1
|
Huang Z, Zhu X, Xu X, Wang Y, Zhu Y, Chen D, Cao Y, Zhang X. The joint effects of inflammation and renal function status on in-hospital outcomes in patients with acute ischemic stroke treated with intravenous thrombolysis. BMC Neurol 2024; 24:493. [PMID: 39736651 DOI: 10.1186/s12883-024-04002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025] Open
Abstract
OBJECTIVE We aimed to determine the predictive value of renal function status [estimating glomerular filtration rate (eGFR)] in conjunction with inflammatory biomarkers [white blood cell(WBC) and C-reactive protein (CRP)] for in-hospital outcomes in acute ischemic stroke (AIS) patients treated with intravenous thrombolysis (IVT). METHODS We retrospectively screened a total of 409 AIS patients treated with IVT. The study participants were classified into two groups according to post-stroke pneumonia or functional outcome. They were divided into four groups according to the cut-offs of inflammatory biomarkers and eGFR by receiver operating characteristics(ROC) curves for two outcomes of post-stroke pneumonia and functional status: WBC↓/eGFR↑, WBC↓/eGFR↓, WBC↑/eGFR↑, and WBC↑/eGFR↓for post-stroke pneumonia; and CRP↓/eGFR↑, CRP↓/eGFR↓, CRP↑/eGFR↑, and CRP↑/eGFR↓for functional outcome. Logistic regression models were used to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) of post-stroke pneumonia or at-discharge functional outcome, using the WBC↓/eGFR↑group or CRP↓/eGFR↑group as the reference. The Net Reclassification Index (NRI) and the Integrated Discrimination Improvement (IDI) were calculated to analyze the combined predictive value. RESULTS Compared with patients in WBC↓/eGFR↑group, those in WBC↑/eGFR↑group had increased risk of post-stroke pneumonia (OR 5.15, 95% CI 1.67-15.87) and poor functional outcome (OR 5.95, 95% CI 2.25-15.74). Furthermore, patients in WBC↑/ eGFR↓group had the highest risk of clinical outcomes (all P value for trend < 0.001), the multivariable-adjusted ORs (95% CIs) were 7.04 (2.42-20.46) for post-stroke pneumonia and 8.64 (3.30-22.65) for poor functional outcome. The addition of WBC and eGFR to the basic model significantly improved risk prediction for post-stroke pneumonia (category-free NRI 69.0%, 95% CI 47.3%-90.7%; IDI 5.4%, 95% CI 2.6%-8.3%) and functional outcome (category-free NRI 59.4%, 95% CI 39.2%-79.9%; IDI 5.3%, 95% CI 2.9%-7.8%). Similarly, when we added CRP and eGFR to the basic model with conventional risk factors, the risk discrimination and prediction for post-stroke pneumonia and functional outcome was also significantly improved. CONCLUSION Combining renal function status and inflammatory biomarkers within 4.5 h after onset could better predict in-hospital outcomes of AIS patients with IVT.
Collapse
Affiliation(s)
- Zhichao Huang
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Sanxiang Road, Suzhou, Jiangsu Province, 1055, China
| | - Xiaoyue Zhu
- Department of Clinical Nutrition, Suzhou Municipal Hospital, Suzhou, China
| | | | - Yi Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Sanxiang Road, Suzhou, Jiangsu Province, 1055, China
| | - Yafang Zhu
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Sanxiang Road, Suzhou, Jiangsu Province, 1055, China
| | - Dongqin Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Sanxiang Road, Suzhou, Jiangsu Province, 1055, China
| | - Yongjun Cao
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Sanxiang Road, Suzhou, Jiangsu Province, 1055, China.
| | - Xia Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Sanxiang Road, Suzhou, Jiangsu Province, 1055, China.
| |
Collapse
|
2
|
Goertz JE, Garcia-Bonilla L, Iadecola C, Anrather J. Immune compartments at the brain's borders in health and neurovascular diseases. Semin Immunopathol 2023; 45:437-449. [PMID: 37138042 PMCID: PMC10279585 DOI: 10.1007/s00281-023-00992-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/14/2023] [Indexed: 05/05/2023]
Abstract
Recent evidence implicates cranial border immune compartments in the meninges, choroid plexus, circumventricular organs, and skull bone marrow in several neuroinflammatory and neoplastic diseases. Their pathogenic importance has also been described for cardiovascular diseases such as hypertension and stroke. In this review, we will examine the cellular composition of these cranial border immune niches, the potential pathways through which they might interact, and the evidence linking them to cardiovascular disease.
Collapse
Affiliation(s)
- Jennifer E Goertz
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61St Street; RR-405, New York, NY, 10065, USA
| | - Lidia Garcia-Bonilla
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61St Street; RR-405, New York, NY, 10065, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61St Street; RR-405, New York, NY, 10065, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61St Street; RR-405, New York, NY, 10065, USA.
| |
Collapse
|
3
|
Brain Bioenergetics in Chronic Hypertension: Risk Factor for Acute Ischemic Stroke. Biochem Pharmacol 2022; 205:115260. [PMID: 36179931 DOI: 10.1016/j.bcp.2022.115260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022]
Abstract
Chronic hypertension is one of the key modifiable risk factors for acute ischemic stroke, also contributing to determine greater neurological deficits and worse functional outcome when an acute cerebrovascular event would occur. A tight relationship exists between cerebrovascular autoregulation, neuronal activity and brain bioenergetics. In chronic hypertension, progressive adaptations of these processes occur as an attempt to cope with the demanding necessity of brain functions, creating a new steady-state homeostatic condition. However, these adaptive modifications are insufficient to grant an adequate response to possible pathological perturbations of the established fragile hemodynamic and metabolic homeostasis. In this narrative review, we will discuss the main mechanisms by which alterations in brain bioenergetics and mitochondrial function in chronic hypertension could lead to increased risk of acute ischemic stroke, stressing the interconnections between hemodynamic factors (i.e. cerebral autoregulation and neurovascular coupling) and metabolic processes. Both experimental and clinical pieces of evidence will be discussed. Moreover, the potential role of mitochondrial dysfunction in determining, or at least sustaining, the pathogenesis and progression of chronic neurogenic hypertension will be considered. In the perspective of novel therapeutic strategies aiming at improving brain bioenergetics, we propose some determinant factors to consider in future studies focused on the cause-effect relationships between chronic hypertension and brain bioenergetic abnormalities (and vice versa), so to help translational research in this so-far unfilled gap.
Collapse
|
4
|
Boltze J, Perez-Pinzon MA. Focused Update on Stroke Neuroimmunology: Current Progress in Preclinical and Clinical Research and Recent Mechanistic Insight. Stroke 2022; 53:1432-1437. [PMID: 35467998 DOI: 10.1161/strokeaha.122.039005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Local and systemic inflammation contribute significantly to stroke risk factors as well as determining stroke impact and outcome. Previously being considered as an immuno-privileged domain, the central nervous system is now recognized for multiple and complex interactions with the immune system in health and disease. The sterile inflammatory response emerging after ischemic stroke is a major pathophysiological hallmark and considered to be a promising therapeutic target. Even (mal)adaptive immune responses following stroke, potentially contributing to long-term impact and outcome, are increasingly discussed. However, the complex interaction between the central nervous and the immune system are only partially understood, placing neuroimmunological investigations at the forefront of preclinical and clinical research. This Focused Update summarizes current knowledge in stroke neuroimmunology across all relevant disciplines and discusses major advances as well as recent mechanistic insights. Specifically, neuroimmunological processes and neuroinflammation following ischemic are discussed in the context of blood-brain barrier dysfunction, microglia activation, thromboinflammation, and sex differences in poststroke neuroimmunological responses. The Focused Update further highlights advances in neuroimaging and experimental treatments to visualize and counter neuroinflammatory consequences of ischemic stroke.
Collapse
Affiliation(s)
- Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom (J.B.)
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, University of Miami Miller School of Medicine, FL (M.A.P.-P.)
| |
Collapse
|
5
|
Taha A, Bobi J, Dammers R, Dijkhuizen RM, Dreyer AY, van Es ACGM, Ferrara F, Gounis MJ, Nitzsche B, Platt S, Stoffel MH, Volovici V, Del Zoppo GJ, Duncker DJ, Dippel DWJ, Boltze J, van Beusekom HMM. Comparison of Large Animal Models for Acute Ischemic Stroke: Which Model to Use? Stroke 2022; 53:1411-1422. [PMID: 35164533 PMCID: PMC10962757 DOI: 10.1161/strokeaha.121.036050] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Translation of acute ischemic stroke research to the clinical setting remains limited over the last few decades with only one drug, recombinant tissue-type plasminogen activator, successfully completing the path from experimental study to clinical practice. To improve the selection of experimental treatments before testing in clinical studies, the use of large gyrencephalic animal models of acute ischemic stroke has been recommended. Currently, these models include, among others, dogs, swine, sheep, and nonhuman primates that closely emulate aspects of the human setting of brain ischemia and reperfusion. Species-specific characteristics, such as the cerebrovascular architecture or pathophysiology of thrombotic/ischemic processes, significantly influence the suitability of a model to address specific research questions. In this article, we review key characteristics of the main large animal models used in translational studies of acute ischemic stroke, regarding (1) anatomy and physiology of the cerebral vasculature, including brain morphology, coagulation characteristics, and immune function; (2) ischemic stroke modeling, including vessel occlusion approaches, reproducibility of infarct size, procedural complications, and functional outcome assessment; and (3) implementation aspects, including ethics, logistics, and costs. This review specifically aims to facilitate the selection of the appropriate large animal model for studies on acute ischemic stroke, based on specific research questions and large animal model characteristics.
Collapse
Affiliation(s)
- Aladdin Taha
- Division of Experimental Cardiology, Department of Cardiology (A.T., J.B., D.J.D., H.M.M.v.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Department of Neurology, Stroke Center (A.T., D.W.J.D.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Joaquim Bobi
- Division of Experimental Cardiology, Department of Cardiology (A.T., J.B., D.J.D., H.M.M.v.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Ruben Dammers
- Department of Neurosurgery, Stroke Center (R.D., V.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht University, the Netherlands (R.M.D.)
| | - Antje Y Dreyer
- Max Planck Institute for Infection Biology, Campus Charité Mitte, Berlin, Germany (A.Y.D.)
| | - Adriaan C G M van Es
- Department of Radiology, Leiden University Medical Center, the Netherlands (A.C.G.M.v.E.)
| | - Fabienne Ferrara
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany (F.F.)
| | - Matthew J Gounis
- Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester (M.J.G.)
| | - Björn Nitzsche
- Institute of Anatomy, Faculty of Veterinary Medicine (B.N.), University of Leipzig, Germany
- Department of Nuclear Medicine (B.N.), University of Leipzig, Germany
| | - Simon Platt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens (S.P.)
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Switzerland (M.H.S.)
| | - Victor Volovici
- Department of Neurosurgery, Stroke Center (R.D., V.V.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Gregory J Del Zoppo
- Division of Hematology (G.J.d.Z.), University of Washington School of Medicine, Seattle
- Department of Medicine (G.J.d.Z.), University of Washington School of Medicine, Seattle
- Department of Neurology (G.J.d.Z.), University of Washington School of Medicine, Seattle
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology (A.T., J.B., D.J.D., H.M.M.v.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Diederik W J Dippel
- Department of Neurology, Stroke Center (A.T., D.W.J.D.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Johannes Boltze
- School of Life Sciences, Faculty of Science, University of Warwick, Coventry, United Kingdom (J.B.)
| | - Heleen M M van Beusekom
- Division of Experimental Cardiology, Department of Cardiology (A.T., J.B., D.J.D., H.M.M.v.B.), Erasmus MC University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Yokubaitis CG, Jessani HN, Li H, Amodea AK, Ward SJ. Effects of Cannabidiol and Beta-Caryophyllene Alone or in Combination in a Mouse Model of Permanent Ischemia. Int J Mol Sci 2021; 22:2866. [PMID: 33799861 PMCID: PMC7999270 DOI: 10.3390/ijms22062866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023] Open
Abstract
Current treatments for stroke, which account for 6.5 million global deaths annually, remain insufficient for treatment of disability and mortality. One targetable hallmark of stroke is the inflammatory response following infarct, which leads to significant damage post-infarct. Cannabinoids and their endogenous targets within the CNS have emerged as potential treatments for neuroinflammatory indications. We and others have previously shown that synthetic agonists of the cannabinoid CB2 receptor reduce infarct size and microglial activation in rodent models of stroke. The non-cannabinoid receptor mediated effects of the phytocannabinoid cannabidiol (CBD) have also shown effectiveness in these models. The present aim was to determine the single and combined effects of the cannabis-derived sesquiterpene and putative CB2 receptor agonist β-caryophyllene (BCP) and CBD on permanent ischemia without reperfusion using a mouse model of photothrombosis. Because BCP and CBD likely work through different sites of action but share common mechanisms of action, we sought to determine whether combinations of BCP and CBD were more potent than either compound alone. Therefore we determined the effect of BCP (3-30 mg/kg IP) and CBD (3-30 mg/kg IP), given alone or in combination (30:3, 30:10, and 30:30 BCP:CBD), on infarct size, microglial activation, and motor performance.
Collapse
Affiliation(s)
| | | | | | | | - Sara Jane Ward
- Center for Substance Abuse Research, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (C.G.Y.); (H.N.J.); (H.L.); (A.K.A.)
| |
Collapse
|
7
|
Zhang L, Graf I, Kuang Y, Zheng X, Haupt M, Majid A, Kilic E, Hermann DM, Psychogios MN, Weber MS, Ochs J, Bähr M, Doeppner TR. Neural Progenitor Cell-Derived Extracellular Vesicles Enhance Blood-Brain Barrier Integrity by NF-κB (Nuclear Factor-κB)-Dependent Regulation of ABCB1 (ATP-Binding Cassette Transporter B1) in Stroke Mice. Arterioscler Thromb Vasc Biol 2020; 41:1127-1145. [PMID: 33327747 PMCID: PMC7901534 DOI: 10.1161/atvbaha.120.315031] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Extracellular vesicles (EVs) derived from neural progenitor cells enhance poststroke neurological recovery, albeit the underlying mechanisms remain elusive. Since previous research described an enhanced poststroke integrity of the blood-brain barrier (BBB) upon systemic transplantation of neural progenitor cells, we examined if neural progenitor cell-derived EVs affect BBB integrity and which cellular mechanisms are involved in the process. Approach and Results: Using in vitro models of primary brain endothelial cell (EC) cultures as well as co-cultures of brain ECs (ECs) and astrocytes exposed to oxygen glucose deprivation, we examined the effects of EVs or vehicle on microvascular integrity. In vitro data were confirmed using a mouse transient middle cerebral artery occlusion model. Cultured ECs displayed increased ABCB1 (ATP-binding cassette transporter B1) levels when exposed to oxygen glucose deprivation, which was reversed by treatment with EVs. The latter was due to an EV-induced inhibition of the NF-κB (nuclear factor-κB) pathway. Using a BBB co-culture model of ECs and astrocytes exposed to oxygen glucose deprivation, EVs stabilized the BBB and ABCB1 levels without affecting the transcellular electrical resistance of ECs. Likewise, EVs yielded reduced Evans blue extravasation, decreased ABCB1 expression as well as an inhibition of the NF-κB pathway, and downstream matrix metalloproteinase 9 (MMP-9) activity in stroke mice. The EV-induced inhibition of the NF-κB pathway resulted in a poststroke modulation of immune responses. Conclusions: Our findings suggest that EVs enhance poststroke BBB integrity via ABCB1 and MMP-9 regulation, attenuating inflammatory cell recruitment by inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Irina Graf
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Yaoyun Kuang
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Xuan Zheng
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Matteo Haupt
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (A.M.)
| | - Ertugrul Kilic
- Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Turkey (E.K., T.R.D.)
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Germany (D.M.H.)
| | | | - Martin S Weber
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany.,Department of Neuropathology (M.S.W., J.O.), University Medical Center Göttingen, Germany
| | - Jasmin Ochs
- Department of Neuropathology (M.S.W., J.O.), University Medical Center Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany
| | - Thorsten R Doeppner
- Department of Neurology (L.Z., I.G., Y.K., X.Z., M.H., M.S.W., M.B., T.R.D.), University Medical Center Göttingen, Germany.,Istanbul Medipol University, Regenerative and Restorative Medical Research Center, Turkey (E.K., T.R.D.)
| |
Collapse
|
8
|
Li M, Meng N, Guo X, Niu X, Zhao Z, Wang W, Xie X, Lv P. Dl-3-n-Butylphthalide Promotes Remyelination and Suppresses Inflammation by Regulating AMPK/SIRT1 and STAT3/NF-κB Signaling in Chronic Cerebral Hypoperfusion. Front Aging Neurosci 2020; 12:137. [PMID: 32581761 PMCID: PMC7296049 DOI: 10.3389/fnagi.2020.00137] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Demyelination in vascular dementia (VD) is partly attributable to inflammation induced by chronic cerebral hypoperfusion (CCH). Remyelination contributes to the recovery of cognitive impairment by inducing the proliferation and differentiation of oligodendrocyte progenitor cells. It was previously reported that Dl-3-n-butylphthalide (NBP) promotes cognitive improvement. However, whether NBP can stimulate remyelination and suppress inflammation after CCH remains unclear. To answer this question, the present study investigated the effects of NBP on remyelination in a rat model of CCH established by bilateral carotid artery occlusion. Functional recovery was evaluated with the Morris water maze (MWM) test, and myelin integrity, regeneration of mature oligodendrocytes, and inhibition of astrocyte proliferation were assessed by immunohistochemistry and histologic analysis. Additionally, activation of 5′ AMP-activated protein kinase (AMPK)/Sirtuin (SIRT)1 and Signal transducer and activator of transcription (STAT)3/nuclear factor (NF)-κB signaling pathways was evaluated by western blotting. The results showed that NBP treatment improved memory and learning performance in CCH rats, which was accompanied by increased myelin integrity and oligodendrocyte regeneration, and reduced astrocyte proliferation and inflammation. Additionally, NBP induced the activation of AMPK/SIRT1 signaling while inhibiting the STAT3/NF-κB pathway. These results indicate that NBP alleviates cognitive impairment following CCH by promoting remyelination and suppressing inflammation via modulation of AMPK/SIRT1 and STAT3/NF-κB signaling.
Collapse
Affiliation(s)
- Meixi Li
- Department of Neurology, Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Nan Meng
- Department of Neurology, Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Xin Guo
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
| | - Xiaoli Niu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Zhongmin Zhao
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
| | - Wei Wang
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
| | - Xiaohua Xie
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
9
|
Cui LL, Zhang Y, Chen ZY, Su YY, Liu Y, Boltze J. Early neutrophil count relates to infarct size and fatal outcome after large hemispheric infarction. CNS Neurosci Ther 2020; 26:829-836. [PMID: 32374521 PMCID: PMC7366744 DOI: 10.1111/cns.13381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/02/2023] Open
Abstract
AIMS To investigate the relationship between peripheral leukocyte dynamics and the outcome of large hemispheric infarction (LHI) patients. METHODS Patients with acute LHI admitted to the neuro-intensive care unit of Xuanwu Hospital from 2013 to 2017 were prospectively enrolled and followed up for 6 months after LHI. RESULTS A total of 84 LHI patients were included, 38 patients suffered brain herniation and 20 patients died from stroke. Compared to patients with benign course, LHI patients with fatal outcome showed larger infarcts and more severe brain edema (P < .01), as well as increased WBC and neutrophil counts throughout the first week after stroke (P < .05). Correlation analysis revealed that neutrophil counts on D2 after LHI positively correlated with infarct and edema volumes measured from CT/MRI (R2 = 0.22 and R2 = 0.15, P < .01) and negatively correlated with Glasgow Coma Scale (ρ = -0.234, P < .05). Patients with D2 neutrophils > 7.14 × 109 /L had higher risk of brain herniation [odds ratio (OR) = 7.5, 95% CI: 2.0-28.1, P = .001], and patients with D2 neutrophils > 7.79 × 109 /L had a higher risk of death (OR = 5.8, 95% CI: 1.2-27.0, P = .015). CONCLUSION Early peripheral neutrophil count after stroke relates to infarct size and the fatal outcome of LHI patients, which might help guiding acute LHI management such as reduction of intracranial pressure and potential antiinflammatory therapy in the future.
Collapse
Affiliation(s)
- Li-Li Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhong-Yun Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ying-Ying Su
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yawu Liu
- Department of Neurology and Clinical Radiology, University of Eastern Finland, Kuopio, Finland
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
10
|
Hypertension and Its Impact on Stroke Recovery: From a Vascular to a Parenchymal Overview. Neural Plast 2019; 2019:6843895. [PMID: 31737062 PMCID: PMC6815533 DOI: 10.1155/2019/6843895] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Hypertension is the first modifiable vascular risk factor accounting for 10.4 million deaths worldwide; it is strongly and independently associated with the risk of stroke and is related to worse prognosis. In addition, hypertension seems to be a key player in the implementation of vascular cognitive impairment. Long-term hypertension, complicated or not by the occurrence of ischemic stroke, is often reviewed on its vascular side, and parenchymal consequences are put aside. Here, we sought to review the impact of isolated hypertension or hypertension associated to stroke on brain atrophy, neuron connectivity and neurogenesis, and phenotype modification of microglia and astrocytes. Finally, we discuss the impact of antihypertensive therapies on cell responses to hypertension and functional recovery. This attractive topic remains a focus of continued investigation and stresses the relevance of including this vascular risk factor in preclinical investigations of stroke outcome.
Collapse
|
11
|
Eldahshan W, Fagan SC, Ergul A. Inflammation within the neurovascular unit: Focus on microglia for stroke injury and recovery. Pharmacol Res 2019; 147:104349. [PMID: 31315064 PMCID: PMC6954670 DOI: 10.1016/j.phrs.2019.104349] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/20/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Abstract
Neuroinflammation underlies the etiology of multiple neurodegenerative diseases and stroke. Our understanding of neuroinflammation has evolved in the last few years and major players have been identified. Microglia, the brain resident macrophages, are considered sentinels at the forefront of the neuroinflammatory response to different brain insults. Interestingly, microglia perform other physiological functions in addition to their role in neuroinflammation. Therefore, an updated approach in which modulation, rather than complete elimination of microglia is necessary. In this review, the emerging roles of microglia and their interaction with different components of the neurovascular unit are discussed. In addition, recent data on sex differences in microglial physiology and in the context of stroke will be presented. Finally, the multiplicity of roles assumed by microglia in the pathophysiology of ischemic stroke, and in the presence of co-morbidities such as hypertension and diabetes are summarized.
Collapse
Affiliation(s)
- Wael Eldahshan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, United States; Charlie Norwood VA Medical Center Augusta, GA, United States
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, United States; Charlie Norwood VA Medical Center Augusta, GA, United States
| | - Adviye Ergul
- Ralph Johnson VA Medical Center, Medical University of South Carolina, Charleston, SC, United States; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
12
|
Lan X, Sun Z, Chu C, Boltze J, Li S. Dental Pulp Stem Cells: An Attractive Alternative for Cell Therapy in Ischemic Stroke. Front Neurol 2019; 10:824. [PMID: 31428038 PMCID: PMC6689980 DOI: 10.3389/fneur.2019.00824] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke is a major cause of disability and mortality worldwide, but effective restorative treatments are very limited at present. Regenerative medicine research revealed that stem cells are promising therapeutic options. Dental pulp stem cells (DPSCs) are autologously applicable cells that origin from the neural crest and exhibit neuro-ectodermal features next to multilineage differentiation potentials. DPSCs are of increasing interest since they are relatively easy to obtain, exhibit a strong proliferation ability, and can be cryopreserved for a long time without losing their multi-directional differentiation capacity. Besides, use of DPSCs can avoid fundamental problems such as immune rejection, ethical controversy, and teratogenicity. Therefore, DPSCs provide a tempting prospect for stroke treatment.
Collapse
Affiliation(s)
- Xiaoyan Lan
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Zhengwu Sun
- Department of Pharmacy, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Chengyan Chu
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Shen Li
- Department of Neurology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, China
| |
Collapse
|
13
|
Shiao ML, Yuan C, Crane AT, Voth JP, Juliano M, Stone LLH, Nan Z, Zhang Y, Kuzmin-Nichols N, Sanberg PR, Grande AW, Low WC. Immunomodulation with Human Umbilical Cord Blood Stem Cells Ameliorates Ischemic Brain Injury - A Brain Transcriptome Profiling Analysis. Cell Transplant 2019; 28:864-873. [PMID: 31066288 PMCID: PMC6719500 DOI: 10.1177/0963689719836763] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Our group previously demonstrated that administration of a CD34-negative fraction of human non- hematopoietic umbilical cord blood stem cells (UCBSC) 48 h after ischemic injury could reduce infarct volume by 50% as well as significantly ameliorate neurological deficits. In the present study, we explored possible mechanisms of action using next generation RNA sequencing to analyze the brain transcriptome profiles in rats with ischemic brain injury following UCBSC therapy. Two days after ischemic injury, rats were treated with UCBSC. Five days after administration, total brain mRNA was then extracted for RNAseq analysis using Illumina Hiseq 2000. We found 275 genes that were significantly differentially expressed after ischemic injury compared with control brains. Following UCBSC treatment, 220 of the 275 differentially expressed genes returned to normal levels. Detailed analysis of these altered transcripts revealed that the vast majority were associated with activation of the immune system following cerebral ischemia which were normalized following UCBSC therapy. Major alterations in gene expression profiles after ischemia include blood-brain-barrier breakdown, cytokine production, and immune cell infiltration. These results suggest that UCBSC protect the brain following ischemic injury by down regulating the aberrant activation of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Maple L Shiao
- 1 Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,Both the authors are co-first authors in this article
| | - Ce Yuan
- 2 Graduate Program in Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, USA.,Both the authors are co-first authors in this article
| | - Andrew T Crane
- 1 Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Joseph P Voth
- 1 Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Mario Juliano
- 1 Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Laura L Hocum Stone
- 1 Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,3 Graduate Program in Neuroscience, University of Minnesota, Minneapolis, USA
| | - Zhenghong Nan
- 1 Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Ying Zhang
- 4 Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, USA
| | | | - Paul R Sanberg
- 6 Center for Brain Repair and Department of Neurosurgery, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Andrew W Grande
- 1 Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,3 Graduate Program in Neuroscience, University of Minnesota, Minneapolis, USA.,7 Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Both the authors are co-senior authors of this article
| | - Walter C Low
- 1 Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,2 Graduate Program in Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, USA.,3 Graduate Program in Neuroscience, University of Minnesota, Minneapolis, USA.,7 Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Both the authors are co-senior authors of this article
| |
Collapse
|
14
|
Zhang J, Wu Y, Gao Z. Correlations of C-Reactive Protein (CRP), Interleukin-6 (IL-6), and Insulin Resistance with Cerebral Infarction in Hypertensive Patients. Med Sci Monit 2019; 25:1506-1511. [PMID: 30804318 PMCID: PMC6400023 DOI: 10.12659/msm.912898] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The aim of this study was to investigate the correlations of C-reactive protein (CRP), interleukin-6 (IL-6), and insulin resistance (IR) with cerebral infarction in hypertensive patients. Material/Methods A total of 80 patients with cerebral infarction admitted to our hospital from March 2016 to November 2017 were selected and divided into 2 groups according to the diameter of cerebral infarction, namely, lacunar cerebral infarction group (n=40) and cerebral infarction group (n=40). The levels of high-sensitivity CRP (hs-CRP) and IL-6, homeostasis model assessment of IR (HOMA-IR) index and blood pressure level were compared between the 2 groups. The correlations of hs-CRP level, IL-6 level, and IR with the diameter of cerebral infarction, as well as the relationships of hs-CRP level and IR with the neurological function score after cerebral infarction were analyzed. Results The levels of hs-CRP and IL-6 in the cerebral infarction group were significantly higher than those in the lacunar cerebral infarction group (P<0.05). The cerebral infarction group had a markedly higher HOMA-IR index than the lacunar cerebral infarction group (P<0.05), but it had remarkably decreased systolic blood pressure and diastolic blood pressure compared with those in the lacunar cerebral infarction group (P<0.05). There were positive correlations of hs-CRP level, IL-6 level, and IR with the diameter of cerebral infarction (P<0.05). The hs-CRP level and IR had positive correlations with the neurological function score after cerebral infarction (P<0.05). Conclusions In hypertensive patients complicated with cerebral infarction, the body’s inflammatory factors, and IR are positively correlated with the diameter of cerebral infarction, as well as the neurological prognosis of the patients.
Collapse
Affiliation(s)
- Jiang Zhang
- Department of Neurology, Linyi Central Hospital, Linyi, Shandong, China (mainland)
| | - Yunxia Wu
- Department of Neurology, Linyi Central Hospital, Linyi, Shandong, China (mainland)
| | - Zhiqiang Gao
- Department of Neurology, Linyi Central Hospital, Linyi, Shandong, China (mainland)
| |
Collapse
|
15
|
Avolio E, Pasqua T, Di Vito A, Fazzari G, Cardillo G, Alò R, Cerra MC, Barni T, Angelone T, Canonaco M. Role of Brain Neuroinflammatory Factors on Hypertension in the Spontaneously Hypertensive Rat. Neuroscience 2018; 375:158-168. [DOI: 10.1016/j.neuroscience.2018.01.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 01/01/2023]
|
16
|
Cuartero MI, de la Parra J, García-Culebras A, Ballesteros I, Lizasoain I, Moro MÁ. The Kynurenine Pathway in the Acute and Chronic Phases of Cerebral Ischemia. Curr Pharm Des 2016; 22:1060-73. [PMID: 25248805 DOI: 10.2174/1381612822666151214125950] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/11/2015] [Indexed: 12/12/2022]
Abstract
Kynurenines are a wide range of catabolites which derive from tryptophan through the "Kynurenine Pathway" (KP). In addition to its peripheral role, increasing evidence shows a role of the KP in the central nervous system (CNS), mediating both physiological and pathological functions. Indeed, an imbalance in this route has been associated with several neurodegenerative disorders such as Alzheimer´s and Huntington´s diseases. Altered KP catabolism has also been described during both acute and chronic phases of stroke; however the contribution of the KP to the pathophysiology of acute ischemic damage and of post-stroke disorders during the chronic phase including depression and vascular dementia, and the exact mechanisms implicated in the regulation of the KP after stroke are not well established yet. A better understanding of the regulation and activity of the KP after stroke could provide new pharmacological tools in both acute and chronic phases of stroke. In this review, we will make an overview of CNS modulation by the KP. We will detail the KP contribution in the ischemic damage, how the unbalance of the KP might trigger an alteration of the cognitive function after stroke as well as potential targets for the development of new drugs.
Collapse
Affiliation(s)
- María Isabel Cuartero
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Avenida Complutense s/n, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
17
|
Manohar S, Dahar K, Adler HJ, Dalian D, Salvi R. Noise-induced hearing loss: Neuropathic pain via Ntrk1 signaling. Mol Cell Neurosci 2016; 75:101-12. [PMID: 27473923 DOI: 10.1016/j.mcn.2016.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 06/30/2016] [Accepted: 07/25/2016] [Indexed: 12/18/2022] Open
Abstract
Severe noise-induced damage to the inner ear leads to auditory nerve fiber degeneration thereby reducing the neural input to the cochlear nucleus (CN). Paradoxically, this leads to a significant increase in spontaneous activity in the CN which has been linked to tinnitus, hyperacusis and ear pain. The biological mechanisms that lead to an increased spontaneous activity are largely unknown, but could arise from changes in glutamatergic or GABAergic neurotransmission or neuroinflammation. To test this hypothesis, we unilaterally exposed rats for 2h to a 126dB SPL narrow band noise centered at 12kHz. Hearing loss measured by auditory brainstem responses exceeded 55dB from 6 to 32kHz. The mRNA from the exposed CN was harvested at 14 or 28days post-exposure and qRT-PCR analysis was performed on 168 genes involved in neural inflammation, neuropathic pain and glutamatergic or GABAergic neurotransmission. Expression levels of mRNA of Slc17a6 and Gabrg3, involved in excitation and inhibition respectively, were significantly increased at 28days post-exposure, suggesting a possible role in the CN spontaneous hyperactivity associated with tinnitus and hyperacusis. In the pain and inflammatory array, noise exposure upregulated mRNA expression levels of four pain/inflammatory genes, Tlr2, Oprd1, Kcnq3 and Ntrk1 and decreased mRNA expression levels of two more genes, Ccl12 and Il1β. Pain/inflammatory gene expression changes via Ntrk1 signaling may induce sterile inflammation, neuropathic pain, microglial activation and migration of nerve fibers from the trigeminal, cuneate and vestibular nuclei into the CN. These changes could contribute to somatic tinnitus, hyperacusis and otalgia.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States.
| | - Kimberly Dahar
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Henry J Adler
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Ding Dalian
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Richard Salvi
- Center for Hearing & Deafness, State University of New York at Buffalo, Buffalo, NY 14214, United States
| |
Collapse
|
18
|
Daulatzai MA. Fundamental role of pan-inflammation and oxidative-nitrosative pathways in neuropathogenesis of Alzheimer's disease in focal cerebral ischemic rats. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2016; 5:102-30. [PMID: 27335702 PMCID: PMC4913220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 06/06/2023]
Abstract
Alzheimer's disease (AD) is a chronic progressive neurodegenerative condition of the brain, and it is the most common cause of dementia. Several neurobiological etiologies of AD are described in the literature. These include vascular, infectious, toxic, nutritional, metabolic, and inflammatory. However, these heterogeneous etiologies have a common denominator - viz. Inflammation and oxidative stress. Lipopolysaccharide (LPS) elevates the synthesis of proinflammatory cytokines and chemokines; chronically, together they trigger various pathological responses in the periphery and the CNS including dysfunctional memory consolidation and memory decline. Aging - the main risk factor for AD is inherently associated with inflammation. There are several age-related comorbidities that are also associated with inflammation and oxidative stress. Such co-prevailing aggravating factors, therefore, persist against a background of underlying aging-related pathology. They may converge, and their synergistic propagation may modify the disease course. A critical balance exists between homeostasis/repair and inflammatory factors; chronic, unrelenting inflammatory milieu succeeds in promoting a neuroinflammatory and neurodegenerative outcome. Extensive evidence is available that CNS inflammation is associated with neurodegeneration. LPS, proinflammatory cytokines, several mediators secreted by microglia, and oxidative-nitrosative stress in concert play a pivotal role in triggering neuroinflammatory processes and neurodegeneration. The persistent uncontrolled activity of the above factors can potentiate cognitive decline in tandem enhancing vulnerability to AD. Despite significant progress during the past twenty years, the prevention and treatment of AD have been tantalizingly elusive. Current studies strongly suggest that amelioration/prevention of the deleterious effects of inflammation may prove beneficial in preventing AD onset and retarding cognitive dysfunction in aging and AD. A concerted multi-focal therapeutic effort around the inflammation-oxidative-nitrosative stress paradigm may be crucial in preventing and treating AD. This paper informs on such relevant polypharmacy approach.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE/Melbourne School of Engineering, The University of Melbourne Parkville, Victoria 3010, Australia
| |
Collapse
|
19
|
Tuor UI, Zhao Z, Barber PA, Qiao M. Recurrent mild cerebral ischemia: enhanced brain injury following acute compared to subacute recurrence in the rat. BMC Neurosci 2016; 17:28. [PMID: 27230275 PMCID: PMC4881167 DOI: 10.1186/s12868-016-0263-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the current study, a transient cerebral ischemia producing selective cell death was designated a mild ischemic insult. A comparable insult in humans is a transient ischemic attack (TIA) that is associated with functional recovery but can have imaging evidence of minor ischemic damage including cerebral atrophy. A TIA also predicts a high risk for early recurrence of a stroke or TIA and thus multiple ischemic insults are not uncommon. Not well understood is what the effect of differing recovery times between mild ischemic insults has on their pathophysiology. We investigated whether cumulative brain damage would differ if recurrence of a mild ischemic insult occurred at 1 or 3 days after a first insult. RESULTS A transient episode of middle cerebral artery occlusion via microclip was produced to elicit mild ischemic changes-predominantly scattered necrosis. This was followed 1 or 3 days later by a repeat of the same insult. Brain damage assessed histologically 7 days later was substantially greater in the 1 day recurrent group than the 3 days recurrent group, with areas of damage consisting predominantly of regions of incomplete infarction and pannecrosis in the 1 day group but predominantly regions of selective necrosis and smaller areas of incomplete infarction in the 3 days group (P < 0.05). Enhanced injury was reflected by greater number of cells staining for macrophages/microglia with ED1 and greater alterations in GFAP staining of reactive astrocytes in the 1 day than 3 days recurrent groups. The differential susceptibility to injury did not correspond to higher levels of injurious factors present at the time of the second insult such as BBB disruption or increased cytokines (tumor necrosis factor). Microglial activation, with potential for some beneficial effects, appeared greater at 3 days than 1 day. Also blood analysis demonstrated changes that included an acute increase in granulocytes and decrease in platelets at 1 day compared to 3 days post transient ischemia. CONCLUSIONS Dynamic changes in multiple inflammatory responses likely contribute to the time dependence of the extent of damage produced by recurrent mild ischemic insults. The time of mild stroke recurrence is crucial with early recurrence producing greater damage than subacute recurrence and this supports urgency for determining and implementing optimal stroke management directly after a TIA.
Collapse
Affiliation(s)
- Ursula I Tuor
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Zonghang Zhao
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Philip A Barber
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Min Qiao
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
20
|
Daulatzai MA. Fundamental role of pan-inflammation and oxidative-nitrosative pathways in neuropathogenesis of Alzheimer's disease. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2016; 5:1-28. [PMID: 27073740 PMCID: PMC4788729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
Alzheimer's disease (AD) is a chronic progressive neurodegenerative condition of the brain, and it is the most common cause of dementia. Several neurobiological etiologies of AD are described in the literature. These include vascular, infectious, toxic, nutritional, metabolic, and inflammatory. However, these heterogeneous etiologies have a common denominator - viz. Inflammation and oxidative stress. Lipopolysaccharide (LPS) elevates the synthesis of proinflammatory cytokines and chemokines; chronically, together they trigger various pathological responses in the periphery and the CNS including dysfunctional memory consolidation and memory decline. Aging - the main risk factor for AD is inherently associated with inflammation. There are several age-related comorbidities that are also associated with inflammation and oxidative stress. Such co-prevailing aggravating factors, therefore, persist against a background of underlying aging-related pathology. They may converge, and their synergistic propagation may modify the disease course. A critical balance exists between homeostasis/repair and inflammatory factors; chronic, unrelenting inflammatory milieu succeeds in promoting a neuroinflammatory and neurodegenerative outcome. Extensive evidence is available that CNS inflammation is associated with neurodegeneration. LPS, proinflammatory cytokines, several mediators secreted by microglia, and oxidative-nitrosative stress in concert play a pivotal role in triggering neuroinflammatory processes and neurodegeneration. The persistent uncontrolled activity of the above factors can potentiate cognitive decline in tandem enhancing vulnerability to AD. Despite significant progress during the past twenty years, the prevention and treatment of AD have been tantalizingly elusive. Current studies strongly suggest that amelioration/prevention of the deleterious effects of inflammation may prove beneficial in preventing AD onset and retarding cognitive dysfunction in aging and AD. A concerted multi-focal therapeutic effort around the inflammation-oxidative-nitrosative stress paradigm may be crucial in preventing and treating AD. This paper informs on such relevant polypharmacy approach.
Collapse
Affiliation(s)
- Mak Adam Daulatzai
- Sleep Disorders Group, EEE/Melbourne School of Engineering, The University of Melbourne Parkville, Victoria 3010, Australia
| |
Collapse
|
21
|
Pösel C, Möller K, Boltze J, Wagner DC, Weise G. Isolation and Flow Cytometric Analysis of Immune Cells from the Ischemic Mouse Brain. J Vis Exp 2016:53658. [PMID: 26967380 PMCID: PMC4828148 DOI: 10.3791/53658] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke initiates a robust inflammatory response that starts in the intravascular compartment and involves rapid activation of brain resident cells. A key mechanism of this inflammatory response is the migration of circulating immune cells to the ischemic brain facilitated by chemokine release and increased endothelial adhesion molecule expression. Brain-invading leukocytes are well-known contributing to early-stage secondary ischemic injury, but their significance for the termination of inflammation and later brain repair has only recently been noticed. Here, a simple protocol for the efficient isolation of immune cells from the ischemic mouse brain is provided. After transcardial perfusion, brain hemispheres are dissected and mechanically dissociated. Enzymatic digestion with Liberase is followed by density gradient (such as Percoll) centrifugation to remove myelin and cell debris. One major advantage of this protocol is the single-layer density gradient procedure which does not require time-consuming preparation of gradients and can be reliably performed. The approach yields highly reproducible cell counts per brain hemisphere and allows for measuring several flow cytometry panels in one biological replicate. Phenotypic characterization and quantification of brain-invading leukocytes after experimental stroke may contribute to a better understanding of their multifaceted roles in ischemic injury and repair.
Collapse
Affiliation(s)
- Claudia Pösel
- Ischemia Research Unit, Fraunhofer Institute for Cell Therapy and Immunology
| | - Karoline Möller
- Ischemia Research Unit, Fraunhofer Institute for Cell Therapy and Immunology
| | - Johannes Boltze
- Ischemia Research Unit, Fraunhofer Institute for Cell Therapy and Immunology; Fraunhofer Research Institution for Marine Biotechnology, University of Lubeck
| | | | - Gesa Weise
- Ischemia Research Unit, Fraunhofer Institute for Cell Therapy and Immunology; Department of Neurology, University of Leipzig;
| |
Collapse
|
22
|
Experimental animal models and inflammatory cellular changes in cerebral ischemic and hemorrhagic stroke. Neurosci Bull 2015; 31:717-34. [PMID: 26625873 DOI: 10.1007/s12264-015-1567-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/25/2015] [Indexed: 01/04/2023] Open
Abstract
Stroke, including cerebral ischemia, intracerebral hemorrhage, and subarachnoid hemorrhage, is the leading cause of long-term disability and death worldwide. Animal models have greatly contributed to our understanding of the risk factors and the pathophysiology of stroke, as well as the development of therapeutic strategies for its treatment. Further development and investigation of experimental models, however, are needed to elucidate the pathogenesis of stroke and to enhance and expand novel therapeutic targets. In this article, we provide an overview of the characteristics of commonly-used animal models of stroke and focus on the inflammatory responses to cerebral stroke, which may provide insights into a framework for developing effective therapies for stroke in humans.
Collapse
|
23
|
Möller K, Pösel C, Kranz A, Schulz I, Scheibe J, Didwischus N, Boltze J, Weise G, Wagner DC. Arterial Hypertension Aggravates Innate Immune Responses after Experimental Stroke. Front Cell Neurosci 2015; 9:461. [PMID: 26640428 PMCID: PMC4661280 DOI: 10.3389/fncel.2015.00461] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/12/2015] [Indexed: 01/13/2023] Open
Abstract
Arterial hypertension is not only the leading risk factor for stroke, but also attributes to impaired recovery and poor outcome. The latter could be explained by hypertensive vascular remodeling that aggravates perfusion deficits and blood–brain barrier disruption. However, besides vascular changes, one could hypothesize that activation of the immune system due to pre-existing hypertension may negatively influence post-stroke inflammation and thus stroke outcome. To test this hypothesis, male adult spontaneously hypertensive rats (SHRs) and normotensive Wistar Kyoto rats (WKYs) were subjected to photothrombotic stroke. One and 3 days after stroke, infarct volume and functional deficits were evaluated by magnetic resonance imaging and behavioral tests. Expression levels of adhesion molecules and chemokines along with the post-stroke inflammatory response were analyzed by flow cytometry, quantitative real-time PCR and immunohistochemistry in rat brains 4 days after stroke. Although comparable at day 1, lesion volumes were significantly larger in SHR at day 3. The infarct volume showed a strong correlation with the amount of CD45 highly positive leukocytes present in the ischemic hemispheres. Functional deficits were comparable between SHR and WKY. Brain endothelial expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and P-selectin (CD62P) was neither increased by hypertension nor by stroke. However, in SHR, brain infiltrating myeloid leukocytes showed significantly higher surface expression of ICAM-1 which may augment leukocyte transmigration by leukocyte–leukocyte interactions. The expression of chemokines that primarily attract monocytes and granulocytes was significantly increased by stroke and, furthermore, by hypertension. Accordingly, ischemic hemispheres of SHR contain considerably higher numbers of monocytes, macrophages and granulocytes. Exacerbated brain inflammation in SHR may finally be responsible for larger infarct volumes. These findings provide an immunological explanation for the epidemiological observation that existing hypertension negatively affects stroke outcome and mortality.
Collapse
Affiliation(s)
- Karoline Möller
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Institute of Anatomy, Histology and Embryology, University of Leipzig Leipzig, Germany
| | - Claudia Pösel
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany
| | - Alexander Kranz
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany
| | - Isabell Schulz
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany
| | - Johanna Scheibe
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany
| | - Nadine Didwischus
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Research Group Human Biology, Institute of Biology, University of Leipzig Leipzig, Germany
| | - Johannes Boltze
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Fraunhofer Research Institution for Marine Biotechnology and Institute for Medical and Marine Biotechnology, University of Lübeck Lübeck, Germany
| | - Gesa Weise
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Department of Neurology, University of Leipzig Leipzig, Germany
| | | |
Collapse
|
24
|
Ludewig P, Gallizioli M, Urra X, Behr S, Brait VH, Gelderblom M, Magnus T, Planas AM. Dendritic cells in brain diseases. Biochim Biophys Acta Mol Basis Dis 2015; 1862:352-67. [PMID: 26569432 DOI: 10.1016/j.bbadis.2015.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mattia Gallizioli
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Xabier Urra
- Functional Unit of Cerebrovascular Diseases, Hospital Clínic, Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Sarah Behr
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa H Brait
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
25
|
Cuartero MI, Ballesteros I, Lizasoain I, Moro MA. Complexity of the cell-cell interactions in the innate immune response after cerebral ischemia. Brain Res 2015; 1623:53-62. [PMID: 25956207 DOI: 10.1016/j.brainres.2015.04.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 12/30/2022]
Abstract
In response to brain ischemia a cascade of signals leads to the activation of the brain innate immune system and to the recruitment of blood borne derived cells to the ischemic tissue. These processes have been increasingly shown to play a role on stroke pathogenesis. Here, we discuss the key features of resident microglia and different leukocyte subsets implicated in cerebral ischemia with special emphasis of neutrophils, monocytes and microglia. We focus on how leukocytes are recruited to injured brain through a complex interplay between endothelial cells, platelets and leukocytes and describe different strategies used to inhibit their recruitment. Finally, we discuss the possible existence of different leukocyte subsets in the ischemic tissue and the repercussion of different myeloid phenotypes on stroke outcome. The knowledge of the nature of these heterogeneous cell-cell interactions may open new lines of investigation on new therapies to promote protective immune responses and tissue repair after cerebral ischemia or to block harmful responses. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
Affiliation(s)
- María I Cuartero
- Unidad de Investigación Neurovascular, Depto. Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Iván Ballesteros
- Unidad de Investigación Neurovascular, Depto. Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Depto. Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María A Moro
- Unidad de Investigación Neurovascular, Depto. Farmacología, Facultad de Medicina, Universidad Complutense and Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.
| |
Collapse
|
26
|
Detante O, Jaillard A, Moisan A, Barbieux M, Favre I, Garambois K, Barbier E, Hommel M. Fisiopatologia dell’ischemia cerebrale. Neurologia 2015. [DOI: 10.1016/s1634-7072(14)69823-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
27
|
Diederich K, Schmidt A, Beuker C, Strecker JK, Wagner DC, Boltze J, Schäbitz WR, Minnerup J. Granulocyte colony-stimulating factor (G-CSF) treatment in combination with transplantation of bone marrow cells is not superior to G-CSF treatment alone after cortical stroke in spontaneously hypertensive rats. Front Cell Neurosci 2014; 8:411. [PMID: 25538562 PMCID: PMC4255603 DOI: 10.3389/fncel.2014.00411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/12/2014] [Indexed: 12/02/2022] Open
Abstract
Granulocyte-colony stimulating factor (G-CSF) and bone marrow derived mononuclear cells (BM-MNCs) have both been shown to improve functional outcome following experimental stroke. These effects are associated with increased angiogenesis and neurogenesis. In the present study, we aimed to determine synergistic effects of G-CSF and BM-NMC treatment on long-term structural and functional recovery after photothrombotic stroke. To model the etiology of stroke more closely, we used spontaneously hypertensive (SH) rats in our experiment. Bone marrow derived mononuclear cells transplantation was initiated 1 h after the onset of photothrombotic stroke. Repeated G-CSF treatment commenced immediately after BM-MNC treatment followed by daily injections for five consecutive days. The primary endpoint was functional outcome after ischemia. Secondary endpoints included analysis of neurogenesis and angiogenesis as well as determination of infarct size. Granulocyte-colony stimulating factor treated rats, either in combination with BM-MNC or alone showed improved somatosensory but not gross motor function following ischemia. No beneficial effect of BM-MNC monotherapy was found. Infarct volumes were comparable in all groups. In contrast to previous studies, which used healthy animals, post-stroke neurogenesis and angiogenesis were not enhanced by G-CSF. In conclusion, the combination of G-CSF and BM-MNC was not more effective than G-CSF alone. The reduced efficacy of G-CSF treatment and the absence of any beneficial effect of BM-MNC transplantation might be attributed to hypertension-related morbidity.
Collapse
Affiliation(s)
- Kai Diederich
- Department of Neurology, University of Münster Münster, Germany
| | - Antje Schmidt
- Department of Neurology, University of Münster Münster, Germany
| | - Carolin Beuker
- Department of Neurology, University of Münster Münster, Germany
| | | | - Daniel-Christoph Wagner
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Translational Center for Regenerative Medicine, University of Leipzig Leipzig, Germany
| | - Johannes Boltze
- Fraunhofer Institute for Cell Therapy and Immunology Leipzig, Germany ; Translational Center for Regenerative Medicine, University of Leipzig Leipzig, Germany
| | | | - Jens Minnerup
- Department of Neurology, University of Münster Münster, Germany
| |
Collapse
|
28
|
Lehmann J, Härtig W, Seidel A, Füldner C, Hobohm C, Grosche J, Krueger M, Michalski D. Inflammatory cell recruitment after experimental thromboembolic stroke in rats. Neuroscience 2014; 279:139-54. [DOI: 10.1016/j.neuroscience.2014.08.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/28/2014] [Accepted: 08/17/2014] [Indexed: 10/24/2022]
|