1
|
Hervella P, Sampedro-Viana A, Fernández-Rodicio S, Rodríguez-Yáñez M, López-Dequidt I, Pumar JM, Mosqueira AJ, Bazarra-Barreiros M, Abengoza-Bello MT, Ortega-Espina S, Ouro A, Pérez-Mato M, Campos F, Sobrino T, Castillo J, Alonso-Alonso ML, Iglesias-Rey R. Precision Medicine for Blood Glutamate Grabbing in Ischemic Stroke. Int J Mol Sci 2024; 25:6554. [PMID: 38928260 PMCID: PMC11204254 DOI: 10.3390/ijms25126554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Glutamate grabbers, such as glutamate oxaloacetate transaminase (GOT), have been proposed to prevent excitotoxicity secondary to high glutamate levels in stroke patients. However, the efficacy of blood glutamate grabbing by GOT could be dependent on the extent and severity of the disruption of the blood-brain barrier (BBB). Our purpose was to analyze the relationship between GOT and glutamate concentration with the patient's functional status differentially according to BBB serum markers (soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) and leukoaraiosis based on neuroimaging). This retrospective observational study includes 906 ischemic stroke patients. We studied the presence of leukoaraiosis and the serum levels of glutamate, GOT, and sTWEAK in blood samples. Functional outcome was assessed using the modified Rankin Scale (mRS) at 3 months. A significant negative correlation between GOT and glutamate levels at admission was shown in those patients with sTWEAK levels > 2900 pg/mL (Pearson's correlation coefficient: -0.249; p < 0.0001). This correlation was also observed in patients with and without leukoaraiosis (Pearson's correlation coefficients: -0.299; p < 0.001 vs. -0.116; p = 0.024). The logistic regression model confirmed the association of higher levels of GOT with lower odds of poor outcome at 3 months when sTWEAK levels were >2900 pg/mL (OR: 0.41; CI 95%: 0.28-0.68; p < 0.0001) or with leukoaraiosis (OR: 0.75; CI 95%: 0.69-0.82; p < 0.0001). GOT levels are associated with glutamate levels and functional outcomes at 3 months, but only in those patients with leukoaraiosis and elevated sTWEAK levels. Consequently, therapies targeting glutamate grabbing might be more effective in patients with BBB dysfunction.
Collapse
Grants
- SAF2017-84267-R, PDC2021-121455-I00 Spanish Ministry of Science and Innovation
- IN607A2022-03, IN607A2022/07 Xunta de Galicia
- PI17/01103, PI22/00938, PI21/01256/, DTS23/00103, RD16/0019/0001, RD21/0006/0003, CB22/05/00067, CPII17/00027, CPII19/00020, CP22/00061, FI22/00200 Instituto de Salud Carlos III
- EAPA_791/2018_ NEUROATLANTIC, 0624_2IQBIONEURO_6_E INTERREG
Collapse
Affiliation(s)
- Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
| | - Ana Sampedro-Viana
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
| | - Sabela Fernández-Rodicio
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
| | - Manuel Rodríguez-Yáñez
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, 15706 Santiago de Compostela, Spain;
| | - Iria López-Dequidt
- Department of Neurology, Hospital Clínico Universitario de Ferrol, 15405 Ferrol, Spain;
| | - José M. Pumar
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
- Department of Neuroradiology, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Antonio J. Mosqueira
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
- Department of Neuroradiology, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Marcos Bazarra-Barreiros
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
| | - María Teresa Abengoza-Bello
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
| | - Sara Ortega-Espina
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
| | - Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.O.); (T.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Pérez-Mato
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.P.-M.); (F.C.)
| | - Francisco Campos
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.P.-M.); (F.C.)
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.O.); (T.S.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
| | - Maria Luz Alonso-Alonso
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (P.H.); (A.S.-V.); (S.F.-R.); (J.M.P.); (A.J.M.); (M.B.-B.); (M.T.A.-B.); (S.O.-E.); (J.C.)
| |
Collapse
|
2
|
Hassanien HA, Alrashada YN, Abbas AO, Abdelwahab AM. Dietary propolis complementation relieves the physiological and growth deterioration induced by Flavobacterium columnare infection in juveniles of common carp (Cyprinus carpio). PLoS One 2023; 18:e0292976. [PMID: 37831671 PMCID: PMC10575500 DOI: 10.1371/journal.pone.0292976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
The current study was proposed to explore the role of dietary propolis (PR) supplementation in alleviating the negative effects of columnaris disease (CD) challenge on the growth performance, plasma biochemicals, antioxidant activity, stress indicators, and immunological reactions of common carp (Cyprinus carpio) fish. Five hundred forty common carp juveniles were evenly placed in thirty-six 100-L tanks and stocked for acclimatization to the lab conditions with a control diet within a started period of 14 days. Fish (average initial weight of 7.11±0.06 g) were randomly distributed into one of six treatment groups (6 replicate tanks × 15 fish per tank in each treatment group). Fish in the first group was assigned as a negative control without CD challenge or PR supplementation. Fish in the other five groups were challenged with CD by immersion of fish for 60 min into a 10-L water bath supplemented with 6×106 CFU/mL (median lethal dose, LD50) of pathogenic F. columnare bacteria. After infection, the fish were restored to their tanks and fed on a basal diet supplemented with PR at 0, 3, 6, 9, or 12 g/kg diet. The experimental period continued for 6 consecutive weeks in which the feed was introduced twice a day (8:00 and 15:00 h) at a rate of 2% of the fish biomass. Ten percent of water was siphoned and renewed after each meal every day, in addition to 50% of water refreshment after cleaning the tank every three days. The tanks were continuously aerated and provided with standard rearing conditions for carp fish (24.0±1.12°C, 7.7±0.22 pH, 6.3±0.16 mg/L O2, and 14L/10D photoperiod). The growth performance traits such as feed intake (FI), weight gain (WG), final weight (FW), specific growth rate (SGR), feed efficiency (FE), and cumulative mortality rates (CM) were recorded during the experimental period. At the end of the trial, blood samples were obtained from the fish to evaluate some plasma biochemicals, including aspartate aminotransaminase (AST), alanine aminotransferase (ALT), creatinine (CRE), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH), antioxidant biomarkers, including total antioxidant capacity (TAOC), total superoxide dismutase (TSOD), reduced glutathione (rGSH), and catalase (CAT), stress indicators, including heterophil to lymphocyte (H/L) ratio, cortisol (COR), malondialdehyde (MDA), and myeloperoxidase (MPO), and immunological reactions, including peripheral blood leukocyte proliferation (PBLP), phagocytosis activity (PHG), lysozyme activity (LYS), alternative complement hemolytic action (ACH50), and total immunoglobulin concentration (TIG). In addition, samples of infected fish gills were taken to quantify the number of F. columnare in the PR-supplemented groups using the quantitative real-time polymerase chain reaction (qPCR) technique. The results showed that incorporating PR into the dietary ingredients of common carp has a protective effect against the challenge with F. columnare infection. There were linear and quadratic positive trends (P < 0.05) in most parameters of growth performance, plasma biochemicals, antioxidant activity, stress indicators, and immunological reactions with the increased PR-supplemented levels in the diet of infected fish. The best results were obtained when using PR at 9 g/kg in the diet, while higher levels (12 g/kg PR) showed an adverse trend in the evaluated parameters. The FI, WG, FW, SGR, and FE were improved by approximately 37, 104, 34, 73, and 49% in the fish treated with 9 g/kg PR compared to none-PR-infected fish. In addition, adding PR at the 9 g/kg diet level was the best dose that reduced the H/L ratio, COR, MDA, and MPO by about 14, 52, 48, and 29%, respectively, in the infected fish. Furthermore, the mortality rate was reduced by 94%, and the number of pathogenic bacteria cells adherent to the fish gills was lowered by 96% in the infected fish treated with 9 g/kg PR compared to none-PR infected fish. Our results concluded that dietary supplementation with 9 g/kg PR could be a promising nutritional approach for improving the growth performance, physiological profile, and health status of common carp fish, particularly when challenged with F. columnare or similar bacterial infections.
Collapse
Affiliation(s)
- Hesham A. Hassanien
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Yousof N. Alrashada
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
| | - Ahmed O. Abbas
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Abdelwahab M. Abdelwahab
- Department of Animal and Fish Production, College of Agriculture and Food Sciences, King Faisal University, Hofuf, AL-HASA, Saudi Arabia
- Department of Animal Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| |
Collapse
|
3
|
Kolotyeva NA, Gilmiyarova FN, Averchuk AS, Baranich TI, Rozanova NA, Kukla MV, Tregub PP, Salmina AB. Novel Approaches to the Establishment of Local Microenvironment from Resorbable Biomaterials in the Brain In Vitro Models. Int J Mol Sci 2023; 24:14709. [PMID: 37834155 PMCID: PMC10572431 DOI: 10.3390/ijms241914709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The development of brain in vitro models requires the application of novel biocompatible materials and biopolymers as scaffolds for controllable and effective cell growth and functioning. The "ideal" brain in vitro model should demonstrate the principal features of brain plasticity like synaptic transmission and remodeling, neurogenesis and angiogenesis, and changes in the metabolism associated with the establishment of new intercellular connections. Therefore, the extracellular scaffolds that are helpful in the establishment and maintenance of local microenvironments supporting brain plasticity mechanisms are of critical importance. In this review, we will focus on some carbohydrate metabolites-lactate, pyruvate, oxaloacetate, malate-that greatly contribute to the regulation of cell-to-cell communications and metabolic plasticity of brain cells and on some resorbable biopolymers that may reproduce the local microenvironment enriched in particular cell metabolites.
Collapse
Affiliation(s)
| | - Frida N. Gilmiyarova
- Department of Fundamental and Clinical Biochemistry with Laboratory Diagnostics, Samara State Medical University, 443099 Samara, Russia
| | - Anton S. Averchuk
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
| | - Tatiana I. Baranich
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
| | | | - Maria V. Kukla
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
| | - Pavel P. Tregub
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alla B. Salmina
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
| |
Collapse
|
4
|
Huang Y, Wang Z, Huang ZX, Liu Z. Biomarkers and the outcomes of ischemic stroke. Front Mol Neurosci 2023; 16:1171101. [PMID: 37342100 PMCID: PMC10277488 DOI: 10.3389/fnmol.2023.1171101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
Biomarkers are measurable substances that could be used as objective indicators for disease diagnosis, responses to treatments, and outcomes predictions. In this review, we summarized the data on a number of important biomarkers including glutamate, S100B, glial fibrillary acidic protein, receptor for advanced glycation end-products, intercellular adhesion molecule-1, von willebrand factor, matrix metalloproteinase-9, interleukin-6, tumor necrosis factor-a, activated protein C, copeptin, neuron-specific enolase, tau protein, gamma aminobutyric acid, blood glucose, endothelial progenitor cells, and circulating CD34-positive cells that could be potentially used to indicate the disease burden and/or predict clinical outcome of ischemic stroke. We examined the relationship between specific biomarkers and disease burden and outcomes and discussed the potential mechanisms underlying the relationship. The clinical significance and implications of these biomarkers were also discussed.
Collapse
Affiliation(s)
- Ying Huang
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Zhenzhen Wang
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Zhi-Xin Huang
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| |
Collapse
|
5
|
Chen K, Pan Y, Xiang X, Meng X, Yao D, Lin L, Li X, Wang Y. The nonalcoholic fatty liver risk in prediction of unfavorable outcome after stroke: A nationwide registry analysis. Comput Biol Med 2023; 157:106692. [PMID: 36924734 DOI: 10.1016/j.compbiomed.2023.106692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023]
Abstract
Few researches have looked at the relationship between nonalcoholic fatty liver disease (NAFLD) at the time of admission and the long-term outcomes of patients suffering from acute ischemic stroke (AIS). We aimed to probe the relationship between NAFLD risk evaluated by NAFLD indices and long-term endpoints, along with the prognostic value of merging NAFLD indices with established risk markers for the prognosis of AIS patients. The fatty liver index (FLI) and the Hepatic steatosis index (HSI) were used to evaluate NAFLD risk in the Third China National Stroke Registry (CNSR-III), a large, prospective, national, multicenter cohort registry study. NAFLD was defined as FLI ≥35 for males and FLI ≥ 20 for females, as well as HSI>36. Death or major disability (modified Rankin Scale score ≥3) were the primary outcomes following the beginning of a stroke. On patient outcomes, the prognostic performance of two objective NAFLD parameters was evaluated. NAFLD was detected in 32.10-51.90% of AIS patients. After 1-year, 14.5% of the participants had died or suffered a severe outcome. After controlling for known risk factors, NAFLD was associated with a modest probability of adverse outcome (odds ratio,0.72[95% CI, 0.61-0.86] for FLI; odds ratio,0.68[95% CI, 0.55-0.85] for HSI). The inclusion of the two NAFLD indicators in the conventional prediction model was justified by the integrated discrimination index, continuing to increase the model's overall predictive value for long-term adverse outcomes. NAFLD risk was linked to a lower risk of long-term death or major disability in people with AIS. The predictive value of objective NAFLD after AIS was demonstrated in our study.
Collapse
Affiliation(s)
- Keyang Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xianglong Xiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Dongxiao Yao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou Medical University, Wenzhou, China.
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, China; Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, 2019RU018, China.
| | | |
Collapse
|
6
|
Ali MY, Knight D, Howlader MMR. Nonenzymatic Electrochemical Glutamate Sensor Using Copper Oxide Nanomaterials and Multiwall Carbon Nanotubes. BIOSENSORS 2023; 13:237. [PMID: 36832003 PMCID: PMC9954524 DOI: 10.3390/bios13020237] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 05/28/2023]
Abstract
Glutamate is an important neurotransmitter due to its critical role in physiological and pathological processes. While enzymatic electrochemical sensors can selectively detect glutamate, enzymes cause instability of the sensors, thus necessitating the development of enzyme-free glutamate sensors. In this paper, we developed an ultrahigh sensitive nonenzymatic electrochemical glutamate sensor by synthesizing copper oxide (CuO) nanostructures and physically mixing them with multiwall carbon nanotubes (MWCNTs) onto a screen-printed carbon electrode. We comprehensively investigated the sensing mechanism of glutamate; the optimized sensor showed irreversible oxidation of glutamate involving one electron and one proton, and a linear response from 20 μM to 200 μM at pH 7. The limit of detection and sensitivity of the sensor were about 17.5 μM and 8500 μA·mM-1·cm-2, respectively. The enhanced sensing performance is attributed to the synergetic electrochemical activities of CuO nanostructures and MWCNTs. The sensor detected glutamate in whole blood and urine and had minimal interference with common interferents, suggesting its potential for healthcare applications.
Collapse
Affiliation(s)
- Md Younus Ali
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Dorian Knight
- Department of Computing and Software, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Matiar M. R. Howlader
- Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
7
|
Carrera I, Corzo L, Naidoo V, Martínez-Iglesias O, Cacabelos R. Cardiovascular and lipid-lowering effects of a marine lipoprotein extract in a high-fat diet-induced obesity mouse model. Int J Med Sci 2023; 20:292-306. [PMID: 36860672 PMCID: PMC9969509 DOI: 10.7150/ijms.80727] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Obesity is a major health challenge worldwide, with implications for diabetes, hypertension and cardiovascular disease (CVD). Regular consumption of dark-meat fish is linked to a lower incidence of CVD and associated metabolic disorders due to the presence of long-chain omega-3 fatty acid ethyl esters in fish oils. The aim of the present study was to determine whether a marine compound like a sardine lipoprotein extract (RCI-1502), regulates fat accumulation in the heart of a high-fat diet-induced (HFD) mouse model of obesity. To investigate its effects in the heart and liver, we conducted a randomized, 12-week placebo-controlled study in which we analyzed the expression of vascular inflammation markers, obesity biochemical patterns and related CVD pathologies. Male HFD-fed mice treated with a RCI-1502-supplemented diet showed reduced body weight, abdominal fat tissue and pericardial fat pad mass density without systemic toxicity. RCI-1502 significantly reduced triacylglyceride, low-density lipoprotein and total-cholesterol concentrations in serum, but increased HDL-cholesterol levels. Our data show that RCI-1502 is beneficial for reducing obesity associated with a long-term HFD, possibly by exerting a protective effect on lipidic homeostasis, indicated also by histopathological analysis. These results collectively indicate that RCI-1502 acts as a cardiovascular therapeutic nutraceutical agent, which modulates fat-induced inflammation and improves metabolic health.
Collapse
Affiliation(s)
- Iván Carrera
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165-Bergondo, Corunna, Spain
| | | | | | | | | |
Collapse
|
8
|
Sinha K, Uddin Z, Kawsar H, Islam S, Deen M, Howlader M. Analyzing chronic disease biomarkers using electrochemical sensors and artificial neural networks. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Zhou Y, Jiang H, Wei H, Liu L, Zhou C, Ji X. Venous stroke–a stroke subtype that should not be ignored. Front Neurol 2022; 13:1019671. [PMID: 36277910 PMCID: PMC9582250 DOI: 10.3389/fneur.2022.1019671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Based on the etiology, stroke can be classified into ischemic or hemorrhagic subtypes, which ranks second among the leading causes of death. Stroke is caused not only by arterial thrombosis but also by cerebral venous thrombosis. Arterial stroke is currently the main subtype of stroke, and research on this type has gradually improved. Venous thrombosis, the particular type, accounts for 0.5–1% of all strokes. Due to the lack of a full understanding of venous thrombosis, as well as its diverse clinical manifestations and neuroimaging features, there are often delays in admission for it, and it is easy to misdiagnose. The purpose of this study was to review the pathophysiology mechanisms and clinical features of arterial and venous thrombosis and to provide guidance for further research on the pathophysiological mechanism, clinical diagnosis, and treatment of venous thrombosis. This review summarizes the pathophysiological mechanisms, etiology, epidemiology, symptomatology, diagnosis, and treatment heterogeneity of venous thrombosis and compares it with arterial stroke. The aim is to provide a reference for a comprehensive understanding of venous thrombosis and a scientific understanding of various pathophysiological mechanisms and clinical features related to venous thrombosis, which will contribute to understanding the pathogenesis of intravenous stroke and provide insight into diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Yifan Zhou
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Huimin Jiang
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Huimin Wei
- School of Engineering Medicine, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Lu Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chen Zhou
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Chen Zhou
| | - Xunming Ji
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Xunming Ji
| |
Collapse
|
10
|
Gruenbaum BF, Zlotnik A, Fleidervish I, Frenkel A, Boyko M. Glutamate Neurotoxicity and Destruction of the Blood–Brain Barrier: Key Pathways for the Development of Neuropsychiatric Consequences of TBI and Their Potential Treatment Strategies. Int J Mol Sci 2022; 23:ijms23179628. [PMID: 36077024 PMCID: PMC9456007 DOI: 10.3390/ijms23179628] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury (TBI) is associated with significant cognitive and psychiatric conditions. Neuropsychiatric symptoms can persist for years following brain injury, causing major disruptions in patients’ lives. In this review, we examine the role of glutamate as an aftereffect of TBI that contributes to the development of neuropsychiatric conditions. We hypothesize that TBI causes long-term blood–brain barrier (BBB) dysfunction lasting many years and even decades. We propose that dysfunction in the BBB is the central factor that modulates increased glutamate after TBI and ultimately leads to neurodegenerative processes and subsequent manifestation of neuropsychiatric conditions. Here, we have identified factors that determine the upper and lower levels of glutamate concentration in the brain after TBI. Furthermore, we consider treatments of disruptions to BBB integrity, including repairing the BBB and controlling excess glutamate, as potential therapeutic modalities for the treatment of acute and chronic neuropsychiatric conditions and symptoms. By specifically focusing on the BBB, we hypothesize that restoring BBB integrity will alleviate neurotoxicity and related neurological sequelae.
Collapse
Affiliation(s)
- Benjamin F. Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| | - Ilya Fleidervish
- Department of Physiology and Cell Biology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Amit Frenkel
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
- Correspondence:
| |
Collapse
|
11
|
Abbasian S, Ravasi AA, Haghighi AH, Aydin S, Delbari A, Aydın S. Preconditioning intensive training ameliorates reduction of transcription biofactors of PGC1α-pathway in paretic muscle due to cerebral ischemia. Biotech Histochem 2022; 98:46-53. [PMID: 35892280 DOI: 10.1080/10520295.2022.2098535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Exercise training increases fibronectin type III domain-containing protein 5 (FNDC5/irisin) via the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)-pathway. The PGC1α pathway induced FNDC5/irisin changes in response to exercise training and ischemic stroke are not entirely understood. We investigated the relation of the PGC-1α/FNDC5/irisin pathway to exercise training and to the pathophysiology of ischemic stroke in paretic muscles of stroke-induced rat models. We induced cerebral ischemia following completion of high-intensity interval training (HIIT) to evaluate PGC1α-pathway biofactors in paretic muscles. To define the underlying molecular mechanisms for improvement in paretic muscles following cerebral ischemia, we evaluated PCG-1α-pathway factors using immunofluorescence tracking and enzyme-linked immunosorbent assay (ELISA) immunoassay. We found that HIIT for 3 weeks produced increased expression and release of PGC-1α-pathway biomarkers in both the serum and paretic muscle of stroke-induced rats. We also found a close relation between the expression of PCG-1α-pathway factors in skeletal muscle and their concentration in blood. We found that PGC-1α-pathway biomarkers cause irisin up-regulation following induction of cerebral ischemia. The reduction in neurofunctional deficits following increased PGC-1α-pathway biomarkers suggests that these factors may act as markers of improvement in paretic muscle healing following cerebral ischemia.
Collapse
Affiliation(s)
| | | | | | | | - Ahmad Delbari
- University of Social Welfare and Rehabilitation Sciences, Iran
| | | |
Collapse
|
12
|
Kaplan-Arabaci O, Acari A, Ciftci P, Gozuacik D. Glutamate Scavenging as a Neuroreparative Strategy in Ischemic Stroke. Front Pharmacol 2022; 13:866738. [PMID: 35401202 PMCID: PMC8984161 DOI: 10.3389/fphar.2022.866738] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 12/17/2022] Open
Abstract
Stroke is the second highest reason of death in the world and the leading cause of disability. The ischemic stroke makes up the majority of stroke cases that occur due to the blockage of blood vessels. Therapeutic applications for ischemic stroke include thrombolytic treatments that are in limited usage and only applicable to less than 10% of the total stroke patients, but there are promising new approaches. The main cause of ischemic neuronal death is glutamate excitotoxicity. There have been multiple studies focusing on neuroprotection via reduction of glutamate both in ischemic stroke and other neurodegenerative diseases that ultimately failed due to the obstacles in delivery. At that point, systemic glutamate grabbing, or scavenging is an ingenious way of decreasing glutamate levels upon ischemic stroke. The main advantage of this new therapeutic method is the scavengers working in the circulating blood so that there is no interference with the natural brain neurophysiology. In this review, we explain the molecular mechanisms of ischemic stroke, provide brief information about existing drugs and approaches, and present novel systemic glutamate scavenging methods. This review hopefully will elucidate the potential usage of the introduced therapeutic approaches in stroke patients.
Collapse
Affiliation(s)
- Oykum Kaplan-Arabaci
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Sabancı University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Alperen Acari
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Pinar Ciftci
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Devrim Gozuacik
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Sabancı University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey.,School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
13
|
Zaghmi A, Pérez-Mato M, Dopico-López A, Candamo-Lourido M, Campos F, Gauthier MA. New Perspectives for Developing Therapeutic Bioconjugates of Metabolite-Depleting Enzymes: Lessons Learned Combating Glutamate Excitotoxicity. Biomacromolecules 2022; 23:1864-1872. [PMID: 35394759 DOI: 10.1021/acs.biomac.2c00117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glutamate, the main excitatory neurotransmitter in the central nervous system, plays an essential role in several cognitive activities such as memorizing and learning. Excessive glutamate release and disturbance of glutamate homeostasis participates in multiple neuronal pathologies including cerebral ischemia (inadequate blood supply), traumatic brain injury (e.g., from a fall or an accident), multiple sclerosis, epilepsy, migraine, fetal hypoxia, or Alzheimer's disease. Attenuating excitotoxicity by, for example, targeting glutamate receptors has proved to be beneficial in animal models but has largely failed in clinical trials because of toxic side effects. New therapeutic concepts have been explored to reduce the excitotoxic effect caused by the excessive glutamate release by using or stimulating glutamate-depleting enzymes in the bloodstream. These enzymes indirectly act upon the brain by depleting glutamate in the bloodstream, which is believed to siphon it out of the brain. Recent studies have shown that bioconjugate approaches applied to such enzymes exacerbate this therapeutic effect but raise additional questions for future research. This Perspective provides an overview of lessons learned by our group when exploring bioconjugate approaches for combatting glutamate excitotoxicity as an illustration of how research on therapeutic bioconjugates is evolving.
Collapse
Affiliation(s)
- Ahlem Zaghmi
- Institut National de la Recherche Scientifique, EMT Research Center, Varennes J3X 1S2, Canada
| | - María Pérez-Mato
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Antonio Dopico-López
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15782, Spain
| | - María Candamo-Lourido
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15782, Spain
| | - Francisco Campos
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15782, Spain
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique, EMT Research Center, Varennes J3X 1S2, Canada
| |
Collapse
|
14
|
Peinado MÁ, Ovelleiro D, del Moral ML, Hernández R, Martínez-Lara E, Siles E, Pedrajas JR, García-Martín ML, Caro C, Peralta S, Morales ME, Ruiz MA, Blanco S. Biological Implications of a Stroke Therapy Based in Neuroglobin Hyaluronate Nanoparticles. Neuroprotective Role and Molecular Bases. Int J Mol Sci 2021; 23:247. [PMID: 35008673 PMCID: PMC8745106 DOI: 10.3390/ijms23010247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Exogenous neuroprotective protein neuroglobin (Ngb) cannot cross the blood-brain barrier. To overcome this difficulty, we synthesized hyaluronate nanoparticles (NPs), able to deliver Ngb into the brain in an animal model of stroke (MCAO). These NPs effectively reached neurons, and were microscopically identified after 24 h of reperfusion. Compared to MCAO non-treated animals, those treated with Ngb-NPs showed survival rates up to 50% higher, and better neurological scores. Tissue damage improved with the treatment, but no changes in the infarct volume or in the oxidative/nitrosative values were detected. A proteomics approach (p-value < 0.02; fold change = 0.05) in the infarcted areas showed a total of 219 proteins that significantly changed their expression after stroke and treatment with Ngb-NPs. Of special interest, are proteins such as FBXO7 and NTRK2, which were downexpressed in stroke, but overexpressed after treatment with Ngb-NPs; and ATX2L, which was overexpressed only under the effect of Ngb. Interestingly, the proteins affected by the treatment with Ngb were involved in mitochondrial function and cell death, endocytosis, protein metabolism, cytoskeletal remodeling, or synaptic function, and in regenerative processes, such as dendritogenesis, neuritogenesis, or sinaptogenesis. Consequently, our pharmaceutical preparation may open new therapeutic scopes for stroke and possibly for other neurodegenerative pathologies.
Collapse
Affiliation(s)
- María Ángeles Peinado
- Department of Experimental Biology, Campus de Las Lagunillas s/n, University of Jaén, Building B3, 23071 Jaen, Spain; (D.O.); (M.L.d.M.); (R.H.); (E.M.-L.); (E.S.); (J.R.P.)
| | - David Ovelleiro
- Department of Experimental Biology, Campus de Las Lagunillas s/n, University of Jaén, Building B3, 23071 Jaen, Spain; (D.O.); (M.L.d.M.); (R.H.); (E.M.-L.); (E.S.); (J.R.P.)
| | - María Luisa del Moral
- Department of Experimental Biology, Campus de Las Lagunillas s/n, University of Jaén, Building B3, 23071 Jaen, Spain; (D.O.); (M.L.d.M.); (R.H.); (E.M.-L.); (E.S.); (J.R.P.)
| | - Raquel Hernández
- Department of Experimental Biology, Campus de Las Lagunillas s/n, University of Jaén, Building B3, 23071 Jaen, Spain; (D.O.); (M.L.d.M.); (R.H.); (E.M.-L.); (E.S.); (J.R.P.)
| | - Esther Martínez-Lara
- Department of Experimental Biology, Campus de Las Lagunillas s/n, University of Jaén, Building B3, 23071 Jaen, Spain; (D.O.); (M.L.d.M.); (R.H.); (E.M.-L.); (E.S.); (J.R.P.)
| | - Eva Siles
- Department of Experimental Biology, Campus de Las Lagunillas s/n, University of Jaén, Building B3, 23071 Jaen, Spain; (D.O.); (M.L.d.M.); (R.H.); (E.M.-L.); (E.S.); (J.R.P.)
| | - José Rafael Pedrajas
- Department of Experimental Biology, Campus de Las Lagunillas s/n, University of Jaén, Building B3, 23071 Jaen, Spain; (D.O.); (M.L.d.M.); (R.H.); (E.M.-L.); (E.S.); (J.R.P.)
| | - María Luisa García-Martín
- BIONAND-Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Parque Tecnológico de Andalucía, 29590 Malaga, Spain; (M.L.G.-M.); (C.C.)
| | - Carlos Caro
- BIONAND-Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, Parque Tecnológico de Andalucía, 29590 Malaga, Spain; (M.L.G.-M.); (C.C.)
| | - Sebastián Peralta
- Department of Pharmacy and Pharmaceutical Technology, Campus de Cartuja s/n, School of Pharmacy, University of Granada, 18071 Granada, Spain; (S.P.); (M.E.M.); (M.A.R.)
| | - María Encarnación Morales
- Department of Pharmacy and Pharmaceutical Technology, Campus de Cartuja s/n, School of Pharmacy, University of Granada, 18071 Granada, Spain; (S.P.); (M.E.M.); (M.A.R.)
| | - María Adolfina Ruiz
- Department of Pharmacy and Pharmaceutical Technology, Campus de Cartuja s/n, School of Pharmacy, University of Granada, 18071 Granada, Spain; (S.P.); (M.E.M.); (M.A.R.)
| | - Santos Blanco
- Department of Experimental Biology, Campus de Las Lagunillas s/n, University of Jaén, Building B3, 23071 Jaen, Spain; (D.O.); (M.L.d.M.); (R.H.); (E.M.-L.); (E.S.); (J.R.P.)
| |
Collapse
|
15
|
Comprehensive analysis of protein acetylation and glucose metabolism inmouse brains infected with rabies virus. J Virol 2021; 96:e0194221. [PMID: 34878915 DOI: 10.1128/jvi.01942-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rabies, caused by rabies virus (RABV), is a widespread zoonosis that is nearly 100% fatal. Alteration of the metabolic environment affects viral replication and the immune response during viral infection. In this study, glucose uptake was increased in mouse brains at the late stage of infection with different RABV strains (lab-attenuated CVS strain and wild-type DRV strain). To illustrate the mechanism underlying glucose metabolism alteration, comprehensive analysis of lysine acetylation and target analysis of energy metabolites in mouse brains infected with CVS and DRV strains were performed. A total of 156 acetylated sites and 115 acetylated proteins were identified as significantly different during RABV infection. Compared to CVS- and mock-infected mice, the lysine acetylation levels of glycolysis and tricarboxylic acid (TCA) cycle enzymes were decreased, and enzyme activity was upregulated in DRV-infected mouse brains. Metabolomic analysis revealed that high levels of oxaloacetate (OAA) in RABV-infected mouse brains. Specifically, the OAA level in CVS-infected mouse brains was higher than that in DRV-infected mouse brains, which contributed to the enhancement of the metabolic rate at the substrate level. Finally, we confirmed that OAA could reduce excessive neuroinflammation in CVS-infected mouse brains by inhibiting JNK and P38 phosphorylation. Taken together, this study provides fresh insight into the different strategies the host adapts to regulate glucose metabolism for energy requirements after different RABV strain infection and suggest that OAA treatment could be a potential strategy to prevent neural damage during RABV infection. IMPORTANCE Both viral replication and the host immune response are highly energy-dependent. It is important to understand how the rabies virus affects energy metabolism in the brain. Glucose is the direct energy source for cell metabolism. Previous studies have revealed that there is some association between acetylation and metabolic processes. In this study, comprehensive protein acetylation and glucose metabolism analysis were conducted to compare glucose metabolism in mouse brains infected with different RABV strains. Our study demonstrates that the regulation of enzyme activity by acetylation and OAA accumulation at the substrate level are two strategies for the host to respond to the energy requirements after RABV infection. Our study also indicates the potential role OAA could play in neuronal protection by suppressing excessive neuroinflammation.
Collapse
|
16
|
Increased high-mobility group box 1 levels are associated with depression after acute ischemic stroke. Neurol Sci 2021; 43:3131-3137. [PMID: 34800198 DOI: 10.1007/s10072-021-05571-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/15/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND PURPOSE Increased high-mobility group box 1 (HMGB1) levels were found in patients after acute ischemic stroke. The aim of this study was to examine whether the circulating HMGB1 levels could predict the 3-month post-stroke depression (PSD). METHODS The subjects were first-ever ischemic stroke patients who were hospitalized during the period from July 2020 to December 2020. HMGB1 concentrations were measured by enzyme-linked immunosorbent assay after admission. A 24-item Hamilton Depression Rating Scale was performed to evaluate PSD at 3 months after stroke. RESULTS The analyses included 324 participants (mean age, 63.7 years; 171 male). Ninety-four patients (29.0%) were diagnosed as having PSD at 3 months. The median serum HMGB1 levels at admission was 7.5 ng/mL (IQR, 4.4-11.3 ng/mL). The PSD distribution across the HMGB1 quartiles ranged between 17.5% (first quartile) and 57.5% (fourth quartile). After covariate adjustments, the fourth quartile of HMGB1 was found to be associated with a higher risk of PSD (as compared with first HMGB1 quartile, odd ratio, 1.26; 95% confidence interval [CI], 1.17-1.35; P < 0.001). The area under the receiver operating characteristic curve of HMGB1 was 0.726 (95% CI 0.660-0.792) for PSD. Similar results were found when HMGB1 was analyzed as continuous variable. Furthermore, the optimal cutoff point of circulating HMGB1 levels was 8.6 ng/mL, with a sensitivity of 69.2% and a specificity of 73.9%. CONCLUSIONS This study demonstrated that higher HMGB1 levels in the acute phase of ischemic stroke were associated with increased risk of PSD.
Collapse
|
17
|
Kruchinin SE, Fedotova MV. Ion Pairing of the Neurotransmitters Acetylcholine and Glutamate in Aqueous Solutions. J Phys Chem B 2021; 125:11219-11231. [PMID: 34597044 DOI: 10.1021/acs.jpcb.1c05117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurotransmitters (NTs) play an important role in neural communication, regulating a variety of functions such as motivation, learning, memory, and muscle contraction. Their intermolecular interactions in biological media are an important factor affecting their biological activity. However, the available information on the features of these interactions is scarce and contradictory, especially, in an estimation of possible ion binding. In this paper, we present the results of a study for two well-known NTs, acetylcholine (ACh) and glutamate (Glu), with relation to the NT-inorganic ion and the NT-NT binding in a water environment. The features of NT pairing are investigated in aqueous AChCl and NaGlu solutions over a wide concentration range using the integral equation method in 1D- and 3D- reference interaction site model (RISM) approaches. The data for ACh are given for its two bioactive TG (trans, gauche) and TT (trans, trans) conformers. As was found, for both NTs, the results indicate the NT-inorganic counterion contact pair to be the predominant associate type in the concentrated solutions. In this case, the counterions occupy the vacated "water" space in the hydration shell of the onium moiety (ACh) or carboxylate groups (Glu). For ACh, the "unfolded" TT conformer demonstrates a slightly greater possibility for counterion pairing in comparison with the "folded" TG conformer. For Glu, the probability of its binding with a counterion is slightly stronger for the "side-chain" carboxylate group than for the "backbone" group. The obtained results also revealed an insignificant probability of Glu--Glu- pairing. Namely, the RISM data indicate Glu--Glu- binding by NH3+-COO- interactions. A link between the ion binding of NTs and their biological activity is discussed. This contribution adds new knowledge to our understanding of the interactions between the NTs and their molecular environment, providing further insights into the behavior of these compounds in biological media.
Collapse
Affiliation(s)
- Sergey E Kruchinin
- G.A. Krestov Institute of Solution Chemistry, the Russian Academy of Sciences, Akademicheskaya Street 1, Ivanovo 153045, Russia
| | - Marina V Fedotova
- G.A. Krestov Institute of Solution Chemistry, the Russian Academy of Sciences, Akademicheskaya Street 1, Ivanovo 153045, Russia
| |
Collapse
|
18
|
Song J, Yang X, Zhang M, Wang C, Chen L. Glutamate Metabolism in Mitochondria is Closely Related to Alzheimer's Disease. J Alzheimers Dis 2021; 84:557-578. [PMID: 34602474 DOI: 10.3233/jad-210595] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glutamate is the main excitatory neurotransmitter in the brain, and its excitatory neurotoxicity is closely related to the occurrence and development of Alzheimer's disease. However, increasing evidence shows that in the process of Alzheimer's disease, glutamate is not only limited to its excitotoxicity as a neurotransmitter but also related to the disorder of its metabolic balance. The balance of glutamate metabolism in the brain is an important determinant of central nervous system health, and the maintenance of this balance is closely related to glutamate uptake, glutamate circulation, intracellular mitochondrial transport, and mitochondrial metabolism. In this paper, we intend to elaborate the key role of mitochondrial glutamate metabolism in the pathogenesis of Alzheimer's disease and review glutamate metabolism in mitochondria as a potential target in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jiayi Song
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China.,Cadre's Ward, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xuehan Yang
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| | - Ming Zhang
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| | - Chunyan Wang
- Cadre's Ward, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Li Chen
- Department of Pharmacology, Basic College of Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
19
|
Chen H, Yu J, Zhang J, Sun K, Ding Z, Jiang Y, Hu Q, Wu C, Chiu DT. Monitoring Metabolites Using an NAD(P)H‐sensitive Polymer Dot and a Metabolite‐Specific Enzyme. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Haobin Chen
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Jiangbo Yu
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Jicheng Zhang
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Kai Sun
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Zhaoyang Ding
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Yifei Jiang
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Qiongzheng Hu
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| | - Changfeng Wu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 510855 China
| | - Daniel T. Chiu
- Department of Chemistry and Bioengineering University of Washington Seattle WA 98195 USA
| |
Collapse
|
20
|
Chen H, Yu J, Zhang J, Sun K, Ding Z, Jiang Y, Hu Q, Wu C, Chiu DT. Monitoring Metabolites Using an NAD(P)H-sensitive Polymer Dot and a Metabolite-Specific Enzyme. Angew Chem Int Ed Engl 2021; 60:19331-19336. [PMID: 34146440 DOI: 10.1002/anie.202106156] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Indexed: 12/24/2022]
Abstract
We introduce an NAD(P)H-sensitive polymer dot (Pdot) biosensor for point-of-care monitoring of metabolites. The Pdot is combined with a metabolite-specific NAD(P)H-dependent enzyme that catalyzes the oxidation of the metabolite, generating NAD(P)H. Upon UV illumination, the NAD(P)H quenches the fluorescence emission of Pdot at 627 nm via electron transfer, and also fluoresces at 458 nm, resulting in a shift from red to blue emission at higher NAD(P)H concentrations. Metabolite concentration is quantified ratiometrically-based on the ratio of blue-to-red channel emission intensities, with a digital camera-with high sensitivity and specificity. We demonstrate phenylalanine biosensing in human plasma for a phenylketonuria screening test, quantifying several other disease-related metabolites (lactate, glucose, glutamate, and β-hydroxybutyrate), and a paper-based assay with smartphore imaging for point-of-care use.
Collapse
Affiliation(s)
- Haobin Chen
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jiangbo Yu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jicheng Zhang
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Kai Sun
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Zhaoyang Ding
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Yifei Jiang
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Qiongzheng Hu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 510855, China
| | - Daniel T Chiu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
21
|
Characterization of a Temporal Profile of Biomarkers as an Index for Ischemic Stroke Onset Definition. J Clin Med 2021; 10:jcm10143136. [PMID: 34300300 PMCID: PMC8307571 DOI: 10.3390/jcm10143136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
Background and purpose: Stroke is a dynamic process in terms of molecular mechanisms, with prominent glutamate-mediated excitotoxicity at the onset of symptoms followed by IL-6-mediated inflammation. Our aim was to study a serum glutamate/IL-6 ratio as an index for stroke onset definition. Methods: A total of 4408 ischemic stroke patients were recruited and then subdivided into four quartiles according to latency time in minutes (0–121, 121–185, 185–277 and >277). Latency time is defined as the time between stroke onset and treatment at the neurological unit. The primary endpoint of the study was the association of early latency times with different clinical aspects and serum markers. Serum glutamate and interleukin-6 (IL-6) levels at admission were selected as the main markers for excitotoxicity and inflammation, respectively. Results: Glutamate serum levels were significantly higher in the earlier latency time compared with the higher latency times (p < 0.0001). IL-6 levels were lower in early latency times (p < 0.0001). Patients with a glutamate/IL-6 index on admission of >5 were associated with a latency time of <121 min from the onset of symptoms with a sensitivity of 88% and a specificity of 80%. Conclusions: The glutamate/IL-6 index allows the development of a ratio for an easy, non-invasive early identification of the onset of ischemic stroke symptoms, thus offering a new tool for selecting early stroke patient candidates for reperfusion therapies.
Collapse
|
22
|
Dopico-López A, Pérez-Mato M, da Silva-Candal A, Iglesias-Rey R, Rabinkov A, Bugallo-Casal A, Sobrino T, Mirelman D, Castillo J, Campos F. Inhibition of endogenous blood glutamate oxaloacetate transaminase enhances the ischemic damage. Transl Res 2021; 230:68-81. [PMID: 33132087 DOI: 10.1016/j.trsl.2020.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 12/01/2022]
Abstract
Glutamate oxaloacetate transaminase 1 (GOT1) enzyme plays a critical role in the cell metabolism by participating in the carbohydrate and amino acid metabolism. In ischemic stroke, we have demonstrated that recombinant GOT1 acts as a novel neuroprotective treatment against the excess of extracellular glutamate that accumulates in the brain following ischemic stroke. In this study, we investigated the inhibitory effect of GOT1 on brain metabolism and on the ischemic damage in a rat model of ischemic stroke by means of a specific antibody developed against this enzyme. Inhibition of GOT1 caused higher brain glutamate and lactate levels and this response was associated with larger ischemic lesion. This study represents the first demonstration that the inhibition of the blood GOT1 activity leads to more severe ischemic damage and poorer outcome and supports the protective role of GOT1 against ischemic insults.
Collapse
Affiliation(s)
- Antonio Dopico-López
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Pérez-Mato
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Andrés da Silva-Candal
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Aharon Rabinkov
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ana Bugallo-Casal
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - David Mirelman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - José Castillo
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
23
|
Luo Z, Yu S, Zeng W, Zhou J. Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnol Adv 2021; 47:107706. [PMID: 33548455 DOI: 10.1016/j.biotechadv.2021.107706] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
Abstract
Keto acids are essential organic acids that are widely applied in pharmaceuticals, cosmetics, food, beverages, and feed additives as well as chemical synthesis. Currently, most keto acids on the market are prepared via chemical synthesis. The biochemical synthesis of keto acids has been discovered with the development of metabolic engineering and applied toward the production of specific keto acids from renewable carbohydrates using different metabolic engineering strategies in microbes. In this review, we provide a systematic summary of the types and applications of keto acids, and then summarize and compare the chemical and biochemical synthesis routes used for the production of typical keto acids, including pyruvic acid, oxaloacetic acid, α-oxobutanoic acid, acetoacetic acid, ketoglutaric acid, levulinic acid, 5-aminolevulinic acid, α-ketoisovaleric acid, α-keto-γ-methylthiobutyric acid, α-ketoisocaproic acid, 2-keto-L-gulonic acid, 2-keto-D-gluconic acid, 5-keto-D-gluconic acid, and phenylpyruvic acid. We also describe the current challenges for the industrial-scale production of keto acids and further strategies used to accelerate the green production of keto acids via biochemical routes.
Collapse
Affiliation(s)
- Zhengshan Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
24
|
Azadian M, Tian G, Bazrafkan A, Maki N, Rafi M, Chetty N, Desai M, Otarola I, Aguirre F, Zaher SM, Khan A, Suri Y, Wang M, Lopour BA, Steward O, Akbari Y. Overnight Caloric Restriction Prior to Cardiac Arrest and Resuscitation Leads to Improved Survival and Neurological Outcome in a Rodent Model. Front Neurosci 2021; 14:609670. [PMID: 33510613 PMCID: PMC7835645 DOI: 10.3389/fnins.2020.609670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
While interest toward caloric restriction (CR) in various models of brain injury has increased in recent decades, studies have predominantly focused on the benefits of chronic or intermittent CR. The effects of ultra-short, including overnight, CR on acute ischemic brain injury are not well studied. Here, we show that overnight caloric restriction (75% over 14 h) prior to asphyxial cardiac arrest and resuscitation (CA) improves survival and neurological recovery as measured by, behavioral testing on neurological deficit scores, faster recovery of quantitative electroencephalography (EEG) burst suppression ratio, and complete prevention of neurodegeneration in multiple regions of the brain. We also show that overnight CR normalizes stress-induced hyperglycemia, while significantly decreasing insulin and glucagon production and increasing corticosterone and ketone body production. The benefits seen with ultra-short CR appear independent of Sirtuin 1 (SIRT-1) and brain-derived neurotrophic factor (BDNF) expression, which have been strongly linked to neuroprotective benefits seen in chronic CR. Mechanisms underlying neuroprotective effects remain to be defined, and may reveal targets for providing protection pre-CA or therapeutic interventions post-CA. These findings are also of high importance to basic sciences research as we demonstrate that minor, often-overlooked alterations to pre-experimental dietary procedures can significantly affect results, and by extension, research homogeneity and reproducibility, especially in acute ischemic brain injury models.
Collapse
Affiliation(s)
- Matine Azadian
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Guilian Tian
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Afsheen Bazrafkan
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Niki Maki
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Masih Rafi
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Nikole Chetty
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Monica Desai
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ieeshiah Otarola
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Francisco Aguirre
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Shuhab M. Zaher
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ashar Khan
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Yusuf Suri
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Minwei Wang
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Beth A. Lopour
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Oswald Steward
- Reeve-Irvine Research Center, School of Medicine, University of California, Irvine, Irvine, CA, United States
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
| | - Yama Akbari
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, United States
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Neurological Surgery, School of Medicine, University of California, Irvine, Irvine, CA, United States
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
25
|
Zaghmi A, Dopico-López A, Pérez-Mato M, Iglesias-Rey R, Hervella P, Greschner AA, Bugallo-Casal A, da Silva A, Gutiérrez-Fernández M, Castillo J, Pérez FC, Gauthier MA. Sustained blood glutamate scavenging enhances protection in ischemic stroke. Commun Biol 2020; 3:729. [PMID: 33273696 PMCID: PMC7713697 DOI: 10.1038/s42003-020-01406-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Stroke is a major cause of morbidity, mortality, and disability. During ischemic stroke, a marked and prolonged rise of glutamate concentration in the brain causes neuronal cell death. This study explores the protective effect of a bioconjugate form of glutamate oxaloacetate transaminase (hrGOT), which catalyzes the depletion of blood glutamate in the bloodstream for ~6 days following a single administration. When treated with this bioconjugate, a significant reduction of the infarct volume and a better retention of sensorimotor function was observed for ischemic rats compared to those treated with saline. Moreover, the equivalent dose of native hrGOT yielded similar results to the saline treated group for some tests. Targeting the bioconjugate to the blood-brain-barrier did not improve its performance. The data suggest that the bioconjugates draw glutamate out of the brain by displacing homeostasis between the different glutamate pools of the body.
Collapse
Affiliation(s)
- Ahlem Zaghmi
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, Qc, J3X 1S2, Canada
| | - Antonio Dopico-López
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Pérez-Mato
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ramón Iglesias-Rey
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Hervella
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Andrea A Greschner
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, Qc, J3X 1S2, Canada
| | - Ana Bugallo-Casal
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Andrés da Silva
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Gutiérrez-Fernández
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - José Castillo
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos Pérez
- Clinical Neuroscience Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, Qc, J3X 1S2, Canada.
| |
Collapse
|
26
|
Bonova P, Jachova J, Nemethova M, Bona M, Kollarova P, Gottlieb M. Accelerated capacity of glutamate uptake via blood elements as a possible tool of rapid remote conditioning mediated tissue protection. Neurochem Int 2020; 142:104927. [PMID: 33259861 DOI: 10.1016/j.neuint.2020.104927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Recently, the function of blood cells in remote ischemic conditioning (RIC) mediated neuroprotection was undoubtedly confirmed. In the present paper, we have focused on the role of blood elements in glutamate homeostasis. The blood of remote conditioned (tolerant) animals was incubated ex vivo with 100 μM glutamate, and the quantitative and qualitative changes of excitatory amino acid transporters (EAAT 1, 2, and 3) were determined. We confirmed RIC mediated accelerated sequestration of extracellular glutamate via EAATs and altered distribution of that amino acid between plasma and cell elements compared to non-tolerant counterparts. The activity of EAATs was elevated in erythrocytes and monocytes, while the density of transporters was not affected. Quantitative changes of EAAT1 density were detected solely in platelets where the forced scavenging was independent of EAATs inhibition. Surprisingly, the trafficking of immunovisualised EAAT2 and 3 raised at tolerant erythrocytes and monocytes. We have found that protein synthesis underlined this process. On the other hand, depletion of protein synthesis did not significantly affect the scavenging capacity of those cell populations. Our work has demonstrated that the elevated blood scavenging of glutamate overdose could be one of the potential mechanisms underlying RIC mediated tissue protection.
Collapse
Affiliation(s)
- Petra Bonova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | - Jana Jachova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Kosice, Slovak Republic
| | - Miroslava Nemethova
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Kosice, Slovak Republic
| | - Martin Bona
- Department of Medical Physiology, Faculty of Medicine, University of Pavol Jozef Safarik, Kosice, Slovak Republic
| | - Patricia Kollarova
- Department of Pathology, Faculty of Medicine, University of Pavol Jozef Safarik, Kosice, Slovak Republic
| | - Miroslav Gottlieb
- Institute of Neurobiology of Biomedical Research Center, Slovak Academy of Sciences, Kosice, Slovak Republic
| |
Collapse
|
27
|
Beutel T, Dzimiera J, Kapell H, Engelhardt M, Gass A, Schirmer L. Cortical projection neurons as a therapeutic target in multiple sclerosis. Expert Opin Ther Targets 2020; 24:1211-1224. [PMID: 33103501 DOI: 10.1080/14728222.2020.1842358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory-demyelinating disease of the central nervous system associated with lesions of the cortical gray matter and subcortical white matter. Recently, cortical lesions have become a major focus of research because cortical pathology and neuronal damage are critical determinants of irreversible clinical progression. Recent transcriptomic studies point toward cell type-specific changes in cortical neurons in MS with a selective vulnerability of excitatory projection neuron subtypes. AREAS COVERED We discuss the cortical mapping and the molecular properties of excitatory projection neurons and their role in MS lesion pathology while placing an emphasis on their subtype-specific transcriptomic changes and levels of vulnerability. We also examine the latest magnetic resonance imaging techniques to study cortical MS pathology as a key tool for monitoring disease progression and treatment efficacy. Finally, we consider possible therapeutic avenues and novel strategies to protect excitatory cortical projection neurons. Literature search methodology: PubMed articles from 2000-2020. EXPERT OPINION Excitatory cortical projection neurons are an emerging therapeutic target in the treatment of progressive MS. Understanding neuron subtype-specific molecular pathologies and their exact spatial mapping will help establish starting points for the development of novel cell type-specific therapies and biomarkers in MS.
Collapse
Affiliation(s)
- Tatjana Beutel
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany
| | - Julia Dzimiera
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany
| | - Hannah Kapell
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany
| | - Maren Engelhardt
- Institute of Neuroanatomy, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University , Heidelberg, Germany
| | - Achim Gass
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University , Mannheim, Germany.,Interdisciplinary Center for Neurosciences, Heidelberg University , Heidelberg, Germany
| |
Collapse
|
28
|
Lu Z, Ma G, Chen L. De-Ritis Ratio Is Associated with Mortality after Cardiac Arrest. DISEASE MARKERS 2020; 2020:8826318. [PMID: 33204363 PMCID: PMC7657697 DOI: 10.1155/2020/8826318] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The aim of our study was to explore the associations of the aspartate transaminase/alanine transaminase (De-Ritis) ratio with outcomes after cardiac arrest (CA). METHODS This retrospective study included 374 consecutive adult cardiac arrest patients. Information on the study population was obtained from the Dryad Digital Repository. Patients were divided into tertiles based on their De-Ritis ratio. The logistic regression hazard analysis was used to assess the independent relationship between the De-Ritis ratio and mortality. The Kaplan-Meier method and log-rank test were used to estimate the survival of different groups. Receiver operating characteristic (ROC) curve analysis was utilized to compare the prognostic ability of biomarkers. A model combining the De-Ritis ratio was established, and its performance was evaluated using the Akaike information criterion (AIC). RESULTS Of the 374 patients who were included in the study, 194 patients (51.9%) died in the intensive care unit (ICU), 213 patients (57.0%) died during hospitalization, and 226 patients (60.4%) had an unfavorable neurologic outcome. Logistic regression analysis including potentially confounding factors showed that the De-Ritis ratio was independently associated with mortality, yielding a more than onefold risk of ICU mortality (OR 1.455; 95% CI 1.088-1.946; p = 0.011) and hospital mortality (OR 1.378; 95% CI 1.031-1.842; p = 0.030). Discriminatory performance assessed by ROC curves showed an area under the curve of 0.611 (95% CI 0.553-0.668) for ICU mortality and 0.625 (0.567-0.682) for hospital mortality. Further, the likelihood ratio test (LRT) analysis showed that the model combining the De-Ritis ratio had a smaller AIC and higher likelihood ratio χ 2 score than the model without the De-Ritis ratio. The Kaplan-Meier curves showed that the CA patients in the De-Ritis ratio tertile 3 group clearly had a significantly higher incidence of ICU mortality (log - rank = 0.007). CONCLUSION An elevated De-Ritis ratio on admission was significantly associated with ICU mortality and hospital mortality after CA. Assessment of the De-Ritis ratio might help identify groups at high risk for mortality.
Collapse
Affiliation(s)
- Zhengri Lu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lijuan Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
29
|
Goldshmit Y, Banyas E, Bens N, Yakovchuk A, Ruban A. Blood glutamate scavengers and exercises as an effective neuroprotective treatment in mice with spinal cord injury. J Neurosurg Spine 2020; 33:692-704. [PMID: 32619986 DOI: 10.3171/2020.4.spine20302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/16/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Excitotoxicity due to neuronal damage and glutamate release is one of the first events that leads to the progression of neuronal degeneration and functional impairment. This study is based on a paradigm shift in the therapeutic approach for treating spinal cord injury (SCI). The authors tested a new treatment targeting removal of CNS glutamate into the blood circulation by injection of the blood glutamate scavengers (BGSs) recombinant enzyme glutamate-oxaloacetate transaminase (rGOT1) and its cosubstrate oxaloacetic acid (OxAc). Their primary objective was to investigate whether BGS treatment, followed by treadmill exercises in mice with SCI, could attenuate excitotoxicity, inflammation, scarring, and axonal degeneration and, at a later time point, improve functional recovery. METHODS A pharmacokinetic experiment was done in C57BL/6 naive mice to verify rGOT1/OxAc blood activity and to characterize the time curve of glutamate reduction in the blood up to 24 hours. The reduction of glutamate in CSF after BGS administration in mice with SCI was confirmed by high-performance liquid chromatography. Next, SCI (left hemisection) was induced in the mice, and the mice were randomly assigned to one of the following groups at 1 hour postinjury: control (underwent SCI and received PBS), treadmill exercises, rGOT1/OxAc treatment, or rGOT1/OxAc treatment followed by treadmill exercises. Treatment started 1 hour postinjury with an injection of rGOT1/OxAc and continued for 5 consecutive days. Starting 1 week after SCI, the exercises and the combined treatment groups recommenced the treadmill exercise regimen 5 days a week for 3 months. Locomotor function was assessed for 3 months using the horizontal grid walking test and CatWalk. Axonal anterograde and wallerian degenerations were evaluated using tetramethylrhodamine dextran. Tissue sections were immunofluorescently stained for Iba1, GFAP, GAP-43, synaptophysin, and NeuN. RESULTS BGS treatment decreased the CSF glutamate level up to 50%, reduced axonal wallerian degeneration, and increased axonal survival and GAP-43 expression in neuronal cells. Combined treatment reduced inflammation, scarring, and lesion size. Additionally, the combination of BGS treatment and exercises increased synapses around motor neurons and enhanced axonal regeneration through the lesion site. This resulted in motor function improvement 3 months post-SCI. CONCLUSIONS As shown by biochemical, immunohistochemical, and functional analysis, BGSs exhibit a substantial neuroprotective effect by reducing excitotoxicity and secondary damage after SCI. Furthermore, in combination with exercises, they reduced axonal degeneration and scarring and resulted in improved functional recovery.
Collapse
Affiliation(s)
- Yona Goldshmit
- 1Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- 2Australian Regenerative Medicine Institute, Monash Biotechnology, Clayton, Victoria, Australia; and
| | - Evgeni Banyas
- 1Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nicole Bens
- 1Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alex Yakovchuk
- 1Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Angela Ruban
- 1Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- 3Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Hinca SB, Salcedo C, Wagner A, Goldeman C, Sadat E, Aibar MMD, Maechler P, Brodin B, Aldana BI, Helms HCC. Brain endothelial cells metabolize glutamate via glutamate dehydrogenase to replenish TCA-intermediates and produce ATP under hypoglycemic conditions. J Neurochem 2020; 157:1861-1875. [PMID: 33025588 DOI: 10.1111/jnc.15207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022]
Abstract
The endothelial cells of the blood-brain barrier participate in the regulation of glutamate concentrations in the brain interstitial fluid by taking up brain glutamate. However, endothelial glutamate metabolism has not been characterized, nor is its role in brain glutamate homeostasis and endothelial energy production known. The aim of this study was to investigate endothelial glutamate dehydrogenase (GDH) expression and glutamate metabolism and probe its functional significance. The primary brain endothelial cells were isolated from bovine and mouse brains, and human brain endothelial cells were derived from induced pluripotent stem cells. GDH expression on the protein level and GDH function were investigated in the model systems using western blotting, confocal microscopy, 13 C-glutamate metabolism, and Seahorse assay. In this study, it was shown that GDH was expressed in murine and bovine brain capillaries and in cultured primary mouse and bovine brain endothelial cells as well as in human-induced pluripotent stem cell-derived endothelial cells. The endothelial GDH expression was confirmed in brain capillaries from mice carrying a central nervous system-specific GDH knockout. Endothelial cells from all tested species metabolized 13 C-glutamate to α-ketoglutarate, which subsequently entered the tricarboxylic acid (TCA)-cycle. Brain endothelial cells maintained mitochondrial oxygen consumption rates, when supplied with glutamate alone, whereas glutamate supplied in addition to glucose did not lead to additional oxygen consumption. In conclusion, brain endothelial cells directly take up and metabolize glutamate and utilize the resulting α-ketoglutarate in the tricarboxylic acid cycle to ultimately yield ATP if glucose is unavailable.
Collapse
Affiliation(s)
- Sven B Hinca
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Salcedo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Antonie Wagner
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Goldeman
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Edris Sadat
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marco M D Aibar
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, CMU, University of Geneva, Geneva, Switzerland
| | - Birger Brodin
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans C C Helms
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Revisiting Traumatic Brain Injury: From Molecular Mechanisms to Therapeutic Interventions. Biomedicines 2020; 8:biomedicines8100389. [PMID: 33003373 PMCID: PMC7601301 DOI: 10.3390/biomedicines8100389] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022] Open
Abstract
Studying the complex molecular mechanisms involved in traumatic brain injury (TBI) is crucial for developing new therapies for TBI. Current treatments for TBI are primarily focused on patient stabilization and symptom mitigation. However, the field lacks defined therapies to prevent cell death, oxidative stress, and inflammatory cascades which lead to chronic pathology. Little can be done to treat the mechanical damage that occurs during the primary insult of a TBI; however, secondary injury mechanisms, such as inflammation, blood-brain barrier (BBB) breakdown, edema formation, excitotoxicity, oxidative stress, and cell death, can be targeted by therapeutic interventions. Elucidating the many mechanisms underlying secondary injury and studying targets of neuroprotective therapeutic agents is critical for developing new treatments. Therefore, we present a review on the molecular events following TBI from inflammation to programmed cell death and discuss current research and the latest therapeutic strategies to help understand TBI-mediated secondary injury.
Collapse
|
32
|
Zeynaloo E, Yang YP, Dikici E, Landgraf R, Bachas LG, Daunert S. Design of a mediator-free, non-enzymatic electrochemical biosensor for glutamate detection. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102305. [PMID: 32992017 DOI: 10.1016/j.nano.2020.102305] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
A mediator-free, non-enzymatic electrochemical biosensor was constructed by covalent immobilization of a genetically engineered periplasmic glutamate binding protein onto gold nanoparticle-modified, screen-printed carbon electrodes (GluBP/AuNP/SPCE) for the purpose of direct measurement of glutamate levels. Glutamate serves as the predominant excitatory neurotransmitter in the central nervous system. As high levels of glutamate are an indicator of many neurologic disorders, there is a need for advancements in glutamate detection technologies. The biosensor was evaluated for glutamate detection by cyclic voltammetry. Binding of glutamate to the immobilized glutamate binding protein results in a conformational change of the latter that alters the microenvironment on the surface of the sensor, which is manifested as a change in signal. Dose-response plots correlating the electrochemical signal to glutamate concentration revealed a detection limit of 0.15 μM with a linear range of 0.1-0.8 μM. Selectivity studies confirmed a strong preferential response of the biosensor for glutamate against common interfering compounds.
Collapse
Affiliation(s)
- Elnaz Zeynaloo
- Department of Biochemistry and Molecular Biology, , Miller School of Medicine, University of Miami, Miami, Florida, United States; Department of Chemistry, University of Miami, Miami, Florida, United States
| | - Yu-Ping Yang
- Department of Biochemistry and Molecular Biology, , Miller School of Medicine, University of Miami, Miami, Florida, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, United States
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, , Miller School of Medicine, University of Miami, Miami, Florida, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, United States
| | - Ralf Landgraf
- Department of Biochemistry and Molecular Biology, , Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Leonidas G Bachas
- Department of Chemistry, University of Miami, Miami, Florida, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, United States.
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, , Miller School of Medicine, University of Miami, Miami, Florida, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, United States; University of Miami Clinical and Translational Science Institute, University of Miami, Miami, Florida, United States.
| |
Collapse
|
33
|
Mohapatra SS, Frisina RD, Mohapatra S, Sneed KB, Markoutsa E, Wang T, Dutta R, Damnjanovic R, Phan MH, Denmark DJ, Biswal MR, McGill AR, Green R, Howell M, Ghosh P, Gonzalez A, Ahmed NT, Borresen B, Farmer M, Gaeta M, Sharma K, Bouchard C, Gamboni D, Martin J, Tolve B, Singh M, Judy JW, Li C, Santra S, Daunert S, Zeynaloo E, Gelfand RM, Lenhert S, McLamore ES, Xiang D, Morgan V, Friedersdorf LE, Lal R, Webster TJ, Hoogerheide DP, Nguyen TD, D’Souza MJ, Çulha M, Kondiah PPD, Martin DK. Advances in Translational Nanotechnology: Challenges and Opportunities. APPLIED SCIENCES (BASEL, SWITZERLAND) 2020; 10:10.3390/app10144881. [PMID: 38486792 PMCID: PMC10938472 DOI: 10.3390/app10144881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The burgeoning field of nanotechnology aims to create and deploy nanoscale structures, devices, and systems with novel, size-dependent properties and functions. The nanotechnology revolution has sparked radically new technologies and strategies across all scientific disciplines, with nanotechnology now applied to virtually every area of research and development in the US and globally. NanoFlorida was founded to create a forum for scientific exchange, promote networking among nanoscientists, encourage collaborative research efforts across institutions, forge strong industry-academia partnerships in nanoscience, and showcase the contributions of students and trainees in nanotechnology fields. The 2019 NanoFlorida International Conference expanded this vision to emphasize national and international participation, with a focus on advances made in translating nanotechnology. This review highlights notable research in the areas of engineering especially in optics, photonics and plasmonics and electronics; biomedical devices, nano-biotechnology, nanotherapeutics including both experimental nanotherapies and nanovaccines; nano-diagnostics and -theranostics; nano-enabled drug discovery platforms; tissue engineering, bioprinting, and environmental nanotechnology, as well as challenges and directions for future research.
Collapse
Affiliation(s)
- Shyam S. Mohapatra
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
- Departments of Molecular Medicine and Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Robert D. Frisina
- Department of Chemical and Biomedical Engineering and Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33620, USA
| | - Subhra Mohapatra
- Departments of Molecular Medicine and Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Kevin B. Sneed
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Eleni Markoutsa
- Departments of Molecular Medicine and Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Tao Wang
- Departments of Molecular Medicine and Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Rinku Dutta
- Departments of Molecular Medicine and Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Ratka Damnjanovic
- Department of Chemical and Biomedical Engineering and Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33620, USA
| | - Manh-Huong Phan
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Daniel J. Denmark
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Manas R. Biswal
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Andrew R. McGill
- Departments of Molecular Medicine and Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Ryan Green
- Departments of Molecular Medicine and Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Mark Howell
- Departments of Molecular Medicine and Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Payal Ghosh
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Alejandro Gonzalez
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Nadia Tasnim Ahmed
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Brittney Borresen
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Mitchell Farmer
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Melissa Gaeta
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Krishna Sharma
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Christen Bouchard
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Danielle Gamboni
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Jamie Martin
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Bianca Tolve
- Taneja College of Pharmacy Graduate Programs, University of South Florida, Tampa, FL 33612, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Jack W. Judy
- University of Florida Department of Electrical and Computer Engineering and Nanoscience Institute for Medical and Engineering Technology, Gainesville, FL 32611, USA
| | - Chenzhong Li
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, Burnett School of Biomedical Sciences, Department of Chemistry and Department of Materials Science and Engineering, Orlando, FL 32826, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, and Department of Chemistry, Miami, FL 33124, USA
| | - Elnaz Zeynaloo
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, and Department of Chemistry, Miami, FL 33124, USA
| | - Ryan M. Gelfand
- School of Science and Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Steven Lenhert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Eric S. McLamore
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Dong Xiang
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32603, USA
| | - Victoria Morgan
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32603, USA
| | | | - Ratnesh Lal
- Center for Excellence in Nanomedicine and Engineering, University of California San Diego, IEM, La Jolla, CA 92093, USA
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - David P. Hoogerheide
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, MD 20899, USA
| | - Thanh Duc Nguyen
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Martin J. D’Souza
- Department of Pharmaceutical Sciences, Nanotechnology Laboratory, Mercer University, Atlanta, GA 30341, USA
| | - Mustafa Çulha
- Knight Cancer Institute, Cancer Early Detection Advanced Research (CEDAR), Oregon Health and Science University, Portland, OR 97239, USA
| | - Pierre P. D. Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Donald K. Martin
- Faculté de Pharmacie and TIMC-IMAG (UMR 5525), University Grenoble Alpes, SyNaBi, 38000 Grenoble, France
| |
Collapse
|
34
|
Gruenbaum BF, Kutz R, Zlotnik A, Boyko M. Blood glutamate scavenging as a novel glutamate-based therapeutic approach for post-stroke depression. Ther Adv Psychopharmacol 2020; 10:2045125320903951. [PMID: 32110376 PMCID: PMC7026819 DOI: 10.1177/2045125320903951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022] Open
Abstract
Post-stroke depression (PSD) is a major complication of stroke that significantly impacts functional recovery and quality of life. While the exact mechanism of PSD is unknown, recent attention has focused on the association of the glutamatergic system in its etiology and treatment. Minimizing secondary brain damage and neuropsychiatric consequences associated with excess glutamate concentrations is a vital part of stroke management. The blood glutamate scavengers, oxaloacetate and pyruvate, degrade glutamate in the blood to its inactive metabolite, 2-ketoglutarate, by the coenzymes glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT), respectively. This reduction in blood glutamate concentrations leads to a subsequent shift of glutamate down its concentration gradient from the blood to the brain, thereby decreasing brain glutamate levels. Although there are not yet any human trials that support blood glutamate scavengers for clinical use, there is increasing evidence from animal research of their efficacy as a promising new therapeutic approach for PSD. In this review, we present recent evidence in the literature of the potential therapeutic benefits of blood glutamate scavengers for reducing PSD and other related neuropsychiatric conditions. The evidence reviewed here should be useful in guiding future clinical trials.
Collapse
Affiliation(s)
- Benjamin F Gruenbaum
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ruslan Kutz
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexander Zlotnik
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Matthew Boyko
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| |
Collapse
|
35
|
Schultz J, Uddin Z, Singh G, Howlader MMR. Glutamate sensing in biofluids: recent advances and research challenges of electrochemical sensors. Analyst 2020; 145:321-347. [DOI: 10.1039/c9an01609k] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Electrochemical sensing guidelines for glutamate in biofluids, associated with different diseases, providing knowledge translation among science, engineering, and medical professionals.
Collapse
Affiliation(s)
- Jessica Schultz
- Department of Electrical and Computer Engineering
- McMaster University
- Hamilton
- Canada
| | - Zakir Uddin
- School of Rehabilitation Science
- McMaster University
- Hamilton
- Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine
- McMaster University
- Hamilton
- Canada
| | | |
Collapse
|
36
|
The effect of antecedent-conditioning high-intensity interval training on BDNF regulation through PGC-1α pathway following cerebral ischemia. Brain Res 2019; 1729:146618. [PMID: 31866362 DOI: 10.1016/j.brainres.2019.146618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 11/23/2022]
Abstract
Earlier studies have demonstrated that exercise training can result in the diminishing of ischemic stroke-induced damages as well as BDNF misregulation. However, the underlying mechanisms of BDNF changes in response to ischemic stroke and exercise are still not entirely understood. Therefore, the aim of the current study was to determine whether high-intensity interval training (HIIT) in hippocampus of rat model of ischemic stroke intercedes PPARγ coactivator 1α (PGC1α)-pathway factors and BDNF regulation following induction of ischemic stroke. For this purpose, in this study, induction of middle cerebral artery occlusion (MCAO) was accomplished following the completion of HIIT. To define the molecular mechanisms that might be responsible for HIIT-associated improvements subsequent to cerebral ischemia, we likewise evaluated PGC-1α-pathway factors that may be essential for BDNF upregulation after MCAO via immunofluorescence tracking and ELISA immunoassay. Taking our findings together, three weeks of antecedent-HIIT resulted in more expression and delivery of BDNF in brain and plasma following MCAO through PGC-1α-pathway (p < 0.05). The present investigation also found a close relationship between expressed PGC-1α-pathway factors in brain and their concentrations in plasma (p < 0.05). In conclusion, findings of the current study exhibited that induction of cerebral ischemia as well as HIIT intervention both were associated with expression of PGC-1α-pathway factors in brain and their deliverance to blood. Consequently, these alterations may be considered as a protective factor against post-stroke neurological and functional disorders in the stroke model.
Collapse
|
37
|
Jirak D, Ziolkowska N, Turnovcova K, Karova K, Sykova E, Jendelova P, Romanyuk N. Metabolic Changes in Focal Brain Ischemia in Rats Treated With Human Induced Pluripotent Stem Cell-Derived Neural Precursors Confirm the Beneficial Effect of Transplanted Cells. Front Neurol 2019; 10:1074. [PMID: 31695666 PMCID: PMC6818685 DOI: 10.3389/fneur.2019.01074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
There is currently no treatment for restoring lost neurological function after stroke. A growing number of studies have highlighted the potential of stem cells. However, the mechanisms underlying their beneficial effect have yet to be explored in sufficient detail. In this study, we transplanted human induced pluripotent stem cell-derived neural precursors (iPSC-NPs) in rat temporary middle cerebral artery occlusion (MCAO) model. Using magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) we monitored the effect of cells and assessed lesion volume and metabolite changes in the brain. We monitored concentration changes of myo-inositol (Ins), Taurine (Tau), Glycerophosphocholine+Phosphocholine (GPC+PCh), N-acetyl-aspartate+N-acetyl-aspartyl-glutamate (NAA+NAAG), Creatine+Phosphocreatine (Cr+PCr), and Glutamate+Glutamine (Glu+Gln) in the brains of control and iPSC-NP-transplanted rats. Based on initial lesion size, animals were divided into small lesion and big lesion groups. In the small lesion control group (SCL), lesion size after 4 months was three times smaller than initial measurements. In the small lesion iPSC-NP-treated group, lesion volume decreased after 1 month and then increased after 4 months. Although animals with small lesions significantly improved their motor skills after iPSC-NP transplantation, animals with big lesions showed no improvement. However, our MRI data demonstrate that in the big lesion iPSC-NP-treated (BTL) group, lesion size increased only up until 1 month after MCAO induction and then decreased. In contrast, in the big lesion control group, lesion size increased throughout the whole experiment. Significantly higher concentrations of Ins, Tau, GPC+PCh, NAA+NAAG, Cr+PCr, and Glu+Gln were found in in contralateral hemisphere in BTL animals 4 months after cell injection. Lesion volume decreased at this time point. Spectroscopic results of metabolite concentrations in lesion correlated with volumetric measurements of lesion, with the highest negative correlation observed for NAA+NAAG. Altogether, our results suggest that iPSC-NP transplantation decreases lesion volume and regulates metabolite concentrations within the normal range expected in healthy tissue. Further research into the ability of iPSC-NPs to differentiate into tissue-specific neurons and its effect on the long-term restoration of lesioned tissue is necessary.
Collapse
Affiliation(s)
- Daniel Jirak
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czechia
- First Faculty of Medicine, Institute of Biophysics and Informatics, Charles University, Prague, Czechia
- Faculty of Health Studies, Technical University of Liberec, Liberec, Czechia
| | - Natalia Ziolkowska
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czechia
- First Faculty of Medicine, Institute of Biophysics and Informatics, Charles University, Prague, Czechia
| | - Karolina Turnovcova
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Kristyna Karova
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Eva Sykova
- Department of Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Pavla Jendelova
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Department of Neuroscience, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Nataliya Romanyuk
- Department of Neuroregeneration, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
38
|
Xu J, Khoury N, Jackson CW, Escobar I, Stegelmann SD, Dave KR, Perez-Pinzon MA. Ischemic Neuroprotectant PKCε Restores Mitochondrial Glutamate Oxaloacetate Transaminase in the Neuronal NADH Shuttle after Ischemic Injury. Transl Stroke Res 2019; 11:418-432. [PMID: 31473978 DOI: 10.1007/s12975-019-00729-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022]
Abstract
The preservation of mitochondrial function is a major protective strategy for cerebral ischemic injuries. Previously, our laboratory demonstrated that protein kinase C epsilon (PKCε) promotes the synthesis of mitochondrial nicotinamide adenine dinucleotide (NAD+). NAD+ along with its reducing equivalent, NADH, is an essential co-factor needed for energy production from glycolysis and oxidative phosphorylation. Yet, NAD+/NADH are impermeable to the inner mitochondrial membrane and their import into the mitochondria requires the activity of specific shuttles. The most important neuronal NAD+/NADH shuttle is the malate-aspartate shuttle (MAS). The MAS has been implicated in synaptic function and is potentially dysregulated during cerebral ischemia. The aim of this study was to determine if metabolic changes induced by PKCε preconditioning involved regulation of the MAS. Using primary neuronal cultures, we observed that the activation of PKCε enhanced mitochondrial respiration and glycolysis in vitro. Conversely, inhibition of the MAS resulted in decreased oxidative phosphorylation and glycolytic capacity. We further demonstrated that activation of PKCε increased the phosphorylation of key components of the MAS in rat brain synaptosomal fractions. Additionally, PKCε increased the enzyme activity of glutamic oxaloacetic transaminase 2 (GOT2), an effect that was dependent on the import of PKCε into the mitochondria and phosphorylation of GOT2. Furthermore, PKCε activation was able to rescue decreased GOT2 activity induced by ischemia. These findings reveal novel protective targets and mechanisms against ischemic injury, which involves PKCε-mediated phosphorylation and activation of GOT2 in the MAS.
Collapse
Affiliation(s)
- Jing Xu
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Nathalie Khoury
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Charles W Jackson
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Iris Escobar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Samuel D Stegelmann
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, P.O. Box 016960, Miami, FL, 33136, USA.
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
39
|
Argibay B, Campos F, Perez-Mato M, Vieites-Prado A, Correa-Paz C, López-Arias E, Da Silva-Candal A, Moreno V, Montero C, Sobrino T, Castillo J, Iglesias-Rey R. Light-Emitting Diode Photobiomodulation After Cerebral Ischemia. Front Neurol 2019; 10:911. [PMID: 31507516 PMCID: PMC6713875 DOI: 10.3389/fneur.2019.00911] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/06/2019] [Indexed: 11/14/2022] Open
Abstract
Photobiomodulation (PBM) therapy is a promising therapeutic approach for several pathologies, including stroke. The biological effects of PBM for the treatment of cerebral ischemia have previously been explored as a neuroprotective strategy using different light sources, wavelengths, and incident light powers. However, the capability of PBM as a novel alternative therapy to stimulate the recovery of the injured neuronal tissue after ischemic stroke has been poorly explored. The aim of this study was to investigate the low-level light irradiation therapy by using Light Emitting Diodes (LEDs) as potential therapeutic strategy for stroke. The LED photobiomodulation (continuous wave, 830 nm, 0.2–0.6 J/cm2) was firstly evaluated at different energy densities in C17.2 immortalized mouse neural progenitor cell lines, in order to observe if this treatment had any effect on cells, in terms of proliferation and viability. Then, the PBM-LED effect (continuous wave, 830 nm, 0.28 J/cm2 at brain cortex) on long-term recovery (12 weeks) was analyzed in ischemic animal model by means lesion reduction, behavioral deficits, and functional magnetic resonance imaging (fMRI). Analysis of cellular proliferation after PBM was significantly increased (1 mW) in all different exposure times used; however, this effect could not be replicated in vivo experimental conditions, as PBM did not show an infarct reduction or functional recovery. Despite the promising therapeutic effect described for PBM, further preclinical studies are necessary to optimize the therapeutic window of this novel therapy, in terms of the mechanism associated to neurorecovery and to reduce the risk of failure in futures clinical trials.
Collapse
Affiliation(s)
- Bárbara Argibay
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María Perez-Mato
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alba Vieites-Prado
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Clara Correa-Paz
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Esteban López-Arias
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Andrés Da Silva-Candal
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Vicente Moreno
- Optics Area, Department of Applied Physics, Faculty of Physics, Universitdade de Santiago de Compostela, Santiago de Compostela, Spain.,Faculty of Optics and Optometry, Universitdade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos Montero
- Optics Area, Department of Applied Physics, Faculty of Physics, Universitdade de Santiago de Compostela, Santiago de Compostela, Spain.,Faculty of Optics and Optometry, Universitdade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
40
|
You J, Feng L, Bao L, Xin M, Ma D, Feng J. Potential Applications of Remote Limb Ischemic Conditioning for Chronic Cerebral Circulation Insufficiency. Front Neurol 2019; 10:467. [PMID: 31130914 PMCID: PMC6509171 DOI: 10.3389/fneur.2019.00467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic cerebral circulation insufficiency (CCCI) refers to a chronic decrease in cerebral blood perfusion, which may lead to cognitive impairment, psychiatric disorders such as depression, and acute ischemic stroke. Remote limb ischemic conditioning (RLIC), in which the limbs are subjected to a series of transient ischemic attacks, can activate multiple endogenous protective mechanisms to attenuate fatal ischemic injury to distant organs due to acute ischemia, such as ischemic stroke. Recent studies have also reported that RLIC can alleviate dysfunction in distant organs caused by chronic, non-fatal reductions in blood supply (e.g., CCCI). Indeed, research has indicated that RLIC may exert neuroprotective effects against CCCI through a variety of potential mechanisms, including attenuated glutamate excitotoxicity, improved endothelial function, increased cerebral blood flow, regulation of autophagy and immune responses, suppression of apoptosis, the production of protective humoral factors, and attenuated accumulation of amyloid-β. Verification of these findings is necessary to improve prognosis and reduce the incidence of acute ischemic stroke/cognitive impairment in patients with CCCI.
Collapse
Affiliation(s)
- Jiulin You
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Liangshu Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Liyang Bao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meiying Xin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
Pérez-Mato M, Iglesias-Rey R, Vieites-Prado A, Dopico-López A, Argibay B, Fernández-Susavila H, da Silva-Candal A, Pérez-Díaz A, Correa-Paz C, Günther A, Ávila-Gómez P, Isabel Loza M, Baumann A, Castillo J, Sobrino T, Campos F. Blood glutamate EAAT 2-cell grabbing therapy in cerebral ischemia. EBioMedicine 2018; 39:118-131. [PMID: 30555045 PMCID: PMC6354443 DOI: 10.1016/j.ebiom.2018.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 01/10/2023] Open
Abstract
Background Excitatory amino acid transporter 2 (EAAT2) plays a pivotal role in glutamate clearance in the adult brain, thereby preventing excitotoxic effects. Considering the high efficacy of EAAT2 for glutamate uptake, we hypothesized that the expression of this transporter in mesenchymal stem cells (MSCs) for systemic administration could yield a cell-based glutamate-grabbing therapy, combining the intrinsic properties of these cells with excitotoxic protection. Methods To address this hypothesis, EAAT2-encoding cDNA was introduced into MSCs and human embryonic kidney 293 cells (HEK cells) as the control cell line. EAAT2 expression and functionality were evaluated by in vitro assays. Blood glutamate-grabbing activity was tested in healthy and ischemic rat models treated with 3 × 106 and 9 × 106 cells/animal. Findings The expression of EAAT2 in both cell types conferred the expected glutamate-grabbing activity in in vitro and in vivo studies. The functional improvement observed in ischemic rats treated with EAAT2–HEK at low dose, confirmed that this effect was indeed mediated by the glutamate-grabbing activity associated with EAAT2 functionality. Unexpectedly, both cell doses of non-transfected MSCs induced higher protection than transfected EAAT2–MSCs by another mechanism independent of the glutamate-grabbing capacity. Interpretation Although the transfection procedure most likely interferes with some of the intrinsic protective mechanisms of mesenchymal cells, the results show that the induced expression of EAAT2 in cells represents a novel alternative to mitigate the excitotoxic effects of glutamate and paves the way to combine this strategy with current cell therapies for cerebral ischemia.
Collapse
Affiliation(s)
- María Pérez-Mato
- Clinical Neurosciences Research Laboratory (LINC), Department of Neurology, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory (LINC), Department of Neurology, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Santiago de Compostela, Spain
| | - Alba Vieites-Prado
- Clinical Neurosciences Research Laboratory (LINC), Department of Neurology, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Santiago de Compostela, Spain
| | - Antonio Dopico-López
- Clinical Neurosciences Research Laboratory (LINC), Department of Neurology, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Santiago de Compostela, Spain
| | - Bárbara Argibay
- Clinical Neurosciences Research Laboratory (LINC), Department of Neurology, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Santiago de Compostela, Spain
| | - Héctor Fernández-Susavila
- Clinical Neurosciences Research Laboratory (LINC), Department of Neurology, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Santiago de Compostela, Spain
| | - Andrés da Silva-Candal
- Clinical Neurosciences Research Laboratory (LINC), Department of Neurology, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Santiago de Compostela, Spain
| | - Amparo Pérez-Díaz
- Drug Screening Platform/Biofarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Clara Correa-Paz
- Clinical Neurosciences Research Laboratory (LINC), Department of Neurology, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Santiago de Compostela, Spain
| | - Anne Günther
- Institute of Complex Systems-Cellular Biophysics (ICS-4), Forschungszentrum Jülich, Jülich, Germany
| | - Paulo Ávila-Gómez
- Clinical Neurosciences Research Laboratory (LINC), Department of Neurology, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Santiago de Compostela, Spain
| | - M Isabel Loza
- Drug Screening Platform/Biofarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Arnd Baumann
- Institute of Complex Systems-Cellular Biophysics (ICS-4), Forschungszentrum Jülich, Jülich, Germany
| | - José Castillo
- Clinical Neurosciences Research Laboratory (LINC), Department of Neurology, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Santiago de Compostela, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory (LINC), Department of Neurology, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Santiago de Compostela, Spain.
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory (LINC), Department of Neurology, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital, Santiago de Compostela, Spain.
| |
Collapse
|
42
|
Augur ZM, Doyle CM, Li M, Mukherjee P, Seyfried TN. Nontoxic Targeting of Energy Metabolism in Preclinical VM-M3 Experimental Glioblastoma. Front Nutr 2018; 5:91. [PMID: 30349820 PMCID: PMC6186985 DOI: 10.3389/fnut.2018.00091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
Introduction: Temozolomide (TMZ) is part of the standard of care for treating glioblastoma multiforme (GBM), an aggressive primary brain tumor. New approaches are needed to enhance therapeutic efficacy and reduce toxicity. GBM tumor cells are dependent on glucose and glutamine while relying heavily on aerobic fermentation for energy metabolism. Restricted availability of glucose and glutamine may therefore reduce disease progression. Calorically restricted ketogenic diets (KD-R), which reduce glucose and elevate ketone bodies, offer a promising alternative in targeting energy metabolism because cancer cells cannot effectively burn ketones due to defects in the number, structure, and function of mitochondria. Similarly, oxaloacetate, which participates in the deamination of glutamate, has the potential to reduce the negative effects of excess glutamate found in many brain tumors, while hyperbaric oxygen therapy can reverse the hypoxic phenotype of tumors and reduce growth. We hypothesize that the combinatorial therapy of KD-R, hyperbaric oxygen, and oxaloacetate, could reduce or eliminate the need for TMZ in GBM patients. Methods: Our proposed approach for inhibiting tumor metabolism involved various combinations of the KD-R, oxaloacetate (2 mg/g), hyperbaric oxygen, and TMZ (20 mg/kg). This combinatorial therapy was tested on adult VM/Dk mice bearing the VM-M3/Fluc preclinical GBM model grown orthotopically. After 14 days, tumor growth was quantified via bioluminescence. A survival study was performed and the data were analyzed and portrayed in a Kaplan Meier plot. Preliminary dosage studies were used and strict diet and drug administration was maintained throughout the study. Results: The therapeutic effect of all treatments was powerful when administered under KD-R. The most promising survival advantage was seen in the two groups receiving oxaloacetate without TMZ. The survival of mice receiving TMZ was diminished due to its apparent toxicity. Among all groups, those receiving TMZ had the most significant reduction in tumor growth. The most powerful therapeutic effect was evident with combinations of these therapies. Conclusion: This study provides evidence for a potentially novel therapeutic regimen of hyperbaric oxygen, oxaloacetate, and the KD-R for managing growth and progression of VM-M3/Fluc GBM.
Collapse
Affiliation(s)
- Zachary M Augur
- Thomas N. Seyfried Laboratory, Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Catherine M Doyle
- Thomas N. Seyfried Laboratory, Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Mingyi Li
- Thomas N. Seyfried Laboratory, Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Purna Mukherjee
- Thomas N. Seyfried Laboratory, Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Thomas N Seyfried
- Thomas N. Seyfried Laboratory, Biology Department, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
43
|
Blood-Based Glutamate Scavengers Reverse Traumatic Brain Injury-Induced Synaptic Plasticity Disruption by Decreasing Glutamate Level in Hippocampus Interstitial Fluid, but Not Cerebral Spinal Fluid, In Vivo. Neurotox Res 2018; 35:360-372. [DOI: 10.1007/s12640-018-9961-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022]
|
44
|
da Silva-Candal A, Pérez-Díaz A, Santamaría M, Correa-Paz C, Rodríguez-Yáñez M, Ardá A, Pérez-Mato M, Iglesias-Rey R, Brea J, Azuaje J, Sotelo E, Sobrino T, Loza MI, Castillo J, Campos F. Clinical validation of blood/brain glutamate grabbing in acute ischemic stroke. Ann Neurol 2018; 84:260-273. [DOI: 10.1002/ana.25286] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Andrés da Silva-Candal
- Clinical Neurosciences Research Laboratory, Department of Neurology; Clinical University Hospital, Health Research Institute of Santiago de Compostela; Santiago de Compostela Spain
| | - Amparo Pérez-Díaz
- Drug Screening Platform/Biofarma Research Group, Molecular Medicine and Chronic Diseases Research Center; University of Santiago de Compostela; Santiago de Compostela Spain
| | - María Santamaría
- Clinical Neurosciences Research Laboratory, Department of Neurology; Clinical University Hospital, Health Research Institute of Santiago de Compostela; Santiago de Compostela Spain
| | - Clara Correa-Paz
- Clinical Neurosciences Research Laboratory, Department of Neurology; Clinical University Hospital, Health Research Institute of Santiago de Compostela; Santiago de Compostela Spain
| | - Manuel Rodríguez-Yáñez
- Clinical Neurosciences Research Laboratory, Department of Neurology; Clinical University Hospital, Health Research Institute of Santiago de Compostela; Santiago de Compostela Spain
| | - Ana Ardá
- Molecular Recognition and Host-Pathogen Interactions Unit, CIC bioGUNE; Derio Spain
| | - María Pérez-Mato
- Clinical Neurosciences Research Laboratory, Department of Neurology; Clinical University Hospital, Health Research Institute of Santiago de Compostela; Santiago de Compostela Spain
| | - Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory, Department of Neurology; Clinical University Hospital, Health Research Institute of Santiago de Compostela; Santiago de Compostela Spain
| | - José Brea
- Drug Screening Platform/Biofarma Research Group, Molecular Medicine and Chronic Diseases Research Center; University of Santiago de Compostela; Santiago de Compostela Spain
| | - Jhonny Azuaje
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS); University of Santiago de Compostela; Santiago de Compostela Spain
| | - Eddy Sotelo
- Center for Research in Biological Chemistry and Molecular Materials (CIQUS); University of Santiago de Compostela; Santiago de Compostela Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Department of Neurology; Clinical University Hospital, Health Research Institute of Santiago de Compostela; Santiago de Compostela Spain
| | - M. Isabel Loza
- Drug Screening Platform/Biofarma Research Group, Molecular Medicine and Chronic Diseases Research Center; University of Santiago de Compostela; Santiago de Compostela Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratory, Department of Neurology; Clinical University Hospital, Health Research Institute of Santiago de Compostela; Santiago de Compostela Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Department of Neurology; Clinical University Hospital, Health Research Institute of Santiago de Compostela; Santiago de Compostela Spain
| |
Collapse
|
45
|
Catalytic bioscavengers as countermeasures against organophosphate nerve agents. Chem Biol Interact 2018; 292:50-64. [DOI: 10.1016/j.cbi.2018.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022]
|
46
|
Heptanoate is neuroprotective in vitro but triheptanoin post-treatment did not protect against middle cerebral artery occlusion in rats. Neurosci Lett 2018; 683:207-214. [PMID: 30076987 DOI: 10.1016/j.neulet.2018.07.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 11/21/2022]
Abstract
Triheptanoin, the medium-chain triglyceride of heptanoate, has been shown to be anticonvulsant and neuroprotective in several neurological disorders. In the gastrointestinal tract, triheptanoin is cleaved to heptanoate, which is then taken up by the blood and most tissues, including liver, heart and brain. Here we evaluated the neuroprotective effects of heptanoate and its effects on mitochondrial oxygen consumption in vitro. We also investigated the neuroprotective effects of triheptanoin compared to long-chain triglycerides when administered after stroke onset in rats. Heptanoate pre-treatment protected cultured neurons against cell death induced by oxygen glucose deprivation and N-methyl-D-aspartate. Incubation of cultured astrocytes with heptanoate for 2 h increased mitochondrial proton leak and also enhanced basal respiration and ATP turnover, suggesting that heptanoate protects against oxidative stress and is used as fuel. However, continuous 72 h infusion of triheptanoin initiated 1 h after middle cerebral artery occlusion in rats did not alter stroke volume at 3 days or neurological deficit at 1 and 3 days relative to long-chain triglyceride control treatment.
Collapse
|
47
|
Cerebral Ischemic Postconditioning Plays a Neuroprotective Role through Regulation of Central and Peripheral Glutamate. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6316059. [PMID: 30112410 PMCID: PMC6077516 DOI: 10.1155/2018/6316059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/12/2018] [Indexed: 01/30/2023]
Abstract
Following cerebral ischemia/reperfusion (I/R) injury, a series of pathophysiological processes are stimulated in both the central nervous system (CNS) and the periphery, including, but not limited to, the peripheral immune and endocrine systems and underregulation of the neuroendocrine-immune network. Glutamate (Glu) is an important excitatory neurotransmitter in the CNS; its excitotoxicity following cerebral ischemia has been a focus of study for several decades. In addition, as a novel immunoregulator, Glu also regulates immune activity in both the CNS and periphery and may connect the CNS and periphery through regulation of the neuroendocrine-immune network. Ischemic postconditioning (IPostC) is powerful and activates various endogenous neuroprotective mechanisms following cerebral I/R, but only a few studies have focused on the mechanisms associated with Glu to date. Given that Glu plays an important and complex pathophysiological role, the understanding of Glu-related mechanisms of IPostC is an interesting area of research, which we review here.
Collapse
|
48
|
Zhang D, Mably AJ, Walsh DM, Rowan MJ. Peripheral Interventions Enhancing Brain Glutamate Homeostasis Relieve Amyloid β- and TNFα- Mediated Synaptic Plasticity Disruption in the Rat Hippocampus. Cereb Cortex 2018; 27:3724-3735. [PMID: 27390019 DOI: 10.1093/cercor/bhw193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of glutamate homeostasis in the interstitial fluid of the brain is strongly implicated in causing synaptic dysfunction in many neurological and psychiatric illnesses. In the case of Alzheimer's disease (AD), amyloid β (Aβ)-mediated disruption of synaptic plasticity and memory can be alleviated by interventions that directly remove glutamate or block certain glutamate receptors. An alternative strategy is to facilitate the removal of excess glutamate from the nervous system by activating peripheral glutamate clearance systems. One such blood-based system, glutamate oxaloacetate transaminase (GOT), is activated by oxaloacetate, which acts as a co-substrate. We report here that synthetic and AD brain-derived Aβ-mediated inhibition of synaptic long-term potentiation in the hippocampus is alleviated by oxaloacetate. Moreover the effect of oxaloacetate was GOT-dependent. The disruptive effects of a general inhibitor of excitatory amino acid transport or TNFα, a pro-inflammatory mediator of Aβ action, were also reversed by oxaloacetate. Furthermore, another intervention that increases peripheral glutamate clearance, peritoneal dialysis, mimicked the beneficial effect of oxaloacetate. These findings lend support to the promotion of the peripheral clearance of glutamate as a means to alleviate synaptic dysfunction that is caused by impaired glutamate homeostasis in the brain.
Collapse
Affiliation(s)
- Dainan Zhang
- Department of Pharmacology and Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Alexandra J Mably
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Institute of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Institute of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Michael J Rowan
- Department of Pharmacology and Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| |
Collapse
|
49
|
Abstract
Stroke consists of the loss of cerebral functions resulting from the interruption of blood supply to a region of the brain, and represents the second cause of death and the leading cause of major disability in adults in Europe. Stroke is a very active field of research at preclinical and clinical levels, and Magnetic Resonance Imaging (MRI) is one of the most powerful tools that scientist and clinicians have for the study of the onset, evolution and consequences of this devastating disease, as well as for the monitoring of the success of available treatments, or for the development of novel therapeutic strategies.MRI can tackle the study of stroke from different points of view, and at scales ranging from subcellular to systems biology level. Magnetic resonance spectroscopy (MRS) allows the noninvasive measurement of the levels of principal metabolites in the brain, and how they change during the course of the disease, or in response to therapy. Glutamate, in particular, is very important in the field of stroke. Several anatomical MR techniques allow the characterization of the lesion volumes, the formation of cytotoxic and vasogenic edema, changes in cerebral blood flow and volume, structural changes in gray and white matter, the obtaining of the vascular architecture and status, etc. At functional level, diverse modalities of functional MRI (fMRI) allow the assessment of the alteration in the function and organization of neuronal networks of the subject under study, as a consequence of the disease or in response to treatment. Finally, emerging imaging modalities that include temperature and pH mapping of the brain, imaging by chemical exchange saturation transfer effect (CEST), all of them closely related to tissue status, or the use of contrast agents for the targeting of tissue in theranostic approaches or for cell tracking studies in cell-based therapies, etc., are only a few examples of the power and versatility of MRI as a definitive tool for the study of stroke.In this work we will set our focus on preclinical imaging of stroke models, emphasizing the most commonly used imaging modalities in a stroke-dedicated research laboratory. However, advanced techniques will be briefly discussed, providing references to specialized literature for more advanced readers. Thus, the aim of this chapter consist in the description of a simple imaging protocol for the study of the most important and common aspects of stroke in a research laboratory.
Collapse
Affiliation(s)
- Pedro Ramos-Cabrer
- Molecular Imaging Unit, CIC biomaGUNE, Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, María Díaz de Haro 3, 48013, Bilbao, Spain.
| | - Daniel Padro
- Molecular Imaging Unit, CIC biomaGUNE, Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain
| |
Collapse
|
50
|
Abbasian S, Rastegar MM M. Is the Intensity or Duration of Treadmill Training Important for Stroke Patients? A Meta-Analysis. J Stroke Cerebrovasc Dis 2018; 27:32-43. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.09.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/20/2017] [Accepted: 09/29/2017] [Indexed: 11/26/2022] Open
|