BBB), yet the role of disturbed vascular permeability in stroke progression is unclear. Here we describe a longitudinal in vivo fluorescence imaging approach for the evaluation of cortical perfusion, BBB dysfunction, free radical formation and cellular injury using the photothrombosis vascular occlusion model in male Sprague Dawley rats. Blood-brain barrier dysfunction propagated within the peri-ischemic brain in the first hours after photothrombosis and was associated with free radical formation and cellular injury. Inhibiting free radical signaling significantly reduced progressive cellular damage after photothrombosis, with no significant effect on blood flow and BBB permeability. Our approach allows a dynamic follow-up of cellular events and their response to therapeutics in the acutely injured cerebral cortex.
Collapse
Affiliation(s)
- Karl Schoknecht
- Institute for Neurophysiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Udi Vazana
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lyn Kamintsky
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Denise Harhausen
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-University Medicine Berlin, Berlin, Germany
| | - Marietta Zille
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-University Medicine Berlin, Berlin, Germany
| | - Lena Figge
- Department of Radiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Yoash Chassidim
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eyk Schellenberger
- Department of Radiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Richard Kovács
- Institute for Neurophysiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Uwe Heinemann
- Institute for Neurophysiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Alon Friedman
- 1] Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel [2] Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Canada
| |
Collapse
|
22
|
Adamczak JM, Schneider G, Nelles M, Que I, Suidgeest E, van der Weerd L, Löwik C, Hoehn M. In vivo bioluminescence imaging of vascular remodeling after stroke. Front Cell Neurosci 2014; 8:274. [PMID: 25249937 PMCID: PMC4155794 DOI: 10.3389/fncel.2014.00274] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/21/2014] [Indexed: 12/14/2022] Open
Abstract
Thrombolysis remains the only beneficial therapy for ischemic stroke, but is restricted to a short therapeutic window following the infarct. Currently research is focusing on spontaneous regenerative processes during the sub-acute and chronic phase. Angiogenesis, the formation of new blood vessels from pre-existing ones, was observed in stroke patients, correlates with longer survival and positively affects the formation of new neurons. Angiogenesis takes place in the border zones of the infarct, but further insight into the temporal profile is needed to fully apprehend its therapeutic potential and its relevance for neurogenesis and functional recovery. Angiogenesis is a multistep process, involving extracellular matrix degradation, endothelial cell proliferation, and, finally, new vessel formation. Interaction between vascular endothelial growth factor and its receptor 2 (VEGFR2) plays a central role in these angiogenic signaling cascades. In the present study we investigated non-invasively the dynamics of VEGFR2 expression following cerebral ischemia in a mouse model of middle cerebral artery occlusion (MCAO). We used a transgenic mouse expressing firefly luciferase under the control of the VEGFR2 promotor to non-invasively elucidate the temporal profile of VEGFR2 expression after stroke as a biomarker for VEGF/VEGFR2 signaling. We measured each animal repetitively up to 2 weeks after stroke and found increased VEGFR2 expression starting 3 days after the insult with peak values at 7 days. These were paralleled by increased VEGFR2 protein levels and increased vascular volume in peri-infarct areas at 14 days after the infarct, indicating that signaling via VEGFR2 leads to successful vascular remodeling. This study describes VEGFR2-related signaling is active at least up to 2 weeks after the infarct and results in increased vascular volume. Further, this study presents a novel strategy for the non-invasive evaluation of angiogenesis-based therapies.
Collapse
Affiliation(s)
- Joanna M Adamczak
- In-vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research Cologne, Germany
| | - Gabriele Schneider
- In-vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research Cologne, Germany
| | - Melanie Nelles
- In-vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research Cologne, Germany
| | - Ivo Que
- Department of Endocrinology, Leiden University Medical Center Leiden, Netherlands
| | - Ernst Suidgeest
- Department of Radiology, Leiden University Medical Center Leiden, Netherlands
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center Leiden, Netherlands ; Department of Human Genetics, Leiden University Medical Center Leiden, Netherlands
| | - Clemens Löwik
- Department of Endocrinology, Leiden University Medical Center Leiden, Netherlands ; Department of Radiology, Leiden University Medical Center Leiden, Netherlands
| | - Mathias Hoehn
- In-vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research Cologne, Germany ; Department of Radiology, Leiden University Medical Center Leiden, Netherlands
| |
Collapse
|
23
|
A dual-labeled Annexin A5 is not suited for SPECT imaging of brain cell death in experimental murine stroke. J Cereb Blood Flow Metab 2014; 34:jcbfm2014115. [PMID: 24984896 PMCID: PMC4158671 DOI: 10.1038/jcbfm.2014.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/09/2014] [Accepted: 06/05/2014] [Indexed: 12/12/2022]
Abstract
Cell death is one of the pathophysiological hallmarks after stroke. Markers to image cell death pathways in vivo are highly desirable. We previously showed that fluorescently labeled Annexin A5 (AnxA5), which binds specifically to phosphatidylserine (PS) on dead/dying cells, can be used in experimental stroke for monitoring cell death with optical imaging. Here we investigated whether dual-labeled AnxA5 (technetium and fluorescence label) can be used for single-photon emission computed tomography (SPECT) of cell death in the same model. C57Bl6/N mice were subjected to 60-minute middle cerebral artery occlusion (MCAO) and underwent SPECT imaging at 24, 48, and 72 hours afterwards. They were injected intravenously with either PS-binding AnxA5 or the nonfunctional AnxA5 (negative control), labeled with 99mTc and Alexa Fluor 568, respectively. After SPECT imaging, brain sections were cut for autoradiography and fluorescence microscopy. Ethanol-induced cell death in the femur muscle was used as positive control. We detected dual-labeled AnxA5 in the model of ethanol-induced cell death in the femur muscle, but not after MCAO at any time point, either with SPECT or with ex vivo autoradiography or fluorescence microscopy. Dual-labeled AnxA5 appears to be unsuited for visualizing death of brain cells in this MCAO model.
Collapse
|
24
|
Aswendt M, Adamczak J, Tennstaedt A. A review of novel optical imaging strategies of the stroke pathology and stem cell therapy in stroke. Front Cell Neurosci 2014; 8:226. [PMID: 25177269 PMCID: PMC4132298 DOI: 10.3389/fncel.2014.00226] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/22/2014] [Indexed: 12/17/2022] Open
Abstract
Transplanted stem cells can induce and enhance functional recovery in experimental stroke. Invasive analysis has been extensively used to provide detailed cellular and molecular characterization of the stroke pathology and engrafted stem cells. But post mortem analysis is not appropriate to reveal the time scale of the dynamic interplay between the cell graft, the ischemic lesion and the endogenous repair mechanisms. This review describes non-invasive imaging techniques which have been developed to provide complementary in vivo information. Recent advances were made in analyzing simultaneously different aspects of the cell graft (e.g., number of cells, viability state, and cell fate), the ischemic lesion (e.g., blood-brain-barrier consistency, hypoxic, and necrotic areas) and the neuronal and vascular network. We focus on optical methods, which permit simple animal preparation, repetitive experimental conditions, relatively medium-cost instrumentation and are performed under mild anesthesia, thus nearly under physiological conditions. A selection of recent examples of optical intrinsic imaging, fluorescence imaging and bioluminescence imaging to characterize the stroke pathology and engrafted stem cells are discussed. Special attention is paid to novel optimal reporter genes/probes for genetic labeling and tracking of stem cells and appropriate transgenic animal models. Requirements, advantages and limitations of these imaging platforms are critically discussed and placed into the context of other non-invasive techniques, e.g., magnetic resonance imaging and positron emission tomography, which can be joined with optical imaging in multimodal approaches.
Collapse
Affiliation(s)
| | | | - Annette Tennstaedt
- In-vivo-NMR Laboratory, Max Planck Institute for Neurological Research, KölnGermany
| |
Collapse
|
25
|
Ramadhin C, Pillay B, Olaniran AO. Cell-based assays for IGF-I bioactivity measurement: overview, limitations and current trends. Growth Factors 2014; 32:130-8. [PMID: 25060037 DOI: 10.3109/08977194.2014.939806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Insulin-like growth factor-I (IGF-I) is an important growth promoting protein that is involved in numerous cellular responses and multiple biological systems. Although the molecular structure, function and recombinant production of IGF-I in various hosts have been the subject of much researches over the recent past, methods to determine the bioactivity of this protein have not been fully explored. Several assays have traditionally been used to measure IGF-I bioactivity, but have not become a routine laboratory practice due to the high cost involved and technical problems. Thus, there is still a need for a rapid, technically simple and accurate assay to determine IGF-I bioactivity. This review highlights the various cell-based assays currently commercially available for measuring the bioactivity of IGF-I along with their limitations. This is aimed at presenting the modern-day IGF researcher with a holistic overview of the current trends and future prospects regarding IGF-I bioactivity determinations.
Collapse
Affiliation(s)
- Charlotte Ramadhin
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal , Durban , Republic of South Africa
| | | | | |
Collapse
|
26
|
Haeckel A, Appler F, Figge L, Kratz H, Lukas M, Michel R, Schnorr J, Zille M, Hamm B, Schellenberger E. XTEN-Annexin A5: XTEN Allows Complete Expression of Long-Circulating Protein-Based Imaging Probes as Recombinant Alternative to PEGylation. J Nucl Med 2014; 55:508-14. [DOI: 10.2967/jnumed.113.128108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
27
|
Stöber F, Baldauf K, Ziabreva I, Harhausen D, Zille M, Neubert J, Reymann KG, Scheich H, Dirnagl U, Schröder UH, Wunder A, Goldschmidt J. Single-cell resolution mapping of neuronal damage in acute focal cerebral ischemia using thallium autometallography. J Cereb Blood Flow Metab 2014; 34:144-52. [PMID: 24129748 PMCID: PMC3887354 DOI: 10.1038/jcbfm.2013.177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/16/2013] [Accepted: 09/06/2013] [Indexed: 11/26/2022]
Abstract
Neuronal damage shortly after onset or after brief episodes of cerebral ischemia has remained difficult to assess with clinical and preclinical imaging techniques as well as with microscopical methods. We here show, in rodent models of middle cerebral artery occlusion (MCAO), that neuronal damage in acute focal cerebral ischemia can be mapped with single-cell resolution using thallium autometallography (TlAMG), a histochemical technique for the detection of the K(+)-probe thallium (Tl(+)) in the brain. We intravenously injected rats and mice with thallium diethyldithiocarbamate (TlDDC), a lipophilic chelate complex that releases Tl(+) after crossing the blood-brain barrier. We found, within the territories of the affected arteries, areas of markedly reduced neuronal Tl(+) uptake in all animals at all time points studied ranging from 15 minutes to 24 hours after MCAO. In large lesions at early time points, areas with neuronal and astrocytic Tl(+) uptake below thresholds of detection were surrounded by putative penumbral zones with preserved but diminished Tl(+) uptake. At 24 hours, the areas of reduced Tl(+)uptake matched with areas delineated by established markers of neuronal damage. The results suggest the use of (201)TlDDC for preclinical and clinical single-photon emission computed tomography (SPECT) imaging of hyperacute alterations in brain K(+) metabolism and prediction of tissue viability in cerebral ischemia.
Collapse
Affiliation(s)
- Franziska Stöber
- 1] Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-University Medicine Berlin, Berlin, Germany [2] Department of Auditory Learning and Speech, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Kathrin Baldauf
- 1] Project Group Neuropharmacology, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] German Center for Neurodegenerative Diseases (DZNE), Partner site Magdeburg, Magdeburg, Germany
| | - Iryna Ziabreva
- 1] Project Group Neuropharmacology, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] Research Institute for Applied Neurosciences (FAN) GmbH, Magdeburg, Germany [3] Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Denise Harhausen
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-University Medicine Berlin, Berlin, Germany
| | - Marietta Zille
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-University Medicine Berlin, Berlin, Germany
| | - Jenni Neubert
- 1] Department of Auditory Learning and Speech, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] Institute of Cell Biology and Neurobiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Klaus G Reymann
- 1] Project Group Neuropharmacology, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] German Center for Neurodegenerative Diseases (DZNE), Partner site Magdeburg, Magdeburg, Germany
| | - Henning Scheich
- 1] Department of Auditory Learning and Speech, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] German Center for Neurodegenerative Diseases (DZNE), Partner site Magdeburg, Magdeburg, Germany [3] Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Ulrich Dirnagl
- 1] Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-University Medicine Berlin, Berlin, Germany [2] German Centre for Neurodegenerative Diseases (DZNE), Partner site Berlin, Berlin, Germany
| | - Ulrich H Schröder
- 1] Project Group Neuropharmacology, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] Research Institute for Applied Neurosciences (FAN) GmbH, Magdeburg, Germany
| | - Andreas Wunder
- Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-University Medicine Berlin, Berlin, Germany
| | - Jürgen Goldschmidt
- 1] Department of Auditory Learning and Speech, Leibniz Institute for Neurobiology, Magdeburg, Germany [2] Clinic for Neurology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
28
|
Abstract
Neuroinflammation plays a central role in a variety of neurological diseases, including stroke, multiple sclerosis, Alzheimer’s disease, and malignant CNS neoplasms, among many other. Different cell types and molecular mediators participate in a cascade of events in the brain that is ultimately aimed at control, regeneration and repair, but leads to damage of brain tissue under pathological conditions. Non-invasive molecular imaging of key players in the inflammation cascade holds promise for identification and quantification of the disease process before it is too late for effective therapeutic intervention. In this review, we focus on molecular imaging techniques that target inflammatory cells and molecules that are of interest in neuroinflammation, especially those with high translational potential. Over the past decade, a plethora of molecular imaging agents have been developed and tested in animal models of (neuro)inflammation, and a few have been translated from bench to bedside. The most promising imaging techniques to visualize neuroinflammation include MRI, positron emission tomography (PET), single photon emission computed tomography (SPECT), and optical imaging methods. These techniques enable us to image adhesion molecules to visualize endothelial cell activation, assess leukocyte functions such as oxidative stress, granule release, and phagocytosis, and label a variety of inflammatory cells for cell tracking experiments. In addition, several cell types and their activation can be specifically targeted in vivo, and consequences of neuroinflammation such as neuronal death and demyelination can be quantified. As we continue to make progress in utilizing molecular imaging technology to study and understand neuroinflammation, increasing efforts and investment should be made to bring more of these novel imaging agents from the “bench to bedside.”
Collapse
Affiliation(s)
- Benjamin Pulli
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - John W Chen
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| |
Collapse
|
29
|
Boehm-Sturm P, Aswendt M, Minassian A, Michalk S, Mengler L, Adamczak J, Mezzanotte L, Löwik C, Hoehn M. A multi-modality platform to image stem cell graft survival in the naïve and stroke-damaged mouse brain. Biomaterials 2013; 35:2218-26. [PMID: 24355489 DOI: 10.1016/j.biomaterials.2013.11.085] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/27/2013] [Indexed: 02/08/2023]
Abstract
Neural stem cell implantations have been extensively investigated for treatment of brain diseases such as stroke. In order to follow the localization and functional status of cells after implantation noninvasive imaging is essential. Therefore, we developed a comprehensive multi-modality platform for in vivo imaging of graft localization, density, and survival using 19F magnetic resonance imaging in combination with bioluminescence imaging. We quantitatively analyzed cell graft survival over the first 4 weeks after transplantation in both healthy and stroke-damaged mouse brain and correlated our findings of graft vitality with the host innate immune response. The multi-modality imaging platform will help to improve cell therapy also in context other than stroke and to gain indispensable information for clinical translation.
Collapse
Affiliation(s)
- Philipp Boehm-Sturm
- In-Vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research in Cologne, Cologne, Germany
| | - Markus Aswendt
- In-Vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research in Cologne, Cologne, Germany
| | - Anuka Minassian
- In-Vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research in Cologne, Cologne, Germany
| | - Stefanie Michalk
- In-Vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research in Cologne, Cologne, Germany
| | - Luam Mengler
- In-Vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research in Cologne, Cologne, Germany
| | - Joanna Adamczak
- In-Vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research in Cologne, Cologne, Germany
| | - Laura Mezzanotte
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clemens Löwik
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mathias Hoehn
- In-Vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research in Cologne, Cologne, Germany; Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
30
|
Wang Z, Wei X, Liu K, Zhang X, Yang F, Zhang H, He Y, Zhu T, Li F, Shi W, Zhang Y, Xu H, Liu J, Yi F. NOX2 deficiency ameliorates cerebral injury through reduction of complexin II-mediated glutamate excitotoxicity in experimental stroke. Free Radic Biol Med 2013; 65:942-951. [PMID: 23982049 DOI: 10.1016/j.freeradbiomed.2013.08.166] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/12/2013] [Accepted: 08/15/2013] [Indexed: 10/26/2022]
Abstract
Although NADPH oxidase (NOX)-mediated oxidative stress is considered one of the major mechanisms triggering the pathogenic actions of ischemic stroke and very recent studies have indicated that NADPH oxidase is a major source of reactive oxygen species (ROS) production controlling glutamate release, how neuronal NADPH oxidase activation is coupled to glutamate release is not well understood. Therefore, in this study, we used an in vivo transient middle cerebral artery occlusion model and in vitro primary cell cultures to test whether complexins, the regulators of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes necessary for vesicle fusion, are associated with NOX2-derived ROS and contribute to glutamate-mediated excitotoxicity in ischemic stroke. In this study, we first identified the upregulation of complexin II in the ischemic brain and evaluated its potential role in ischemic stroke showing that gene silencing of complexin II ameliorated cerebral injury as evidenced by reduced infarction volume, neurological deficit, and neuron necrosis accompanied by decreased glutamate levels, consistent with the results from NOX2(-/-) mice with ischemic stroke. We further demonstrated that complexin II expression was mediated by NOX2 in primary cultured neurons subjected to oxygen-glucose deprivation (OGD) and contributed to OGD-induced glutamate release and neuron necrosis via SNARE signaling. Taken together, these findings for the first time provide evidence that complexin II is a central target molecule that links NADPH oxidase-derived ROS to glutamate-mediated neuronal excitotoxicity in ischemic stroke.
Collapse
Affiliation(s)
- Ziying Wang
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xinbing Wei
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Kang Liu
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiumei Zhang
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fan Yang
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hongyu Zhang
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Yeteng He
- Department of Orthopedics, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Tianfeng Zhu
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fengli Li
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Weichen Shi
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yan Zhang
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Huiyan Xu
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiang Liu
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fan Yi
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
31
|
Jaffer H, Adjei IM, Labhasetwar V. Optical imaging to map blood-brain barrier leakage. Sci Rep 2013; 3:3117. [PMID: 24178124 PMCID: PMC3814906 DOI: 10.1038/srep03117] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 10/17/2013] [Indexed: 11/22/2022] Open
Abstract
Vascular leakage in the brain is a major complication associated with brain injuries and certain pathological conditions due to disruption of the blood-brain barrier (BBB). We have developed an optical imaging method, based on excitation and emission spectra of Evans Blue dye, that is >1000-fold more sensitive than conventional ultraviolet spectrophotometry. We used a rat thromboembolic stroke model to validate the usefulness of our method for vascular leakage. Optical imaging data show that vascular leakage varies in different areas of the post-stroke brain and that administering tissue plasminogen activator causes further leakage. The new method is quantitative, simple to use, requires no tissue processing, and can map the degree of vascular leakage in different brain locations. The high sensitivity of our method could potentially provide new opportunities to study BBB leakage in different pathological conditions and to test the efficacy of various therapeutic strategies to protect the BBB.
Collapse
Affiliation(s)
- Hayder Jaffer
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | | | | |
Collapse
|
32
|
Morrison HW, Filosa JA. A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J Neuroinflammation 2013; 10:4. [PMID: 23311642 PMCID: PMC3570327 DOI: 10.1186/1742-2094-10-4] [Citation(s) in RCA: 378] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microglia cells continuously survey the healthy brain in a ramified morphology and, in response to injury, undergo progressive morphological and functional changes that encompass microglia activation. Although ideally positioned for immediate response to ischemic stroke (IS) and reperfusion, their progressive morphological transformation into activated cells has not been quantified. In addition, it is not well understood if diverse microglia morphologies correlate to diverse microglia functions. As such, the dichotomous nature of these cells continues to confound our understanding of microglia-mediated injury after IS and reperfusion. The purpose of this study was to quantitatively characterize the spatiotemporal pattern of microglia morphology during the evolution of cerebral injury after IS and reperfusion. METHODS Male C57Bl/6 mice were subjected to focal cerebral ischemia and periods of reperfusion (0, 8 and 24 h). The microglia process length/cell and number of endpoints/cell was quantified from immunofluorescent confocal images of brain regions using a skeleton analysis method developed for this study. Live cell morphology and process activity were measured from movies acquired in acute brain slices from GFP-CX3CR1 transgenic mice after IS and 24-h reperfusion. Regional CD11b and iNOS expressions were measured from confocal images and Western blot, respectively, to assess microglia proinflammatory function. RESULTS Quantitative analysis reveals a significant spatiotemporal relationship between microglia morphology and evolving cerebral injury in the ipsilateral hemisphere after IS and reperfusion. Microglia were both hyper- and de-ramified in striatal and cortical brain regions (respectively) after 60 min of focal cerebral ischemia. However, a de-ramified morphology was prominent when ischemia was coupled to reperfusion. Live microglia were de-ramified, and, in addition, process activity was severely blunted proximal to the necrotic core after IS and 24 h of reperfusion. CD11b expression, but not iNOS expression, was increased in regions of hyper- and de-ramified microglia during the course of ischemic stroke and 24 h of reperfusion. CONCLUSIONS Our findings illustrate that microglia activation after stroke includes both increased and decreased cell ramification. Importantly, quantitative analyses of microglial morphology and activity are feasible and, in future studies, would assist in the comprehensive identification and stratification of their dichotomous contribution toward cerebral injury and recovery during IS and reperfusion.
Collapse
|
33
|
Zhang Y, Stevenson GD, Barber C, Furenlid LR, Barrett HH, Woolfenden JM, Zhao M, Liu Z. Imaging of rat cerebral ischemia-reperfusion injury using(99m)Tc-labeled duramycin. Nucl Med Biol 2013; 40:80-8. [PMID: 23123139 PMCID: PMC3632380 DOI: 10.1016/j.nucmedbio.2012.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 07/31/2012] [Accepted: 09/13/2012] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Prompt identification of necrosis and apoptosis in the infarct core and penumbra region is critical in acute stroke for delineating the underlying ischemic/reperfusion molecular pathologic events and defining therapeutic alternatives. The objective of this study was to investigate the capability of (99m)Tc-labeled duramycin in detecting ischemia-reperfusion injury in rat brain after middle cerebral artery (MCA) occlusion. METHODS Ischemic cerebral injury was induced in ten rats by vascular insertion of a nylon suture in the left MCA for 3 hr followed by 21-24hr reperfusion. After i.v. injection of (99m)Tc-duramycin (1.0-3.5 mCi), dynamic cerebral images were acquired for 1 hr in six rats using a small-animal SPECT imager. Four other rats were imaged at 2 hr post-injection. Ex vivo images were obtained by autoradiography after sacrifice. Histologic analyses were performed to assess cerebral infarction and apoptosis. RESULTS SPECT images showed that (99m)Tc-duramycin uptake in the left cerebral hemisphere was significantly higher than that in the right at 1 and 2 hr post-injection. The level of radioactive uptake in the ischemic brain varied based on ischemic severity. The average ratio of left cerebral hot-spot uptake to right hemisphere radioactivity, as determined by computerized ROI analysis, was 4.92±0.79. Fractional washout at 1 hr was 38.2±4.5% of peak activity for left cerebral hot-spot areas and 80.9±2.0% for remote control areas (P<0.001). Based on triphenyltetrazolium chloride staining and autoradiograph image data, the hotspot uptake may be associated primarily with the ischemic penumbra, in which high apoptotic activity was observed by cleaved caspase-3 immunocytochemical staining. CONCLUSIONS (99m)Tc-duramycin SPECT imaging may be useful for detecting and quantifying ongoing apoptotic neuronal cell loss induced by ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yuqing Zhang
- Department of Medical Imaging, The University of Arizona, Tucson, AZ 85724–5067, USA
| | - Gail D. Stevenson
- Department of Medical Imaging, The University of Arizona, Tucson, AZ 85724–5067, USA
| | - Christy Barber
- Department of Medical Imaging, The University of Arizona, Tucson, AZ 85724–5067, USA
| | - Lars R. Furenlid
- Department of Medical Imaging, The University of Arizona, Tucson, AZ 85724–5067, USA
| | - Harrison H. Barrett
- Department of Medical Imaging, The University of Arizona, Tucson, AZ 85724–5067, USA
| | - James M. Woolfenden
- Department of Medical Imaging, The University of Arizona, Tucson, AZ 85724–5067, USA
| | - Ming Zhao
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zhonglin Liu
- Department of Medical Imaging, The University of Arizona, Tucson, AZ 85724–5067, USA
| |
Collapse
|
34
|
Xin H, Sha X, Jiang X, Zhang W, Chen L, Fang X. Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials 2012; 33:8167-76. [DOI: 10.1016/j.biomaterials.2012.07.046] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/23/2012] [Indexed: 02/02/2023]
|
35
|
Smith BA, Xie BW, van Beek ER, Que I, Blankevoort V, Xiao S, Cole EL, Hoehn M, Kaijzel EL, Löwik CWGM, Smith BD. Multicolor fluorescence imaging of traumatic brain injury in a cryolesion mouse model. ACS Chem Neurosci 2012; 3:530-7. [PMID: 22860222 DOI: 10.1021/cn3000197] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/07/2012] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury is characterized by initial tissue damage, which then can lead to secondary processes such as cell death and blood-brain-barrier disruption. Clinical and preclinical studies of traumatic brain injury typically employ anatomical imaging techniques and there is a need for new molecular imaging methods that provide complementary biochemical information. Here, we assess the ability of a targeted, near-infrared fluorescent probe, named PSS-794, to detect cell death in a brain cryolesion mouse model that replicates certain features of traumatic brain injury. In short, the model involves brief contact of a cold rod to the head of a living, anesthetized mouse. Using noninvasive whole-body fluorescence imaging, PSS-794 permitted visualization of the cryolesion in the living animal. Ex vivo imaging and histological analysis confirmed PSS-794 localization to site of brain cell death. The nontargeted, deep-red Tracer-653 was validated as a tracer dye for monitoring blood-brain-barrier disruption, and a binary mixture of PSS-794 and Tracer-653 was employed for multicolor imaging of cell death and blood-brain-barrier permeability in a single animal. The imaging data indicates that at 3 days after brain cryoinjury the amount of cell death had decreased significantly, but the integrity of the blood-brain-barrier was still impaired; at 7 days, the blood-brain-barrier was still three times more permeable than before cryoinjury.
Collapse
Affiliation(s)
- Bryan A. Smith
- Department of Chemistry and
Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bang-Wen Xie
- Molecular Endocrinology and
Molecular Imaging, Department of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden,
The Netherlands
| | - Ermond R. van Beek
- Molecular Endocrinology and
Molecular Imaging, Department of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden,
The Netherlands
| | - Ivo Que
- Molecular Endocrinology and
Molecular Imaging, Department of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden,
The Netherlands
| | - Vicky Blankevoort
- Molecular Endocrinology and
Molecular Imaging, Department of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden,
The Netherlands
| | - Shuzhang Xiao
- Department of Chemistry and
Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Erin L. Cole
- Department of Chemistry and
Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mathias Hoehn
- Max Planck Institute for Neurological Research, Gleuelerstrasse 50, D-50931,
Cologne, Germany
| | - Eric L. Kaijzel
- Molecular Endocrinology and
Molecular Imaging, Department of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden,
The Netherlands
| | - Clemens W. G. M. Löwik
- Molecular Endocrinology and
Molecular Imaging, Department of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden,
The Netherlands
| | - Bradley D. Smith
- Department of Chemistry and
Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
36
|
Zille M, Farr TD, Przesdzing I, Müller J, Sommer C, Dirnagl U, Wunder A. Visualizing cell death in experimental focal cerebral ischemia: promises, problems, and perspectives. J Cereb Blood Flow Metab 2012; 32:213-31. [PMID: 22086195 PMCID: PMC3272608 DOI: 10.1038/jcbfm.2011.150] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
One of the hallmarks of stroke pathophysiology is the widespread death of many different types of brain cells. As our understanding of the complex disease that is stroke has grown, it is now generally accepted that various different mechanisms can result in cell damage and eventual death. A plethora of techniques is available to identify various pathological features of cell death in stroke; each has its own drawbacks and pitfalls, and most are unable to distinguish between different types of cell death, which partially explains the widespread misuse of many terms. The purpose of this review is to summarize the standard histopathological and immunohistochemical techniques used to identify various pathological features of stroke. We then discuss how these methods should be properly interpreted on the basis of what they are showing, as well as advantages and disadvantages that require consideration. As there is much interest in the visualization of stroke using noninvasive imaging strategies, we also specifically discuss how these techniques can be interpreted within the context of cell death.
Collapse
Affiliation(s)
- Marietta Zille
- Department of Experimental Neurology, Center for Stroke Research Berlin, Charité-University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|