1
|
Lagman-Bartolome AM, Im J, Gladstone J. Headaches Attributed to Disorders of Homeostasis. Neurol Clin 2024; 42:521-542. [PMID: 38575264 DOI: 10.1016/j.ncl.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Headaches attributed to disorders of homeostasis include those different headache types associated with metabolic and systemic diseases. These are headache disorders occurring in temporal relation to a disorder of homeostasis including hypoxia, high altitude, airplane travel, diving, sleep apnea, dialysis, autonomic dysreflexia, hypothyroidism, fasting, cardiac cephalalgia, hypertension and other hypertensive disorders like pheochromocytoma, hypertensive crisis, and encephalopathy, as well as preeclampsia or eclampsia. The proposed mechanism behind the causation of these headache subtypes including diagnostic criteria, evaluation, treatment, and overall management will be discussed.
Collapse
Affiliation(s)
- Ana Marissa Lagman-Bartolome
- Department of Pediatrics, Division of Neurology, The Hospital for Sick Children, University of Toronto; Department of Pediatrics, Division of Neurology, Children's Hospital, London Health Sciences Center, Schulich School of Medicine & Dentistry, University of Western Ontario, 800 Commissioner's Road East, London, Ontario N6A5W9, Canada.
| | - James Im
- Department of Medicine, Division of Adult Neurology, St. Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, Ontario M5B1W8, Canada
| | - Jonathan Gladstone
- Department of Pediatrics, Division of Neurology, The Hospital for Sick Children, University of Toronto; Gladstone Headache Clinic, 1333 Sheppard Avenue E, Suite 122, North York, Ontario M2J1V1, Canada
| |
Collapse
|
2
|
Díez-Cirarda M, Yus M, Gómez-Ruiz N, Polidura C, Gil-Martínez L, Delgado-Alonso C, Jorquera M, Gómez-Pinedo U, Matias-Guiu J, Arrazola J, Matias-Guiu JA. Multimodal neuroimaging in post-COVID syndrome and correlation with cognition. Brain 2023; 146:2142-2152. [PMID: 36288544 PMCID: PMC9620345 DOI: 10.1093/brain/awac384] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/02/2022] [Accepted: 09/23/2022] [Indexed: 11/12/2022] Open
Abstract
Brain changes have been reported in the first weeks after SARS-CoV-2 infection. However, limited literature exists about brain alterations in post-COVID syndrome, a condition increasingly associated with cognitive impairment. The present study aimed to evaluate brain functional and structural alterations in patients with post-COVID syndrome, and assess whether these brain alterations were related to cognitive dysfunction. Eighty-six patients with post-COVID syndrome and 36 healthy controls were recruited and underwent neuroimaging acquisition and a comprehensive neuropsychological assessment. Cognitive and neuroimaging examinations were performed 11 months after the first symptoms of SARS-CoV-2. Whole-brain functional connectivity analysis was performed. Voxel-based morphometry was performed to evaluate grey matter volume, and diffusion tensor imaging was carried out to analyse white-matter alterations. Correlations between cognition and brain changes were conducted and Bonferroni corrected. Post-COVID syndrome patients presented with functional connectivity changes, characterized by hypoconnectivity between left and right parahippocampal areas, and between bilateral orbitofrontal and cerebellar areas compared to controls. These alterations were accompanied by reduced grey matter volume in cortical, limbic and cerebellar areas, and alterations in white matter axial and mean diffusivity. Grey matter volume loss showed significant associations with cognitive dysfunction. These cognitive and brain alterations were more pronounced in hospitalized patients compared to non-hospitalized patients. No associations with vaccination status were found. The present study shows persistent structural and functional brain abnormalities 11 months after the acute infection. These changes are associated with cognitive dysfunction and contribute to a better understanding of the pathophysiology of the post-COVID syndrome.
Collapse
Affiliation(s)
- María Díez-Cirarda
- Department of Neurology. Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| | - Miguel Yus
- Department of Radiology, Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| | - Natividad Gómez-Ruiz
- Department of Radiology, Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| | - Carmen Polidura
- Department of Radiology, Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| | - Lidia Gil-Martínez
- Department of Radiology, Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| | - Cristina Delgado-Alonso
- Department of Neurology. Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| | - Manuela Jorquera
- Department of Radiology, Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| | - Ulises Gómez-Pinedo
- Department of Neurology. Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| | - Jorge Matias-Guiu
- Department of Neurology. Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| | - Juan Arrazola
- Department of Radiology, Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| | - Jordi A Matias-Guiu
- Department of Neurology. Hospital Clínico San Carlos. Health Research Institute “San Carlos” (IdISCC). Universidad Complutense de Madrid. Madrid, Spain
| |
Collapse
|
3
|
Zhang G, Zhou Y, Cao Z, Cheng X, Yue X, Zhao T, Zhao M, Zhao Y, Fan M, Zhu L. Preliminary Intermittent Hypoxia Training Alleviates the Damage of Sustained Normobaric Hypoxia on Human Hematological Indexes and Cerebral White Matter. High Alt Med Biol 2022; 23:273-283. [PMID: 35486840 DOI: 10.1089/ham.2021.0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zhang, Guangbo, Yanzhao Zhou, Zhengtao Cao, Xiang Cheng, Xiangpei Yue, Tong Zhao, Ming Zhao, Yongqi Zhao, Ming Fan, and Lingling Zhu. Preliminary intermittent hypoxia training alleviates the damage of sustained normobaric hypoxia on human hematological indexes and cerebral white matter. High Alt Med Biol. 00:000-000, 2022. Study Objectives: We aimed to examine the effects of preliminary intermittent hypoxia training (IHT) on human hematological indexes and cerebral white matter (WM) after exposure to a simulated altitude of 4,300 m. Methods: We recruited 20 young healthy volunteers. Participants were then randomized to either the IHT group (n = 10) or the control group (n = 10). We measured the physiological function of the control group at sea level and after exposure to a simulated altitude of 4,300 m, respectively. The IHT group performed the above tests at three time points: before and after hypoxia training, and after exposure to a simulated altitude of 4,300 m, respectively. Results: We found that mean SpO2 during day 10 of hypoxia training showed a significant increase compared with mean SpO2 on day 1 (88.3% ± 1.5% vs. 90.0% ± 1.6%, p < 0.05), and erythrocyte P50 of post-training was significantly increased compared with pretraining (37.8 ± 2.9 mmHg vs. 45.9 ± 6.4 mmHg, p < 0.05). Mean SpO2 measures after acute exposure to high altitude exhibited a significant difference, with the IHT group showing significantly greater SpO2 than the control group (73.8% ± 3.7% vs. 77.4% ± 3.2%, p < 0.05), and the Lake Louise Score was also lower than the control group (2.55 ± 2.1 vs. 6.67 ± 2.5, p < 0.05). After daily IHT, brain-derived neurotrophic factor plasma levels of participants in the IHT group did not change but significantly increased in response to high-altitude hypoxia (103.5% ± 70.4% vs. 29.7% ± 73.2%, p < 0.05). Interleukin-10 (IL-10) plasma level did not change before and after IHT in the IHT group, whereas the IL-10 plasma level of the control group after high-altitude exposure was significantly higher. Furthermore, we found that fractional anisotropy values in the left corticospinal tract and splenium of the corpus callosum in the IHT group were significantly higher than those in the control group after high-altitude hypoxia. Conclusions: These results demonstrate that IHT alleviates the damage of sustained normobaric hypoxia on human hematological indexes and cerebral WM.
Collapse
Affiliation(s)
- Guangbo Zhang
- Department of Neurobiology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China.,Department of Neurology, Kangjixintu Hospital, Renqiu, China
| | - Yanzhao Zhou
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhengtao Cao
- Department of Biomedical Engineering, Air Force Medical Center, PLA, Beijing, China
| | - Xiang Cheng
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiangpei Yue
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Tong Zhao
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ming Zhao
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yongqi Zhao
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ming Fan
- Department of Neurobiology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.,Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lingling Zhu
- Department of Brain Protection and Plasticity, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
4
|
The assessment of headache and sleep quality in patients with chronic obstructive pulmonary disease. JOURNAL OF SURGERY AND MEDICINE 2022. [DOI: 10.28982/josam.983605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
5
|
Exposure to 16 h of normobaric hypoxia induces ionic edema in the healthy brain. Nat Commun 2021; 12:5987. [PMID: 34645793 PMCID: PMC8514510 DOI: 10.1038/s41467-021-26116-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/09/2021] [Indexed: 11/10/2022] Open
Abstract
Following prolonged exposure to hypoxic conditions, for example, due to ascent to high altitude, stroke, or traumatic brain injury, cerebral edema can develop. The exact nature and genesis of hypoxia-induced edema in healthy individuals remain unresolved. We examined the effects of prolonged, normobaric hypoxia, induced by 16 h of exposure to simulated high altitude, on healthy brains using proton, dynamic contrast enhanced, and sodium MRI. This dual approach allowed us to directly measure key factors in the development of hypoxia-induced brain edema: (1) Sodium signals as a surrogate of the distribution of electrolytes within the cerebral tissue and (2) Ktrans as a marker of blood–brain–barrier integrity. The measurements point toward an accumulation of sodium ions in extra- but not in intracellular space in combination with an intact endothelium. Both findings in combination are indicative of ionic extracellular edema, a subtype of cerebral edema that was only recently specified as an intermittent, yet distinct stage between cytotoxic and vasogenic edemas. In sum, here a combination of imaging techniques demonstrates the development of ionic edemas following prolonged normobaric hypoxia in agreement with cascadic models of edema formation. Prolonged hypoxia, which can be due to stroke or ascent to high altitude, can lead to cerebral edema. Here, the authors used a combination of sodium and proton MRI and experimentally induced hypoxic conditions to identify the cause for brain swelling: Ionic edema, an intermediate between cytotoxic and vasogenic edema defined by sodium ion accumulation in extracellular space and an intact endothelium.
Collapse
|
6
|
Turner REF, Gatterer H, Falla M, Lawley JS. High-altitude cerebral edema: its own entity or end-stage acute mountain sickness? J Appl Physiol (1985) 2021; 131:313-325. [PMID: 33856254 DOI: 10.1152/japplphysiol.00861.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
High-altitude cerebral edema (HACE) and acute mountain sickness (AMS) are neuropathologies associated with rapid exposure to hypoxia. However, speculation remains regarding the exact etiology of both HACE and AMS and whether they share a common mechanistic pathology. This review outlines the basic principles of HACE development, highlighting how edema could develop from 1) a progression from cytotoxic swelling to ionic edema or 2) permeation of the blood brain barrier (BBB) with or without ionic edema. Thereafter, discussion turns to the available neuroimaging literature in the context of cytotoxic, ionic, or vasogenic edema in both HACE and AMS. Although HACE is clearly caused by an increase in brain water of ionic and/or vasogenic origin, there is very little evidence that this type of edema is present when AMS develops. However, cerebral vasodilation, increased intracranial blood volume, and concomitant intracranial fluid shifts from the extracellular to the intracellular space, as interpreted from changes in diffusion indices within white matter, are observed consistently in persons acutely exposed to hypoxia and with AMS. Therefore, herein we explore the idea that intracellular swelling occurs alongside AMS, and is a critical precursor to extracellular ionic edema formation. We propose that this process produces a subtle modulation of the BBB, which either together with or independent of vasogenic edema provides a transvascular segue from the end-stage of AMS to HACE. Ultimately, this review seeks to shed light on the possible processes underlying HACE pathophysiology, and thus highlights potential avenues for future prevention and treatment.
Collapse
Affiliation(s)
- Rachel E F Turner
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Marika Falla
- Center for Mind/Brain Sciences and Centre for Neurocognitive Rehabilitation, University of Trento, Rovereto, Italy
| | - Justin S Lawley
- Division of Performance Physiology & Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Strapazzon G, Pun M, Cappello TD, Procter E, Lochner P, Brugger H, Piccoli A. Total Body Water Dynamics Estimated with Bioelectrical Impedance Vector Analysis and B-Type Natriuretic Peptide After Exposure to Hypobaric Hypoxia: A Field Study. High Alt Med Biol 2017; 18:384-391. [PMID: 29035594 PMCID: PMC5743030 DOI: 10.1089/ham.2017.0056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/07/2017] [Indexed: 01/15/2023] Open
Abstract
Strapazzon, Giacomo, Matiram Pun, Tomas Dal Cappello, Emily Procter, Piergiorgio Lochner, Hermann Brugger, and Antonio Piccoli. Total body water dynamics estimated with bioelectrical impedance vector analysis and B-type natriuretic peptide after exposure to hypobaric hypoxia: A field study. High Alt Med Biol. 18:384-391, 2017.-The relationship between total body water (TBW) dynamics and N-terminal pro-B-type natriuretic peptide (NT-proBNP), a stable metabolite of B-type natriuretic peptide, during acute high altitude exposure is not known. To investigate this, we transported 19 healthy lowland subjects to 3830 m with a helicopter after baseline measurements (262 m). The physiological measurements and clinical assessments were taken at 9, 24, 48, and 72 hours and on the eighth day of altitude exposure. A bioelectrical impedance vector analysis (BIVA) from height corrected Resistance-Reactance (R-Xc graph) was used to estimate TBW status. NT-proBNP was measured from venous blood samples. The changes in impedance vector were lengthened at 9 (p = 0.011), 48 (p = 0.033), and 72 hours (p = 0.015) indicating dehydration compared to baseline. However, there was no dehydration at 24 hours (p > 0.05) from the baseline and the subjects trended to get euhydrated from 9 to 24 hours (p = 0.097). The maximum percent changes in vector length from the baseline were within 10%-15%. There was a significant increase of natural logarithm (ln)(NT-proBNP) after ascent with a peak at 24 hours, although similarly to BIVA values, ln(NT-proBNP) returned to baseline after 8 days of altitude exposure. The changes in impedance vector length were not correlated with the changes in ln(NT-proBNP) (r = -0.101, p = 0.656). In conclusion, the dehydration at high altitude as reflected by 10%-15% vector lengthening falls within "appropriate dehydration" in healthy lowland subjects. NT-proBNP does not simply reflect the TBW status during acute high altitude exposure and needs further investigation.
Collapse
Affiliation(s)
| | - Matiram Pun
- EURAC Institute of Mountain Emergency Medicine, Bolzano, Italy
| | | | - Emily Procter
- EURAC Institute of Mountain Emergency Medicine, Bolzano, Italy
| | - Piergiorgio Lochner
- Department of Neurology, Saarland University Medical Center, Homburg, Germany
| | - Hermann Brugger
- EURAC Institute of Mountain Emergency Medicine, Bolzano, Italy
| | - Antonio Piccoli
- Department of Medicine DIMED, University Hospital of Padova, Padova, Italy
| |
Collapse
|
8
|
Rossetti GMK, Macdonald JH, Wylie LJ, Little SJ, Newton V, Wood B, Hawkins KA, Beddoe R, Davies HE, Oliver SJ. Dietary nitrate supplementation increases acute mountain sickness severity and sense of effort during hypoxic exercise. J Appl Physiol (1985) 2017; 123:983-992. [DOI: 10.1152/japplphysiol.00293.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 12/12/2022] Open
Abstract
Dietary nitrate supplementation enhances sea level performance and may ameliorate hypoxemia at high altitude. However, nitrate may exacerbate acute mountain sickness (AMS), specifically headache. This study investigated the effect of nitrate supplementation on AMS symptoms and exercise responses with 6-h hypoxia. Twenty recreationally active men [age, 22 ± 4 yr, maximal oxygen consumption (V̇o2max), 51 ± 6 ml·min−1·kg−1, means ± SD] completed this randomized double-blinded placebo-controlled crossover study. Twelve participants were classified as AMS− on the basis of Environmental Symptoms Questionnaire [Acute Cerebral Mountain Sickness score (AMS-C)] <0.7 in both trials, and five participants were classified as AMS+ on the basis of AMS-C ≥0.7 on placebo. Five days of nitrate supplementation (70-ml beetroot juice containing ~6.4 mmol nitrate daily) increased plasma NO metabolites by 182 µM compared with placebo but did not reduce AMS or improve exercise performance. After 4-h hypoxia [inspired O2 fraction ([Formula: see text]) = 0.124], nitrate increased AMS-C and headache severity (visual analog scale; whole sample ∆10 [1, 20] mm, mean difference [95% confidence interval]; P = 0.03) compared with placebo. In addition, after 5-h hypoxia, nitrate increased sense of effort during submaximal exercise (∆7 [−1, 14]; P = 0.07). In AMS−, nitrate did not alter headache or sense of effort. In contrast, in AMS+, nitrate increased headache severity (∆26 [−3, 56] mm; P = 0.07), sense of effort (∆14 [1, 28]; P = 0.04), oxygen consumption, ventilation, and mean arterial pressure during submaximal exercise. On the next day, in a separate acute hypoxic exercise test ([Formula: see text] = 0.141), nitrate did not improve time to exhaustion at 80% hypoxic V̇o2max. In conclusion, dietary nitrate increases AMS and sense of effort during exercise, particularly in those who experience AMS. Dietary nitrate is therefore not recommended as an AMS prophylactic or ergogenic aid in nonacclimatized individuals at altitude. NEW & NOTEWORTHY This is the first study to identify that the popular dietary nitrate supplement (beetroot) does not reduce acute mountain sickness (AMS) or improve exercise performance during 6-h hypoxia. The consumption of nitrate in those susceptible to AMS exacerbates AMS symptoms (headache) and sense of effort and raises oxygen cost, ventilation, and blood pressure during walking exercise in 6-h hypoxia. These data question the suitability of nitrate supplementation during altitude travel in nonacclimatized people.
Collapse
Affiliation(s)
- Gabriella M. K. Rossetti
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, United Kingdom; and
| | - Jamie H. Macdonald
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, United Kingdom; and
| | - Lee J. Wylie
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke’s Campus, Exeter, United Kingdom
| | - Samuel J. Little
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, United Kingdom; and
| | - Victoria Newton
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, United Kingdom; and
| | - Benjamin Wood
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, United Kingdom; and
| | - Kieran A. Hawkins
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, United Kingdom; and
| | - Rhys Beddoe
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, United Kingdom; and
| | - Hannah E. Davies
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, United Kingdom; and
| | - Samuel J. Oliver
- Extremes Research Group, College of Health and Behavioural Sciences, Bangor University, Bangor, United Kingdom; and
| |
Collapse
|
9
|
Grewal P, Smith JH. When Headache Warns of Homeostatic Threat: the Metabolic Headaches. Curr Neurol Neurosci Rep 2017; 17:1. [PMID: 28097510 DOI: 10.1007/s11910-017-0714-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Parneet Grewal
- Department of Neurology, University of Kentucky, 740 S. Limestone, L445, Lexington, KY, 40536, USA
| | - Jonathan H Smith
- Department of Neurology, University of Kentucky, 740 S. Limestone, L445, Lexington, KY, 40536, USA.
| |
Collapse
|
10
|
Chen L, Cai C, Yang T, Lin J, Cai S, Zhang J, Chen Z. Changes in brain iron concentration after exposure to high-altitude hypoxia measured by quantitative susceptibility mapping. Neuroimage 2016; 147:488-499. [PMID: 27986608 DOI: 10.1016/j.neuroimage.2016.12.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 01/20/2023] Open
Abstract
Hypoxia can induce physiological changes. This study aims to explore effects of high-altitude (HA) hypoxia on cerebral iron concentration. Twenty-nine healthy sea-level participants were tested shortly before and after approximately 4-week adaptation to the HA environment at fQinghai-Tibet Plateau (4200m), and were re-investigated after re-adaptation to the sea-level environment one year later. Iron concentration was quantified with quantitative susceptibility mapping (QSM), and the results were compared with transverse relaxation rate (R*2) measurements. The variations of magnetic susceptibility indicate that the iron concentration in gray matter regions, especially in basal ganglia, including caudate nucleus, putamen, globus pallidus and substantia nigra, increases significantly after HA exposure. This increase appears consistent with the conclusion from R*2 value variations. However, unlike QSM, the R*2 value fails to demonstrate the statistical difference of iron content in red nucleus. The re-investigation results show that most variations are recovered after sea-level re-adaptation for one year. Additionally, hemisphere- and gender-related differences in iron concentration changes were analyzed among cerebral regions. The results show greater possibilities in the right hemisphere and females. Further studies based on diffusion tensor imaging (DTI) suggest that the fractional anisotropy increases and the mean diffusivity decreases after HA exposure in six deep gray matter nuclei, with linear dependence on iron concentration only in putamen. In conclusion, the magnetic susceptibility value can serve as a quantitative marker of brain iron, and variations of regional susceptibility reported herein indicate that HA hypoxia can result in significant iron deposition in most deep gray matter regions. Additionally, the linear dependence of DTI metrics on iron concentration in putamen indicates a potential relationship between ferritin and water diffusion.
Collapse
Affiliation(s)
- Lin Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| | - Congbo Cai
- Department of Communication Engineering, Xiamen University, Xiamen 361005, China
| | - Tianhe Yang
- Magnetic Resonance Center, Zhongshan Hospital, Medical College of Xiamen University, Xiamen 361004, China
| | - Jianzhong Lin
- Magnetic Resonance Center, Zhongshan Hospital, Medical College of Xiamen University, Xiamen 361004, China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China.
| | - Jiaxing Zhang
- Department of Physiology and Neurobiology, Medical College of Xiamen University, Xiamen 361102, China.
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005, China
| |
Collapse
|
11
|
Lawley JS, Macdonald JH, Oliver SJ, Mullins PG. Unexpected reductions in regional cerebral perfusion during prolonged hypoxia. J Physiol 2016; 595:935-947. [PMID: 27506309 DOI: 10.1113/jp272557] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/04/2016] [Indexed: 01/06/2023] Open
Abstract
KEY POINTS Cognitive performance is impaired by hypoxia despite global cerebral oxygen delivery and metabolism being maintained. Using arterial spin labelled (ASL) magnetic resonance imaging, this is the first study to show regional reductions in cerebral blood flow (CBF) in response to decreased oxygen supply (hypoxia) at 2 h that increased in area and became more pronounced at 10 h. Reductions in CBF were seen in brain regions typically associated with the 'default mode' or 'task negative' network. Regional reductions in CBF, and associated vasoconstriction, within the default mode network in hypoxia is supported by increased vasodilatation in these regions to a subsequent hypercapnic (5% CO2 ) challenge. These results suggest an anatomical mechanism through which hypoxia may cause previously reported deficits in cognitive performance. ABSTRACT Hypoxia causes an increase in global cerebral blood flow, which maintains global cerebral oxygen delivery and metabolism. However, neurological deficits are abundant under hypoxic conditions. We investigated regional cerebral microvascular responses to acute (2 h) and prolonged (10 h) poikilocapnic normobaric hypoxia. We found that 2 h of hypoxia caused an expected increase in frontal cortical grey matter perfusion but unexpected perfusion decreases in regions of the brain normally associated with the 'default mode' or 'task negative' network. After 10 h in hypoxia, decreased blood flow to the major nodes of the default mode network became more pronounced and widespread. The use of a hypercapnic challenge (5% CO2 ) confirmed that these reductions in cerebral blood flow from hypoxia were related to vasoconstriction. Our findings demonstrate steady-state deactivation of the default network under acute hypoxia, which become more pronounced over time. Moreover, these data provide a unique insight into the nuanced localized cerebrovascular response to hypoxia that is not attainable through traditional methods. The observation of reduced perfusion in the posterior cingulate and cuneal cortex, which are regions assumed to play a role in declarative and procedural memory, provides an anatomical mechanism through which hypoxia may cause deficits in working memory.
Collapse
Affiliation(s)
- Justin S Lawley
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Gwynedd, UK.,Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas, TX, USA
| | - Jamie H Macdonald
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Gwynedd, UK
| | - Samuel J Oliver
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Gwynedd, UK
| | - Paul G Mullins
- Bangor Imaging Centre, School of Psychology, Bangor University, Gwynedd, UK
| |
Collapse
|
12
|
Verges S, Rupp T, Villien M, Lamalle L, Troprés I, Poquet C, Warnking JM, Estève F, Bouzat P, Krainik A. Multiparametric Magnetic Resonance Investigation of Brain Adaptations to 6 Days at 4350 m. Front Physiol 2016; 7:393. [PMID: 27660613 PMCID: PMC5014870 DOI: 10.3389/fphys.2016.00393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/23/2016] [Indexed: 11/26/2022] Open
Abstract
Objective: Hypoxic exposure in healthy subjects can induce acute mountain sickness including headache, lethargy, cerebral dysfunction, and substantial cerebral structural alterations which, in worst case, can lead to potentially fatal high altitude cerebral edema. Within this context, the relationships between high altitude-induced cerebral edema, changes in cerebral perfusion, increased brain parenchyma volume, increased intracranial pressure, and symptoms remain unclear. Methods: In 11 subjects before and after 6 days at 4350 m, we performed multiparametric magnetic resonance investigations including anatomical, apparent diffusion coefficient and arterial spin labeling sequences. Results: After the altitude stay, while subjects were asymptomatic, white matter volume (+0.7 ± 0.4%, p = 0.005), diffusion (+1.7 ± 1.4%, p = 0.002), and cerebral blood flow (+28 ± 38%; p = 0.036) were significantly increased while cerebrospinal fluid volume was reduced (−1.4 ± 1.1%, p = 0.009). Optic nerve sheath diameter (used as an index of increased intracranial pressure) was unchanged from before (5.84 ± 0.53 mm) to after (5.92 ± 0.60 mm, p = 0.390) altitude exposure. Correlations were observed between increases in white matter volume and diffusion (rho = 0.81, p = 0.016) and between changes in CSF volume and changes in ONSD s (rho = −0.92, p = 0.006) and symptoms during the altitude stay (rho = −0.67, p = 0.031). Conclusions: These data demonstrate white matter alterations after several days at high altitude when subjects are asymptomatic that may represent the normal brain response to prolonged high altitude exposure.
Collapse
Affiliation(s)
- Samuel Verges
- HP2 Laboratory, Université Grenoble AlpesGrenoble, France; U1042, Institut National de la Santé et de la Recherche MédicaleGrenoble, France
| | - Thomas Rupp
- HP2 Laboratory, Université Grenoble AlpesGrenoble, France; U1042, Institut National de la Santé et de la Recherche MédicaleGrenoble, France; Inter-Universitary Laboratory of Human Movement Biology, Université Savoie Mont BlancChambéry, France
| | - Marjorie Villien
- Grenoble Institute of Neurosciences, Université Grenoble AlpesGrenoble, France; SFR1, Université Grenoble AlpesGrenoble, France
| | - Laurent Lamalle
- U836, Institut National de la Santé et de la Recherche Médicale Grenoble, France
| | - Irène Troprés
- U836, Institut National de la Santé et de la Recherche Médicale Grenoble, France
| | - Camille Poquet
- Grenoble Institute of Neurosciences, Université Grenoble AlpesGrenoble, France; SFR1, Université Grenoble AlpesGrenoble, France
| | - Jan M Warnking
- Grenoble Institute of Neurosciences, Université Grenoble AlpesGrenoble, France; SFR1, Université Grenoble AlpesGrenoble, France
| | - François Estève
- Grenoble Institute of Neurosciences, Université Grenoble AlpesGrenoble, France; SFR1, Université Grenoble AlpesGrenoble, France
| | - Pierre Bouzat
- Grenoble Institute of Neurosciences, Université Grenoble AlpesGrenoble, France; SFR1, Université Grenoble AlpesGrenoble, France
| | - Alexandre Krainik
- Grenoble Institute of Neurosciences, Université Grenoble AlpesGrenoble, France; SFR1, Université Grenoble AlpesGrenoble, France
| |
Collapse
|
13
|
DiPasquale DM, Muza SR, Gunn AM, Li Z, Zhang Q, Harris NS, Strangman GE. Evidence for cerebral edema, cerebral perfusion, and intracranial pressure elevations in acute mountain sickness. Brain Behav 2016; 6:e00437. [PMID: 27099800 PMCID: PMC4831417 DOI: 10.1002/brb3.437] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION We hypothesized that cerebral alterations in edema, perfusion, and/or intracranial pressure (ICP) are related to the development of acute mountain sickness (AMS). METHODS To vary AMS, we manipulated ambient oxygen, barometric pressure, and exercise duration. Thirty-six subjects were tested before, during and after 8 h exposures in (1) normobaric normoxia (NN; 300 m elevation equivalent); (2) normobaric hypoxia (NH; 4400 m equivalent); and (3) hypobaric hypoxia (HH; 4400 m equivalent). After a passive 15 min ascent, each subject participated in either 10 or 60 min of cycling exercise at 50% of heart rate reserve. We measured tissue absorption and scattering via radio-frequency near-infrared spectroscopy (NIRS), optic nerve sheath diameter (ONSD) via ultrasound, and AMS symptoms before, during, and after environmental exposures. RESULTS We observed significant increases in NIRS tissue scattering of 0.35 ± 0.11 cm(-1) (P = 0.001) in subjects with AMS (i.e., AMS+), consistent with mildly increased cerebral edema. We also noted a small, but significant increase in total hemoglobin concentrations with AMS+, 3.2 ± 0.8 μmolL(-1) (P < 0.0005), consistent with increased cerebral perfusion. No effect of exercise duration was found, nor did we detect differences between NH and HH. ONSD assays documented a small but significant increase in ONSD (0.11 ± 0.02 mm; P < 0.0005) with AMS+, suggesting mildly elevated ICP, as well as further increased ONSD with longer exercise duration (P = 0.005). CONCLUSION In AMS+, we found evidence of cerebral edema, elevated cerebral perfusion, and elevated ICP. The observed changes were small but consistent with the reversible nature of AMS.
Collapse
Affiliation(s)
- Dana M DiPasquale
- Psychiatry Department Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts
| | - Stephen R Muza
- Environmental Medicine and Military Performance Division U.S. Army Research Institute of Environmental Medicine Natick Massachusetts
| | - Andrea M Gunn
- Psychiatry Department Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts
| | - Zhi Li
- Psychiatry Department Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts
| | - Quan Zhang
- Psychiatry Department Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts; Center for Space Medicine Baylor College of Medicine Houston Texas
| | - N Stuart Harris
- Department of Emergency Medicine Division of Wilderness Medicine Massachusetts General Hospital Harvard Medical School Boston Massachusetts
| | - Gary E Strangman
- Psychiatry Department Massachusetts General Hospital Harvard Medical School Charlestown Massachusetts; Center for Space Medicine Baylor College of Medicine Houston Texas
| |
Collapse
|
14
|
Lawley JS, Levine BD, Williams MA, Malm J, Eklund A, Polaner DM, Subudhi AW, Hackett PH, Roach RC. Cerebral spinal fluid dynamics: effect of hypoxia and implications for high-altitude illness. J Appl Physiol (1985) 2016; 120:251-62. [DOI: 10.1152/japplphysiol.00370.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/17/2015] [Indexed: 12/24/2022] Open
Abstract
The pathophysiology of acute mountain sickness and high-altitude cerebral edema, the cerebral forms of high-altitude illness, remain uncertain and controversial. Persistently elevated or pathological fluctuations in intracranial pressure are thought to cause symptoms similar to those reported by individuals suffering cerebral forms of high-altitude illness. This review first focuses on the basic physiology of the craniospinal system, including a detailed discussion of the long-term and dynamic regulation of intracranial pressure. Thereafter, we critically examine the available literature, based primarily on invasive pressure monitoring, that suggests intracranial pressure is acutely elevated at altitude due to brain swelling and/or elevated sagittal sinus pressure, but normalizes over time. We hypothesize that fluctuations in intracranial pressure occur around a slightly elevated or normal mean intracranial pressure, in conjunction with oscillations in arterial Po2 and arterial blood pressure. Then these modest fluctuations in intracranial pressure, in concert with direct vascular stretch due to dilatation and/or increased blood pressure transmission, activate the trigeminal vascular system and cause symptoms of acute mountain sickness. Elevated brain water (vasogenic edema) may be due to breakdown of the blood-brain barrier. However, new information suggests cerebral spinal fluid flux into the brain may be an important factor. Regardless of the source (or mechanisms responsible) for the excess brain water, brain swelling occurs, and a “tight fit” brain would be a major risk factor to produce symptoms; activities that produce large changes in brain volume and cause fluctuations in blood pressure are likely contributing factors.
Collapse
Affiliation(s)
- Justin S. Lawley
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas, Texas
- UT Southwestern Medical Center, Dallas, Texas
| | - Benjamin D. Levine
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas, Texas
- UT Southwestern Medical Center, Dallas, Texas
| | - Michael A. Williams
- Sandra and Malcolm Berman Brain & Spine Institute, Dept. of Neurology, Sinai Hospital, Baltimore, Maryland
| | - Jon Malm
- Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Anders Eklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - David M. Polaner
- Departments of Anesthesiology and Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado
| | - Andrew W. Subudhi
- Department of Biology, University of Colorado, Colorado Springs, Colorado
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| | | | - Robert C. Roach
- Altitude Research Center, Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; and
| |
Collapse
|
15
|
Koundal S, Gandhi S, Kaur T, Trivedi R, Khushu S. Investigation of prolonged hypobaric hypoxia-induced change in rat brain using T2 relaxometry and diffusion tensor imaging at 7T. Neuroscience 2015; 289:106-13. [PMID: 25592421 DOI: 10.1016/j.neuroscience.2014.12.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
The present study examines the change in water diffusion properties of the corpus callosum (CC) and the hippocampus, in response to prolonged hypobaric hypoxia (HH) stress, using in vivo magnetic resonance imaging (MRI) modalities such as T2 relaxometry and diffusion tensor imaging (DTI). Three groups of rats (n=7/group) were exposed to a simulated altitude of 6700m above sea level for the duration of 7, 14 and 21days, respectively. Data were acquired pre-exposure, post-exposure and after 1week of normoxic follow-up in each group. The increment in T2 values with no apparent diffusion coefficient (ADC) change in the CC after 7 and 14days of HH exposure indicated mixed (vasogenic and cytotoxic) edema formation. After 1week of normoxia, 7-day HH-exposed rats showed a decrease in ADC values in the CC, probably due to cytotoxic edema. A delayed decrease in ADC values was observed in the hippocampus after 1week normoxic follow-up in 7- and 14-day HH groups giving an insight of cytotoxic edema formation. Interestingly, 21-day HH-exposed rats did not show change in ADC values. The decrease in T2 values after 14 and 21days in the hippocampal region depicts iron deposition, which was confirmed by histopathology. This study successfully demonstrated the use of MRI modality to trace water diffusion changes in the brain due to prolonged HH exposure.
Collapse
Affiliation(s)
- S Koundal
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India; Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - S Gandhi
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India
| | - T Kaur
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - R Trivedi
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India
| | - S Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), Lucknow Road, Timarpur, Delhi 110054, India.
| |
Collapse
|
16
|
Cerebral volumetric changes induced by prolonged hypoxic exposure and whole-body exercise. J Cereb Blood Flow Metab 2014; 34:1802-9. [PMID: 25160673 PMCID: PMC4269757 DOI: 10.1038/jcbfm.2014.148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/17/2014] [Accepted: 07/28/2014] [Indexed: 11/08/2022]
Abstract
The present study assessed the isolated and synergetic effects of hypoxic exposure and prolonged exercise on cerebral volume and subedema and symptoms of acute mountain sickness (AMS). Twelve healthy males performed three semirandomized blinded 11-hour sessions with (1) an inspiratory oxygen fraction (FiO2) of 12% and 4-hour cycling, (2) FiO2=21% and 4-hour cycling, and (3) FiO2=8.5% to 12% at rest (matching arterial oxygen saturation measured during the first hypoxic session). Volumetric, apparent diffusion coefficient (ADC), and arterial spin labelling 3T magnetic resonance imaging sequences were performed after 30 minutes and 10 hours in each session. Thirty minutes of hypoxia at rest induced a significant increase in white-matter volume (+0.8±1.0% compared with normoxia) that was exacerbated after 10 hours of hypoxia at rest (+1.5±1.1%) or with cycling (+1.6±1.1%). Total brain parenchyma volume increased significantly after 10 hours of hypoxia with cycling only (+1.3±1.1%). Apparent diffusion coefficient was significantly reduced after 10 hours of hypoxia at rest or with cycling. No significant change in cerebral blood flow was observed. These results demonstrate changes in white-matter volume as early as after 30 minutes of hypoxia that worsen after 10 hours, probably due to cytotoxic edema. Exercise accentuates the effect of hypoxia by increasing total brain volume. These changes do not however correlate with AMS symptoms.
Collapse
|
17
|
Update on High Altitude Cerebral Edema Including Recent Work on the Eye. High Alt Med Biol 2014; 15:112-22. [DOI: 10.1089/ham.2013.1142] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
18
|
Lawley JS, Alperin N, Bagci AM, Lee SH, Mullins PG, Oliver SJ, Macdonald JH. Normobaric hypoxia and symptoms of acute mountain sickness: Elevated brain volume and intracranial hypertension. Ann Neurol 2014; 75:890-8. [PMID: 24788400 DOI: 10.1002/ana.24171] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/24/2014] [Accepted: 04/27/2014] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The study was undertaken to determine whether normobaric hypoxia causes elevated brain volume and intracranial pressure in individuals with symptoms consistent with acute mountain sickness (AMS). METHODS Thirteen males age = (26 (sd 6)) years were exposed to normobaric hypoxia (12% O2 ) and normoxia (21% O2 ). After 2 and 10 hours, AMS symptoms were assessed alongside ventricular and venous vessel volumes, cerebral blood flow, regional brain volumes, and intracranial pressure, using high-resolution magnetic resonance imaging. RESULTS In normoxia, neither lateral ventricular volume (R(2) = 0.07, p = 0.40) nor predominance of unilateral transverse venous sinus drainage (R(2) = 0.07, p = 0.45) was related to AMS symptoms. Furthermore, despite an increase in cerebral blood flow after 2 hours of hypoxia (hypoxia vs normoxia: Δ148ml/min(-1) , 95% confidence interval [CI] = 58 to 238), by 10 hours, when AMS symptoms had developed, cerebral blood flow was normal (Δ-51ml/min(-1) , 95% CI = -141 to 39). Conversely, at 10 hours brain volume was increased (Δ59ml, 95% CI = 8 to 110), predominantly due to an increase in gray matter volume (Δ73ml, 95% CI = 25 to 120). Therefore, cerebral spinal fluid volume was decreased (Δ-40ml, 95% CI = -67 to -14). The intracranial pressure response to hypoxia varied between individuals, and as hypothesized, the most AMS-symptomatic participants had the largest increases in intracranial pressure (AMS present, Δ7mmHg, 95% CI = -2.5 to 17.3; AMS not present, Δ-1mmHg, 95% CI = -3.3 to 0.5). Consequently, there was a significant relationship between the change in intracranial pressure and AMS symptom severity (R(2) = 0.71, p = 0.002). INTERPRETATION The data provide the strongest evidence to date to support the hypothesis that the "random" nature of AMS symptomology is explained by a variable intracranial pressure response to hypoxia.
Collapse
Affiliation(s)
- Justin S Lawley
- Extremes Research Group, School of Sport, Health, and Exercise Sciences, Bangor University, Gwynedd, United Kingdom; Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas, Dallas, TX
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
This article discusses headaches secondary to disorders of homeostasis, which include headaches attributed to (1) hypoxia and/or hypercapnia (high-altitude, diving, or sleep apnea), (2) dialysis, (3) arterial hypertension (pheochromocytoma, hypertensive crisis without hypertensive encephalopathy, hypertensive encephalopathy, preeclampsia or eclampsia, or autonomic dysreflexia), (4) hypothyroidism, (5) fasting, (6) cardiac cephalalgia, and (7) other disorder of homeostasis. Clinical features and diagnosis as well as therapeutic strategies are discussed for each headache type.
Collapse
Affiliation(s)
- Ana Marissa Lagman-Bartolome
- Division of Pediatric Neurology, Hospital for Sick Children, Women's College Hospital, University of Toronto, 555 University Avenue, Toronto, ON M5G1X8, Canada
| | - Jonathan Gladstone
- Gladstone Headache Clinic, 1333 Sheppard Avenue East, Suite 122, Toronto, ON M2J 1V1, Canada.
| |
Collapse
|
20
|
Sightingsedited by John W. Severinghaus. High Alt Med Biol 2013. [DOI: 10.1089/ham.2013.1443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|