1
|
Song H, Lv A, Zhu Z, Li R, Zhao Q, Yu X, Jiang J, Lin X, Zhang C, Li R, Yan Y, Chen W, Wang N, Fu Y. CYP7B1 deficiency impairs myeloid cell activation in autoimmune disease of the central nervous system. PNAS NEXUS 2024; 3:pgae334. [PMID: 39262855 PMCID: PMC11388006 DOI: 10.1093/pnasnexus/pgae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024]
Abstract
Dysregulation of cholesterol metabolism underlies neurodegenerative disease and is increasingly implicated in neuroinflammatory diseases, such as multiple sclerosis (MS). Cytochrome P450 family 7 subfamily B member 1 (CYP7B1) is a key enzyme in alternative cholesterol metabolism. A recessive mutation in the gene CYP7B1 is known to cause a neurodegenerative disease, hereditary spastic paraplegia type 5 and oxysterol accumulation. However, the role of CYP7B1 in neuroinflammation has been little revealed. In this study, we induced experimental autoimmune encephalomyelitis (EAE), as a murine model of MS, using CYP7B1 homozygous knockout (KO) mice. We found that CYP7B1 deficiency can significantly attenuate EAE severity. CYP7B1 deficiency is sufficient to reduce leukocyte infiltration into the central nervous system, suppress proliferation of pathogenic CD4+ T cells, and decrease myeloid cell activation during EAE. Additionally, live-animal imaging targeting translocator protein expression, an outer mitochondrial membrane protein biomarker of neuroinflammation, showed that CYP7B1 deficiency results in suppressed neuroinflammation. Using human monocyte-derived microglia-like cellular disease model and primary microglia of CYP7B1 KO mice, we also found that activation of microglia of CYP7B1 deficiency was impaired. These cumulative results suggest that CYP7B1 can regulate neuroinflammation, thus providing potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Huanhuan Song
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Aowei Lv
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Zhibao Zhu
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Runyun Li
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Qiuping Zhao
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Xintong Yu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Junyi Jiang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Cunjin Zhang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Rui Li
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
- Institute of Immunotherapy, Fujian Medical University, Fuzhou 350122, China
| | - Yaping Yan
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (the Ministry of Education), National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710000, China
| | - Wanjin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Ying Fu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
2
|
Abdesselem M, Pétri N, Kuhner R, Mousseau F, Rouffiac V, Gacoin T, Laplace-Builhé C, Alexandrou A, Bouzigues CI. Real-time in vivo ROS monitoring with luminescent nanoparticles reveals skin inflammation dynamics. BIOMEDICAL OPTICS EXPRESS 2023; 14:5392-5404. [PMID: 37854553 PMCID: PMC10581786 DOI: 10.1364/boe.501914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/20/2023]
Abstract
Reactive oxygen species (ROS) are key regulators in numerous pathological contexts, including cancer or inflammation. Their role is complex, which justifies the need for methods enabling their quantitative and time-resolved monitoring in vivo, in the perspective to profile tissues of individual patients. However, current ROS detection methods do not provide these features. Here, we propose a new method based on the imaging of lanthanide-ion nanoparticles (GdVO4:Eu), whose photoluminescence is modulated by the surrounding ROS concentration. We monitored their luminescence after intradermic injection in a mouse ear submitted to an inflammation-inducing topical stimulus. Based on this approach, we quantified the ROS concentration after inflammation induction and identified a two-step kinetics of ROS production, which may be attributed to the response of resident immune cells and their further recruitment at the inflammation locus.
Collapse
Affiliation(s)
- M Abdesselem
- Laboratory for Optics and Biosciences, Ecole polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, 91128 Palaiseau cedex, France
| | - N Pétri
- Laboratory for Optics and Biosciences, Ecole polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, 91128 Palaiseau cedex, France
| | - R Kuhner
- Laboratory for Optics and Biosciences, Ecole polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, 91128 Palaiseau cedex, France
| | - F Mousseau
- Laboratory for Optics and Biosciences, Ecole polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, 91128 Palaiseau cedex, France
| | - V Rouffiac
- Photon Imaging and Flow Cytometry, CNRS, INSERM, Gustave Roussy Cancer Campus, 114, rue Edouard Vaillant, 94805 Villejuif Cedex, France
| | - T Gacoin
- Laboratoire de Physique de la Matière Condensée, Ecole polytechnique, Institut Polytechnique de Paris, CNRS, 91128 Palaiseau cedex, France
| | - C Laplace-Builhé
- Photon Imaging and Flow Cytometry, CNRS, INSERM, Gustave Roussy Cancer Campus, 114, rue Edouard Vaillant, 94805 Villejuif Cedex, France
| | - A Alexandrou
- Laboratory for Optics and Biosciences, Ecole polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, 91128 Palaiseau cedex, France
| | - C I Bouzigues
- Laboratory for Optics and Biosciences, Ecole polytechnique, Institut Polytechnique de Paris, CNRS, INSERM, 91128 Palaiseau cedex, France
| |
Collapse
|
3
|
Damuka N, Bashetti N, Mintz A, Bansode AH, Miller M, Krizan I, Furdui C, Bhoopal B, Gollapelli KK, Shanmukha Kumar JV, Deep G, Dugan G, Cline M, Solingapuram Sai KK. [ 18F]KS1, a novel ascorbate-based ligand images ROS in tumor models of rodents and nonhuman primates. Biomed Pharmacother 2022; 156:113937. [PMID: 36411624 PMCID: PMC11017304 DOI: 10.1016/j.biopha.2022.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/20/2022] Open
Abstract
Over production of reactive oxygen species (ROS) caused by altered redox regulation of signaling pathways is common in many types of cancers. While PET imaging is recognized as the standard tool for cancer imaging, there are no clinically-approved PET radiotracers for ROS-imaging in cancer diagnosis and treatment. An ascorbate-based radio ligand promises to meet this urgent need. Our laboratory recently synthesized [18F] KS1, a fluoroethoxy furanose ring-containing ascorbate derivative, to track ROS in prostate tumor-bearing mice. Here we report cell uptake assays of [18F]KS1 with different ROS-regulating agents, PET imaging in head and neck squamous cell carcinoma (HNSCC) mice, and doxorubicin-induced rats; PET imaging in healthy and irradiated hepatic tumor-bearing rhesus to demonstrate its translational potential. Our preliminary evaluations demonstrated that KS1 do not generate ROS in tumor cells at tracer-level concentrations and tumor-killing properties at pharmacologic doses. [18F]KS1 uptake was low in HNSCC pretreated with ROS blockers, and high with ROS inducers. Tumors in high ROS-expressing SCC-61 took up significantly more [18F]KS1 than rSCC-61 (low-ROS expressing HNSCC); high uptake in doxorubicin-treated rats compared to saline-treated controls. Rodent biodistribution and PET imaging of [18F]KS1 in healthy rhesus monkeys demonstrated its favorable safety, pharmacokinetic properties with excellent washout profile, within 3.0 h of radiotracer administration. High uptake of [18F]KS1 in liver tumor tissues of the irradiated hepatic tumor-bearing monkey showed target selectivity. Our strong data in vitro, in vivo, and ex vivo here supports the high translational utility of [18F]KS1 to image ROS.
Collapse
Affiliation(s)
- Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Nagaraju Bashetti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, India
| | - Akiva Mintz
- Department of Radiology, Columbia University, New York, NY, United States
| | - Avinash H Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Cristina Furdui
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Bhuvanachandra Bhoopal
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | | - J V Shanmukha Kumar
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, India
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Greg Dugan
- Department of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mark Cline
- Department of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | |
Collapse
|
4
|
Huang L, Li Z, Zhang X. Radiotracers for Nuclear Imaging of Reactive Oxygen Species: Advances Made So Far. Bioconjug Chem 2022; 33:749-766. [PMID: 35467335 DOI: 10.1021/acs.bioconjchem.2c00050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species (ROS) are a cluster of highly reactive and short-lived oxygen-containing molecules that lead to metabolic disorders where production exceeds catabolism in an organism. Many specific radiotracers for positron/single-photon emission tomography have been developed to reveal the discrepancy of ROS levels in normal and damaged tissues and further clarify the relationship between ROS and diseases. This review summarizes the advances achieved for the development of ROS radiotracers to date. The structure design, radiosynthesis, and imaging performance of existing radiotracers are discussed with the individual ROS-response mechanisms highlighted.
Collapse
Affiliation(s)
- Lumei Huang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'An South Rd., Xiang'An district, Xiamen 361102, Fujian, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'An South Rd., Xiang'An district, Xiamen 361102, Fujian, China
| | - Xianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiang'An South Rd., Xiang'An district, Xiamen 361102, Fujian, China
| |
Collapse
|
5
|
Yamasaki T, Sano K, Mukai T. Redox Monitoring in Nuclear Medical Imaging. Antioxid Redox Signal 2022; 36:797-810. [PMID: 34847731 DOI: 10.1089/ars.2021.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: The imbalance in redox homeostasis is known as oxidative stress, which is relevant to many diseases such as cancer, arteriosclerosis, and neurodegenerative disorders. Overproduction of reactive oxygen species (ROS) is one of the factors that trigger the redox state imbalance in vivo. The ROS have high reactivity and impair biomolecules, whereas antioxidants and antioxidant enzymes, such as ascorbate and glutathione, reduce the overproduction of ROS to rectify the redox imbalance. Owing to this, redox monitoring tools have been developed to understand the redox fluctuations in oxidative stress-related diseases. Recent Advances: In an attempt to monitor redox substances, including ROS and radical species, versatile modalities have been developed, such as electron spin resonance, chemiluminescence, and fluorescence. In particular, many fluorescent probes have been developed that are selective for ROS. This has significantly contributed to understanding the relevance of ROS in disease onset and progression. Critical Issues: To date, the dynamics of ROS and radical fluctuation in in vivo redox states remain unclear, and there are a few methods for the in vivo detection of redox fluctuations. Future Directions: In this review, we summarize the development of radiolabeled probes for monitoring redox-relevant species by nuclear medical imaging that is applicable in vivo. In the future, translational research is likely to be advanced through the development of highly sensitive and in vivo applicable detection methods, such as nuclear medical imaging, to clarify the underlying dynamics of ROS, radicals, and redox substances in many diseases. Antioxid. Redox Signal. 36, 797-810.
Collapse
Affiliation(s)
- Toshihide Yamasaki
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Kohei Sano
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Takahiro Mukai
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
6
|
Egami H, Nakagawa S, Katsura Y, Kanazawa M, Nishiyama S, Sakai T, Arano Y, Tsukada H, Inoue O, Todoroki K, Hamashima Y. 18F-Labeled dihydromethidine: positron emission tomography radiotracer for imaging of reactive oxygen species in intact brain. Org Biomol Chem 2020; 18:2387-2391. [PMID: 32073113 DOI: 10.1039/d0ob00126k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dihydromethidine (DHM) labeled with 18F at the para position of the peripheral benzene ring was designed as a positron emission tomography (PET) radiotracer for non-invasive imaging of reactive oxygen species (ROS). This compound readily crosses the blood-brain barrier and is oxidized by ROS, and the oxidation product is retained intracellularly. PET imaging of ROS-producing rat brain microinfused with sodium nitroprusside identified specific brain regions with high ROS concentrations. This tracer should be useful for studies of the pathophysiological roles of ROS, and in the diagnosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hiromichi Egami
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Satoshi Nakagawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Yuki Katsura
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Masakatsu Kanazawa
- Central Research Laboratory, Hamamatsu Photonics K. K., 5000 Hirakuchi, Hamakita-Ku, Hamamatsu, Shizuoka 434-8601, Japan
| | - Shingo Nishiyama
- Central Research Laboratory, Hamamatsu Photonics K. K., 5000 Hirakuchi, Hamakita-Ku, Hamamatsu, Shizuoka 434-8601, Japan
| | - Toshihiro Sakai
- Hanwa Intelligent Medical Center, Hanwa Daini Senboku Hospital, 3176 Fukaikita, Naka-ku, Sakai, Osaka, Japan
| | - Yasushi Arano
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics K. K., 5000 Hirakuchi, Hamakita-Ku, Hamamatsu, Shizuoka 434-8601, Japan
| | - Osamu Inoue
- Hanwa Intelligent Medical Center, Hanwa Daini Senboku Hospital, 3176 Fukaikita, Naka-ku, Sakai, Osaka, Japan
| | - Kenichiro Todoroki
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
7
|
Habibalahi A, Moghari MD, Campbell JM, Anwer AG, Mahbub SB, Gosnell M, Saad S, Pollock C, Goldys EM. Non-invasive real-time imaging of reactive oxygen species (ROS) using auto-fluorescence multispectral imaging technique: A novel tool for redox biology. Redox Biol 2020; 34:101561. [PMID: 32526699 PMCID: PMC7287272 DOI: 10.1016/j.redox.2020.101561] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Detecting reactive oxygen species (ROS) that play a critical role as redox modulators and signalling molecules in biological systems currently requires invasive methods such as ROS -specific indicators for imaging and quantification. We developed a non-invasive, real-time, label-free imaging technique for assessing the level of ROS in live cells and thawed cryopreserved tissues that is compatible with in-vivo imaging. The technique is based on autofluorescence multispectral imaging (AFMI) carried out in an adapted fluorescence microscope with an expanded number of spectral channels spanning specific excitation (365 nm-495 nm) and emission (420 nm-700 nm) wavelength ranges. We established a strong quantitative correlation between the spectral information obtained from AFMI and the level of ROS obtained from CellROX staining. The results were obtained in several cell types (HeLa, PANC1 and mesenchymal stem cells) and in live kidney tissue. Additioanly,two spectral regimes were considered: with and without UV excitation (wavelengths > 400 nm); the latter being suitable for UV-sensitive systems such as the eye. Data were analyzed by linear regression combined with an optimization method of swarm intelligence. This allowed the calibration of AFMI signals to the level of ROS with excellent correlation (R = 0.84, p = 0.00) in the entire spectral range and very good correlation (R = 0.78, p = 0.00) in the limited, UV-free spectral range. We also developed a strong classifier which allowed us to distinguish moderate and high levels of ROS in these two regimes (AUC = 0.91 in the entire spectral range and AUC = 0.78 for UV-free imaging). These results indicate that ROS in cells and tissues can be imaged non-invasively, which opens the way to future clinical applications in conditions where reactive oxygen species are known to contribute to progressive disease such as in ophthalmology, diabetes, kidney disease, cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Abbas Habibalahi
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, 2052, NSW, Australia.
| | - Mahdieh Dashtbani Moghari
- School of Biomedical Engineering, Faculty of Engineering, Darlington Campus, The University of Sydney, NSW, 2006, Australia
| | - Jared M Campbell
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, 2052, NSW, Australia
| | - Ayad G Anwer
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, 2052, NSW, Australia
| | - Saabah B Mahbub
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, 2052, NSW, Australia
| | | | - Sonia Saad
- Kolling Institute of Medical Research, University of Sydney, Camperdown, 2006, NSW, Australia
| | - Carol Pollock
- Kolling Institute of Medical Research, University of Sydney, Camperdown, 2006, NSW, Australia
| | - Ewa M Goldys
- ARC Centre of Excellence Centre for Nanoscale Biophotonics, University of New South Wales, Kensington, 2052, NSW, Australia
| |
Collapse
|
8
|
Hosoi R, Sato S, Shukuri M, Fujii Y, Todoroki K, Arano Y, Sakai T, Inoue O. A Simple Ex Vivo Semiquantitative Fluorescent Imaging Utilizing Planar Laser Scanner: Detection of Reactive Oxygen Species Generation in Mouse Brain and Kidney. Mol Imaging 2019; 18:1536012118820421. [PMID: 30799681 PMCID: PMC6322088 DOI: 10.1177/1536012118820421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Objective: Oxidative stress plays an important role in the onset of many neuronal and peripheral disorders. We examined the feasibility of obtaining semiquantitative fluorescent images of reactive oxygen species (ROS) generation in mouse brain and kidney utilizing a planar laser scanner and dihydroethidium (DHE). Methods: To investigate ROS generation in brain, sodium nitroprusside was injected into the striatum. Dihydroethidium was injected into the tail vein. After DHE injection, tissue slices were analyzed utilizing a planar laser scanner. For kidney study, cis-diamminedichloroplatinum [II] (cisplatin) was intraperitoneally administrated into mice. Results: Clear and semiquantitative fluorescent images of ROS generation in the mouse brain and kidney were obtained. Furthermore, the fluorescence intensity was stable and not affected by fading. Sodium nitroprusside induced approximately 6 times the fluorescence accumulation in the brain. Cisplatin caused renal injury in all mice, and in comparison with control mice, more than 10 times fluorescence accumulation was observed in the renal medulla with tubular necrosis and vacuolization. Conclusions: We successfully obtained ex vivo semiquantitative fluorescent images of ROS generation utilizing a planar laser scanner and DHE. This simple method is useful for ROS detection in several ROS-related animal models and would be applicable to a variety of biochemical processes.
Collapse
Affiliation(s)
- Rie Hosoi
- 1 Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Sota Sato
- 1 Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Miho Shukuri
- 2 Laboratory of Physical Chemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Yuka Fujii
- 1 Division of Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kenichiro Todoroki
- 3 Department of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Suruga, Shizuoka, Japan
| | - Yasushi Arano
- 4 Graduate School of Pharmaceutical Sciences, Chiba University, Chuo-ku, Chiba, Japan
| | - Toshihiro Sakai
- 5 Hanwa Intelligent Medical Center, Hanwa Daini Senboku Hospital, Sakai, Osaka, Japan
| | - Osamu Inoue
- 5 Hanwa Intelligent Medical Center, Hanwa Daini Senboku Hospital, Sakai, Osaka, Japan
| |
Collapse
|
9
|
Solingapuram Sai KK, Bashetti N, Chen X, Norman S, Hines JW, Meka O, Kumar JVS, Devanathan S, Deep G, Furdui CM, Mintz A. Initial biological evaluations of 18F-KS1, a novel ascorbate derivative to image oxidative stress in cancer. EJNMMI Res 2019; 9:43. [PMID: 31101996 PMCID: PMC6525227 DOI: 10.1186/s13550-019-0513-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS)-induced oxidative stress damages many cellular components such as fatty acids, DNA, and proteins. This damage is implicated in many disease pathologies including cancer and neurodegenerative and cardiovascular diseases. Antioxidants like ascorbate (vitamin C, ascorbic acid) have been shown to protect against the deleterious effects of oxidative stress in patients with cancer. In contrast, other data indicate potential tumor-promoting activity of antioxidants, demonstrating a potential temporal benefit of ROS. However, quantifying real-time tumor ROS is currently not feasible, since there is no way to directly probe global tumor ROS. In order to study this ROS-induced damage and design novel therapeutics to prevent its sequelae, the quantitative nature of positron emission tomography (PET) can be harnessed to measure in vivo concentrations of ROS. Therefore, our goal is to develop a novel translational ascorbate-based probe to image ROS in cancer in vivo using noninvasive PET imaging of tumor tissue. The real-time evaluations of ROS state can prove critical in developing new therapies and stratifying patients to therapies that are affected by tumor ROS. METHODS We designed, synthesized, and characterized a novel ascorbate derivative (E)-5-(2-chloroethylidene)-3-((4-(2-fluoroethoxy)benzyl)oxy)-4-hydroxyfuran-2(5H)-one (KS1). We used KS1 in an in vitro ROS MitoSOX-based assay in two different head and neck squamous cancer cells (HNSCC) that express different ROS levels, with ascorbate as reference standard. We radiolabeled 18F-KS1 following 18F-based nucleophilic substitution reactions and determined in vitro reactivity and specificity of 18F-KS1 in HNSCC and prostate cancer (PCa) cells. MicroPET imaging and standard biodistribution studies of 18F-KS1 were performed in mice bearing PCa cells. To further demonstrate specificity, we performed microPET blocking experiments using nonradioactive KS1 as a blocker. RESULTS KS1 was synthesized and characterized using 1H NMR spectra. MitoSOX assay demonstrated good correlations between increasing concentrations of KS1 and ascorbate and increased reactivity in SCC-61 cells (with high ROS levels) versus rSCC-61cells (with low ROS levels). 18F-KS1 was radiolabeled with high radiochemical purity (> 94%) and specific activity (~ 100 GBq/μmol) at end of synthesis (EOS). Cell uptake of 18F-KS1 was high in both types of cancer cells, and the uptake was significantly blocked by nonradioactive KS1, and the ROS blocker, superoxide dismutase (SOD) demonstrating specificity. Furthermore, 18F-KS1 uptake was increased in PCa cells under hypoxic conditions, which have been shown to generate high ROS. Initial in vivo tumor uptake studies in PCa tumor-bearing mice demonstrated that 18F-KS1 specifically bound to tumor, which was significantly blocked (threefold) by pre-injecting unlabeled KS1. Furthermore, biodistribution studies in the same tumor-bearing mice showed high tumor to muscle (target to nontarget) ratios. CONCLUSION This work demonstrates the strong preliminary support of 18F-KS1, both in vitro and in vivo for imaging ROS in cancer. If successful, this work will provide a new paradigm to directly probe real-time oxidative stress levels in vivo. Our work could enhance precision medicine approaches to treat cancer, as well as neurodegenerative and cardiovascular diseases affected by ROS.
Collapse
Affiliation(s)
| | - Nagaraju Bashetti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh 522502 India
| | - Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Skylar Norman
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Justin W. Hines
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Omsai Meka
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - J. V. Shanmukha Kumar
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh 522502 India
| | | | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY 10032 USA
| |
Collapse
|
10
|
Cheng G, Zielonka M, Dranka B, Kumar SN, Myers CR, Bennett B, Garces AM, Dias Duarte Machado LG, Thiebaut D, Ouari O, Hardy M, Zielonka J, Kalyanaraman B. Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future. J Biol Chem 2018; 293:10363-10380. [PMID: 29739855 DOI: 10.1074/jbc.ra118.003044] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen and nitrogen species (ROS/RNS) such as superoxide (O2̇̄), hydrogen peroxide, lipid hydroperoxides, peroxynitrite, and hypochlorous and hypobromous acids play a key role in many pathophysiological processes. Recent studies have focused on mitochondrial ROS as redox signaling species responsible for promoting cell division, modulating and regulating kinases and phosphatases, and activating transcription factors. Many ROS also stimulate cell death and senescence. The extent to which these processes occur is attributed to ROS levels (low or high) in cells. However, the exact nature of ROS remains unknown. Investigators have used redox-active probes that, upon oxidation by ROS, yield products exhibiting fluorescence, chemiluminescence, or bioluminescence. Mitochondria-targeted probes can be used to detect ROS generated in mitochondria. However, because most of these redox-active probes (untargeted and mitochondria-targeted) are oxidized by several ROS species, attributing redox probe oxidation to specific ROS species is difficult. It is conceivable that redox-active probes are oxidized in common one-electron oxidation pathways, resulting in a radical intermediate that either reacts with another oxidant (including oxygen to produce O2̇̄) and forms a stable fluorescent product or reacts with O2̇̄ to form a fluorescent marker product. Here, we propose the use of multiple probes and complementary techniques (HPLC, LC-MS, redox blotting, and EPR) and the measurement of intracellular probe uptake and specific marker products to identify specific ROS generated in cells. The low-temperature EPR technique developed to investigate cellular/mitochondrial oxidants can easily be extended to animal and human tissues.
Collapse
Affiliation(s)
- Gang Cheng
- From the Department of Biophysics.,Free Radical Research Center
| | - Monika Zielonka
- From the Department of Biophysics.,Free Radical Research Center
| | - Brian Dranka
- the Cell Analysis Division, Agilent Technologies, Santa Clara, California 95051
| | | | - Charles R Myers
- Pharmacology and Toxicology, and.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Brian Bennett
- the Department of Physics, Marquette University, Milwaukee, Wisconsin 53233, and
| | - Alexander M Garces
- the Department of Physics, Marquette University, Milwaukee, Wisconsin 53233, and
| | | | - David Thiebaut
- the Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Olivier Ouari
- the Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Micael Hardy
- the Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille 13013, France
| | - Jacek Zielonka
- From the Department of Biophysics.,Free Radical Research Center.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Balaraman Kalyanaraman
- From the Department of Biophysics, .,Free Radical Research Center.,Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
11
|
Hou C, Hsieh CJ, Li S, Lee H, Graham TJ, Xu K, Weng CC, Doot RK, Chu W, Chakraborty SK, Dugan LL, Mintun MA, Mach RH. Development of a Positron Emission Tomography Radiotracer for Imaging Elevated Levels of Superoxide in Neuroinflammation. ACS Chem Neurosci 2018; 9:578-586. [PMID: 29099578 PMCID: PMC5865080 DOI: 10.1021/acschemneuro.7b00385] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
![]()
Reactive oxygen species
(ROS) are believed to play a major role in the proinflammatory, M1-polarized
form of neuroinflammation. However, it has been difficult to assess
the role of ROS and their role in neuroinflammation in animal models
of disease because of the absence of probes capable of measuring their
presence with the functional imaging technique positron emission tomography
(PET). This study describes the synthesis and in vivo evaluation of
[18F]ROStrace, a radiotracer for imaging superoxide in
vivo with PET, in an LPS model of neuroinflammation. [18F]ROStrace was found to rapidly cross the blood–brain barrier
(BBB) and was trapped in the brain of LPS-treated animals but not
the control group. [18F]ox-ROStrace, the
oxidized form of [18F]ROStrace, did not cross the BBB.
These data suggest that [18F]ROStrace is a suitable radiotracer
for imaging superoxide levels in the central nervous system with PET.
Collapse
Affiliation(s)
- Catherine Hou
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chia-Ju Hsieh
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Shihong Li
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsiaoju Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Thomas J. Graham
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kuiying Xu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chi-Chang Weng
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert K. Doot
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Wenhua Chu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110-1016, United States
| | - Subhasish K. Chakraborty
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Laura L. Dugan
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Mark A. Mintun
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110-1016, United States
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
12
|
Zhou J, Weng H, Huang Y, Gu Y, Tang L, Hu W. Ratiometric Reactive Oxygen Species Nanoprobe for Noninvasive In Vivo Imaging of Subcutaneous Inflammation/Infection. J Biomed Nanotechnol 2018; 12:1679-87. [PMID: 29342346 DOI: 10.1166/jbn.2016.2268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Release of reactive oxygen species (ROS) accompanied with acute inflammation and infection often results in cell death and tissue injury. Several ROS-reactive bioluminescent probes have been investigated in recent years to detect ROS activity in vivo. Unfortunately, these probes cannot be used to quantify the degree of ROS activity and inflammatory responses due to the fact that the extent of the bioluminescent signals is also probe-concentration dependent. To address this challenge, we fabricated a ratiometric ROS probe in which both ROS-sensitive chemiluminescent agents and ROS-insensitive fluorescent reference dye were conjugated to particle carriers. The bioluminescence/reference fluorescence intensity ratios was calculated to reflect the extent of localized ROS activities while circumventing the variations in bioluminescent intensities associated with the ROS probe concentrations. The physical and chemical properties of the ratiometric probes were characterized. Furthermore, we assessed the accuracy and reproducibility of the probe in detecting ROS in vitro. The ability of the ratiometric probes to detect ROS production in inflamed/infected tissues was also examined using animal models of inflammation and infection. The overall results imply that ratiometric ROS probes can rapidly and non-invasively detect and quantify the extent of inflammatory responses and bacterial infection on wounds in real time.
Collapse
|
13
|
Abstract
Neuroinflammation, which involves microglial activation, is thought to play a key role in the development and progression of neurodegenerative diseases and other brain pathologies. Positron emission tomography is an ideal imaging technique for studying biochemical processes in vivo, and particularly for studying the living brain. Neuroinflammation has been traditionally studied using radiotracers targeting the translocator protein 18 kDa, but this comes with certain limitations. The current review describes alternative biological targets that have gained interest for the imaging of microglial activation over recent years, such as the cannabinoid receptor type 2, cyclooxygenase-2, the P2X₇ receptor and reactive oxygen species, and some promising radiotracers for these targets. Although many advances have been made in the field of neuroinflammation imaging, current radiotracers all target the pro-inflammatory (M1) phenotype of activated microglia, since the number of known biological targets specific for the anti-inflammatory (M2) phenotype that are also suited as a target for radiotracer development is still limited. Next to proceeding the currently available tracers for M1 microglia into the clinic, the development of a suitable radiotracer for M2 microglia would mean a great advance in the field, as this would allow for imaging of the dynamics of microglial activation in different diseases.
Collapse
Affiliation(s)
- Bieneke Janssen
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Danielle J Vugts
- Department of Radiology & Nuclear Medicine, VU University Medical Center, 1081 HV Amsterdam, The Netherlands.
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, 1081 HV Amsterdam, The Netherlands.
| | - Robert H Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Narayanaswami V, Dahl K, Bernard-Gauthier V, Josephson L, Cumming P, Vasdev N. Emerging PET Radiotracers and Targets for Imaging of Neuroinflammation in Neurodegenerative Diseases: Outlook Beyond TSPO. Mol Imaging 2018; 17:1536012118792317. [PMID: 30203712 PMCID: PMC6134492 DOI: 10.1177/1536012118792317] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/31/2018] [Accepted: 07/09/2018] [Indexed: 11/16/2022] Open
Abstract
The dynamic and multicellular processes of neuroinflammation are mediated by the nonneuronal cells of the central nervous system, which include astrocytes and the brain's resident macrophages, microglia. Although initiation of an inflammatory response may be beneficial in response to injury of the nervous system, chronic or maladaptive neuroinflammation can have harmful outcomes in many neurological diseases. An acute neuroinflammatory response is protective when activated neuroglia facilitate tissue repair by releasing anti-inflammatory cytokines and neurotrophic factors. On the other hand, chronic neuroglial activation is a major pathological mechanism in neurodegenerative diseases, likely contributing to neuronal dysfunction, injury, and disease progression. Therefore, the development of specific and sensitive probes for positron emission tomography (PET) studies of neuroinflammation is attracting immense scientific and clinical interest. An early phase of this research emphasized PET studies of the prototypical imaging biomarker of glial activation, translocator protein-18 kDa (TSPO), which presents difficulties for quantitation and lacks absolute cellular specificity. Many alternate molecular targets present themselves for PET imaging of neuroinflammation in vivo, including enzymes, intracellular signaling molecules as well as ionotropic, G-protein coupled, and immunoglobulin receptors. We now review the lead structures in radiotracer development for PET studies of neuroinflammation targets for neurodegenerative diseases extending beyond TSPO, including glycogen synthase kinase 3, monoamine oxidase-B, reactive oxygen species, imidazoline-2 binding sites, cyclooxygenase, the phospholipase A2/arachidonic acid pathway, sphingosine-1-phosphate receptor-1, cannabinoid-2 receptor, the chemokine receptor CX3CR1, purinergic receptors: P2X7 and P2Y12, the receptor for advanced glycation end products, Mer tyrosine kinase, and triggering receptor expressed on myeloid cells-1. We provide a brief overview of the cellular expression and function of these targets, noting their selectivity for astrocytes and/or microglia, and highlight the classes of PET radiotracers that have been investigated in early-stage preclinical or clinical research studies of neuroinflammation.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Dahl
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Vadim Bernard-Gauthier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Paul Cumming
- School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, Queensland, Australia
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Wilson AA, Sadovski O, Nobrega JN, Raymond RJ, Bambico FR, Nashed MG, Garcia A, Bloomfield PM, Houle S, Mizrahi R, Tong J. Evaluation of a novel radiotracer for positron emission tomography imaging of reactive oxygen species in the central nervous system. Nucl Med Biol 2017; 53:14-20. [PMID: 28719807 DOI: 10.1016/j.nucmedbio.2017.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Few, if any, radiotracers are available for the in vivo imaging of reactive oxygen species (ROS) in the central nervous system. ROS play a critical role in normal cell processes such as signaling and homeostasis but overproduction of ROS is implicated in several disorders. We describe here the radiosynthesis and initial ex vivo and in vivo evaluation of [11C]hydromethidine ([11C]HM) as a radiotracer to image ROS using positron emission tomography (PET). METHODS [11C]HM and its deuterated isotopologue [11C](4) were produced using [11C]methyl triflate in a one-pot, two-step reaction and purified by high performance liquid chromatography. Ex vivo biodistribution studies were performed after tail vein injections of both radiotracers. To demonstrate sensitivity of uptake to ROS, [11C]HM was administered to rats treated systemically with lipopolysaccharide (LPS). In addition, ex vivo autoradiography and in vivo PET imaging were performed using [11C]HM on rats which had been microinjected with sodium nitroprusside (SNP) to induce ROS. RESULTS [11C]HM and [11C](4) radiosyntheses were reliable and produced the radiotracers at high specific activities and radiochemical purities. Both radiotracers demonstrated good brain uptake and fast washout of radioactivity, but [11C](4) washout was faster. Pretreatment with LPS resulted in a significant increase in brain retention of radioactivity. Ex vivo autoradiography and PET imaging of rats unilaterally treated with microinjections of SNP demonstrated increased retention of radioactivity in the treated side of the brain. CONCLUSIONS [11C]HM has the attributes of a radiotracer for PET imaging of ROS in the brain including good brain penetration and increased retention of radioactivity in animal models of oxidative stress.
Collapse
Affiliation(s)
- Alan A Wilson
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8.
| | - Oleg Sadovski
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - José N Nobrega
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - Roger J Raymond
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - Francis R Bambico
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - Mina G Nashed
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - Armando Garcia
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - Peter M Bloomfield
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| | - Junchao Tong
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada, M5T 1R8
| |
Collapse
|
16
|
Zielonka J, Podsiadły R, Zielonka M, Hardy M, Kalyanaraman B. On the use of peroxy-caged luciferin (PCL-1) probe for bioluminescent detection of inflammatory oxidants in vitro and in vivo - Identification of reaction intermediates and oxidant-specific minor products. Free Radic Biol Med 2016; 99:32-42. [PMID: 27458121 PMCID: PMC5107150 DOI: 10.1016/j.freeradbiomed.2016.07.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/24/2016] [Accepted: 07/21/2016] [Indexed: 12/14/2022]
Abstract
Peroxy-caged luciferin (PCL-1) probe was first used to image hydrogen peroxide in living systems (Van de Bittner et al., 2010 [9]). Recently this probe was shown to react with peroxynitrite more potently than with hydrogen peroxide (Sieracki et al., 2013 [11]) and was suggested to be a more suitable probe for detecting peroxynitrite under in vivo conditions. In this work, we investigated in detail the products formed from the reaction between PCL-1 and hydrogen peroxide, hypochlorite, and peroxynitrite. HPLC analysis showed that hydrogen peroxide reacts slowly with PCL-1, forming luciferin as the only product. Hypochlorite reaction with PCL-1 yielded significantly less luciferin, as hypochlorite oxidized luciferin to form a chlorinated luciferin. Reaction between PCL-1 and peroxynitrite consists of a major and minor pathway. The major pathway results in luciferin and the minor pathway produces a radical-mediated nitrated luciferin. Radical intermediate was characterized by spin trapping. We conclude that monitoring of chlorinated and nitrated products in addition to bioluminescence in vivo will help identify the nature of oxidant responsible for bioluminescence derived from PCL-1.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland.
| | - Monika Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - Micael Hardy
- Aix-Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France.
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| |
Collapse
|
17
|
Kalyanaraman B, Hardy M, Zielonka J. A Critical Review of Methodologies to Detect Reactive Oxygen and Nitrogen Species Stimulated by NADPH Oxidase Enzymes: Implications in Pesticide Toxicity. ACTA ACUST UNITED AC 2016; 2:193-201. [PMID: 27774407 DOI: 10.1007/s40495-016-0063-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this review, potential fluorescent probe applications for detecting reactive oxygen and nitrogen species (ROS/RNS) generated from NADPH oxidases (e.g., Nox2) and nitric oxide synthase enzymes are discussed in the context of pesticide toxicology. Identification of the specific marker products derived from the interaction between ROS/RNS and the fluorescent probes (e.g., hydroethidine and coumarin boronate) is critical. Due to the complex nature of reactions between the probes and ROS/RNS, we suggest avoiding the use of fluorescence microscopy for detecting oxidizing/nitrating species. We also critically examined the viability of using radiolabeling or positron emission tomography (PET) for ROS/RNS detection. Although these techniques differ in sensitivity and detection modalities, the chemical mechanism governing the reaction between these probes and ROS/RNS should remain the same. To unequivocally detect superoxide with these probes (i.e., radiolabeled and PET-labeled hydroethidine analogs), the products should be isolated and characterized by LC-MS/MS or HPLC using an appropriate standard.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Micael Hardy
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| |
Collapse
|
18
|
Okamura T, Okada M, Kikuchi T, Wakizaka H, Zhang MR. A ¹¹C-labeled 1,4-dihydroquinoline derivative as a potential PET tracer for imaging of redox status in mouse brain. J Cereb Blood Flow Metab 2015; 35:1930-6. [PMID: 26082015 PMCID: PMC4671112 DOI: 10.1038/jcbfm.2015.132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/01/2015] [Accepted: 05/20/2015] [Indexed: 01/08/2023]
Abstract
A disturbance in redox balance has been implicated in the pathogenesis of a number of diseases. This study sought to examine the feasibility of imaging brain redox status using a (11)C-labeled dihydroquinoline derivative ([(11)C]DHQ1) for positron emission tomography (PET). The lipophilic PET tracer [(11)C]DHQ1 was rapidly oxidized to its hydrophilic form in mouse brain homogenate. The redox modulators diphenyleneiodonium and apocynin significantly reduced the initial velocity of [(11)C]DHQ1 oxidation, and apocynin also caused concentration-dependent inhibition of the initial velocity. Moreover, [(11)C]DHQ1 readily entered the brain by diffusion after administration and underwent oxidation into the hydrophilic cationic form, which then slowly decreased. By contrast, apocynin treatment inhibited the in vivo oxidation of [(11)C]DHQ1 to the hydrophilic cationic form, leading to a rapid decrease of radioactivity in the brain. Thus, the difference in the [(11)C]DHQ1 kinetics reflects the alteration in redox status caused by apocynin. In conclusion, [(11)C]DHQ1 is a potential PET tracer for imaging of redox status in the living brain.
Collapse
Affiliation(s)
- Toshimitsu Okamura
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Maki Okada
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Tatsuya Kikuchi
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Hidekatsu Wakizaka
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Ming-Rong Zhang
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
19
|
Takai N, Abe K, Tonomura M, Imamoto N, Fukumoto K, Ito M, Momosaki S, Fujisawa K, Morimoto K, Takasu N, Inoue O. Imaging of reactive oxygen species using [(3)H]hydromethidine in mice with cisplatin-induced nephrotoxicity. EJNMMI Res 2015; 5:116. [PMID: 26160497 PMCID: PMC4497996 DOI: 10.1186/s13550-015-0116-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/23/2015] [Indexed: 11/22/2022] Open
Abstract
Background Reactive oxygen species (ROS) have been implicated in cisplatin-induced nephrotoxicity. The aim of this study was to investigate the potential of using [3H]-labeled N-methyl-2,3-diamino-6-phenyl-dihydrophenanthridine ([3H]hydromethidine) for ex vivo imaging of regional ROS overproduction in mouse kidney induced by cisplatin. Methods Male C57BL/6 J mice were intraperitoneally administered with a single dose of cisplatin (30 mg/kg). Renal function was assessed by measuring serum creatinine and blood urea nitrogen (BUN) levels and morphology by histological examination. Renal malondialdehyde levels were measured as a lipid peroxidation marker. Autoradiographic studies were performed with kidney sections from mice at 60 min after [3H]hydromethidine injection. Results Radioactivity accumulation after [3H]hydromethidine injection was observed in the renal corticomedullary area of cisplatin-treated mice and was attenuated by pretreatment with dimethylthiourea (DMTU), a hydroxyl radical scavenger. Cisplatin administration significantly elevated serum creatinine and BUN levels, caused renal tissue damage, and promoted renal lipid peroxidation. These changes were significantly suppressed by DMTU pretreatment. Conclusions The present study showed that [3H]hydromethidine was rapidly distributed to the kidney after its injection and trapped there in the presence of ROS such as hydroxyl radicals, suggesting that [3H]hydromethidine is useful for assessment of the renal ROS amount in cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Nozomi Takai
- Department of Drug Metabolism & Pharmacokinetics, Research Laboratory for Development, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka, 561-0825, Japan,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abe K, Tonomura M, Ito M, Takai N, Imamoto N, Rokugawa T, Momosaki S, Fukumoto K, Morimoto K, Inoue O. Imaging of reactive oxygen species in focal ischemic mouse brain using a radical trapping tracer [(3)H]hydromethidine. EJNMMI Res 2015; 5:115. [PMID: 26160496 PMCID: PMC4498001 DOI: 10.1186/s13550-015-0115-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/12/2015] [Indexed: 12/24/2022] Open
Abstract
Background Reactive oxygen species (ROS) have been implicated in the pathophysiology of the brain after ischemic stroke. In this study, we investigate the generation of brain ROS after transient focal ischemia in mice using a radical trapping radiotracer, [3H]-labeled N-methyl-2,3-diamino-6-phenyl-dihydrophenanthridine ([3H]hydromethidine), which we recently reported as a ROS imaging probe. We also examined the effect of dimethylthiourea (DMTU), a hydroxyl radical scavenger, on brain ROS generation and infarct volume after transient focal ischemia in mice. Methods [3H]Hydromethidine was intravenously injected into mice at 1, 2, 5, and 7 h after transient middle cerebral artery occlusion (tMCAO), and then, the brain autoradiogram was acquired at 60 min after tracer injection. Brain infarct volumes at 24 h after tMCAO were assessed by 2,3,5-triphenyltetrazolium chloride staining. Results Accumulation of radioactivity was observed in the ipsilateral striatum and cortex at 1 h after tMCAO. The increase of radioactivity was attenuated at 2 h after tMCAO and then became maximized at 5 h. The high accumulation of radioactivity remained until 7 h after tMCAO. DMTU treatment significantly attenuated the accumulation of radioactivity in the ipsilateral hemisphere at 1, 5, and 7 h after tMCAO. Brain infarct volumes were also significantly reduced in DMTU-treated mice at 24 h after tMCAO. Conclusions These results indicated that [3H]hydromethidine is a useful radiotracer for detecting in vivo brain ROS generation such as hydroxyl radical after ischemic injury.
Collapse
Affiliation(s)
- Kohji Abe
- Department of Drug Metabolism & Pharmacokinetics, Research Laboratory for Development, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka, 561-0825, Japan,
| | | | | | | | | | | | | | | | | | | |
Collapse
|